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Multiparameter analysis of core regulatory proteins involved in G1–S and G2–M cell-cycle transitions provides a powerful biomarker
readout for assessment of the cell-cycle state. We have applied this algorithm to breast cancer to investigate how the cell cycle
impacts on disease progression. Protein expression profiles of key constituents of the DNA replication licensing pathway (Mcm2,
geminin) and mitotic machinery (Plk1, Aurora A and the Aurora substrate histone H3S10ph) were generated for a cohort of 182
patients and linked to clinicopathological parameters. Arrested differentiation and genomic instability were associated with an
increased engagement of cells into the cell division cycle (Po0.0001). Three unique cell-cycle phenotypes were identified: (1) well-
differentiated tumours composed predominantly of Mcm2-negative cells, indicative of an out-of-cycle state (18% of cases); (2) high
Mcm2-expressing tumours but with low geminin, Aurora A, Plk1 and H3S10ph levels (S–G2–M progression markers), indicative of a
G1-delayed/arrested state (24% cases); and (3) high Mcm2-expressing tumours and also expressing high levels of the S–G2–M
progression markers, indicative of accelerated cell-cycle progression (58% of cases). The active cell-cycle progression phenotype had
a higher risk of relapse when compared with out-of-cycle and G1-delayed/arrested phenotypes (HR¼ 3.90 (1.81–8.40, Po0.001)),
and was associated with Her-2 and triple negative subtypes (Po0.001). It is of note that high-grade tumours with the G1-delayed/
arrested phenotype showed an identical low risk of relapse compared with well-differentiated out-of-cycle tumours (HR¼ 1.00
(0.22–4.46), P¼ 0.99). Our biomarker algorithm provides novel insights into the cell-cycle state of dynamic tumour cell populations
in vivo. This information is of major prognostic significance and may impact on individualised therapeutic decisions. Patients with an
accelerated phenotype are more likely to derive benefit from S- and M-phase-directed chemotherapeutic agents.
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Cancer is a heterogeneous and complex group of diseases caused
by the accumulation of genetic lesions, which increase the activity
of regulatory genes that drive cell proliferation and decrease the
activity of proteins that normally inhibit it. Activation of dominant
stimulatory oncogenes or inactivation of recessive tumour
suppressor genes can affect all levels of growth-signalling path-
ways, including mitogens, mitogen growth factor receptors
PI3kinase–Akt, Ras, Raf and ABL, upstream of molecules such
as p16INK4A, Cyclin D, Myc, Cyclin E, p53, and downstream of
pRB. Global gene expression profiling is ideally suited for analysis

of the complex multifactorial, interactive and stepwise alterations
in gene expressions that characterise tumorigenesis (Perou et al,
1999; Ross et al, 2000). The analysis of complex and redundant
pathways that control proliferation, differentiation, apoptosis and
DNA damage response by global genome-wide analysis is an
intensive area of investigation aimed at identifying unique
molecular signatures and biomarkers of prognostic and predictive
significance in cancer (Van ‘t Veer et al, 2002; Paik et al, 2004).
However, the actual performance of prediction rules using gene
expression profiling has not turned out to be as informative as
initially expected for many tumour types, and the list of genes
identified can be highly unstable (Michiels et al, 2005; Dunkler
et al, 2007). An alternative approach is to focus directly on the cell-
cycle machinery, which acts as an integration point for informa-
tion transduced through upstream pathways (Stoeber et al, 2001;
Gonzalez et al, 2005; Williams and Stoeber, 2007).
The cell cycle represents a highly regulated series of events that

leads to eukaryotic cell reproduction. Early in the cycle, the DNA is
replicated and the chromosomes are duplicated during transit
through S phase. This process begins at specific DNA sites called
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replication origins. At these sites, the DNA replication licensing
machinery opens the DNA double helix, exposing it to the enzymes
that carry out DNA synthesis (Machida et al, 2005). S phase is
followed by chromosomal segregation, nuclear division and cell
division, which is collectively called M phase. Most cell cycles
contain additional gap phases between S and M phases, which
provide additional time for growth and also serve as important
regulatory transitions, through which progression to the next cell-
cycle stage can be controlled by intracellular and extracellular
signals (Nigg, 2001; Sherr and Roberts, 2004) (Figure 1A). G1 is a
particularly important regulatory period, because it is here that
most cells become committed to either continued division or exit
from the cell cycle (Zetterberg and Larsson, 1985; Planas-Silva and
Weinberg, 1997). In the presence of unfavourable conditions or
inhibitory signals, cells can normally withdraw from the cell cycle
into quiescent (G0), terminally differentiated or senescent out-of-
cycle states, a characteristic feature of most of the functionally
differentiated cells of the human body (Stoeber et al, 2001; Blow
and Hodgson, 2002). Cancers, in contrast, are characterised by
uncontrolled cell growth and, therefore, contain a high pro-
portion of cycling cells. It is for this reason that many of the
chemotherapeutic agents and newly emerging small-molecule
inhibitors are cell-cycle-phase-specific.
The DNA replication licensing machinery represents a complex

of initiator proteins, which bind and open the DNA at origins
establishing replication forks. During late mitosis and early G1
phases, there is a sequential assembly of the replication licensing
factors, ORC, Cdc6, Cdt1 and Mcm2–7, at replication origins to
form pre-replicative complexes, rendering origins ‘licensed’ for
DNA synthesis during S phase. At the G1–S transition, cyclin-
dependent kinases and the ASK-dependent Cdc7 kinase trigger a
conformational change in the pre-replicative complex, referred to
as ‘origin firing’, resulting in the recruitment of Cdc45, Mcm10 and
additional initiator proteins, which collectively promote origin

unwinding and the recruitment of DNA polymerases (Machida
et al, 2005). Expression of the licensing repressor, geminin,
during S–G2–M phases prevents inappropriate re-initiation
events through its interaction with Cdt1, resulting in a block to
Mcm2–7 loading to chromatin (Hook et al, 2007). We and others
have shown that the Mcm2–7 replication licensing factors,
constituents of the heterohexameric DNA replicative helicase, are
expressed throughout all cell-cycle phases (G1–S–G2–M), but are
tightly downregulated during exit into out-of-cycle states (Stoeber
et al, 2001; Barkley et al, 2007; Williams and Stoeber, 2007). The
repression of origin licensing contributes to replication arrest and
loss of proliferative capacity, as cells exit the mitotic cycle into the
out-of-cycle state (Blow and Hodgson, 2002). This allows a
functional distinction between the proliferative state and the
non-proliferative out-of-cycle state, depending on whether origins
are licensed (Blow and Hodgson, 2002). Detection of Mcm2–7 is
therefore a powerful way of assessing the proliferative potential of
the cell. We and others have shown that these unique biomarkers
can clearly distinguish between cycling cells and the out-of-cycle
state in a range of tissue types, including premalignant and
malignant disorders (Freeman et al, 1999; Gonzalez et al, 2005;
Williams and Stoeber, 2007). As neoplastic cells are characterised
by uncontrolled proliferation, Mcm expression is currently being
exploited as a cancer diagnostic marker in a broad range of tumour
types (Gonzalez et al, 2005; Tachibana et al, 2005; Williams and
Stoeber, 2007).
The rigorous control of mitotic events (M phase) is essential for

