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Karin Anestål1, Stefanie Prast-Nielsen1, Narimantas Cenas2, Elias S. J. Arnér1*

1 Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden, 2 Institute of Biochemistry,

Vilnius, Lithuania

Abstract

Background: SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins) can be formed from the
selenoprotein thioredoxin reductase (TrxR) by targeting of its selenocysteine (Sec) residue with electrophiles, or by its
removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell
death in cultured cancer cell lines by a gain of function.

Principal Findings: Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both
apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation,
but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR
had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the
FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity,
which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered
extensive formation of reactive oxygen species (ROS) and consequently antioxidants could protect against the cell killing by
SecTRAPs.

Conclusions: We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to
electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere
loss of thioredoxin reductase activity.
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Introduction

Mammalian thioredoxin reductases (TrxR, E.C. 1.8.1.9.) are

selenoproteins, i.e. they belong to the unique family of proteins

that contain a selenocysteine (Sec, U in one-letter code) residue [1–

3]. TrxR has, together with the principal substrate thioredoxin

(Trx), a wide range of functions in cells as a major reducing system

for DNA synthesis, redox regulatory functions and antioxidant

defense [4–9]. Three mammalian isoenzymes of TrxR have been

identified, namely the most abundant predominantly cytosolic

TrxR1 [1,3], mitochondrial TrxR2 [10–12] and TGR (thior-

edoxin glutathione reductase), the latter mainly expressed in testis

[13,14]. It should be noted, in the context of this study, that TrxR

proteins of other organisms such as bacteria, archaea, plants or

insects, are typically not selenoproteins. There is also a lack of

consensus for nomenclature of TrxR, sometimes abbreviated as

TR or TXNRD, with additional abbreviations occurring, e.g.

mitochondrial TrxR2 is the same enzyme as TR3 and TGR has

also been called TR2.

Mammalian TrxR1 is a homodimeric protein with the two

subunits arranged head to tail [15]. The first phases of the catalytic

cycle involve a transfer of electrons from NADPH via an enzyme-

bound FAD to a disulfide in the CVNVGC motif located in the N-

terminal domain, which is highly homologous to the mechanisms

of glutathione reductase and other members of the enzyme family

[15–19]. The electrons in TrxR1 are subsequently transferred

from the dithiol of the reduced CVNVGC motif to a selenenyl-

sulfide within the C-terminal -GCUG motif of the other subunit in

the dimeric holoenzyme. The selenenylsulfide is thereby reduced

to a selenolthiol, which can finally reduce the disulfide in the active

site of Trx or other substrates of TrxR [15,17,18,20]. Alternative

substrates for TrxR in addition to Trx encompass additional

protein disulfide substrates [21,22] as well as several low molecular

weight compounds, such as selenite [23], lipoic acid [24],

ascorbate [25] or quinones [26,27].

Sec is a selenium-containing analog to cysteine but a stronger

nucleophile with a low pKa, which makes Sec a highly reactive

amino acid [28]. The reactivity of Sec is essential for the native

catalytic activity of mammalian TrxR [18,20]. However, the

presence of Sec in TrxR at an easily accessible C-terminal position

renders the enzyme highly susceptible to irreversible inhibition by

derivatization of the Sec residue. Thus, TrxR can be inhibited by a

wide range of electrophilic compounds, many of them used in anti-

inflammatory or anticancer treatment. Such compounds include
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auranofin [29], arsenic trioxide [30], several alkylating quinones

[27], platinum-containing anticancer drugs [31–34], and addi-

tional classical alkylating anticancer agents including nitrosourea

[34,35], melphalan and chlorambucil [34]. Endogenously pro-

duced electrophilic prostaglandin derivatives can also target the

enzyme [36].

It is easily conceivable that an inhibitor of TrxR would impose a

significant stress on cells due to the resulting inhibition of

thioredoxin-dependent reactions, the outcome of which would

depend upon the state and growth condition of the target cell

[5,6,9]. In addition, we previously found that derivatization of the

Sec residue in TrxR1 with electrophilic compounds may infer a

gain of function to the protein as a potent and direct inducer of cell

death [37]. A truncated form of TrxR1 lacking the two last amino

acids (–Sec-Gly) also induced cell death when introduced into cells,

while the full-length enzyme with normal enzymatic activity did

not [37]. Cytotoxic effects previously described for TrxR1 in the

form of GRIM-12 [38–42] seem to have been due to combinations

of TrxR1-dependent p53 activation and apoptosis induced by Sec-

deficient forms of TrxR1, as earlier discussed in detail [37].

The mechanism of the cell death triggered by cytotoxic forms of

selenium compromised TrxR1-derived proteins has hitherto been

unknown. In order to distinguish the unique properties of these

proteins from those of native TrxR1 enzyme, we have named

them SecTRAPs for selenium compromised thioredoxin reduc-

tase-derived apoptotic proteins, thereby referring to derivatives of

mammalian TrxR that have i, a compromised Sec residue, ii, no

Trx reducing capability and iii, the capacity to induce cell death by

a gain of function. The term SecTRAP also refers to the ‘‘trap’’ for

electrophilic compounds that the Sec residue in TrxR constitutes

due to its high nucleophilicity. In the present study, we have

analyzed the means by which SecTRAPs induce cell death.

We show here that not all forms of TrxR1 with a compromised Sec

residue show cytotoxic properties as SecTRAPs. Only forms of the

modified protein having an intact N-terminal CVNVGC motif and

being able to propagate NADPH oxidase activity could induce cell

death. This cell death had both apoptotic and necrotic features and it

correlated to an increased intracellular oxidative stress. The findings

suggest that the antioxidant selenoprotein TrxR1 under some

circumstances can be converted into a potent prooxidant killer of cells.

Materials and Methods

Chemicals and reagents
The BioPORTER Quick easy protein delivery reagent was

obtained from Gene therapy systems. Fetal calf serum (FCS) came

from Biotech Line AS, whereas Dulbeccos modified Eagle

medium, L-glutamine, phosphate buffered saline (PBS) and

PCR-primers were from Invitrogen. Antibiotics were purchased

from BIO-Whittaker Belgium. Ascorbic acid (Vit C), bovine serum

albumin (BSA), Cycloheximide, 29-(4-Ethoxyphenyl)-5-(4-methyl-

1-piperazinyl)-2,59-bi-1H-benzimidazole (Hoechst 33342), ju-

glone, propidium iodide (PI), tumor necrosis factor-a (TNF-a), a-

tocopherol (Vit E), 29,79-dichlorofluorescein (DCFH) and staur-

osporine (STS) came from Sigma-Aldrich Chemical Co. Cisplatin

(PlatinolH, cis-diamminedichloroplatinum; CDDP) came from

Bristol Myers Squibb. zVAD-fmk was obtained from Promega,

zDEVD-fmk from Biosource and zVDVAD-fmk from Calbio-

chem. AnnexinV-FITC fluorescence microscopy kit was pur-

chased from BD Biosciences.

Preparation of different forms of TrxR1 and SecTRAPs
The TrxR activity and estimated Sec content of the different

TrxR1 and SecTRAP preparations used in this study are

summarized in Table 1. The proteins were produced, purified

and analyzed as follows.

Recombinant rat TrxR1. Recombinant rat TrxR1 was

purified over 29,59-ADP-Sepharose (obtained from GE) from an

overproducing E.coli system using BL21(DE3) cells co-transformed

with the pET-TRSTER and pSUABC plasmids, essentially as

described previously [43,44].

Full-length rat TrxR1. The full-length Sec-containing rat

TrxR1 was enriched from the purified recombinant TrxR1

preparation using a phenyl arsine oxide (PAO) sepharose

column as described elsewhere [45,46].

Truncated rat TrxR1. The recombinant two-amino acid

truncated rat TrxR1 (having the C-terminal motif –Gly-Cys-

COOH instead of –Gly-Cys-Sec-Gly-COOH) was purified over

29,59-ADP-sepharose from an overproducing E.coli system using

BL21(DE3) cells transformed with the pET-TR plasmid (without

an engineered selenocysteine insertion sequence element),

resulting in production of truncated enzyme as described

previously [43]. For the determination of kinetic parameters, the

enzyme was produced in a BL21(DE3) gor2 strain kindly provided

by Arne Holmgren, Karolinska Institutet.

