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Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order

to develop the next generation of neuroprotective therapies, we urgently need to

understand the underlying molecular mechanisms leading to cell death. The cell

death mechanisms have been shown to be quite different in the developing brain

compared to that in the adult. The aim of this review is update on what cell

death mechanisms that are operating particularly in the setting of the developing

CNS. In response to mild stress stimuli a number of compensatory mechanisms

will be activated, most often leading to cell survival. Moderate-to-severe insults

trigger regulated cell death. Depending on several factors such as the metabolic

situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are

affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent

mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation),

necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell

death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1,

apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be

modulated genetically or by pharmacologic means. However, accidental cell death leads

to the release of factors (damage-associated molecular patterns) that initiate systemic

effects, as well as inflammation and (regulated) secondary brain injury in neighboring

tissue. Furthermore, if one mode of cell death is inhibited, another route may step in

at least in a scenario when upstream damaging factors predominate over protective

responses. The provision of alternative routes through which the cell undergoes death

has to be taken into account in the hunt for novel brain protective strategies.
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INTRODUCTION

Exposure of the brain to stress or an insult induces a number of adaptive responses that can
culminate in the reestablishment of cellular homeostasis (Green et al., 2014; Vanden Berghe et al.,
2014). However, when the stress is severe and/or the endogenous protective processes are not
sufficiently effective to restore physiological functions the cell will die. Triggers of cell death can
emanate from many organelles including the nucleus, mitochondrion, endoplasmic reticulum
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(ER), lysosomes, cytoskeleton, and/or plasma membrane,
depending on the stress (Galluzzi et al., 2014). There are
many alternative routes leading to cellular demise, such as
necrosis/necroptosis, apoptosis, parthanatos, and autosis
(Figure 1, Table 1) and the predominant mechanism will
depend on metabolic state, severity and type of insult, cell type,
developmental age and other factors (Kroemer et al., 2009;
Green et al., 2014; Galluzzi et al., 2015). In some situations
when one route is inhibited cell death may occur via a different
route (Jouan-Lanhouet et al., 2012) and in many pathological
situations mixed forms of morphological phenotypes are
detected (Puka-Sundvall et al., 2000; Northington et al.,
2001). Therefore, traditional morphology-based classifications
(Table 1) may not always inform on the biochemical steps
leading to cell death and hence what neuroprotective strategy
may be successful (Galluzzi et al., 2015). The effect of genetic
and/or pharmacological intervention on long-term functional
cell recovery often provides more important information with
regard to the essential components in a specific route of cell
death.

Cell death can also be classified into accidental and regulated
(Figure 1; Galluzzi et al., 2015). Accidental cell death is evoked

Abbreviations: AIF, apoptosis-inducing factor; Akt, also called protein kinase B;
AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; AMPK, AMP-
activated protein kinase; APAF-1, apoptotic peptidase-activating factor-1;
ASK1, apoptosis signal-regulating kinase; ATG, autophagy related; ATP,
adenosine triphosphate; BAD, BCL2 associated death promotor; BAK1, Bcl-2-
antagonist/killer 1; BAX, Bcl-2-associated X protein; BCL2, B-cell lymphoma
2; BCL- XL, BCL2 like 1; BID, BH3- interacting domain death agonist; BIM,
BCL2-like 11; CAMKII, calcium/calmodulin dependent protein kinase 2; cIAP,
cellular inhibitor of apoptosis proteins; CNS, central nervous system; CYLD,
Cylindromatosis; Cyt c, cytochrome c; CDK5, Cyclin-dependent kinase 5; DAMPs,
damage-associated molecular patterns; DISC, death-inducing signaling complex;
DR, death receptor; DRP1, dynamin-related protein 1; Endo G, endonuclease
G; ER, endoplasmic reticulum; ETC, electron transport chain; FADD, Fas-
associated death domain; FasL, Fas ligand; Fn14, fibroblast growth factor inducible
14; FIP200, FAK kinase interacting protein of 200kD; FOXO3a, Forkhead
box O3a; GSK3β, glycogen synthase kinase-3β; HI, hypoxia-ischemia; HIF-1a,
hypoxia inducible factor1 alpha; IAP, inhibitors of apoptosis; IFN, interferon; IL,
interleukin; JNK, c-Jun N-terminal kinase; LC3, microtubule-associated protein
light chain 3; MAPK, mitogen activated protein kinase; MCL1, myeloid cell
leukemia 1; MDM2, Mouse double minute 2; MLKL, mixed lineage kinase
domain-like; MOMP, mitochondrial outer membrane permeabilization; MPT,
mitochondrial permeability transition; mTORC, mammalian rapamycin sensitive
mTOR complex; NFκB, nuclear factor kappa B; NMDA, N-methyl D aspartate;
NOXA, Phorbol-12-myristate-13-acetate-induced protein 1; OPA1, optic atrophy
1; PARP-1, poly (ADP-ribose) polymerase 1; PGAM5, phoshoglycerate mutase
family member 5; PI, phosphatidylinositol; PIDD, p53-induced death domain-
containing protein; PINK1, PTEN-induced putative kinase 1; PTEN, phosphatase
and tensin homolog deleted on chromosome 10; PUMA, pro-apoptotic members
BCL2 binding component 3; Q-VD-OPh, quinoline-Val-Asp(Ome)-CH2-O-
phenoxy; RIP, receptor-interacting kinase; RAIDD, RIP associated ICH-1/CED3
homologous protein with a death domain; RHIM, RIP homotypic interaction
motif; ROS, reactive oxygen species; SMAC, second mitochondria-derived
activator of caspases; SNARE, soluble N-ethylmaleimide-sensitive fusion (NSF)
attachment protein receptors; tBID, truncated BID; TLR, Toll-like receptor;
TNF-α, tumor necrosis factor alpha; TNF-R, TNF receptor; TRADD, Tumor
necrosis factor receptor type 1-associated DEATH domain protein; TRAIL,
TNF-related apoptosis-inducing ligand; TRIF, TIR-domain-containing adapter-
inducing interferon-β; TWEAK, tumor necrosis factor-like weak inducer
of apoptosis; ULK1, UNC-51-like kinase1; VDAC, voltage-dependent anion
channels; VMP1, vacuole membrane protein 1; VPS, vacuolar protein sorting.