successful completion of sister-chromatid segregation and cell
division. Although cyclin-dependent kinases are the master
regulators of mitotic entry, they do not act alone. Polo-like kinase
1 (Plk1), Aurora A and Aurora B are three additional protein
kinases that control a subset of critical mitotic events, including
centrosome maturation and separation, chromosome orientation
and segregation (Nigg, 2001). These mitotic kinases are currently
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Figure 1 (A) Diagrammatic representation of the mitotic cell division cycle. (B) Phase-specific distribution of cell-cycle biomarkers in proliferating cells
and out-of-cycle states. (C) Cell-cycle-phase-specific chemotherapeutic and mechanistic agents. Drugs highlighted in green are commonly used in the
treatment of breast cancer.
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the focus of major clinical interest, as small-molecule inhibitors
targeting these enzymes have potent tumour-killing effects (Keen
and Taylor, 2004; Plyte and Musacchio, 2007). We have shown
earlier in human cells and tissues that, similar to geminin,
endogenous levels of Aurora A/B and Plk1 are tightly regulated in a
cell-cycle-dependent manner, which is undetectable in G1 phase,
accumulates during S phase and reaches a peak in G2/M phase,
followed by a rapid degradation at the end of mitosis (Kulkarni
et al, 2007). Histone H3 is a substrate for the Aurora kinases and is
phosphorylated on Serine 10 only in mitosis (Crosio et al, 2002).
Therefore, geminin, Aurora A/B and Plk1 represent biomarkers of
the S–G2–M progression, whereas phosphohistone (H3S10ph)
represents a biomarker of the M-phase transition (Gurley et al,
1978; Paulson and Taylor, 1982; Wei et al, 1999; Crosio et al, 2002;
Wohlschlegel et al, 2002; Kulkarni et al, 2007; Williams and
Stoeber, 2007) (Figure 1B).
Multiparameter analysis of Mcm2–7, geminin, Aurora A, Plk1

and H3S10ph, core regulators of the G1–S and G2–M transitions,
thus allows a detailed analysis of the kinetics of complex dynamic
tumour cell populations. This biomarker set not only allows the
out-of-cycle state to be distinguished from G1 but also provides an
assessment of cell-cycle progression and cell-cycle-phase distribu-
tion (Williams and Stoeber, 2007) (Figure 1B). These proteins are
readily detectable immohistochemically in surgical biopsy tumour
samples and can, therefore, be used to determine the cell-cycle
dynamics of individual patient samples. Interestingly, the
proliferation signature, which includes cell-cycle regulatory
proteins, has emerged as one of the most prominent prognostic
gene-expression patterns in genome-wide analysis studies
(Whitfield et al, 2006). Here we therefore set out to test the
hypothesis whether a tumour’s cell-cycle phenotype might also
provide information regarding in vivo behaviour and disease
progression, and whether the cell-cycle-phase distribution analysis
might also provide a guide for selection of patients most likely to
benefit from cell-cycle-phase-specific chemotherapeutic agents
(Figure 1C).
Breast cancer was selected as the tumour model system of

choice to test this novel cell-cycle algorithm because current
prognostic and predictive tools for this common malignancy have
limited discriminant utility, and adjuvant chemotherapy for this
particular tumour type utilises cell-cycle-phase-specific agents
(Michiels et al, 2005, 2007; Dunkler et al, 2007). The best
prognostic tool described to date for identifying which patients
are most likely to benefit from adjuvant chemotherapy is the
Nottingham Prognostic Index (NPI), which includes morpho-
logical correlates of biological features of aggressive disease
(Elston and Ellis, 1991). This includes tumour size, lymph node
spread and grade. The latter is a combined index of differentiation
status, nuclear pleomorphism reflecting genomic instability and
number of cells in M phase (Elston and Ellis, 1991; Rampaul et al,
2001). Patients can be divided into good (NPI score o3.4; 15-year
survival rate 80%), moderate (NPI score: 3.4–5.4; 15-year
survival rate: 42%) and poor (NPI score: 45.4; 15-year survival
rate: 13%) prognostic groups, on which therapeutic decisions
can be based (Elston and Ellis, 1991). However, up to one-third of
women with negative axillary lymph nodes will suffer recurrence,
whereas approximately one-third of node-positive patients
not receiving adjuvant therapy remain recurrence-free after
10 years (EBCTCG, 1998a, b). We have conducted an analysis of
the G1–S and G2–M regulators to determine the relationship
between cell-cycle state, tumour differentiation status and the
acquisition of genomic instability in breast cancer, and how this
cell-cycle phenotype might impact on in vivo behaviour. We have
also investigated whether the cell-cycle phenotype provides
additional prognostic information independent of the gold
standard NPI, and how this might influence the selection of
patients for neoadjuvant or adjuvant cell-cycle-phase-specific
therapy (Figure 1C).

MATERIALS AND METHODS

Study cohort

A total of 182 patients diagnosed with invasive breast cancer
between 1999 and 2004 were identified from the Breast Cancer
Database held in the Department of Surgery at University College
London (UCL) Hospitals (London, UK). Patients were selected on
the basis of available histological material. Histological specimen
had been reviewed by a qualified breast pathologist at diagnosis
and assessed for histological subtype and nuclear grade according
to the World Health Organization (WHO) criteria. All patients
studied underwent a regular postoperative clinical assessment and
contributed to the cross-sectional analyses. Ten patients were lost
to follow-up, but five were known to have had recurrent cancer, of
whom two died. A total of 167 patients contributed to the
prospective analyses of survival and relapse, of whom 24 (14%)
died from cancer within the study period, 12 died from other
unrelated causes and 131 were still alive at last follow-up. There
were 40 (24%) relapse events comprising relapses and deaths from
cancer. The median follow-up period was 47 months (range:
1–92). The mean time to relapse was 26 months (s.d.¼ 15, range:
2–55). The mean follow-up time among those who had not yet
relapsed was 52 months (s.d.¼ 20, range: 2–92). The mean
survival time among those who died was 21 months (s.d.¼ 12,
range: 4–44). The mean follow-up time among those still alive was
50 months (s.d.¼ 21, range: 1–92).
Formalin-fixed, paraffin-embedded breast tissues from these