Truncated human TrxR1. First, recombinant human

TrxR1 was purified over 29,59-ADP-sepharose from an

overproducing E.coli system using BL21(DE3) cells

cotransformed with pSUABC and a pET24d(+) plasmid

encoding the human TrxR1 open reading frame (isoform

TXNRD1_v1 [47]) in fusion with a bacterial-type SECIS

element (construct kindly provided from Dr. Antonio Miranda-

Vizuete), essentially following the procedure described for

expression and purification of recombinant rat TrxR1 (see

above). The two-amino acid truncated human TrxR1 was

subsequently collected from the initial flow-through fractions of

a PAO-sepharose purification scheme [45,46], using the purified

recombinant human TrxR1 as starting material.

Rat C59S/C64S mutant TrxR1. The pET-TRSTER

plasmid [43] was used as template in a PCR reaction using the

Table 1. Properties of the protein preparations used in this
study

Protein preparation
Specific
activity a)

Estimated
Sec content b)

units/mg % of protein species

Enzymatically active TrxR1 preparations

Recombinant rat TrxR1 as produced 15–20 30–50

Recombinant full-length rat TrxR1 34 90–100

SecTRAP preparations

rTrxR1-CDDP c, ,0.6 30–50

Truncated human TrxR1 ,0.6 0

Truncated rat TrxR1 ,0.6 0

Mutant TrxR1 preparations

C59S/C64S mutant rat TrxR1 ,0.6 30–50

C59S/C64S-CDDP d, ,0.6 30–50

a,The specific activity was determined with the standard DTNB assay [50] using
10 nM enzyme preparation.

b,Sec content was estimated from a combined assessment of specific activity,
75Se incorporation, production and purification method and comparisons to
earlier determinations [43–46,49].

c,Recombinant rat TrxR1 derivatized with cisplatin.
d,Mutant C59S/C64S rat TrxR1 derivatized with cisplatin.
doi:10.1371/journal.pone.0001846.t001
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QuickChange site-Directed Mutagenesis Kit from Stratagen, using

upper primer 1: TTTAGGTATG GAGCCCACGT TCACA

GACGT TCCCCCG and complementary primer 2: CG

GGGGAACGT CTGTGAACGT GGGCTCCATA CCTAAA.

The PCR reaction was performed according to the protocol from

Stratagene and the PCR product was transformed into DHL-a
competent cells. A plasmid preparation containing the sequence-

confirmed C59S/C64S construct was further used for a TSS

transformation [48] together with pSUABC [43] into ORaa(DE3)

cells [49]. Colonies from this transformation were used to

overexpress the protein for purification. For this, cells were

cultured at 37uC in LB medium containing 50 mg/ml kanamycin,

34 mg/ml chloramphenicol and 0.01% arabinose. Recombinant

protein expression was subsequently induced by addition of IPTG

(500 mM) at OD 0.65 together with supplementation of selenite

(5 mM) and L-cysteine (100 mg/ml) and the cells were grown for

an additional 16 h at room temperature for production. The

overexpressed mutant protein was subsequently purified on a

29,59-ADP sepharose column (GE) from the cleared supernatant,

obtained after lysozyme treatment (400 mg/ml) and centrifugation,

essentially following the procedure described elsewhere [43,44,49]

and above for the other TrxR preparations.

After production and purification as described above, all rat and

human full-length or recombinant TrxR and SecTRAP prepara-

tions were subjected to desalting with NAP-5 columns (GE) for

buffer change to 50 mM Tris-Cl, 2 mM EDTA, pH 7.5 (TE-

buffer) and were kept in 220uC at a concentration of

approximately 1 mg/ml until use. Protein concentrations were

determined through the absorbance at 463 nm taking into account

an extinction coefficient of 11300 M21cm21 for the FAD

prosthetic group (which is present in both TrxR and SecTRAPs).

Derivatization with cisplatin. The rat C59S/C64S mutant

TrxR, or recombinant rat TrxR as control for derivatization, were

reduced with 0.5 mM DTT 20 min in room temperature before

addition of CDDP (200 mM). The samples were then incubated

for another 30 min, whereupon TrxR activity was measured in

both samples using the direct DTNB assay [50]. Complete

inhibition of the recombinant TrxR control sample was thereby

confirmed and used as an indication that conditions for full

derivatization of the Sec residue had been accomplished.

Subsequently both protein preparations were desalted over a

NAP-5 column equilibrated with TE-buffer and, to confirm

irreversible derivatization of the Sec residue with CDDP, an

additional DTNB assay was performed after the desalting step

using the recombinant TrxR1 sample as control, which showed

the expected lack of activity. Concentrations of these protein

samples were determined by the Bradford method according to

the protocol from BioRad using BSA as standard.

Enzyme activity determinations
Determination of kinetic parameters. NADPH consump-

tion measurements were performed by monitoring the change of

absorbance at A340 for 20 min using either a Hitachi-557 or

Schimadzu double beam spectrophotometer, essentially according

to protocols described previously [27,37,51,52]. Kinetic

parameters for juglone were determined as described earlier

[52]. The direct DTNB assay as a measure for mammalian TrxR1

activity was carried out as described [50] and parameters for the

insulin assay are described in Table 2.

Stopped-flow kinetics. The rapid reaction studies using

either truncated rat TrxR1 or full-length rat TrxR1 were

performed under aerobic conditions using a DX.17MV stopped-

flow spectrophotometer (Applied Photophysics) in 0.1 M K-

phosphate buffer solution (pH 7.0), containing 1 mM EDTA, at

25uC, essentially following the procedures described previously

[52]. The data were analyzed according to the single-exponential

fit.

Evaluation of a possible interaction between TrxR1 and
SecTRAP in vitro

Rat TrxR1 (5 nM), human wild-type Trx1 (10 mM), kindly

provided by Arne Holmgren, Karolinska Institutet, and NADPH

(200 mM) were incubated in TE buffer containing 1 mg/ml BSA

with different concentrations of truncated rat TrxR1 as a

SecTRAP preparation, added as indicated in the text. Direct

NADPH consumption was first assessed at A340 for 20 min (found

to be negligible), whereupon insulin (145 mM) was added. The

decrease at A340 was then followed for additional 30 min and

NADPH consumption was calculated from the slope of the initial

linear part of the curves. In addition, a similar assay was

performed using DTNB as substrate, instead of Trx and insulin.

For this, TrxR1 (20 nM), NADPH (0.8 mM) and varying

concentrations of SecTRAPs where mixed in a final volume of

50 ml TE-buffer containing 1 mg/ml BSA in microtiter plate wells

and then incubated 15 min at 37uC. Subsequently, 150 ml of a

reaction mixture (2.7 mM EDTA, 67 mM Tris-Cl pH 7.4,

3.3 mM DTNB and 270 mM NADPH) was added and the

increase of absorbance at A412 was followed for 3 min.

Additional enzyme activity measurements
The NADPH consumption with subsequent estimation of free

thiols was performed in 200 ml reaction mixes using a 96-well plate

reader. In this assay, 10 nM of full-length or truncated rat TrxR1

was incubated with or without 10 mM human wild-type Trx1 and

145 mM insulin as indicated in the text, in 250 mM NADPH,

1 mg/ml BSA, 2 mM EDTA and 50 mM Tris-Cl (pH 7.5).

Juglone was dissolved in DMSO and used at the indicated

concentrations. Upon simultaneous addition of NADPH and

Table 2. No inhibition of TrxR1 activity in vitro by addition of
SecTRAPs

Ratio between
TrxR1:SecTRAPs a,

Insulin
assay b,

TrxR1 activity
DTNB assay c,

TrxR1 only 20486317 24166125

10:1 26646941 2418666

1:1 27026532 25126141

1:10 26766868 2524690

1:50 24096211 32076248

1:2000d, 22656247 d, n.d.