by severe insults (such as severe trauma, core of an ischemic
infarct), which causes immediate cellular demise that does
not involve a specific molecular mechanism and cannot be
prevented or modulated (Green and Kroemer, 2005). However,
cells undergoing accidental cell death release products (damage-
associated molecular patterns; DAMPs) that often have direct
toxic effects on surrounding cells that survived the initial insult
and may extend the primary injury (Vanden Berghe et al., 2014;
Galluzzi et al., 2015). DAMPs also have immunogenic properties
and contribute to an inflammatory response that may exert injury
and aggravate the situation further (Zhang et al., 2010; Vanden
Berghe et al., 2014). Various interventions that attenuate DAMP-
induced cellular actions can provide protective effects (Zitvogel
et al., 2010). So even if accidental cell death cannot be targeted
directly, its consequences can be intercepted and bystander injury
prevented to some extent. On the contrary, regulated death (not
to be confused with the term programmed cell death which
is used synonymously with apoptosis) involves the molecular
machinery of the cell (Figure 1) and its course can indeed be
modulated by pharmacological and genetic means (Kroemer
et al., 2009; Galluzzi et al., 2014, 2015). Regulated cell death
usually occurs with some delay in situations when endogenous
protective mechanisms fail to restore cellular homeostasis.

In the developing brain, cell damage can be induced by
a variety of insults, such as hypoxia (Schwartz et al., 2004),
hyperoxia (Reich et al., 2016), hypoxia-ischemia (Rice et al.,
1981), trauma (Bittigau et al., 2004), and inflammation/infections
(Strunk et al., 2014). However, most knowledge on mechanisms
of cell death emanates from studies in vivo and in vitro in models
of hypoxia-ischemia so therefore we will focus mostly on that
work.

HI results in an initial depletion of high energy phosphates,
in particular ATP and phosphocreatine. These levels return
transiently to baseline but are followed by a second more
prolonged depletion of cellular energy reserves accompanied by
progression of brain injury (Blumberg et al., 1997; Hagberg et al.,
2014). These disturbances in energymetabolism trigger a number
of pathophysiological responses that ultimately lead to cell death.
Previous studies show that HI in the immature brain can induce
apoptosis (Edwards et al., 1997; Zhu et al., 2000; Northington
et al., 2001), necroptosis/necrosis (Northington et al., 2011;
Galluzzi et al., 2012a) as well as autophagic cell death/autosis
(Koike et al., 2008; Ginet et al., 2009; Liu et al., 2013).