patients were retrieved from the archives of the Department of
Pathology (UCL Hospitals, London, UK), and included all three
histological grades (1–3) calculated according to the Nottingham
modification of the Bloom and Richardson method (Elston and
Ellis, 1991). Histological reports and specimens were available for
all cases. These included 142 invasive ductal carcinomas, 26
lobular, 4 mucinous, 1 micropapillary and 9 of mixed type. Breast
cancers were also subdivided on the basis of their hormone
receptor status, Her-2 expression and basal cytokeratin
(CK 5) expression. Using this immunohistochemistry-based
approach, cancers were subdivided into three groups: (1)
ER/PRþ , Her-2þ /� (n¼ 145); (2) ER/PR�, Her-2þ (n¼ 11);
and (3) ER/PR�, Her-2� (n¼ 26). These subgroups are clinically
relevant and also approximate to the ‘luminal’, ‘Her-2’ and ‘triple
negative/basal-like’ breast cancer subtypes, earlier defined by
microarray-based gene expression profiling (Sorlie et al, 2001).
Parameters recorded include date of birth, histological grade,
tumour size, tumour type, lymph node status, lymphovascular
invasion (LVI), date of diagnosis, date of relapse, date of last
follow-up, and date and cause of death. The NPI was calculated
according to the following formula: NPI score¼ 0.2� tumour
sizeþ tumour gradeþ nodal status (Rampaul et al, 2001). Ran-
domly selected cases of normal breast tissue from 21 premeno-
pausal women who had undergone reduction mammoplasty were
additionally included in the study. Local research ethics committee
approval for the study was obtained from the joint UCL/UCLH
Committees on the Ethics of Human Research.

Antibodies

A rabbit polyclonal antibody against human geminin was
generated as described (Wharton et al, 2004). Ki67 monoclonal
antibody (MAb) (clone MIB-1) was obtained from DAKO
(Glostrup, Denmark), Mcm2 MAb (clone 46) from BD Transduc-
tion Laboratories (Lexington, KY, USA), oestrogen receptor-a (ER)
MAb (clone 1D5) and progesterone receptor (PR) MAb (clone PgR
636) from DAKO, Aurora A MAb NCL-L-AK2 (clone JLM28)
from Novocastra Laboratories (Newcastle, UK), Plk1 MAb (clone
35-206) and Histone H3 phosphorylated on Serine 10 (H3S10ph)
polyclonal antibody from Upstate (Lake Placid, NY, USA).
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Cell culture and synchronisation

Human MCF-7 breast epithelial adenocarcinoma cells (HTB-22;
ATCC, Teddington, UK) were cultured in EMEM (Gibco-BRL,
Invitrogen, Carlsbad, CA, USA) supplemented with 2mM gluta-
mine, 1% non-essential amino acids, 10% FCS, 100Uml�1

penicillin and 0.1mgml�1 streptomycin.

Preparation of protein extracts and immunoblotting

MCF-7 cells were harvested by treatment with trypsin, washed in
PBS and resuspended in lysis buffer (50mM Tris-Cl, pH 7.5,
150mM NaCl, 20mM EDTA, 0.5% NP-40) at 2� 107 cells/ml. After
incubation on ice for 30min, the lysate was clarified by
centrifugation (13 000 g, 15min, 41C). Lysates were separated by
4–20% SDS–PAGE (75mg protein/well) and immunoblotted as
described (Stoeber et al, 2001). Blocking, antibody incubations and
washing steps were performed using the following conditions: PBS/
0.1% Tween-20/5% milk for Mcm2, Aurora A and Plk1; PBS/1%
Tween-20/10% milk for geminin; and PBS/5% milk for H3S10ph.

Immunohistochemistry

Archival formalin-fixed, paraffin-embedded tissue (PWET) ob-
tained at initial diagnosis was available for all patients, and for
each specimen, a block was chosen that contained a representative
sample of invasive tumour. Consecutive serial sections cut
from each PWET block were used for immunohistochemistry.
Sections of 3-mm thickness were cut onto Superfrost Plus slides
(Visions Biosystems, Newcastle Upon Tyne, UK), dewaxed in
xylene and rehydrated through graded alcohol to water. The tissue
sections were pressure-cooked in 0.1 M citrate buffer at pH 6.0
for 2min and immunostained using the Bondt Polymer
Refine Detection kit and Bondt-Max automated system (Vision
Biosystems). Primary antibodies were applied at the following
dilutions: Ki67 (1 : 300), Mcm2 (1 : 2000), geminin (1 : 600), ER
(1 : 200), PR (1 : 200), Aurora A (1 : 70), Plk1 (1 : 1000) and H3S10ph
(1 : 300). Her-2 immunostaining was performed using the DAKO
HercepTestt (DAKO), according to the manufacturer’s instruc-
tions. Coverslips were applied with Pertex mounting medium
(CellPath Ltd, Newtown, Powys, UK). Incubation without a
primary antibody was used as a negative control and colonic
epithelial sections as positive controls.

Protein expression profile analysis

Protein expression analysis was performed by determining the
labelling index (LI) of the markers in each tumour as described
(Dudderidge et al, 2005; Shetty et al, 2005; Kulkarni et al, 2007).
Slides were evaluated at low-power magnification (� 100) to
identify the regions of tumour with the highest intensity of
staining. From these selected areas, 3–5 fields at � 400
magnification were captured with a charged-coupled-device
camera and analysis software (SIS, Münster, Germany). Images
were subsequently printed for quantitative analysis, which was
performed with the observer unaware of clinicopathological
variables. Both positive and negative cells within the field were
counted and any stromal or inflammatory cells were excluded.
Criteria for identification of positive cells were dependent on the
biomarker: for Ki67, Mcm2, geminin and H3S10ph, cells with any
degree of nuclear staining were scored positive; for Aurora A and
Plk1, cells with any degree of nuclear or cytoplasmic staining
were scored positive. A minimum total of 500 cells were
counted for each case. The LI was calculated using the following
formula: LI¼ number of positive cells/total number of cells� 100
as described (Kulkarni et al, 2007). To evaluate ER and PR
expressions, the quick (Allred) score system was used and
positivity was defined as a quick score of 43 as described earlier

(Harvey et al, 1999; Gown, 2008). Her-2 protein overexpression
was assessed using the Food and Drug Administration (FDA)-
approved scoring system recommended by DAKO. The reassess-
ment of 10 randomly selected cases by an independent assessor
showed high levels of concordance.