The values are mean6S.D. of six different measurements
a,The TrxR1 preparation in this experiments was full-length rat TrxR1 and the

SecTRAP preparation rat truncated TrxR1.
b,TrxR1 activity is given as turnover (min21) calculated from the decrease at

340 nm detected in a microplate reader assay with 5 nM TrxR1, 0.5 nM-500 nM
truncated TrxR1 as SecTRAP, 10 mM Trx, 145 mM Insulin in 50 mM Tris-Cl,
2 mM EDTA, pH 7.4 and 200 mM NADPH.

c,TrxR1 activity calculated from the increase at 412 nm detected in a microplate
reader assay with 5 nM TrxR1, 2.5 mM DTNB in 50 mM Tris-Cl, 2 mM EDTA,
pH 7.4 and 200 mM NADPH based upon comparisons to standard curves
performed in normal quartz cuvettes with 1 cm light path length.

d,TrxR1 activity in insulin assay with 1:10 molar ratio of Trx1 (1 mM) and
truncated TrxR1 as SecTRAP (10 mM). The turnover (min21) is calculated from
the decrease at 340 nm detected in a microplate reader assay using 5 nM
TrxR1, 145 mM insulin in 50 mM Tris-Cl, 2 mM EDTA, pH 7.4 and 200 mM
NADPH.

n.d.: not determined
doi:10.1371/journal.pone.0001846.t002
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mixing using a multipipette, NADPH consumption was followed

at 340 nm over 30 min. Subsequently, 40 ml of each reaction was

used for estimation of free thiols, stopping the reaction by addition

of 160 ml 7 M GuHCl with 1 mM DTNB. Free thiol groups were

determined using absorbance at 412 nm and an extinction

coefficient of 13600 M21cm21. For determination of superoxide

formation the adrenochrome method was used, based upon

reduction of epinephrine by superoxide which can be quantified at

480 nm using an extinction coefficient of 4020 M21cm21, as

described previously for studies of dinitrophenyl-derivatized TrxR

[51]. Here the adrenochrome assay was performed in a 96-well

plate reader with dual wavelength scan for the concomitant

determination of NADPH consumption (using 340 nm and an

extinction coefficient of 6200 M21cm21). For analysis whether the

BioPORTER reagent itself may be reduced or redox cycle with

TrxR or SecTRAPs, a reaction mixture containing 16 nM TrxR

or truncated TrxR1 as SecTRAP, respectively, was made in

complex with BioPORTER in the same ratios as in the regular cell

experiments. These protein mixtures where then assayed, in the

presence or absence of 5 mM juglone as positive control, in

300 mM NADPH, 2 mM EDTA and 50 mM Tris-Cl (pH 7.5)

and NADPH consumption was monitored at 340 nm for 15 min.

Potential superoxide production was also assessed using the

adrenochrome method (see above for details of this method).

Cell cultures and BioPORTER experiments
HEK293 (human embryonal kidney) cells (ATCC nr: CRL-

1573) were grown in RPMI whereas A549 (human lung

carcinoma) cells (ATCC nr: CCL-185) or HeLa (human cervical

cancer) cells (ATCC nr: CCL-2) were grown in Dulbeccos

modified Eagle medium with high or low glucose content,

respectively. All media were supplemented with 10% heat-

inactivated fetal calf serum, 2 mM L-glutamine, 100 units/ml

penicillin and 100 mg/ml streptomycin and the cells were cultured

in a humidified atmosphere of 5% CO2 at 37uC. For the different

treatments, cells were seeded in LabTecII chamber slides

(0.7 cm2/well) at a density of 10,000 cells per well 16 h before

addition of protein/BioPORTER-complex, prepared according to

the manufacturers protocol and shortly described as follows. An

amount of 0.4 mg (for A549 or HEK293) or 0.2 mg (for HeLa)

TrxR1 or SecTRAPs preparations (as described in the text) in TE-

buffer (2 mM EDTA, 50 mM Tris-Cl, pH 7.5) was diluted in PBS

to a final volume of 20 ml subsequently added to a ‘‘quick easy’’

BioPORTER tube (Gene therapy systems) by pipetting up and

down 10 times to hydrate the dried compound. The protein/

BioPORTER preparation was then incubated for 5 min in room

temperature, briefly and gently vortexed for 5 s, whereupon it was

mixed with 390 ml of serum-free medium. Subsequently, the

mixture of 100 ml (for A549 or HEK293) or 200 ml (for HeLa)

protein/BioPORTER-complex and medium (typically correspond-

ing to a total amount of 100 ng TrxR or SecTRAP) was added to

each well, containing cells that had first been washed with serum-

free medium. To A549 and HEK293 cells, additional serum-free

medium (100 ml) was finally added, resulting in a total volume of

200 ml in each well, that had been seeded with 10,000 cells 16 h

prior to the experiment (see above). For assessment of concentra-

tion dependence, TrxR1 or SecTRAP was first diluted in TE-

buffer containing 1 mg/ml BSA in a volume so that the resulting

amount per well ranged from 1 pg to 100 ng TrxR1 or SecTRAP

as stated in the text, always added to each well in the BioPORTER

mix together with 100 ng BSA. In the experiments designed to

assess possible protection from excess full-length TrxR1, 10 ng

SecTRAPs per well were added together with the indicated

amounts of TrxR1, ranging from 1 ng to 100 ng.

In the experiments with antioxidants, A549 cells were

pretreated 1 h with 100 mM of ascorbic acid, 100 mM a-

tocopherol, or a combination of both, in serum-containing

medium. Fresh antioxidants (same concentrations) were subse-

quently added with the serum-free medium to the cells together

with the protein/BioPORTER-complex. Controls were always

made with TE-buffer, BioPORTER in absence of protein,

SecTRAPs in absence of BioPORTER, or BioPORTER with only

BSA, as indicated in the text.

In all cell experiments, C-terminally two-amino acid-truncated

rat TrxR1 expressed as such in E. coli and purified over 29,59-ADP

sepharose (see above) was utilized as SecTRAP preparation, unless

stated otherwise.

Cell viability assessment
The extent of cell death was determined with assessment

through microscopy of fluorescent staining and morphology as

described previously [37]. Shortly, cells were washed once with

PBS after treatment for the indicated time with the BioPORTER

preparations (4 h unless stated otherwise). Subsequently 100 ml of

10 mg/ml Hoechst 33342 in PBS was added to each well for blue

staining of all nuclei. After 15 min incubation at room

temperature 1 ml PI was added to a final concentration of

50 mg/ml for red staining of nuclei in (dead or dying) cells having

defective and permeable membranes. Cells were then incubated

for additional 5 min, whereupon they were washed once with

PBS. Using a Hamamatsu digital camera 4742-95 with Leica

DMRB microscope, three pictures were taken of the same field at

20-fold magnification using either white light or adapted with

filters for Hoechst fluorescence (excitation: 360 nm, emission:

460 nm) or PI fluorescence (excitation: 570 nM, emission:

610 nm). Cell death was subsequently evaluated with assessment

of the digital pictures, evaluating staining of the nuclei of a total of

700–1000 cells per well. Cells with blue-stained and PI-negative

normal looking non-condensed nuclei were considered viable,

whereas blue-stained cells with condensed nuclei or blue- as well as

red-stained cells were considered dying and/or dead, as described

previously [37] and also illustrated herein.

Assessment of phosphatidyl serine exposure using
Annexin-V staining

HeLa cells were seeded as described above and BioPORTER

alone, SecTRAP/BioPORTER-complex or 1 mM staurosporine

was added to the wells. After 3 h incubation, the cells were washed

once with cold PBS and then once more with 1x Annexin-V

binding solution, according to the protocol from the manufacturer

(BD Biosciences). Subsequently 150 ml of 1x Annexin-V antibodies

in binding solution were added to each well, followed by 15 min

incubation. After addition of 1.5 ml of PI (1 mg/ml) the cells were

incubated for additional 5 min, washed in Annexin-V binding

buffer, and positive Annexin-V staining was subsequently

visualized by fluorescence microscopy equipped with a filter for

fluorescein isothiocyanate (excitation: 490 nm, emission: 525 nm),

whereas any possible PI staining was assessed with the filter for

texas red (excitation: 570 nm, emission: 610 nm).

Analysis of caspase involvement
Cells were first seeded and grown as described above. For

caspase inhibition experiments, the cells were preincubated

30 min with the indicated inhibitors at concentrations and

conditions described in the text. Before treatment with protein/

BioPORTER-complex the cells were then washed once with serum-

free medium and new caspase inhibitor at the same concentration

Cell Death by SecTRAPs
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as during the preincubation was added together with protein/

BioPORTER-complex in serum-free medium to the wells. Control

cells were treated in the same manner with preincubation in

serum-free medium, but with omission of caspase inhibitor. For

the incubations using an extended duration of preincubation,

serum-containing medium (final FCS concentration 10%) was

added after 3 h. At the indicated time points, cell viability was

evaluated as described above.

