
Valter et al. Cell Death and Disease  (2018) 9:113 
DOI 10.1038/s41419-017-0060-1 Cell Death & Disease

REV I EW ART ICLE Open Ac ce s s

Cell death-based treatment of
neuroblastoma
Kadri Valter1, Boris Zhivotovsky1,2 and Vladimir Gogvadze1,2

Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood
cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that
undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is
therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve
treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification
and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities
can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor
cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a
thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or
spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative
approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be
given to combined therapies that show more effective results with fewer side effects than drugs targeting only one
specific protein or pathway.

Introduction
Neuroblastoma (NB) is the most common solid child-

hood tumor outside the brain. It originates from primitive
cells of the sympathetic nervous system1. NB causes 15%
of childhood cancer-related mortality and overall survival
rate for metastatic tumors is considerably low, 40% after 5
years2,3. Most incidences are diagnosed during the first
year of life, which also gives a better prospect for the
outcome, whereas older patients have a poorer diag-
nosis4,5. In some NB cases, spontaneous regression has
also been detected; however, underlying mechanisms
remain unclear6,7. Moreover, NB is a complex disease that
has high genetic, biological, clinical, and morphological
heterogeneity, and is therefore difficult to target for suc-
cessful therapy8–10. Thus, NB is under thorough

investigation to better understand its progression and to
improve the treatment to increase the survival rate.
Several classification systems have been used in order to

improve risk assessment and prognosis of NB. For
example, the outcome of the disease can be assessed by
the presence or absence of stroma, the degree of differ-
entiation, and the mitosis-karyorrhexis index11. Currently,
even more parameters are used for the classification of
NBs, such as stage, age, histologic category, grade of
tumor differentiation, the status of the MYCN oncogene,
chromosome 11q status, and DNA ploidy. These are the
most statistically significant and clinically relevant factors
in use to describe two stages of localized (L1 and L2) and
two stages of metastatic disease (M and MS)12.
The main drivers of NB formation are abnormalities in

sympathoadrenal cells that derive from neural crest cells
(Figure 1)13. Several germline and sporadic genomic rear-
rangements have been detected in NB, for example,
LIN28B (encoding lin 28 homolog B)14, PHOX2B (paired-
like homeobox 2b)15, ALK (anaplastic lymphoma kinase)16,
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GALNT14 (polypeptide N-acetylgalactosaminyltransferase
14)17, and MYCN18 (Table 1). Around 2% of NB cases
appear to be hereditary, with ALK being the first gene
identified to be responsible for familial NB16,19. Further-
more, MYCN oncogene amplification is found in 20% of all
NB cases, especially in patients who are resistant to therapy
and have poor prognosis18,20,21. More than 50% of these
high-risk patients relapse even after intensive treatment22.
Whole-genome sequencing has been used to identify
additional mutations and genes responsible for de novo NB
development, but no other specific “NB driver mutations”
have been found23,24. Thus, MYCN amplification seems to
be the major cause of sporadic NB and other mutations
support tumor aggressiveness25. Therefore, investigation of
the MYCN gene amplification is considered to be a man-
datory step for treatment specification26.
In this review, we provide a thorough overview of how

different modes of cell death are exploited or can be
employed as treatment for NB. In addition, several novel
or already clinically tested drugs against NB and their
mechanisms of action are discussed. A special emphasis is
also placed on combined therapies that attack many
pathways and have been shown to be more effective than
drugs targeting only one specific protein or pathway.

Genetic background
Anaplastic lymphoma kinase
Changes in the ALK gene are identified as being

responsible for ~ 50% of familial and ~ 1% of all NBs16

(Table 1). ALK is a member of the insulin receptor
superfamily of transmembrane RTKs (receptor tyrosine
kinase). Mutations and amplifications of the ALK gene
can lead to a constitutive activation of ALK that supports
cell survival and proliferation in the peripheral neuronal

Prolifera�onDifferen�a�on Apoptosis

ALK
MYCN

Sympathoadrenal cell

Fig. 1 The main drivers of NB formation are neural crest cell-derived
sympathoadrenal cells with genetic abnormalities. Several germline
and sporadic genomic rearrangements have been detected in NB, for
example, in ALK (anaplastic lymphoma kinase) and MYCN genes. These
changes are responsible for the suppression of differentiation and
apoptosis to support rapid proliferation of the cells
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and central nervous system. This can be achieved by the
engagement of several pathways, such as Janus
kinase–signal transducer and activator of transcription27,
PI3K–AKT27 in anaplastic large cell lymphoma, and/or
RAS–mitogen-activated protein kinase28 in NB.
The central role of the ALK in NB development makes