DNA image cytometry

For each case, one 40 mm section of PWET, obtained from the same
block as that assessed by immunohistochemistry, was used to
prepare nuclei as described (Haroske et al, 1998). The Fairfield
DNA Ploidy System (Fairfield Imaging Ltd, Nottingham, UK) was
used for image processing, analysis and classification as described
(Haroske et al, 1998). Lymphocytes and plasma cells were included
as internal controls and 40 mm sections of high-grade bladder
tumour and normal colonic tissue as external controls for
aneuploid and diploid populations, respectively. Histograms were
classified according to the published criteria (Haroske et al, 1998)
by two independent assessors with a high level of agreement
without the knowledge of clinicopathological variables. For
statistical analysis, tetraploid and polyploid tumours were grouped
together with aneuploid tumours.

Statistical analysis

Biomarker labelling indices were summarised with the median and
interquartile range. The Mann–Whitney U-test was used to
compare each marker with lymph node stage, ploidy status and
with grade 3 against the normal sample. The Jonckheere–Terpstra
non-parametric test for trend was used to compare markers across
grade and Her-2 status. Spearman’s rank correlation coefficient
was used to assess associations between markers and NPI. The
w2-test for a linear-by-linear association with 1 d.f. was used to test
for association between Her-2 and ploidy status. The unpaired
t-test was used to compare mean NPI according to the ploidy
status. Linear regression was used to assess for trend in mean NPI
across Her-2. Cox regression was used in the analysis of disease-free
survival and overall survival to provide hazard ratios and to assess
the prediction of markers, split into two categories at the median,
both in univariate models and in multivariate models adjusting for
NPI. Kaplan–Meier plots were used to show the estimated predictive
effects of markers ignoring, and also stratified by, the NPI category.
Relationships between cell-cycle phenotype and clinical parameters
were assessed using Pearson’s w2-test for grade, positive nodes and
Her-2 status; using one-way analysis of variance for age, size and
NPI; and using the Jonckheere–Terpstra test for ER and PR. All tests
were two-sided, with effects summarised using 95% confidence
intervals and assessed as statistically significant at the 5% level using
SPSS software (version 15.0, SPSS Inc., Chicago, IL, USA).

RESULTS

Cell-cycle-phase progression analysis of normal and
malignant breast tissues

Monospecificity of antibodies against Mcm2, geminin, Plk1,
Aurora A and the Aurora kinase substrate H3S10ph was confirmed
in total cell extracts from asynchronous MCF-7 breast cancer cells
by detection of a single protein with a molecular mass consistent
with the reported electrophoretic mobility of the corresponding
human antigen (Supplementary Figure 1A). Next, we studied the
expression of these G1–S and G2–M regulators in normal breast
specimens after reduction mammoplasty and in poorly differ-
entiated, aggressive high-grade (grade 3) tumours. High levels of
Mcm2 protein were detected in epithelial cells of the terminal duct
lobular unit (TDLU), indicating that these cells reside in an in-
cycle state (median: 33.5%) and not in G0 state (Stoeber et al, 2001;
Blow and Hodgson, 2002; Gonzalez et al, 2005; Williams and
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Stoeber, 2007). However, whereas Mcm2 levels were high, Ki67 was
expressed at low levels (median: 2.8%). It is of note that geminin,
Aurora A, Plk1 (S–G2–M-phase makers) and H3S10ph (M-phase
marker) were only expressed in a very small fraction of cells
(o1%) of the TDLU, indicating a block to cell-cycle progression
(Supplementary Figure 1B). This cell-cycle phenotype is in keeping
with a G1-delayed/arrested state as reported earlier (Stoeber et al,
2001; Gonzalez et al, 2004; Shetty et al, 2005; Williams and Stoeber,
2007). A higher proportion of tumour cells expressed the Mcm2
licensing factor when compared with the normal mammary
epithelium, indicating a greater number of cells engaged in a cell
cycle (median values: Mcm2: 92.3 vs 33.5%, Po0.001). However, in
contrast to normal breast tissue, high-level Mcm2 expression was
also coupled to a high-level expression of the S–G2–M markers,
geminin, Aurora A, Plk1, and the mitotic marker, H3S10ph, in
breast cancer (median values: geminin (0.98 vs 17.4%, Po0.001),
Aurora A (0 vs 11.7%, Po0.001), Plk1 (0.37 vs 14.2%, Po0.001)
and H3S10ph (0 vs 2.5%, Po0.001)), a phenotype indicative of
active cell-cycle progression (Wohlschlegel et al, 2002; Gonzalez
et al, 2004; Wharton et al, 2004; Dudderidge et al, 2005; Obermann
et al, 2005; Kulkarni et al, 2007; Williams and Stoeber, 2007)
(Supplementary Figure 1B). Although Ki67 levels were low in the
G1-arrested or -delayed state, characterising the normal mammary
epithelium, high levels of Ki67 were associated with the actively
cycling tumour phenotype (Ki67: 2.8 vs 40.2%, Po0.001).

Relationship between cell-cycle state, tumour
differentiation status, genomic instability and metastasis

Cell-cycle state and tumour differentiation The clinicopathologi-
cal characteristics of the study cohort are summarised in
Supplementary Table 1, which includes grade and associated
receptor status. First, we examined the relationship between
expressions of the G1–S and G2–M regulators, and tumour grade.
Expression levels of Mcm2, geminin, Plk1, Aurora A and H3S10ph
were strongly associated with tumour grade (Supplementary Table
2). Arrested tumour differentiation was linked to the loss of ER
and PR hormone receptor expressions and an increase in the
expressions of G1–S and G2–M regulators. This indicates that
increasing grade is coupled to an increase in the proportion of
tumour cells engaged in the cell division cycle. This is in keeping
with our observations in the HL60 differentiation model system
that engagement of the somatic differentiation programme in
tumour cells is coupled to G1 arrest and cell-cycle withdrawal into
the out-of-cycle state, a process that is linked to repression of the
DNA replication licensing machinery (Barkley et al, 2007).
Interestingly, there was a significant overlap in the distribution
of these cell-cycle proteins between grades (e.g., Aurora A and Plk1
levels, Supplementary Figure 2), which has important implications
for exploitation of these molecules as predictors of therapeutic
response to cell-cycle-phase-specific mechanistic agents (see
Discussion). Expression levels of Ki67, Mcm2, geminin, Aurora
A, Plk1 and H3S10ph showed a strong positive correlation, and
those of ER and PR a negative correlation, with increasing NPI
score, consistent with their link to differentiation status (Supple-
mentary Table 3). Surprisingly, Her-2 expression did not show
linkage to any of the G1–S or G2–M cell-cycle regulators, despite
these factors acting downstream of mitogenic growth-signalling
pathways, but there was a strong inverse association with PR
expression (Po0.001) (Supplementary Table 4) and with increas-
ing NPI score (Supplementary Table 5).