Experiment with cycloheximide
In order to analyze the requirement of protein synthesis for cell

death to occur, cells were seeded in LabTecII chamber slides

(10,000 cells per well) and incubated over night whereupon they

were pretreated 12 h with either cycloheximide (10 mM), TNF-a
(10 ng/ml), the combination of cycloheximide (10 mM) and TNFa
(10 ng/ml), or with only PBS as control, in all cases using medium

supplemented with 10% FCS. Subsequently the cells were washed

with serum-free medium before SecTRAP/BioPORTER-complex

was added and incubation was continued for 4 h, followed by cell

viability evaluation as described above.

Detection of ROS production
HeLa cells were seeded in LabTecII chamber slides (10,000

cells per well) and incubated for 16 h. Some cells were pretreated

1 h with 100 mM a-tocopherol, 100 mM ascorbic acid or 100 mM

of both compounds before addition of 100 ng of different protein/

BioPORTER-complexes as described above and indicated in the

figure legend. After 3 h incubation, cells were washed once in PBS

before 15 min incubation with 2 mM DCFH and 10 ug/ml of

Hoechst 33342. Cells were subsequently washed three times in

PBS before ROS production was detected by confocal microscopy

using filters for FITC, DAPI and rhodamine. All photographs of

DCF fluorescence at a certain magnification but with different

treatments were taken under identical incubation, excitation, and

exposure conditions.

Statistical analyses
Statistical analyses were performed with Prism 4 from GaphPad

Software, using one-way ANOVA and the Tukey-Kramer test for

determination of P values. The same software was used to draw

graphs of the analyzed data.

Results

Human and rat SecTRAPs induce cell death in human
A549 and HeLa cells

The aim of this study was to analyze the characteristic features

of SecTRAPs and to understand more about the cellular death

mechanisms triggered by these proteins. The previously observed

morphology of cells treated with SecTRAPs, showing PI uptake

and condensed DNA [37], was not enough to discriminate

between apoptosis and necrosis. Here we first confirmed that

nuclear condensation and PI uptake was triggered by SecTRAPs

in both A549 and HeLa cells, but not by full-length TrxR1, using

protein delivery into the cells with BioPORTER (Fig. 1A). When

treating HeLa cells with either SecTRAPs or staurosporine for

only 3 h, we observed phosphatidyl serine exposure as demon-

strated with Annexin-V staining. This apoptotic feature was

detected prior to major uptake of PI at this early time-point,

indicating that the cell membranes were still intact. The Annexin-

V staining upon treatment with SecTRAPs was stronger than after

treatment with 1 mM staurosporine, whereas no staining was

observed with only BioPORTER (Fig. 1B) ruling out the possibility

that the reagent as such affected the staining pattern. However, the

morphology of the cells treated with 1 mM staurosporine as a

positive control furthermore displayed cell membrane blebbing,

which was not seen after SecTRAP treatment (Fig. 1B).

In our previous study we introduced different preparations of

recombinantly expressed rat TrxR1 to a human lung adenocar-

cinoma cell line (A549) [37]. Here we found that both human and

rat SecTRAPs could effectively kill human HeLa and A549 cells

(Fig. 2A). We could not, however, detect any increased cell death

in HEK293 cells treated with SecTRAPs (not shown). We

therefore decided to use the rat truncated TrxR1 protein as a

SecTRAP preparation for our continued studies of cell death

triggered in A549 and HeLa cells because of significantly higher

yield in the recombinant expression system for rat TrxR1 than for

human TrxR1, which is probably due to different rare-codon

frequencies [43,53,54].

Low amounts of SecTRAPs induce cell death and
SecTRAPs are not direct inhibitors of the native
thioredoxin system

The cell death-inducing effect of SecTRAPs was pronounced

when 100 ng of protein was introduced to approximately 10,000

A549 or HeLa cells (Fig. 1 and Fig. 2A). A dilution series

illustrated a clear trend towards an increase in cell death at

treatment with as little as approximately 5 to 10 pg SecTRAP, but

at least 100 pg was needed to give a statistically significant

increased cytotoxicity using A549 cells treated for 4 h (Fig. 2B).

With a SecTRAP mass of 55 kDa, 100 pg amounts to about

100,000 SecTRAP molecules per cell, thereby sufficient to

provoke a significant increase of cell death in A549 cells, provided

that all of the added molecules were indeed delivered into the cells.

The killing effect was somewhat variable from experiment to

experiment, but under the conditions utilized here about 30–40%

dead or dying cells were typically observed after 4 h treatment

with 100 pg SecTRAPs or more (Fig. 2B). In line with these

findings, it should be noted that 10,000 A549 cells contain about

1–2 ng endogenous native TrxR1 and the results thereby suggest

that the cell death provoked by SecTRAPs in susceptible cells can

occur at rather low amounts, compared to the endogenous TrxR1

levels.

It was suggested that SecTRAPs could interact with enzymat-

ically active Trx1 endogenously present in the cells and thereby

inhibit Trx1-dependent reactions as part of the SecTRAP effect

[55]. Here we wished to experimentally assess such potential

interaction. For this, we first analyzed in vitro whether a 10-fold

molar excess of SecTRAPs over Trx1 and 2000-fold excess over

TrxR1 could inhibit the enzymatic activity of TrxR1 in a Trx1-

linked insulin reduction assay. We also studied the effects of

SecTRAPs in a direct TrxR1 activity assay using DTNB as

substrate. In neither case could we find evidence of an inhibition

of TrxR1 activity by an excess of SecTRAPs (Table 2). We then

analyzed whether A549 cells could be protected from SecTRAP-

induced cell death by the simultaneous addition of an excess of

enzymatically active full-length TrxR1. Using co-delivery of

10 ng SecTRAP with 100 ng TrxR, i.e. a 10-fold excess of TrxR

over SecTRAP protein, and about 50-fold excess of TrxR added

over the endogenous cellular level of TrxR, this indeed

counteracted the SecTRAP effect to some extent, while at

equimolar amounts or less of TrxR compared to SecTRAP no

protection was observed (Fig. 2C). These results (Table 2 and

Fig. 2C) suggest that SecTRAPs can provoke a cell death via a

mechanism not necessarily involving direct interactions with the

endogenous proteins of the thioredoxin system, but that the

thioredoxin system or at least TrxR1 may possibly have some
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protective effect if present in large excess compared to the

SecTRAP level.

The cell death provoked by SecTRAPs occurs without
induction of novel protein synthesis

We next wished to study whether the cell death effect of

SecTRAPs required induction of novel protein synthesis. For this,

HeLa cells were preincubated with the protein synthesis inhibitor

cycloheximide for 12 h before treatment with SecTRAPs. As a

positive control for inhibition of protein synthesis, cycloheximide

was co-incubated with TNFa, which is a combinatory treatment

known to induce apoptosis in HeLa cells under these conditions

[56]. As expected, treatment with either the combination of

cycloheximide and TNFa, or with SecTRAPs alone, induced cell

death in HeLa cells (Fig. 3). However, cycloheximide had no effect

on the cell death provoked by SecTRAPs (Fig. 3), suggesting that

novel protein synthesis was not required for the cytotoxicity.

Caspase inhibitors can protect cells from SecTRAPs
The pan caspase inhibitor zVAD-fmk was first used to assess

whether the cell death provoked by SecTRAPs could be prevented

by general caspase inhibition. Both A549 and HeLa cells were well

protected against the effects of SecTRAPs when preincubated with

a high concentration (100 mM) of the general zVAD-fmk caspase

inhibitor (Fig. 4A). This result suggested that SecTRAPs may

provoke a cell death with apoptotic features, but high concentra-

tions of caspase inhibitor may also mask cell death by mitotic

catastrophe. However, a lower concentration of zVAD (25 mM)

was protective for up to 12 hours (not shown), as were more

specific caspase inhibitors. With two initiator caspases, caspase-8

and caspase-2, converging in activation of caspase-3 [57,58], we

decided to focus on these three caspases. A caspase-3 inhibitor

(zDEVD-fmk) at 25 mM almost completely prevented the cell

death provoked by SecTRAPs in either HeLa or A549 cells

(Fig. 4B). An inhibitor of caspase-8 (zIETD-fmk) at the same

Figure 1. SecTRAPs induce cell death and phosphatidyl serine exposure in human cancer cells. (A) Morphological features and staining
of HeLa and A549 cells after incubation for 4 h with BioPORTER (BP) alone, 100 ng full-length TrxR1/BioPORTER-complex, 100 ng SecTRAP/BioPORTER-
complex or 1 mM staurosporine (STS), as indicated. Hoechst 33342 was used to visualize the shape or condensation of the nuclei and PI was used as a
probe for lack of membrane integrity. Assessment of cell death was performed as described in the text. The percentage of cells denoted as dead,
counting a total of 700–1000 cells in this particular experiment, is also given in italics in the lower part of the figure. (B) Exposure of phospatidylserine
was evaluated after 3 h treatment of HeLa cells with either only BioPORTER, SecTRAP/BioPORTER-complex or 1 mM staurosporine, staining cells with
Annexin-V and PI as described in the text. Magnification was x 40 in all panels.
doi:10.1371/journal.pone.0001846.g001
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concentration reduced the apoptotic effects of SecTRAPs in HeLa