it a possible target for NB treatment. For example, NB cell
lines with constitutively active or overexpressed ALK are
susceptible to RNAi and ALK inhibitors29. For instance,
crizotinib30 and entrectinib31 reduce the cells’ prolifera-
tion rate and are currently in Phase 1/2 trials
(NCT00939770, NCT01606878, and NCT02650401) for
relapsed or refractory NB; however, there are problems
with their off-target effects and acquired resistance.
Therefore, new-generation ALK inhibitors are already
been developed and tested for NB therapy, for example,
lorlatinib (NCT03107988)32, AZD3463 (ref. 33), and cer-
itinib (NCT01742286)34. In addition to reducing the
proliferation rate, clinical tests have shown that most ALK
inhibitors also sensitize NB cells to conventional cytotoxic
drugs and their combined use is causing more prominent
cell death35,36. On the other hand, this approach is helpful
for only ALK-positive tumors and, due to the high het-
erogeneity of NB, more strategies are needed for suc-
cessful treatment of NBs carrying other mutations.

MYCN
MYCN is part of the MYC family of transcription fac-

tors that regulate several cellular processes including
proliferation, cell cycle, glycolysis, glutaminolysis, mito-
chondrial function, and biogenesis37–39. MYCN expres-
sion is essential for normal prenatal development and is
present until a few weeks after birth40. Amplifications of
theMYCN gene are known to be responsible for increased
tumor growth, proliferation, and NB development
(Table 1)41,42. Deregulation of MYC induces cell pro-
liferation and apoptosis; however, this apoptotic signal is
inhibited by reducing p53 activity, overexpressing anti-
apoptotic proteins, or downregulating pro-apoptotic
proteins43,44. Thus, a combined suppression of MYC-
induced apoptosis and MYC-driven proliferative signals
supports extensive tumor development.
MYCN usually has a very short half-life, but after

amplification it is highly expressed and forms hetero-
dimers with MAX to act as a transcriptional factor and
support constant NB tumor growth45. Therefore, down-
regulation of MYCN is one possible approach to induce
apoptosis, decrease NB proliferation, and/or induce neu-
ronal differentiation46. For example, antisense oligonu-
cleotides47 and RNAi48–50 have been successfully used for
MYCN downregulation in NB that resulted in decreased
tumor growth, cellular migration, and invasion. The
described approach has proved to be effective in the
laboratory; however, off-target effects and clinical delivery

of these compounds to the tumor site are still
problematic.
Blocking the MYCN/MAX interaction is another option

for NB therapy, because unbound MAX homodimerizes
and stimulates differentiation51. Several compounds
blocking the heterodimerization, such as 10058-F4 (ref.
52,53) and 10074-G5 (ref. 52), have shown cell cycle
arrest, apoptosis, and differentiation in vitro, and also
increased survival in MYCN transgenic mice. Another
approach is to inhibit bromodomain and extra-terminal
domain family of transcription-regulating proteins by
small molecules such as JQ1 (ref. 54), OTX015 (ref. 55), or
I-BET762 (ref. 56), which lead to the suppression of
MYCN transcription and proliferation. These compounds
can help high-risk patients with MYCN-driven NB;
however, thorough clinical testing is still needed. The role
of ALK and MYCN in regulation of NB cell fate is shown
on Figure 1.

Other genomic abnormalities
Overexpression and amplifications of LIN28B are very

common in NB cells and can in turn lead to high MYCN
expression (Table 1)14,57. Moreover, whole-genome
sequencing revealed that 25% of the patients have rear-
rangements in TERT (encoding telomerase reverse tran-
scriptase)58,59 promoter and 10% in transcriptional
regulator ATRX (encoding the RNA helicase)23, support-
ing rapid cellular proliferation (Table 1). Chromosomal
copy number alterations are also represented in almost all
NBs, for example, more than 50% have gain of 17q (ref.
60) and 30% have loss of 1p36 and/or 11q1 (ref. 61)
(Table 1). These arrangements have a strong correlation
with MYCN amplification and poor prognosis. However,
the function of these regions and how they regulate NB
formation is still unclear60,61.

Targeting NB via stimulation of various modes of
cell death
Apoptosis induction in NB therapy
Apoptosis is essential for the normal growth of an

organism, being involved in early embryonic and immune
system development. It also has an important role in the
maintenance of normal tissue homeostasis and helps to
eliminate damaged and harmful cells62. Therefore, mis-
regulation of apoptotic pathways has an important role in
cancer development, because mutations or amplifications
in the oncogenes (e.g., MYC) can compromise apoptotic
pathways. On the other hand, apoptosis induction is the
most prominent anticancer strategy.