Cell-cycle state and genomic instability A highly significant
association between tumour grade and genomic instability (ploidy
status) was observed (Po0.001). To investigate the relationship
between G1–S and G2–M regulators and genomic instability, we
linked their expression profiles to tumour DNA content (Supple-
mentary Table 6). There was a highly significant association

between the expression levels of all six cell-cycle biomarkers
including Ki67 and aneuploidy (Ki67: Po0.001, Mcm2: P¼ 0.009,
geminin: Po0.001, Aurora A: Po0.001, Plk1: P¼ 0.002 and
H3S10ph: Po0.001). This indicates an increased engagement of
tumour cells in the cell division cycle for malignancies exhibiting
genomic instability, when compared with diploid tumours
(Kulkarni et al, 2007; Williams and Stoeber, 2007). A weak
association was observed between aneuploidy and increasing Her-
2 expression (w2¼ 3.03, P¼ 0.08), and between aneuploidy and
increasing NPI score (Supplementary Table 5).

Cell-cycle state and loco-regional metastasis No significant
association was found between Ki67, Mcm2, geminin, Aurora A
or Plk1 expressions and lymph node metastasis, but a weak
association with the H3S10ph expression was observed (P¼ 0.02)
(Supplementary Table 7). There was a strong inverse association
with ER (P¼ 0.007) and PR (P¼ 0.005) expressions and lymph
node metastasis.

Relationship between cell-cycle state, tumour DNA ploidy
status and patient outcome

Univariate analysis In our patient cohort, the NPI score was a
strong predictor of disease-free survival and overall survival, with the
hazard of relapse increasing just below two-fold per unit of NPI score
(HR¼ 1.81 (1.47–2.23), Po0.001), and the hazard of dying
increasing just above two-fold per unit of NPI score (HR¼ 2.15
(1.61–2.88), Po0.001) (Supplementary Table 8, Figure 2A). Patient’s
age was not a predictive factor. Ki67, Mcm2, geminin, Aurora A, Plk1
and H3S10ph expressions were identified as strong predictors of
disease-free survival (HR¼ 2.77 (1.44–5.30), P¼ 0.002; HR¼ 3.00
(1.56–5.76), Po0.001; HR¼ 3.93 (1.98–7.80), Po0.001; HR¼ 3.31
(1.67–6.57), Po0.001; HR¼ 4.48 (2.21–9.09), Po0.001; and HR¼ 3.49
(1.76–6.92), Po0.001, respectively) (Figures 2B and C and 3).
The corresponding associations with overall survival were also
appreciable, but generally smaller and not statistically signi-
ficant, reflecting the smaller number of these events (Mcm2:
HR¼ 2.32 (0.99–5.43), P¼ 0.05; geminin: HR¼ 2.43 (1.04–5.68),
P¼ 0.04; Aurora A: HR¼ 2.18 (0.93–5.12), P¼ 0.07; Plk1: HR¼ 3.46
(1.37–8.71), P¼ 0.009; H3S10ph: HR¼ 3.29 (1.31–8.30), P¼ 0.01). A
lower hazard of relapse was observed in the diploid group, but this was
not significant (HR¼ 0.62 (0.33–1.18), P¼ 0.14). There was a
significant increasing trend in the hazard of relapse and death through
increasing categories of Her-2 expression (HR¼ 1.44 (1.13–1.83),
P¼ 0.003 and HR¼ 1.40 (1.02–1.94), P¼ 0.04, respectively).

Predictive value of biomarkers over and above NPI Multivariate
analysis shows that the effects of these cell-cycle-linked biomarkers
remain statistically significant and predictive of disease-free
survival even after adjusting for NPI. Ki67, Mcm2, geminin,
Aurora A, Plk1 and H3S10ph were identified as strong indepen-
dent predictors of disease-free survival over and above NPI
(HR¼ 2.13 (1.08–4.23), P¼ 0.03; HR¼ 2.22 (1.12–4.41), P¼ 0.02;
HR¼ 2.64 (1.27–5.49), P¼ 0.01; HR¼ 2.82 (1.37–5.80), P¼ 0.005;
HR¼ 3.31 (1.57–6.97), P¼ 0.002; and HR¼ 2.07 (1.02–4.20),
P¼ 0.04, respectively) (Figures 2D and 3). No added value was
achieved by including two or more of these markers. However,
there was a tendency towards Aurora A being additionally
predictive over Plk1 and NPI, with an adjusted HR of 1.95
(0.90–4.23), P¼ 0.091.

Relationship between cell-cycle phenotype,
clinicopathological variables and patient outcome

We found that the individual cell-cycle-phase-specific biomarkers
are powerful independent prognostic markers in breast cancer.
This raises the question whether the cell-cycle kinetics or cell-cycle
phenotype of a tumour might also have an impact on the

Cell cycle biomarkers in breast cancer

M Loddo et al

963

British Journal of Cancer (2009) 100(6), 959 – 970& 2009 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



pathobiology of this particular tumour type. We have shown
earlier in our in vitro DNA replication assays that downregulation
of the Mcm2–7 licensing factors, constituents of the DNA helicase,
is a ubiquitous downstream mechanism by which the proliferative
capacity of cells is lowered, as cells exit the cell division cycle into
quiescent (G0), differentiated or senescent out-of-cycle states
(Stoeber et al, 1998, 2001; Blow and Hodgson, 2002; Kingsbury
et al, 2005; Barkley et al, 2007; Williams and Stoeber, 2007). To
determine the cell-cycle phenotype, we selected a cut point of 30%
for Mcm2 protein expression to define a group (Mcm2 o30%,
phenotype I) in which the majority of tumour cells reside in an
out-of-cycle state (Supplementary Figure 3, Figure 4). This group
(phenotype I), 18% of all tumours, had geminin levels of o7%.
This is in keeping with our observations in in vitro assays and self-
renewing tissues that geminin is also tightly downregulated as cells
enter quiescent (G0) and differentiated out-of-cycle states (Eward
et al, 2004; Kingsbury et al, 2005; Barkley et al, 2007; Williams and
Stoeber, 2007) (Figure 4, Table 1). In contrast, most cancers had
Mcm2 expression levels above 30% (Mcm2 430%) in which a
majority of tumour cells reside in an in-cycle state (Williams and
Stoeber, 2007) (Supplementary Figure 3, Figure 4, Table 1). Overall
58% of these tumours (phenotype III) displayed an active cell-cycle