cells to about half, while it was highly protective in A549 cells. This

indicated that cell death upon exposure to SecTRAPs could

involve caspase-8, but the notable apoptosis seen in HeLa cells also

in presence of inhibitor suggested that an additional initiator

caspase could be involved. Notably, the caspase-2 inhibitor

Figure 2. Concentration dependent cell death induction by
SecTRAPs in two human cancer cell lines and the effects of
excess TrxR1. (A) HeLa and A549 cells were treated with 100 ng rat or

r

human SecTRAPs in the presence or absence of BioPORTER delivery
reagent, as indicated in the figure and described in the text. A
significant increase in cell death was seen in all cases where SecTRAPs
were incubated with the cells in the presence of BioPORTER as
compared to addition of SecTRAPs alone (***, p,0.001) (B) A SecTRAP
preparation (truncated rat TrxR1) at an amount of 0.1 pg-100 ng was
used for delivery into 10,000 A549 cells using BioPORTER, as described
in the text. The graph shows the determined cell death (mean
value6S.D.) triggered by each SecTRAP amount and significant
differences to control treatments are indicated, using as controls either
incubation with only TE buffer (white bar: n.s., p.0.05; *, p,0.05; **,
p,0.01; ***, p,0.001) or with BioPORTER alone (dashed bar: n.s.,
p.0.05; ##, p,0.01; ###, p,0.001). No significant difference in cell
death was seen comparing the two control treatments with each other.
(C) A549 cells were treated with 100 ng full-length TrxR1 or a mixture of
different amounts of TrxR1 with 10 ng SecTRAP using BioPORTER, as
indicated in the figure. Differences in cell death were compared to
control cells either treated with TE buffer (white bar; **, p,0.01; ***,
p,0.001) or with only BioPORTER (dashed bar; ###, p,0.001). No
statistically significant difference in cell death was seen between the
two control treatments or in comparisons of either control with the
treatment using 100 ng TrxR1 (n.s., p.0.05). In all experiments (A–C)
cells were incubated for 4 h with the separate treatments and were
subsequently stained with Hoechst 33342 and PI for evaluation of dead
cells as described in the text.
doi:10.1371/journal.pone.0001846.g002

Figure 3. Cell death by SecTRAPs is not dependent upon
induction of protein synthesis. HeLa cells were preincubated 12 h
with TNF-a, cycloheximide or a combination of TNF-a and cyclohexi-
mide, whereupon SecTRAP/BioPORTER-complex was added as indicated
and the cells were then incubated for additional 4 h. Cell death was
subsequently evaluated by staining with Hoechst and PI as described.
As a control experiment, an expected increase of cell death was seen
when cells were treated with the combination of TNF-a and
cycloheximide compared to treatment of either of these compounds
alone, showing that the cycloheximide treatment had inhibited protein
synthesis (see text). In contrast, cycloheximide had no effect on the cell
death provoked by the SecTRAP/BioPORTER treatment, as indicated in
the figure (n.s., p.0.05; *, p,0.05; **, p,0.01).
doi:10.1371/journal.pone.0001846.g003
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zVDVAD-fmk effectively blocked the apoptosis provoked by

SecTRAPs in both A549 and HeLa cells, to the same total extent

as the inhibitor of caspase-3 (Fig. 4B). These results may indicate

that both caspase-2 and caspase-3 could be involved in the cell

death provoked by SecTRAPs.

SecTRAPs are efficient reductases with juglone in a
reaction dependent upon the N-terminal redox active
disulfide/dithiol motif

In our previous study we showed that SecTRAPs display very

low direct NADPH oxidase activity, i.e. in absence of other

substrates than NADPH and oxygen, apart from the case when

TrxR1 has been derivatized with dinitrohalobenzenes [37]. We

also found that glutathione reductase, having higher inherent

NADPH oxidase activity than the selenium-compromised forms of

TrxR1, lacked the capacity to induce cell death [37]. We thus

initially speculated that a direct prooxidant capacity of SecTRAPs

should not be the reason for the cell death induction. However, we

here hypothesized that SecTRAPs, still having a functional FAD

moiety and an intact N-terminal redox active CVNVGC motif

(see Introduction), could perhaps react with some endogenous

cellular substrate or target as a part of the apoptotic mechanism.

To test whether the N-terminal CVNVGC motif was important

for the SecTRAP effect we therefore generated a mutant where

the two cysteine residues in this motif were exchanged for serine

moieties. This protein was made to maintain an intact C-terminal

–GCUG motif and the incorporation of selenocysteine was

verified by 75Se labeling (not shown). We first performed in vitro

analysis of the NADPH consumption of the C59S/C64S mutant

compared to other TrxR1 or SecTRAP preparations, using the

quinone substrate juglone, which was previously studied with non-

modified TrxR1 and found to be reduced by the N-terminal

CVNVGC motif [27,52]. As expected the NADPH consumption

of the C59S/C64S mutant, either with the Sec residue intact or

with this residue derivatized with cisplatin, was negligible. We

concluded that the C59S/C64S mutant is, in principle, a

completely redox inert form of modified TrxR1. In contrast, a

SecTRAP preparation, here represented by the two-amino acid

truncated TrxR1 (with an intact N-terminal CVNVGC motif),

was found to efficiently reduce juglone, at a rate comparable to

that of full-length TrxR1. This finding was in line with our earlier

results, showing that juglone reduction can occur at the other

redox active sites of TrxR1 than the Sec-containing selenolthiol

motif [27,52]. It should again be emphasized in the context of the

present study that in spite of efficient juglone reduction, the

SecTRAP preparation completely lacked Trx reducing activity.

These results are summarized in Table 3.

Analyzing the stopped-flow kinetics of truncated rat TrxR1 as a

SecTRAP preparation as well as full-length rat TrxR1, we

observed that NADPH reduced the FAD moiety of both proteins

Table 3. Steady state kinetic properties of TrxR1, SecTRAPs
and the C59S/C64S mutant

Enzyme and substrate kcat (s21) Km (mM) kcat/Km (mM21s21)

TrxR1 and juglone a, 5.560.2 2.460.3 2.360.1

SecTRAPs and juglone a, 6.560.6 4.461.1 1.460.3

C59S/C64S and juglone 0.460.01 15.562.2 0.02

TrxR1 and Trx b, 27.5 2.5 11

SecTRAPs and Trx , 0.01 c, n.a. n.a.

C59S/C64S and Trx , 0.01 c, n.a. n.a.

a,kcat per active site and Km were calculated by following the NADPH
consumption as described in the text.

b,Values taken from [50] and adjusted to kcat per active site.
c,Measured in the insulin assay, under the same conditions as given in Table 2.
n.a., not applicable.
doi:10.1371/journal.pone.0001846.t003

Figure 4. Cell death induction by SecTRAPs is prevented by
caspase-2 and caspase-3/7 inhibitors. (A) shows that the cell death
provoked by SecTRAPs is significantly decreased upon preincubation of
either A549 or HeLa cells for 30 min with 100 mM of the general caspase
inhibitor zVAD before the SecTRAP treatment (**, p,0.01; ***,
p,0.001). In (B) HeLa or A549 cells were incubated 30 min with
25 mM of inhibitors for caspase-2 (zVDVAD-fmk), caspase-3 (zDEVD-fmk)
or caspase-8 (zIETD-fmk) before SecTRAP treatment. In all of these cases
a significantly lower cell death was observed, as indicated in the figure,
suggesting that the three caspases may be involved in propagating
the cell death triggered by SecTRAPs, as further discussed in the text
(*, p,0.05; **, p,0.01; ***, p,0.001).
doi:10.1371/journal.pone.0001846.g004
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at similar rates. The SecTRAP preparation formed the FAD-

thiolate charge-transfer complex typical of mammalian TrxR

enzymes, having an absorbance maximum at 540 nm [19,27],

with a rate of ,168 s21 and the corresponding rate for full-length

TrxR1 was ,140 s21 (Fig. 5A). In addition, juglone reduction,

using lower concentrations under steady state conditions, dis-

played an acceleration during reactions with either of the two

proteins, as found earlier for TrxR1 [27]. Apparent kinetic

parameters in the juglone reduction for the initial ,0–20 s time

period were in the same range for both proteins (Fig. 5B) and

determined here to kcat ,6 s21 and kcat/Km,1–26106 M21s21

(Table 3). These findings illustrate that SecTRAPs can propagate

rapid redox reactions with selected substrates, although they lack

the proper Sec-containing active site of TrxR1.