Targeting p53/MDM2 interaction
The members of the p53 protein family are important

regulators of cell cycle and apoptosis in normal and
transformed cells63. In addition, p53 as well as p73 act as
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tumor suppressors. Mutations in the p53 gene that con-
trol cell fate occur in more than 80% of tumor cell lines
and more than 40% of human cancers64. However,
abnormalities of p53 are mostly found in relapsed NB
after chemotherapy, but not at the time of the diag-
nosis65,66. Instead, overexpressed MYCN regulates p53
and MDM2 (murine double minute 2) expression to
achieve stringent control over cell death (Figure 2)67,68.
Tumors such as NB, which generally have wild-type p53,
are likely to induce the degradation of p53 and avoid cell
death by overexpression or amplification of MDM2,
which is a negative regulator and the primary E3 ubiquitin
ligase for p53 (ref. 65,67,69). For instance, MYCN binds to
the promoter of MDM2 to induce its expression and vice
versa, suggesting that downregulation of MDM2 can also
be used to decrease MYCN expression and stabilize p53
to induce apoptosis (Figure 2)67,70,71.
Understanding these peculiarities of NB and targeting

the p53–MDM2 pathway may be helpful in finding better
therapeutic treatments for pediatric patients with wild-
type p53 (ref. 72,73). For example, small antagonistic
molecules, like nutlin-3 (ref. 74–76), MI-773/219/63 (ref.
75), and idasanutlin (RG7388)77, which bind to MDM2
to block its interaction with p53, have shown promising
results in NB. These inhibitors attenuate the prolifera-
tion of MYCN-expressing NB cells and some of them are
being tested in clinical trials; however, the development
of resistance, toxicity, MDM2 accumulation, and the

need for wild-type p53 make the trials challenging78. In
addition to the regulation of p53–MDM2, MYCN facil-
itates an increase in the expression of FAK (focal adhe-
sion kinase), which interacts with p53 and causes its
sequestering in the cytoplasm (Figure 2). Interrupting
this binding by small molecules or peptides enables p53
to move to the nucleus to induce apoptotic cell death of
in vivo breast and colon tumors79.
Furthermore, MYCN-upregulated MDM2 can

similarly bind with another member of the p53 family,
tumor suppressor TAp73 (p73 locus encodes two iso-
forms – tumor suppressor (TAp73) and putative onco-
gene (ΔNp73)) (Figure 2). MDM2 decreases TAp73
transcription and supports resistance to the treat-
ment80,81. It has been discussed that besides regulating
p53 and MDM2 levels, MYCN might also directly
decrease TAp73 expression and support NB tumor
growth82. In addition, there are results showing that
overexpression of TAp73 can in turn reduce MYCN
expression and induce differentiation of NB cell lines,
indicating that the balance between TAp73 and MYCN
levels can influence the outcome of the NB development
and treatment (Fig. 2)83,84. These new approaches have
led to novel combinatorial therapeutic strategies that
simultaneously reduce toxicity and enhance the outcome
of the treatment and are being tested in preclinical and
clinical trials for NB75, melanoma85, prostate cancer86,
and renal cell carcinoma87. Although bearing in mind

p53 MDM2FAK

p53 MDM2

Nutlin-3
MI-773/219/63
RG7388

FAK

TAp73

MYCN

TAp73

MYCN

Apoptosis Apoptosis

Fig. 2 NB cell death can be avoided by overexpression or amplification of MDM2 (murine double minute 2), negative regulator of the p53. The
p53–MDM2 pathway may be targeted by small antagonistic molecules, such as nutlin-3, MI-773/219/63, idasanutlin (RG7388), which bind to MDM2,
to block its interaction with p53. MYCN also facilitates expression of p53 and FAK (focal adhesion kinase) that in turn interacts with p53 and causes its
sequestering in the cytoplasm. Furthermore, MYCN-upregulated MDM2 can in turn bind to MYCN and tumor suppressor TAp73, and decrease its
transcription to support resistance to the treatment. MYCN and TAp73 might also directly decrease each other expression and influence the outcome
of the NB development and treatment
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that MYCN has many cellular targets, disrupting its
interaction with one of them is probably not enough for
successful treatment.

BCL-2 family
Other important apoptosis regulators are B-cell lym-

phoma/leukemia 2 (BCL-2) family proteins, which are
divided into two groups: pro-apoptotic and anti-apoptotic
proteins. The main anti-apoptotic proteins are BCL-2,
BCL-xL, and myeloid cell leukemia (MCL)-1, which pre-
vent outer mitochondrial membrane (OMM) permeabi-
lization by binding and inhibiting pro-apoptotic proteins.
Apoptosis-promoting proteins from this family can in
turn be divided into two groups: BH-3 only and effector
proteins. The pro-apoptotic BH-3 only proteins (Bid and
Bim) respond to apoptotic stimuli and inhibit anti-
apoptotic BCL-2 proteins or activate the effector pro-
teins (BAK and BCL-2-associated X protein), which form
pores in the OMM to induce cytochrome c release and
apoptosis. The balance between pro- and anti-apoptotic
proteins determines the fate of the cells through regula-
tion of the mitochondrial apoptotic pathway88,89. As with
p53, mutations in BCL-2 are scarce in NB, although
dysregulation and increased levels of the BCL-2 gene are
frequent90–92. Moreover, in B-cell lymphomas a link
between MYC and BCL-2 expression has been described,
because overexpression of MYC in tumor cells is often
found together with rearrangements in the BCL-2 family
to support tumor growth and suppress apoptosis93,94.
Therefore, therapies that change the balance between pro-
and anti-apoptotic proteins are promising strategies for
tumor treatment.
One possible approach might be using conventional