progression indicated by geminin levels above 7%, a cut point
defined by the LI for the out-of-cycle state (Figure 4, Table 1). It is
of note that a large number of breast cancers (phenotype II), 24%
of all tumours, displayed an in-cycle phenotype (Mcm2 430%)
but expressing geminin levels below 7%, indicative of a G1-delayed
or -arrested state (Stoeber et al, 2001; Blow and Hodgson, 2002;
Gonzalez et al, 2004; Dudderidge et al, 2005; Shetty et al, 2005;
Williams and Stoeber, 2007) (Figure 4, Table 1). Importantly, the
distribution of the other S–G2–M biomarkers between the three
groups exactly mirrors that observed for geminin, further
reinforcing segregation into three distinct cell-cycle phenotypes
(Figure 4).
Next, we investigated whether the cell-cycle phenotype influ-

ences in vivo behaviour and its association with clinicopatholo-
gical variables including NPI. It is of note that there was no
association with age, tumour size, lymph node metastasis, ER/PR
or Her-2 receptor status. However, a greater proportion of
grade 3 tumours, those exhibiting arrested differentiation,
displayed the actively cycling phenotype. This cell-cycle profile
was also associated with a higher NPI score (Po0.001) (Table 1).
Univariate and multivariate analyses adjusted for NPI also
indicated that the cell-cycle phenotype was a strong predictor of
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<3.4
3.4–5.4

>5.4

Aurora A below median
Aurora A above median

Aurora A categories

Plk1 categories

Plk1 below median

Plk1 above median

Combined Plk1 within
NPI group

NPI <5.4, Plk1 below median
NPI <5.4, Plk1 above median

NPI >5.4, Plk1 above median
NPI >5.4, Plk1 below median

0 500 1000 1500 2000 2500 3000

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

0 500 1000 1500 2000 2500 3000

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

po
rt

io
n 

re
cu

rr
en

ce
 fr

ee
P

ro
po

rt
io

n 
re

cu
rr

en
ce

 fr
ee

P
ro

po
rt

io
n 

re
cu

rr
en

ce
 fr

ee
P

ro
po

rt
io

n 
re

cu
rr

en
ce

 fr
ee

Days Days

DaysDays

Time to recurrence by NPI Time to recurrence by Aurora A

Time to recurrence by NPI and Plk1Time to recurrence by Plk1

A

C

B

D

Figure 2 Kaplan–Meier curves showing association between NPI, Plk1 and Aurora A and disease-free survival (days from diagnosis to death, recurrence
or last follow-up) across the whole series. (A) NPI and disease-free survival segregated into the three decision group categories, Po0.001. (B) Aurora A and
disease-free survival stratified by those patients lying above or below the median LI; HR¼ 3.31 (1.67–6.57), Po0.001. (C) Plk1 and disease-free survival
stratified by those patients lying above or below the median LI; HR¼ 4.48 (2.21–9.09), Po0.001. (D) Effect of Plk1 after adjustment for NPI; HR¼ 3.31
(1.57–6.97) risk above Plk1 median relative to below median, P¼ 0.002.
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disease-free survival. The actively cycling phenotype (phenotype
III) showed a much higher hazard of relapse than phenotypes I
and II on both univariate and multivariate analyses (HR¼ 3.90
(1.81–8.40), Po0.001 and HR¼ 2.71 (1.81–6.23), P¼ 0.019,
respectively) (Figure 5). Intriguingly, an almost identical low
hazard of relapse was observed between well-differentiated out-of-
cycle tumours and high-grade tumours exhibiting a G1-delayed/
arrested phenotype (phenotypes I and II) (HR¼ 1.00 (0.22–4.46),
P¼ 0.99; Figure 5). The actively cycling phenotype was a superior
predictor of recurrence to Ki67 on univariate analysis (HR of 3.90
vs 2.77) and remained so after adjusting for Ki67 following
multivariate analysis (HR¼ 2.98 (1.29–6.91), P¼ 0.011), using the
median value of 24% as a cut point. The actively cycling phenotype
also remained a powerful predictor of recurrence on multivariate
analysis even after adjusting for Ki67 at a 15% threshold
(HR¼ 2.80 (1.16–6.78), P¼ 0.023), a lower cut point that some
studies have identified as an optimal cutoff value for Ki67
prognostication (Ahlin et al, 2007; De Azambuja et al, 2007). On
the contrary, multivariate analysis showed that Ki67 was not
significantly predictive of disease recurrence over and above the
actively cycling phenotype at either the 24 or 15% cut points
(P¼ 0.13 and P¼ 0.19, respectively). It is of note that a strong and
significant association was observed between breast cancer
subtype and cell-cycle phenotype (Po0.001). The proportion of
patients with an actively cycling phenotype (phenotype III) was
significantly higher in both the Her-2 (91%, 10 out of 11)
(P¼ 0.003) and triple negative subtypes (96%, 25 out of 26)
(Po0.001) than in the luminal subtype (49%, 71 out of 145)

(Figure 6). Although the proportion of hormone receptor-negative
tumours displaying the out-of-cycle phenotype (phenotype I) and
the G1-delayed/arrested phenotype (phenotype II) was only 4%
(1 out of 26) and 9% (1 out of 11), respectively, in the luminal
subtype, the proportion was 51% (74 out of 145), of which 21%
(30 out of 145) displayed phenotype I and 30% (44 out of 145)
phenotype II (Figure 6).