The effects of thioredoxin on the oxidoreductase activity
of SecTRAPs using juglone

Both Trx1 and juglone can compete as substrates for reduction

by full-length TrxR1. SecTRAPs however, can only reduce

juglone and not Trx1 (Table 3). We therefore wished to analyze

whether reduction of juglone by SecTRAPs could occur also in the

presence of Trx1, which would possibly suggest that SecTRAPs

can react with alternative substrates also in a cellular context

where Trx1 would be present. We found that Trx1 at a

physiological concentration (10 mM) could lower the juglone

reduction by truncated TrxR1 using low concentrations of juglone

(5 mM or less). However, 10 mM Trx1 had no effect on the

reduction of 50 mM juglone by truncated TrxR1, as demonstrated

by the same NADPH oxidation rate either in the presence or

absence of Trx1 and its disulfide substrate insulin (Fig. 5C, upper

panels, white bars). It should be noted that this activity was

dependent upon direct juglone reduction by the SecTRAP

protein, since this truncated enzyme has no activity with Trx1.

This fact was also illustrated by the lack of Trx-coupled insulin

reduction in the assay (Fig. 5C, lower left panel, white bars). The

properties of the SecTRAP protein were in sharp contrast to those

of full-length TrxR1, which has a preference for Trx1 as substrate,

being essentially unaffected by addition of low concentrations of

juglone in the presence of Trx1 and insulin. This was clearly

illustrated by the channeling of electrons from NADPH (Fig. 5C,

upper left panel, black bars) to production of free insulin-derived

thiols, formed through insulin disulfide reduction by Trx1 in the

reaction propelled by the TrxR1 enzyme (Fig. 5C, lower left panel,

black bars). However, the Trx1-reducing activity of full-length

TrxR1 was noticeably impaired at the higher concentration of

juglone (50 mM) through the effects of juglone as inhibitor and a

subversive substrate for the enzyme [27]. These results collectively

suggested to us that TrxR1 preferentially reduces Trx1 when

present, whereas SecTRAPs albeit not being able to reduce Trx1,

can still be active as oxidoreductases able to reduce other

substrates than Trx1. As we found next, this activity can confer

notable prooxidant properties, that also correlate to the cytotoxic

effects of SecTRAPs.

Superoxide is produced during reations with juglone
We detected superoxide production during juglone reduction,

by either SecTRAPs or TrxR1, as assessed with the adrenochrome

method. Interestingly, addition of epinephrine also increased the

rate of NADPH consumption (Fig. 5D). Addition of excess SOD

completely abolished the adrenochrome formation, confirming

that superoxide was formed (Fig. 5D). These findings were possibly

suggestive of one-electron reduction of juglone, producing

superoxide, which would be in contrast to the predominant two-

electron reduction mechanism found earlier using 1,4-benzoqui-

none as a quinone substrate for TrxR1 [27]. As reported in our

earlier study, TrxR1 is an efficient reductase for several quinones

in addition to juglone, i.e. in the absence of Trx1, including 9,10-

phenanthrene quinone [27]. The latter substrate is reduced solely

by the Sec-containing C-terminal active site [27]. Accordingly, we

found here that SecTRAPs are completely inactive in reduction of

9,10-phenanthrene quinone (not shown), in contrast to their

efficient reduction of other substrates such as juglone.

The cell death provoked by SecTRAPs correlates to the
prooxidant capacity

When the different TrxR1 or SecTRAP preparations that we

had analyzed for juglone reduction (Table 3) were introduced into

A549 cells, we found that the C59S/C64S mutants could not

provoke cell death at any higher extent than non-compromised

TrxR1 or the control using only BioPORTER treatment, in

contrast to the cell-killing SecTRAP capacity of either TrxR1 that

had been derivatized with cisplatin, or of truncated TrxR1 (Fig. 6).

This showed that an intact CVNVGC motif of the selenium-

compromised forms of TrxR1 was required for SecTRAP

properties. Considering the different enzymatic activities of the

pure protein preparations (Table 3, Fig. 5) in line with their cell

killing capacity (Fig. 6), it became apparent that only those TrxR1-

derivatives having the capacity to support efficient reduction of

juglone and at the same time lacking Trx1 reducing activity, were

functional as SecTRAPs. This suggested to us that in a cellular

environment, non-derivatized native TrxR1, albeit having qui-

none reductase activity in vitro as both found here (Table 3, Fig. 5)

and previously shown [27], may easily be saturated by the

endogenous Trx1 substrate and thus mainly propagate Trx1-

dependent cellular functions. SecTRAPs, in contrast, may kill cells

due to their predominant prooxidant capacity (Fig. 5D), provided

that there is a cellular substrate that could take the place of juglone

used in our in vitro assays.

Pretreatment with antioxidants would likely protect cells against

the toxic effects of SecTRAPs if a prooxidant effect is the

mechanism for cell death induction. To test this, we preincubated

cells with either water-soluble ascorbic acid (Vit C), lipid soluble a-

tocopherol (Vit E), or a combination of both, with subsequent

assessment of the induction of cell death by SecTRAPs. The

background cell death with only antioxidant treatment was 5–10%

and increased marginally to 10–15% together with BioPORTER.

Upon treatment with SecTRAPs in the absence of antioxidants the

cell death reached the same level as seen previously, but this effect

could indeed be blocked by either antioxidant alone (Fig. 7).

Interestingly, however, the combinatory treatment of both

antioxidants together with the SecTRAP/BioPORTER-complex

resulted in a similar level of cell death as that seen with SecTRAP/

BioPORTER alone, while the combination of both antioxidants

together with only BioPORTER but without SecTRAP, had no

such effect (Fig. 7). These results suggested that antioxidant

treatment can indeed prevent SecTRAP-provoked cell death, but

also that SecTRAPs can propagate a cytotoxicity derived from the

simultaneous treatment with ascorbate and a-tocopherol.

To further analyze whether oxidative stress was indeed

provoked in these experiments, we subsequently used DCFH as

a probe in experiments treating HeLa cells with either TrxR1 or a

SecTRAP preparation, in combination with the antioxidant

compounds. Cells treated with SecTRAPs displayed an intensive

green fluorescence of DCF, which was not observed after

treatment with TrxR1 or BioPORTER alone (Fig. 8, left three

panels). The DCF signal was quenched after treatment with either

ascorbate or a-tocopherol, although DCF fluorescence was

detectable in some cells after treatment with ascorbate (Fig. 8,
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Figure 5. Both SecTRAPs and TrxR1 are efficient in reducing juglone and thereby produce superoxide. In (A) the formation of FAD-
reduced disulfide charge transfer complex by NADPH (80 mM) in a SecTRAP preparation (truncated TrxR1, 16 mM subunit) and full-length TrxR1
(12 mM subunit) was analyzed with stopped-flow spectroscopy at 540 nm, showing similar kinetics for both enzymes. In (B) Michaelis-Menten kinetics
for both full-length (filled symbols) and truncated (open symbols) TrxR1 using juglone as a substrate is demonstrated. In (C) it is shown that Trx1 and
juglone compete for the reduction by full-length TrxR1 (filled bars) but that truncated TrxR1 (open bars) can only use juglone and not Trx1 as a
substrate. This is illustrated from the initial NADPH consumption rate (0–200s) followed at 340 nm with or without Trx1 and insulin (upper panels).
After 30 min of reaction, the number of exposed free thiols was determined (lower panels) in order to estimate to which extent the electrons from
the NADPH oxidation were passed on to Trx1 and subsequently to insulin. The juglone concentration is indicated at the x-axes and each bar
represents the mean6S.D. of three measurements. In (D), the reduction of juglone (5 mM) catalyzed by 10 nM SecTRAP (truncated TrxR1, left panel)
or full-length TrxR1 (right panel) is shown following the consumption of NADPH (initial concentration 250 mM) by the decrease in absorbance at
340 nm (open symbols). Concomitantly, superoxide formation was detected at 480 nm with the adrenochrome method using 2 mM epinephrine
(filled symbols). The formation of adrenochrome was completely inhibited by addition of 5 U SOD (circles), which also reduced the elevated NADPH
consumption seen upon addition of only epinephrine (squares).
doi:10.1371/journal.pone.0001846.g005
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right three panels). Interestingly, the combinatory treatment of

both antioxidants together with SecTRAPs gave a strong DCF

signal, yet in a different pattern compared to SecTRAPs alone

(Fig. 8). This finding substantiated that SecTRAPs could

propagate an oxidative stress, either directly in cells or in concert

with the combination of ascorbate and a-tocopherol as used

herein. The intensity of DCF fluorescence thus correlated well

with the observed cell death using the same treatments (cf. Fig. 7

and Fig. 8).