chemotherapeutics together with inhibitors of anti-
apoptotic BCL-2 proteins (e.g., ABT-199)95, although
there have been problems with modest outcome, side
effects,96 and resistance in relapsed NBs97. This is due to
the compensatory upregulation of the anti-apoptotic
MCL-1 protein that rescues cells from apoptosis. How-
ever, when the MCL-1 inhibitor (e.g., A-1210477) is used
in combination with ABT-199, successful induction of NB
cell death has been demonstrated98.

Targeting cellular bioenergetics pathways
Considering the key role of mitochondria in various

modes of cell death, they might be potential targets for
tumor therapy. For instance, many anticancer drugs
destabilize mitochondria to induce apoptotic cell death99.
Rapidly proliferating tumors easily become hypoxic, which
is the reason why the majority of tumors change their
source of energy from mitochondrial oxidative phosphor-
ylation (OXPHOS) to glycolysis. These cells usually have
lowered amount of mitochondria and/or mutations in one
or more OXPHOS complexes100–102. In contrast, relapsing

cancer cells tend to have increased levels of OXPHOS103–
105. The role of MYC overexpression in these processes is
to increase the expression of mitochondrial complexes and
hence mitochondrial respiration38. These metabolic chan-
ges help cells to survive in nutrient-deprived environ-
ments106. Therefore, to eliminate resistant tumor cells,
chemotherapeutic drugs could be used in combination
with electron transport chain inhibitors, such as the com-
plex I inhibitors metformin107 or tamoxifen108, to induce
leakage of electrons and excessive formation of reactive
oxygen species (ROS). In addition, using non-toxic doses of
the complex II blockers of the respiratory chain, such as
thenoyltrifluoroacetone109 or α-tocopheryl succinate110

together with harmless doses of cytotoxic drugs, synergis-
tically stimulates the formation of ROS and thereby
increases the effectiveness of the therapy on breast cancer
and NB cell lines.
Fast growth of the tumor cells and poor vascularization

leads to hypoxia, which causes the activation of tran-
scription factors, such as hypoxia-inducible factor 1 (HIF-
1), that regulate the hypoxic adaptation (Figure 3)111–113.
Specifically, HIF-1 regulates developmental and physio-
logical pathways that facilitate O2 delivery to the cells or

HIF-1ΔNp73

Prolifera�on

Glycolysis 
Angiogenesis p53

Apoptosis 

TAp73

MYCN

Topotecan
Acriflavine

Tumor growth 

Hypoxia

Fig. 3 MYCN overexpression facilitates the fast growth of the tumor
cells, leading to poor vascularization and hypoxia. This results in the
stabilization of transcription factors HIF-1, inhibition of apoptosis, and
stimulation of glycolysis, angiogenesis, and rapid tumor growth. In
addition, putative oncogene ΔNp73 is stabilized in O2-deficient
environment and supports vascularization. However, TAp73 regulates
degradation of HIF-1 and suppression of vascularization in an oxygen-
independent manner. Therefore, considering the importance of HIF-1
in tumor progression, several HIF-1 inhibitors, such as topotecan,
phenethyl isothiocyanate, and acriflavine, have shown promising
results
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help cells to survive in low O2 conditions. HIF-1 is acti-
vated in a hypoxic environment that is very common in
solid tumors. HIF-1 expression leads to the activation of
glycolysis and angiogenesis, and correlates with aggressive
tumors and poor outcome. HIF-1 is a heterodimer con-
sisting of the O2-regulated HIF-1α subunit and a con-
stantly expressed HIF-1β subunit114,115. HIF-1α becomes
stabile in a low O2 environment and binds with HIF-1β to
form an active HIF-1 complex that has both anti- and pro-
apoptotic effects116,117. For instance, severe and con-
tinuous hypoxia will result in HIF-1 activation, p53
expression, and apoptosis. On the other hand, simulta-
neous stabilization of HIF-1 with activation of the PI3K/
Akt pathway, survivin, glycolytic enzymes, p21, and/or
erythropoietin can inhibit apoptosis and support NB
tumor growth118,119.
Furthermore, recent data suggest that the aforemen-