DISCUSSION

Multiparameter analysis of core constituents of the cell-cycle
machinery that regulate the G1–S and G2–M transitions provides
a unique and detailed picture of the cell-cycle state of dynamic
tumour cell populations in vivo. We selected breast cancer as a
tumour model system in the first instance to test our novel cell-
cycle algorithm because of the urgent demand for new prognostic
and predictive markers in this tumour type. Given the rising cost
of health care, as well as the recognition of both an individual’s
genetic variation and the significant biological heterogeneity of
this disease, further improvements in adjuvant treatment will
inevitably require individualised therapeutic decisions. The best
prognostic tool described to date for identifying which patients are
most likely to benefit from adjuvant chemotherapy is the NPI.
More recent analysis of additional factors, such as oestrogen,
progesterone and HER2/NEU receptor status, has only marginally
improved prognostic assessment (Subramaniam and Isaacs, 2005),
and data emerging from global gene expression profiling, although

H3phS10 2.07 (1.02 to 4.20) P=0.04
Plk1 3.31 (1.57 to 6.97) P=0.002

Aurora A 2.82 (1.37 to 5.80) P=0.005

geminin 2.64 (1.27 to 5.49) P=0.01
Mcm2 2.22 (1.12 to 4.41) P=0.02
Ki67 2.13 (1.08 to 4.23) P=0.03
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HR (95% CI) after NPI
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3.93 (1.98 to 7.80) P<0.001
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Hazard ratio (HR): risk of recurrence above relative to below marker 
median with 95% confidence interval (CI)

Figure 3 Effect of cell-cycle biomarkers on disease-free survival before and after adjusting for NPI. All biomarkers are associated with disease-free survival.
The effects remain statistically significant after adjusting for NPI, so that they are predictive, independent of NPI.
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initially encouraging (Perou et al, 1999; Van ‘t Veer et al, 2002),
have not provided a significantly improved prognostic assessment
to date (Michiels et al, 2005, 2007; Dunkler et al, 2007). Therefore,
there is an urgent requirement to identify new biomarkers, which
can identify those patients at most risk of relapse and who are
therefore most likely to benefit from toxic chemotherapeutic
interventions.

Application of our novel cell-cycle algorithm to breast cancer
has revealed major insights into the cell-cycle kinetics of this
disease. Arrested differentiation and increasing genomic in-
stability, hallmarks of more aggressive tumours, was associated
with increasing levels of both G1–S and G2–M biomarker
expressions, indicative of an increased engagement of tumour
cells in the mitotic cell division cycle. These cell-cycle biomarkers
were all identified as strong independent prognostic markers over
and above the prognostic value of the NPI score alone. It is of note
that the S–G2–M progression markers, Aurora A and Plk1, were
identified as particularly powerful independent prognostic
markers, in keeping with their higher expression levels in actively
cycling tumour cell populations (Kulkarni et al, 2007; Williams
and Stoeber, 2007). Importantly, our analysis revealed that breast
cancer can be sub-grouped into three unique cell-cycle pheno-
types, which impact on the pathobiology of these tumours. The
actively cycling phenotype had a significantly higher risk of relapse
when compared with out-of-cycle and G1-delayed/arrested
phenotypes. The cell-cycle phenotype was also found to markedly
outperform Ki67 as a predictor of recurrence in this tumour series.
The cell-cycle phenotype was not associated with age, tumour size,
loco-regional metastasis, ER/PR or Her-2 status. However, the
actively cycling phenotype was linked to a higher NPI score
because of the greater proportion of grade 3 tumours in this
subgroup. The strong association between tumour grade and
S–G2–M cell-cycle-phase progression mirrors the results of recent
gene expression profiling studies applied to histological grade
using a bottom-up supervised approach (Sotiriou et al, 2006;
Sotiriou and Piccart, 2007). A gene-expression signature of 97
unique genes was identified allowing patients to be reclassified into
two groups with high and low risk of recurrence. It is of note that
grade 3 tumours displayed a gene expression profile significantly
enriched with genes associated with cell-cycle progression and
proliferation (Sotiriou et al, 2006).
There was a highly significant association between breast cancer

subtype and cell-cycle phenotype. The aggressive cell-cycle

Table 1 Relationship between cell-cycle phenotype and clinicopathological parameters

I (out-of-cycle) II (in-cycle G1-delayed/arrested) III (actively cycling)

Mcm2 o30% Mcm2 X30% Mcm2 X30%

Geminin o7% Geminin X7%

N¼ 33 (18%) N¼ 44 (24%) N¼ 105 (58%)

Age, mean (s.d.) (P¼ 0.13) 61.9 (12.4) 61.2 (14.1) 57.4 (13.9)

Grade (Po0.001)*
1 27% (9/33) 23% (10/44) 5% (5/105)
2 61% (20/33) 64% (28/44) 30% (32/105)
3 12% (4/33) 14% (6/44) 65% (68/105)

Size, mean (s.d.) (P¼ 0.55) 24.7 (17.5) 29.1 (19.8) 28.0 (17.4)

Positive nodes (P¼ 0.23) 39% (12/31) 33% (13/40) 48% (47/98)

NPI, mean (s.d.) (Po0.001) 3.8 (1.3) 4.0 (1.2) 4.9 (1.2)

ER+ casesa (P¼ 0.08) 100% (73.9–100%) 100% (100–100%) 88.9% (0–100%)
PR+ casesa (P¼ 0.14) 72.4% (35.8–100%) 92.2% (47–100%) 18.8% (0–97.8%)

Her-2
0 66.7% (22/33) 68.2% (30/44) 53.3% (56/105)
1+ 15.2% (5/33) 18% (8/44) 19% (20/105)
2+ 9.1% (3/33) 4.5% (2/44) 7.6% (8/105)
3+ (P¼ 0.45) 9.1% (3/33) 9.1% (4/44) 20% (21/105)

ER¼ oestrogen receptor; NPI¼Nottingham Prognostic Index; PR¼ progesterone receptor. aMedian (interquartile ranges). *Significant association restricted to phenotype III.
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Figure 5 Kaplan–Meier curves showing association between cell-cycle
phenotype and disease-free survival. (I) Out-of-cycle state, (II) in cycle G1-
delayed/arrested state and (III) actively cycling state. On univariate analysis,
comparing phenotype III with phenotypes I and II combined, HR¼ 3.90
(1.81–8.40), Po0.001. On multivariate analysis, adjusted for NPI,
HR¼ 2.71 (1.18–6.23), P¼ 0.019.
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phenotype III (actively cycling), strongly linked to a poor prognosis
in our patient cohort, was much more highly represented in Her-2
subtype and triple negative tumours (hormone receptor-negative
breast cancer) when compared with breast cancers of the luminal
subtype. Deregulated cell-cycle control and active cell-cycle
progression, therefore, appear to underlie the aggressive in vivo
behaviour of these hormone receptor-negative poor prognostic
subtypes. The cell-cycle phenotype, therefore, appears to represent

a novel and unique independent parameter in breast cancer and is
of major prognostic significance.
Interestingly, the normal mammary epithelium mimics the

G1-delayed/arrested phenotype observed in breast cancer.
Although the growth fraction identified by the standard prolifera-
tion marker Ki67 is small, a large number of mammary epithelial
cells within the TDLU express Mcm2, indicating that a large
number of cells appear to be replication licensed and therefore

Luminal
n=145/182

Her-2
n=11/182

Triple negative
n=26/182

Phenotype I
Phenotype II
Phenotype III

21%

30%

49%

9%0%

91%

0%

96%

4%

Figure 6 Relationship between cell-cycle phenotype and breast cancer subtypes. The panels show the proportion of each breast cancer subtype, which
display cell-cycle phenotypes I (out of cycle), II (G1-delayed/arrested) and III (actively cycling). It is of note that the majority of Her-2 and triple negative
tumours display the actively cycling phenotype (III).
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Figure 7 Proposed prognostic and predictive cell-cycle-phase algorithm in breast cancer. Three distinct cell-cycle phenotypes characterised by the
differential expression of cell-cycle biomarkers Mcm2, Aurora A, geminin, Plk1 and H3S10ph. Prognosis and treatment response can be predicted from the
distinct immunoexpression profile displayed by each tumour.