Discussion

Here we have found that cell death provoked by certain forms

of selenium compromised mammalian TrxR1 (SecTRAPs) shows

both apoptotic features, such as Annexin-V staining and

protection by caspase inhibitors, as well as necrotic features, such

as lack of membrane blebbing or nuclear segmentation and an

extensive direct PI uptake, the latter which indicated that cellular

membrane integrity was rapidly lost. Those findings in combina-

tion with the intracellular ROS production triggered by Sec-

TRAPs, as shown by DCF fluorescence and the protection from

cell death by antioxidants, collectively show that the selenoprotein

TrxR1, a key player in antioxidant defense, can be converted into

a potent prooxidant killer of cells when its highly reactive Sec

residue becomes compromised.

The notion that SecTRAPs trigger cell death, at least in part, by

a provoked oxidative stress is compatible with several earlier

observations. It agrees well with the fact that DNCB as well as

juglone are compounds that target and inhibit cellular TrxR1 with

concurrent induction of a cell death, showing necrotic features but

also involving caspase-3/7 activation and being strikingly different

in properties compared to the cell death triggered by staurosporine

[52]. Formation of SecTRAPs may possibly also be part of the

mechanism for induction of apoptosis by the TrxR1-specific

inhibitor auranofin in both cisplatin-sensitive and –resistant cancer

cells, shown to be related to production of reactive oxygen species

as well as the levels of thioredoxin reductase [59]. It was

furthermore shown that targeting of TrxR1 by electrophilic

prostaglandin derivatives induces a different type of cell death,

than that resulting from siRNA-mediated knockdown of TrxR1

[36,60]. In addition, derivatization of TrxR1 by cisplatin with

formation of SecTRAPs may be one explanation for the ROS

formation and triggering of apoptotic pathways in cytoplasts

treated with cisplatin, where DNA damaging effects evidently

cannot play a role [61]. SecTRAP formation could potentially be a

factor contributing to the cytotoxic effects of several known TrxR1

inhibitors, such as curcumin [62], arsenic trioxide [30], 4-hydroxy-

2-nonenal [63], or some of the additional TrxR1 inhibitors

discussed elsewhere [6,64–66]. It is noteworthy that TrxR1

inhibitors often result in more pronounced oxidative stress and

cytotoxicity than knockdown of TrxR1 using siRNA. The latter

seems to result in slower cell growth, but without clear signs of

oxidative stress or apoptosis [67,68] and, as recently shown,

without evident oxidation of Trx1 [69]. In contrast, treatment of

cells with one inhibitor of TrxR1 (monomethylarsonous acid) can

lead to Trx1 oxidation and ROS formation whereas another

inhibitor (aurothioglucose) did not show such effects, in spite of

about 90% reduction in the total cellular TrxR activity in both

cases [69]. Reasons for different effects between use of different

TrxR1 inhibitors or in comparison to TrxR1 knockdown

experiments could, naturally, include potential interactions of

the inhibitors with additional cellular targets apart from TrxR1.

Another explanation could however also be that formation of

Figure 6. C59S/C64S mutant SecTRAPs cannot induce cell
death in A549 cells. A549 cells were treated with 100 ng of the C59S/
C64S mutant rat TrxR or native rat TrxR1 preparations, with or without
cisplatin (CDDP) derivatization of the Sec residue, using BioPORTER, as
indicated in the figure and described further in the text. Cell death was
significantly increased after treatment with truncated TrxR or TrxR1
derivatized with cisplatin compared to control using only BioPORTER,
whereas the other proteins gave no significant difference in cell death
compared to the control (n.s., p.0.05; *, p,0.05; **, p,0.01).
doi:10.1371/journal.pone.0001846.g006

Figure 7. Either a-tocopherol or ascorbic acid can prevent cell
killing by SecTRAPs but not the combinatory treatment. A549
cells were preincubated for 1 h with a-tocopherol (100 mM), ascorbic
acid (100 mM) or a combination of the two compounds, as indicated in
the figure. SecTRAP/BioPORTER-complex was subsequently added to
the cells, which were then incubated for additional 4 h before analysis
of cell death as described in the text. A significant increase in cell death
compared to non-treated cells (***, p,0.001) or cells treated with only
BioPORTER (##, p,0.01, ###, p,0.001) was seen in cells treated with
SecTRAPs either in absence of the antioxidant compounds or together
with the combination of both a-tocopherol and ascorbic acid. All other
treatments lacked a significant difference in cell death compared to
either of the two controls (p.0.05).
doi:10.1371/journal.pone.0001846.g007
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SecTRAPs occurs upon use of certain TrxR1 inhibitors, i.e. by

those inhibitors specifically targeting the Sec residue to the

enzyme. This can, as shown herein, result in a gain of function of

the protein that can provoke oxidative stress and cell death,

thereby not solely being the result of diminished TrxR1 activity.

We found earlier that glutathione reductase (GR), having higher

inherent NADPH oxidase activity in vitro than SecTRAPs, could

not provoke cell death [37]. The likely reason should be that the

NADPH oxidase activity of GR is suppressed in a cellular context,

where the enzyme would easily be saturated with its natural

substrate glutathione. It should furthermore be noted that the

protein surface charge distribution patterns of GR and TrxR1 are

strikingly different from each other; this was suggested to explain

the different substrate specificities between these two enzymes,

even upon removal of the selenolthiol motif in TrxR1, although

the two enzymes are otherwise closely related in overall domain

configuration [70]. This difference may be part of the explanation

why TrxR1, or SecTRAPs, are about one order of magnitude

more efficient than GR in reduction of several quinone substrates

[27].

Our findings that SecTRAPs can be potent prooxidant

enzymes, although they completely lack the native Trx1 reducing

capacity of TrxR1, could explain much of their toxic properties.

We have not yet identified any cellular endogenous substrate(s)

that interact with SecTRAPs. However, the findings with the

model substrate juglone clearly demonstrated that SecTRAPs have

the capacity to become potent superoxide-producing NADPH

oxidases, also in the presence of physiological concentrations of

Trx1, provided that intracellular substrates exist at sufficient

concentration together with which SecTRAPs can propagate

prooxidant reactions. The prominent oxidative stress seen upon

treatment of cells with SecTRAPs, as illustrated by the increased

DCF fluorescence and the protective effects of antioxidants,

suggest that such intracellular substrates exist.