tioned TAp73 also regulates the degradation of HIF-1 and
the suppression of vascularization in an oxygen-
independent manner (Fig. 3)120,121. Therefore, loss of
TAp73 activity in MYCN-overexpressed tumors can be
associated with increased HIF-1 activity and thereby the
stimulation of angiogenesis in tumor cells120,122. Another
isoform of p73, NH2 terminally truncated putative onco-
gene ΔNp73, is also involved in angiogenesis regulation
(Fig. 3). In tumor cell lines, ΔNp73 is stabilized in O2-
deficient conditions and activates vascularization via
vascular endothelial growth factor A expression121, indi-
cating that cellular response to hypoxic conditions and
HIF-1 activity is tightly regulated by MYCN and p53
family proteins. Moreover, HIF-1 activity is also asso-
ciated with low responsiveness to differentiation therapy
and the downregulation of HIF-1 can improve the out-
come of the NB treatment123. Therefore, taking into
account the importance of HIF-1 in NB tumor progres-
sion, the search for its inhibitors, such as topotecan124 and
acriflavine125, is a promising strategy. Several of these
have already been shown to improve the effects of anti-
angiogenic drugs in vivo.
Cancer cells modify their metabolism to support their

constant proliferation. Adjustments in cancer cells’
metabolism result in excessive glycolytic activity to pro-
duce ATP, the Warburg effect, to support rapid cell
proliferation. These changes are also seen in aerobic
conditions, even though glycolysis generates less ATP
than OXPHOS126,127. This decrease in oxygen demand
helps tumor cells to survive in hypoxic conditions and
continue proliferation due to excessive glycolytic activ-
ity128. Such a drastic metabolic change is attained by the
activity of various oncogenes and regulatory proteins,
such as MYC and HIF-1 (ref. 129,130).
Oncogenic MYC upregulates glucose import (e.g.,

GLUT1), glycolytic enzymes (e.g., hexokinase 2 (HK2) and
PDK1), and mitochondrial biogenesis, thereby ensuring

metabolic intermediates that support cell growth131,132.
Elevated glucose transport into the cells and glycolysis
itself can be targeted for cancer cell-specific therapy133,134.
For example, glucose analog 2-DG (2-deoxy-D-glucose)
that is phosphorylated by HK2 cannot be metabolized
further and accumulates in the cell, leading to the inhi-
bition of glycolysis and tumor growth 135–138. This
approach has been successful in several NB cell lines139

and also in xenograft models,140 regardless of theirMYCN
status, indicating its potential for clinical significance.
Furthermore, the clinical efficacy of 2-DG is enhanced
when combined with cytotoxic drugs in breast141, head
and neck142, and ovarian143 cancer cell lines.
Another hexokinase inhibitor lonidamine was under

clinical trials and revealed promising results in combina-
tion therapy for ovarian cancer clinical trial144 and NB cell
lines145. Furthermore, HK inhibitor 3-bromopyruvate (3-
BrPA) effectively reduces cell growth of leukemia146,
breast147, and colon146 cancer cells without any significant
toxicity or recurrence146,147. It has been efficient when
used alone or in combination with other inhibitors (e.g.,
rapamycin148,149) or cytotoxic drugs (e.g., platinum-based
agents150 and doxorubicin151) for NB, leukemia, breast,
lymphatic, colon, and hepatic cancers. There is also a
modified version of 3-BrPA named 3-bromo-2-oxopro-
pionate-1-propyl ester, which is a cell-permeable ester
that has a strong effect on GLUT1- and MKI67-
expressing NB cells, but is less damaging for normal
cells152. In addition to HK inhibitors, small-molecule PDK
(pyruvate dehydrogenase kinase) inhibitors, such as
dichloroacetate (DCA)153,154, or the downregulation of
lactate dehydrogenase A (LDHA)155 can also be used to
reverse the glycolytic shift by directing pyruvate into
mitochondria, to restore the characteristic phenotype of
non-malignant cells. For example, DCA has successfully
reduced lactate production, proliferation rate, cell viabi-
lity, and increased respiration in NB cell lines156,157. In
addition, LDHA inhibitor FX11 has successfully inhibited
aerobic glycolysis and growth of NB cell lines158.
Besides increased glucose metabolism, many tumors,

and especially NB, show signs of glutamine depen-
dency159. Glutamine regulates cellular energetics, redox
state, amino acid production, cell signaling, and nucleo-
tide synthesis160,161. Therefore, glutamine addiction helps
cancer cells to acquire substrates for rapid proliferation
and to survive better in complex environments. In
tumors, stimulation of glutaminolysis in low glucose and
oxygen conditions is mainly induced by MYC, whereas
MYC knockdown results in reduced glutamine metabo-
lism in glioblastoma cell line162. Thus, removal of gluta-
mine should lead to the death of addicted cells, whereas
oxaloacetate, pyruvate, and α-ketoglutarate can rescue
cells from dying, suggesting that MYC-driven glutamine
metabolism is a major carbon source for the tricarboxylic
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acid cycle162–165. Therefore, targeting glutamine metabo-
lism for MYC-driven tumors is a promising strategy for
cancer therapy.
Glutamine depletion results in activating transcription