Cell cycle biomarkers in breast cancer

M Loddo et al

967

British Journal of Cancer (2009) 100(6), 959 – 970& 2009 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



in-cycle (Stoeber et al, 2001; Blow and Hodgson, 2002; Shetty et al,
2005; Williams and Stoeber, 2007). However, these cells fail to
express markers of cell-cycle progression, including the S–G2–M
markers, geminin, Aurora A and Plk1, and the mitotic marker,
H3S10ph, indicating that these cells reside in a G1-prolonged or
-arrested state (Williams and Stoeber, 2007). We and others have
suggested earlier that this primed, licensed state in non-
proliferating breast may be an evolutionary adaptation allowing
for a rapid response to pregnancy, with the consequence that
failure to downregulate the DNA replication licensing pathway
may increase the risk of transition to uncontrolled cellular
proliferation (Stoeber et al, 2001; Blow and Hodgson, 2002). It is
noteworthy in this context that a recent study exploiting a
hypomorphic viable allele of Mcm4 was found to cause
chromosomal instability and mammary adenocarcinomas in mice
(Shima et al, 2007).
In addition to the strong prognostic significance of our

biomarker algorithm, cell-cycle profiling of tumours has potential
as a predictor of therapeutic response to cell-cycle-phase-specific
agents (Figure 7). It is becoming increasingly apparent from
disappointing intent-to-treat analyses of large conventionally
designed trials, such as TACT (Ellis et al, 2007) and tAnGo (Poole
et al, 2008) that further improvements in adjuvant treatment will
inevitably require individualised therapeutic decisions. If there is a
test to predict resistance to a drug or to target the patient selection
for a clinical trial, the risk of clinical failure declines considerably.
On the basis of our study, we hypothesise that the panel of cell-
cycle-regulated biomarkers discussed here may allow the predic-
tion of treatment response to cell-cycle-phase-specific chemother-
apeutic agents, including small-molecule inhibitors targeting the
cell-cycle machinery (Figure 1C). It appears from our data that a
proportion of patients with high-grade breast cancer receiving
adjuvant chemotherapy may not gain significant benefit from
present drug regimes. An almost identical low hazard of relapse
was observed between patients with well-differentiated out-of-
cycle tumours who are often spared chemotherapy and those with
high-grade tumours exhibiting a G1-delayed/arrested phenotype.
Patients with high-grade tumours, but falling into the G1-delayed/
arrested phenotype group, representing 24% of patients, are
perhaps less likely to benefit from S and M cell-cycle-phase-
targeted agents and can, therefore, be spared these toxic therapies.
These patients are more likely to benefit from G1-phase-targeted
agents or non-cell-cycle-specific anticancer drugs. Moreover, it is
only patients showing the actively cycling, aggressive cell-cycle
phenotype, and that are transiting S–G2–M phase, those are likely
to benefit from conventional S- or M-phase-directed agents or
from the new generation of Aurora and Plk1 mitotic kinase
inhibitors that are now entering clinical trials (Keen and Taylor,
2004; Plyte and Musacchio, 2007). This is in keeping with our
observations that the aggressive cell-cycle phenotype III (actively
cycling) was strongly associated with Her-2 and triple negative
subtypes, and it is these tumours that are characterised by high
neoadjuvant response rates (Carey et al, 2007). Interestingly, in
our patient cohort, 29% of patients with phenotype I, 20% of
patients with phenotype II and 54% of patients with phenotype III
tumours received cell-cycle-phase-specific agents in the adjuvant

setting. If our prediction about cell-cycle phenotype and
therapeutic benefit is correct, this would suggest that 18 out of
76 patients (phenotypes I and II) have received adjuvant therapy
for little gain and that 49 out of 106 patients (phenotype III) may
have been undertreated, that is, would have benefited from cell-
cycle-phase-specific agents. Presently, there is persistent contro-
versy about whether adjuvant chemotherapy benefits patients
bearing ER-positive tumours or not (Anonymous, 2005, 2007).
Interestingly, in our analysis, 49% of the hormone receptor-
positive luminal subtype exhibited the actively cycling phenotype
(phenotype III) (Figure 6), suggesting that many of these patients
would derive benefit from cell-cycle-phase-specific chemo-
therapeutic agents.
Our cell-cycle-phase analysis suggests that a simple biomarker

algorithm can be applied to breast cancer to improve prognostic
assessment over and above NPI, and to help identify those patients
who are most likely to benefit from adjuvant chemotherapy
(Figure 7). Importantly, cell-cycle phenotyping is readily appli-
cable to routinely processed surgical biopsy material in the
hospital histopathology laboratory and is amenable to high-
throughput screening, using automated immunostaining platforms
and quantitative image analysis. This has distinct advantages over
genomic array profiling, which requires specialised laboratory
facilities for RNA and/or DNA preparation, microarray platforms
and bioinformatics support. Moreover, fresh material is required
for RNA/DNA analysis, which disrupts the surgical specimen,
potentially compromising morphological diagnosis, assessment of
surgical margins of excision and staging. This is a particular
problem for small samples such as those obtained using core
needle biopsy techniques.
In conclusion, the biomarker algorithm discussed here provides

novel insights into the cell cycle state of dynamic tumour cell
populations in vivo. This algorithm has enabled us to identify three
unique cell-cycle phenotypes in breast cancer, a new and
independent parameter in this tumour type, which is of major
prognostic significance and outperforms Ki67. In particular,
deregulated cell-cycle control and accelerated cell-cycle progres-
sion appears to underlie the aggressive in vivo behaviour of the
hormone receptor-negative Her-2 and triple negative subtypes
(Sorlie et al, 2003; Carey et al, 2007). Further studies are now in
progress to test the predictive value of this algorithm, assessing
response to cell-cycle-phase-specific agents in both the adjuvant
and neoadjuvant settings.
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