The observation that SecTRAPs could propagate intracellular

ROS production and cell death upon the combinatory treatment

with ascorbic acid and a-tocopherol, whereas either of the two

compounds alone protected the cells, was an intriguing finding. It

can likely be explained by the redox properties of these compounds

in connection with the properties of SecTRAPs and the finding

further supports our view that directly SecTRAPs propagate

oxidative stress, coupled to some hitherto unidentified cellular

substrate(s). It should be noted that antioxidant compounds, like

ascorbate and a-tocopherol, all have the inherent capacity to act as

prooxidants because they easily form radical compounds, with their

cellular effects thereby being a matter of concentration and the

microenvironment within which they act. If SecTRAPs promote the

initiating oxidative event and ascorbic acid and a-tocopherol are

present at high equal concentrations, this may potentially first lead

to the formation of ascorbyl radicals, which in turn may react with

a-tocopherol to form tocopheryl radicals. Thereupon the electrons

can be transferred to subsequent cellular compounds, induce

propagation of radical formation and give rise to the observed

oxidative stress. This potential reaction, from SecTRAPs over

ascorbate to tocopheryl radical formation, should be amplified

when a-tocopherol is added concomitantly with ascorbic acid and

Figure 8. HeLa cells treated with SecTRAPs show an increased production of reactive oxygen species that was quenched by either
a-tocopherol or ascorbic acid but not by the combinatory treatment. HeLa cells were treated with BioPORTER, TrxR1/BioPORTER or
SecTRAPs/BioPORTER for 3 h as indicated in the figure, whereupon the images of the cells stained with the ROS-sensitive marker DCFH were taken, as
described in the text. The cell nuclei were counterstained with Hoechst 33342. Ascorbic acid (Vit C) and/or a-tocopherol (Vit E) was added 1 h in
advance to the cells before treatment. Two distinct experiments with two samples in each treatment were performed with similar results and
representative images of the observed staining patterns are shown. The three right-most pictures displaying the intracellular patterns of DCF
fluorescence are shown at higher magnification than the three panels to the left displaying the overview of DCF fluorescence in control cells or in
cells treated with either TrxR1 or SecTRAPs together with BioPORTER.
doi:10.1371/journal.pone.0001846.g008
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SecTRAPs. If ascorbic acid alone is instead added in excess, two

ascorbyl radicals that are formed through the prooxidant effects of

SecTRAPs, could easily dismutate into one ascorbate and one

dehydroascorbate molecule, thereby acting as chain-breaking

antioxidant. If a-tocopherol alone is added in excess, this may

potentially protect cellular lipids from oxidative damage, but

SecTRAPs are probably less likely to induce tocopheryl radicals

by direct interactions, while in contrast a direct reaction with

ascorbic acid is indeed plausible. Interestingly, dehydroascorbate

formed from the ascorbyl radical dismutation can be reduced back

to ascorbic acid by TrxR1. For further discussions on the web of

interactions and reactions between TrxR1, ascorbic acid and a-

tocopherol, see an earlier review on the subject [8].

In this study, we used a two-amino acid C-terminally truncated

form of TrxR1 as the major model protein for studies of

SecTRAPs. Such truncated TrxR1 could perhaps be produced

in certain cells during translation by a truncation at the Sec-

encoding UGA codon. However, the interplay between UGA-

directed Sec insertion and translational termination is far from

fully understood in mammalian cells and the UGA-truncated form

of TrxR1 has not yet been conclusively demonstrated in analyses

of selenium-starved tissue. Only direct demonstration of the two-

amino acid truncated TrxR1 species purified from selenium-

depleted tissues would answer whether such protein species may

be formed under natural conditions of selenium depletion. To our

knowledge, no studies have yet been published demonstrating

endogenous production of the truncated enzyme in mammalian

tissues. Evidence for production of a truncated TrxR1 species was

reported for NCI-H441 cells [71], while in other liver or kidney-

derived cell lines clear evidence for such production at selenium

depletion could not be seen [72]. The toxicity of SecTRAPs to

A549 and HeLa cells could possibly explain prior difficulties

encountered in attempts to establish a stable TrxR1-overexpress-

ing cell line. After several unsuccessful attempts in different tumor

cell lines (Jurkat, HeLa, U1285), an overproducing stable

transfection was finally achieved in HEK293 cells, as reported

elsewhere [73], which is a cell line that we found to be resistant to

SecTRAPs. It is possible that the difficulty to stably overexpress

TrxR in several different cell lines, may have been due to the fact

that under such overproducing conditions, UGA-truncated forms

of TrxR1 (i.e. SecTRAPs) are formed, while the HEK293 cells in

which the overproduction was successful are resistant to Sec-

TRAPs by a mechanism yet to be elucidated. Although it is not

clear whether cells or tissues may become exposed to truncated

TrxR1 under certain cases of selenium limitation, formation of

SecTRAPs can nonetheless occur through the direct derivatization

of the Sec residue of TrxR1 by electrophilic compounds, either

endogenously produced in cells, exposed in the form of xenobiotics

or environmental contaminants, or purposely given in the form of

alkylating drugs.

Here we showed that SecTRAPs, devoid of the natural Sec-

containing active site of TrxR1, could still have their FAD cofactor

efficiently reduced by NADPH. Upon reduction by NADPH,

SecTRAPs could also form the charge-transfer complex between

the FAD moiety and the CVNVGC redox active disulfide/dithiol-

containing site. The fact that the cell-killing SecTRAP properties

evidently depend upon an intact FAD/CVNVGC-containing

redox active motif and correlate to a prooxidant capacity has

additional implications. A potential drug or compound that would

inhibit the redox activity of this N-terminal motif, and thereby

block the reductive half reaction of TrxR1-derived protein, would

according to his notion not give rise to the formation of SecTRAPs.

However, such potential drugs may still have major effects on

cellular function as a result of the lowered capacity of the

thioredoxin system, reminiscent to the effects of knocking down

TrxR1 expression by siRNA [60,68,74,75]. This emphasizes the

delicate balance between different cellular effects that can be

governed by either an intact thioredoxin system, by a loss of

thioredoxin reductase activity, or by the formation of SecTRAPs.

This concept is summarized in the scheme shown in Figure 9.

The pronounced protection of the cells by inhibitors of caspase-

3/7 or caspase-2, and partially caspase-8, indicated that the

apoptotic machinery was required for cell death to occur in

connection with the oxidative stress triggered by SecTRAPs. The

general features of the cell death found here, with both caspase-3

and caspase-8 involvement and signs of both apoptosis and

necrosis, are in fact typical for cell death induced by oxidative

stress [76]. Regarding caspase-2, recent findings have shown that

this caspase when activated can induce apoptosis by directly

promoting the release of cytochrome c from mitochondria [77,78].

We have attempted to detect mitochondrial release of cytochrome

c after treatment with SecTRAPs, however with inconclusive

results. It should also be noted that it was recently shown that Ac-

VDVAD-CHO, commonly used as caspase-2 inhibitor, may also

inhibit caspase-3 [79]. Moreover, we also studied the effects of a

caspase-9 inhibitor (z-LEHD-fmk) but with intermediate and

inconclusive results (not shown). Therefore, taken together we do

not know at present to which extent the SecTRAP-induced cell

death involves caspase-2 activation, release of cytochrome c from

the mitochondria or caspase-9 activation. We have been limited in

our analyses by the low amount of cells used in experiments

employing the BioPORTER protein delivery approach. We have

attempted to construct stably transfected HeLa cells for condi-

tional overexpression of the two-amino acid truncated TrxR1 but

were not successful to do so, potentially because of the toxic effects

of a low basal expression of truncated TrxR1 (S. Prast-Nielsen and

E. Arnér, unpublished results). Future studies with other

approaches are clearly needed for more detailed analyses of

signaling events such as cytochrome c release from the mitochon-

dria or direct detection of caspase activation.

Based upon the results presented in this study, we conclude that

SecTRAPs, produced by C-terminal truncation of TrxR1 or by

chemical derivatization of its Sec residue, are potent inducers of a

cell death that involves both apoptotic and necrotic features in line

with increased intracellular ROS production. The effect was rapid

and did not require induction of protein synthesis. The properties

of SecTRAPs obviously add another level of complexity to the

thioredoxin system. It is becoming increasingly evident that the

thioredoxin system is of major importance for cancer development

and as a target for anticancer therapy [6,64,66]. Within that

context, it is plausible that formation of SecTRAPs may play a role

for some of the observed effects e.g. seen upon use of alkylating

drugs in cancer treatment. Further studies are needed in order to

fully understand both the exact molecular mechanisms by which

SecTRAPs trigger apoptosis in cells and the potential physiological

or clinical importance of the formation of these proteins.
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3. Zhong L, Arnér ESJ, Ljung J, Åslund F, Holmgren A (1998) Rat and calf

thioredoxin reductase are homologous to glutathione reductase with a carboxyl-

terminal elongation containing a conserved catalytically active penultimate

selenocysteine residue. J Biol Chem 273: 8581–8591.

4. Lillig CH, Holmgren A (2007) Thioredoxin and related molecules-from biology

to health and disease. Antioxid Redox Signal 9: 25–47.

5. Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and

thioredoxin reductase. Eur J Biochem 267: 6102–6109.

6. Gromer S, Urig S, Becker K (2004) The thioredoxin system–from science to

clinic. Med Res Rev 24: 40–89.

7. Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular

activation. Annu Rev Immunol 15: 351–369.

8. Nordberg J, Arnér ESJ (2001) Reactive oxygen species, antioxidants, and the

mammalian thioredoxin system. Free Radic Biol Med 31: 1287–1312.
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