factor 4 (ATF4)-dependent, but p53-independent, apop-
tosis as a result of the stimulation of expression of the
pro-apoptotic BCL-2 family proteins PUMA and NOXA.
Therefore, combinations of ATF4 agonists and glutami-
nolysis inhibitors have shown the induction of apoptosis
and a decrease in NB tumor growth164. Inhibitors of
glutaminase 1 by small molecules such as 986 (ref. 166)
and bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl
sulfide167–169, suppressed cell growth, migration, invasion,
and resistance to oxidative stress in MYC-overexpressing
tumors. However, MYCN-amplified NB cells that pre-
dominantly express GLS2 might be less sensitive to these
drugs164,167. Besides GLS blockers, inhibitors of glutamate
dehydrogenases, such as epigallocatechin-3-gallate170, or
aminotransferases, such as aminooxyacetate171, can be
used to block subsequent glutamate processing. However,
problems with identifying the predominant pathway in
specific cancers make it difficult to predict the NB sen-
sitivity to these drugs.

Autophagy and NB therapy
Autophagy is a catabolic survival mechanism that is

activated in somatic cells under metabolic stress, to pro-
vide the cell with metabolites and to eliminate damaged
organelles, protein aggregates, and infecting organisms.
Extensive autophagy can also lead to cell death, but its
function is not yet fully understood172–175. In many solid
tumors, including NB, the outcome of the chemother-
apeutic agents is also affected by the cellular stimulation/
activation of autophagy, which can lead to unexpected
consequences and autophagy-mediated cell survival or
death176. However, there are ongoing discussions and
research to better understand whether extensive activa-
tion of autophagy could be used to induce cell death or
whether it should be blocked, because it helps cells to
survive in extreme environments and therefore support
tumor growth.
For example, one of the reasons why previously dis-

cussed ALK inhibitors may cause resistance is due to their
ability to activate autophagy-mediated cell survival. This
can be avoided by using ALK inhibitors together with
autophagy inhibitors, such as chloroquine, which have
been shown to increase cell death of ALK-positive lung
cancer177,178 In addition, research on histone deacetylase
10 has shown its role in autophagy-mediated cell survival
and poor outcomes in high-risk NB179. Moreover, BCL-2,
a regulator of apoptosis, also controls and inhibits
autophagy, which is why it seems to be one of the key
factors and a potential target in balancing autophagy and
apoptosis180. Therefore, inhibition of autophagy in

combination with other apoptosis-inducing drugs is a
potential strategy to induce apoptotic cell death of NB
cells, especially in resistant tumors181,182.

Targeting PI3K/AKT/mTOR pathway
The PI3K/AKT/mTOR (mechanistic target of rapamy-

cin) signaling pathway is an important regulator of
autophagy. In NB, it correlates with a poor outcome and is
shown to be upregulated by constitutively activated ALK
and MYCN genes183–185. The PI3K/AKT/mTOR pathway
is regulated by the aforementioned RTKs, which are
shown to be involved in malignant NB cell transforma-
tion, when mutated and/or amplified. Therefore, several
inhibitors of RTK and PI3K/AKT/mTOR pathways have
also been tested for NB therapy186,187. However, there are
also problems with resistance, as these inhibitors cause
secondary mutations and autophagy activation that sup-
ports cell survival188,189.
Protein kinase mTOR is considered to be the main

inhibitor of autophagy and controller of cellular meta-
bolism190–192. Deregulation of mTOR expression is very
common in tumor cells and it is targeted in many NB
studies, as its inhibition destabilizes MYCN, reduces NB
growth, and induces excessive autophagy activation that
will result in the stimulation of cell death36,184,193.
Although clinical benefits from mTOR inhibitors, when
used alone, have been modest, their effectiveness for NB
in combination therapies is under investigation194–197. For
example, the mTOR inhibitor temsirolimus (rapamycin
analog) has been tested for NB in clinical trials, in com-
bination with standard chemotherapy and monoclonal
antibodies (NCT01767194)195. In addition, the combina-
tion of mTOR inhibitors, such as dactolisib198, or INK128
(ref. 199), with ALK inhibitors or other conventional
chemotherapeutics has shown the ability of the treatment
to overcome drug resistance and to prevent NB tumor
growth. Moreover, elevated levels of AKT are also very
common in NBs185. Studies on combined AKT targeting
have shown even more successful results, for example, the
combination of AKT inhibitor perifosine and mTOR
inhibitor temsirolimus is in clinical testing for pediatric
solid tumors (NCT01049841)200. Furthermore, AKT
inhibitor MK2206 in combination with etoposide or
rapamycin has shown promising results in NB cell
lines201. Taken together, targeting the PI3K/AKT/mTOR
pathway and thereby inducing excessive autophagy can be
used as a strategy for cancer therapy; however, targeting
several pathways simultaneously should be used to avoid
resistance to treatment.

Necroptosis induction in NB therapy
Cellular stress can activate various caspase- and p53-

independent forms of cell death in normal and trans-
formed cells. One of them is necroptosis, which is

Valter et al. Cell Death and Disease  (2018) 9:113 Page 7 of 15

Official journal of the Cell Death Differentiation Association



morphologically similar to inflammation and immune
response caused by necrosis202. It is mediated by necrotic
death receptors, their ligands, interferons, Toll-like
receptors, and the necrosome complex, consisting of
receptor-interacting protein kinases 1/3 (RIPK1/3) and
mixed lineage kinase domain-like203–206. Necrosome for-
mation induces mitochondrial ROS production and the
release of apoptosis-inducing factor, which are thought to
be important executors of necroptosis206,207. Normal cell
survival is supported by the inhibition of apoptosis and
necroptosis, where apoptosis induction is suppressed by
FLICE-inhibitory protein inhibiting caspase-8 (ref. 208)
and necroptosis induction is blocked by caspase-8-
mediated cleavage of RIPK1/3 (ref. 209). Therefore, the
balance between these proteins will determine whether
the cell will survive or die and through which pathway.
Thus, it is expected that necroptosis has an important role
in several human disorders, such as neurodegenerative
and inflammatory diseases210. Moreover, necroptotic cell
death can be used as a novel approach to modulate
antitumor immunity and apoptosis in the treatment of
resistant cells211.
As many aggressive NBs do not express caspase-8 and

are resistant to apoptosis, inducing necroptotic cell death
to eliminate these cells is another strategy to increase the
efficiency of treatments212. One way to trigger necroptosis
in NB cells is through the increase of cytoplasmic Ca2+

that activates calcium-calmodulin kinase II, which in turn
activates RIPK1 (ref. 213). Other agents inducing
necroptosis in RIPK3-expressing NB cells are polyphyllin
D214 and D-gal215. On the other hand, many NBs have a
decreased expression of caspase-8 and low level of pro-
teins involved in necroptosis, especially in the advanced
stages, making them also resistant to necroptosis induc-
tion216. It is not clear why these genes are downregulated
in NB, but epigenetic modifications may be the reason of
this outcome. Thus, demethylating drugs and/or histone
deacetylase inhibitors217,218 can be used to overcome this
issue and support the use of necroptosis as a new
approach for NB therapy.

Immunotherapy in NB treatment
Owing to the limitations of current therapies, many

immunotherapeutic approaches can be used to induce NB
cell death through redirecting the immune system to
eliminate the malignant cells and to achieve long-term
immunity and protection against relapse. One way is
through targeting ALK-positive NBs with antibodies, to
inhibit cell growth and induce cytotoxicity219,220. Anti-
bodies can also be used to deliver immunotoxins, radio-
isotopes, liposomes, or nanoparticles221. This new method
of drug delivery has a high potential for very specific on-
the-spot effects on tumor cells, at the same time avoiding
toxicity on healthy cells.

This approach is also used for other surface epitopes,
because NB is derived from embryonic tissue and it
expresses surface antigens that are not widespread in non-
embryonic tissues, such as L1-cell adhesion molecule (L1-
CAM), GD2/3 (disialoganglioside), and B7H3 (ref. 222–
224). These antigens can be used as biomarkers to target
advanced and chemotherapy-resistant NB cells with
immunotherapeutic antibodies. The described strategy
has shown promising results in preclinical and clinical
trials with monoclonal antibodies, such as Hu3F8 (ref.
225–228) and dinutuximab229–232, on GD2-positive NB
tumors. It has been shown that treatment with these
antibodies will lead to cytotoxicity mediated by mono-
cytes, macrophages, granulocytes, the complement sys-
tem, and natural killer (NK) cells. As anti-GD2 antibodies
act via cell-mediated cytotoxicity and NK cell reactivity,
NB patients with higher immune activity have better
outcomes from this treatment.233–238 This method seems
to be even more effective when used in combination with
cytotoxic chemotherapy, cytokines, adoptive NK cell
therapy, and 13-cis-retinoic acid232,239–245. However, there
have been problems with treatment efficiency, pain toxi-
city, and relapse; attempts to eliminate these issues have
not yet been fully successful244. Another problem with
this kind of treatment is that, generally, it does not induce
immunological memory and other parts of the immune
system should be used to achieve long-term effects.
For instance, there is evidence for “natural immunity”

against ALK-positive NB cells. This is due to NB’s pecu-
liarity in presenting ALK peptides on human leukocyte
antigen I, which is then recognized by T cells246,247. This
led to a novel strategy that uses designed and/or activated
T cells to induce bio-distributed, long-term, and direct
cytotoxicity, which is free of the immunosuppressive
influences of the tumor. These designed T cells have a
chimeric antigen receptor against GD2, L1-CAM, or ALK,
and they have demonstrated safety and no pain toxicity in
relapsed NB248–253. Another similar approach is to use a
peptide vaccine, such as ganglidiximab254, made from the
tumor proteins, to activate T cells against the NB255–257.
These strategies are already in clinical trials and demon-
strating high efficiency. However, there are several
potential drawbacks with these therapies, starting with the
low or altered expression of HLA and its co-stimulatory
molecules on the cells, complex and expensive standar-
dization processes, and its requirement to use disease
compromised immune system246,258.

Spontaneous regression and TrKA pathway
NB is known for its spontaneous regression by differ-

entiation or reactivated apoptosis, which can be con-
sidered as a possible strategy for improved therapy259,260.
Experiments with differentiation supporting vorinostat261,
a histone deacetylase inhibitor, and didymin262, a citrus-
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derived compound, have resulted in regression of NB in
xenograft models and differentiation in relapsed NB261,262.
There are also several other simple compounds, such as
all-trans retinoic acid263–269, nitric oxide270, and pheny-
lacetate267 that trigger the induction of differentiation and
inhibition of NB growth by inducing the expression of
neural differentiation genes. However, this mechanism is
not clear, but there is evidence that NB spontaneous
regression caused by retinoids is associated with increased
expression of tropomyosin receptor kinase A (TrkA)
receptors269,271.
Furthermore, spontaneous regression of NB is corre-

lated with high expression of TrkA and its ligand nerve
growth factor (NGF), which protects cells from apoptosis
and directs them to differentiation, whereas NGF alone
promotes apoptosis272–277. Therefore, changing the bal-
ance between TrkA and NGF expression can be used for
the activation of NB differentiation and apoptosis. For
example, re-expression of exogenous TrkA in NB cells
guides cells to NGF-induced differentiation.274,277–279

Apoptotic cell death can be induced by TrkA inhibitors,
like K252a (ref. 280), and GTx-186 (ref. 281) or by
downregulating TrkA with miRNA-92a (ref. 282), how-
ever, these strategies are not yet clinically tested for NB.
NGF can also sensitize TrkA-expressing cells for TRAIL-
induced apoptosis and this effect can be further increased
by using inhibitors of NF-κB and/or Mcl-1 (ref. 283).
However, this approach may work better for the primary
NB, but not relapsed NB, which often has mutations in
this regulatory pathway.
Another Trk family protein kinase is TrkB, whose

expression is correlated with poor NB prognosis and
MYCN amplification. For example, TrkB ligands, such as
BDNF and NT-4/5, are distributed via autocrine or
paracrine signaling to support overall NB viability, drug
resistance, and angiogenesis of TrkB-positive tumors284–
286. Therefore, targeting TrkB may reduce the malignancy
of NB with dysregulated TrkB, which can be achieved by
the TrkB inhibitors GNF-4256 (ref. 287) or AZD6918 (ref.
288), which have shown promising results alone and in
combination in a xenograft mouse model.
Moreover, expression of a homeobox gene HOXC9 is

associated with a favorable prognostic outcome and is
known as a marker of spontaneous regression in infant
NBs, whereas its downregulation is present in advanced-
stage NBs. Therefore, re-expression of HOXC9 can be
used to induce NB regression or activation of apoptotic
cell death in NB cell lines289,290. Based on all of the
aforementioned information on spontaneous regression
in NB, it is not clear how it is regulated. Regression seems
to be as complex mechanism as all the other cellular
pathways and it can include a variety of cross-talking cell
death mechanisms.

Conclusion
Therapeutics inducing different modes of cell death,

mainly apoptosis, have been proved to be successful, but
sometimes they demonstrate a modest efficiency and side
effects. The main problem with stimulating apoptosis in
tumor cells is their ability to compensate for pro-apoptotic
signals via upregulating anti-apoptotic agents. Therefore,
searching new strategies is crucial to achieve improved
outcome of NB therapy. One way to enhance the treatment
is to understand better the genetic and metabolic back-
ground of NB. This in turn can be used for more specific
and even personalized therapy, thereby improving the
outcome of the treatment. Moreover, recent developments
in NB treatment are directed towards combined therapies
that target many pathways, not just different sites of one
pathway. Another promising and clinically tested approach
is immunotherapy, which can be used to induce NB cell
death through redirecting the immune system to eliminate
the malignant cells and to achieve long-term immunity and
avoid relapse. However, there are several potential draw-
backs, starting with the requirement to use healthy and
functional immune system, as well as difficult and expen-
sive standardization processes. Thus, there is no easy way
to overcome this complex and heterogeneous disease, but
step-by-step improvements are bringing us closer to pro-
longed survival and gain in life quality.
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