Mitochondria are involved in adaptive and metabolic
responses to injury, as well as in most forms of cell death
including apoptosis (intrinsic and to some degree extrinsic
pathway), regulated necrosis (not always essential), parthanatos
and autophagic cell death (Rosenberg et al., 1989; Yager et al.,
1996; Galluzzi et al., 2012a,b, 2015; Thornton et al., 2012; Vanden
Berghe et al., 2014). Notably, mitochondria have a key role in the
initiation and execution of cell death also in the immature brain
(Chavez-Valdez et al., 2012; Hagberg et al., 2014). In this review
we will briefly update basic knowledge of the different forms
of regulated cell death and then summarize morphological and
biochemical evidence for apoptotic, necrotic/necroptotic
and autotic cell death in immature brain exposed
to HI.
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FIGURE 1 | Overview of cell death pathways. In response to mild stress stimuli a number of compensatory mechanisms will be activated most often leading to cell

survival. Moderate-to-severe insults may trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress

stimulus and which intracellular organelle(s) that are affected, the cell undergoes apoptosis (caspase activation), necroptosis (MLKL activation), necrosis (via opening

of the MPT pore), autophagic cell death (autophagy/ Na+ K+ ATPase) or parthanatos (PARP1, AIF). Severe insults cause accidental cell death that cannot be

modulated genetically or by pharmacological means. However, accidental cell death leads to the release of factors (DAMPs) that initiate systemic effects as well as

inflammation and (regulated) secondary brain injury in neighboring tissue.

TABLE 1 | Comparison between morphological features of type I, type II, and type III cell death.

Parameter Apoptotic cell death Autophagic cell death (autosis) Necrotic cell death (including necroptosis)

Plasma membrane Preserved, blebbing Rupture in late phase, sometimes

blebbing

Rupture early

Nucleus Compaction, pyknosis late:

fragmentation (karyorrhexis)

Minor changes autosis: focal

concavity, dilatation of perinuclear

space

Dilatation of nuclear membrane

Chromatin Margination, condensation Minor/mild condensation Mild-moderate condensation and clumping

Mitochondria Normal Mild dilatation, autosis: abnormal

internal structure late: depletion

Swelling

Cytoplasm Shrinkage Vacuolization, i.e., numerous

autophagosomes and

Autolysosomes; autosis: ER

fragmentation and depletion

Minor

Other Rounding of cells and detachment

from surface, apoptotic bodies

including fragments of chromatin, and

preserved organelles

Autosis: membrane bound densities

in perinuclear space, increased cell

surface adhesion

Cell and organelle swelling

Summary based on Kerr et al. (1972), Kerr et al. (1994), Savitz and Rosenbaum (1998), Liu and Levine (2015), Leist and Jäättelä (2001), Galluzzi et al. (2015).

APOPTOTIC CELL DEATH

The Apoptotic Cell Machinery

Apoptosis can be triggered by intracellular (intrinsic) and
extracellular (extrinsic) stimuli (Figure 2; Kerr et al., 1972,
1994). The intrinsic pathway relies on mitochondrial outer

membrane permeabilization (MOMP) resulting in the release of
a number of pro-apoptotic proteins into the cytosol including
holocytochrome c (Cyt c), apoptosis-inducing factor (AIF),
second mitochondria-derived activator of caspases (SMAC) and
endonuclease G (EndoG) (Hengartner and Horvitz, 1994; Wei
et al., 2001; Ravagnan et al., 2002; Galluzzi et al., 2012a,b).
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Cyt c will form a complex (apoptosome) with deoxy-ATP,
apoptotic peptidase-activating factor 1 (APAF-1) and caspase-
9 leading to the downstream activation of the executioner
caspase-3 (Li et al., 1997; Bratton and Salvesen, 2010; Galluzzi
et al., 2012a). MOMP depends on two pore-forming pro-
apoptotic members of the B-cell lymphoma 2 (BCL2) family,
Bcl-2-associated X protein (BAX) and Bcl-2-antagonist/killer
1 (BAK1) (Figure 2). The opening of the BAX/BAK1 pore
is regulated by anti-apoptotic BCL2 family proteins such
as BCL2 itself, BCL2 like 1 (BCL-XL), and myeloid cell
leukemia 1 (MCL1) and the pro-apoptotic members BCL2
binding component 3 (also known as PUMA), BCL2-like 11
(known as BIM) and BH3- interacting domain death agonist
(BID)(Moldoveanu et al., 2014). The activity of MOMP is also
controlled by p53, c-jun N-terminal kinase (JNK) and caspase-2
(Galluzzi et al., 2014; Baburamani et al., 2017).

In the extrinsic pathway, binding ligands to a death receptor
leads to activation of caspase-8. Approximately 20 ligand-
receptor pairings are now included in the death receptor ligand
tumor necrosis factor (TNF) superfamily (Pennica et al., 1984;
Vanden Berghe et al., 2014). These TNF-receptor and TNF-
receptor-like molecules are similar in structure to TNF and

function as trimers (both ligands and receptors) (Pennica et al.,
1984). Because of the similarity of their structure, multiple
ligands are able to bind and induce signaling through one
receptor, or a single ligand is able to bind multiple receptors.
Some of the receptors contain the so-called death domain in
their intracellular domain (e.g., TNF-R1, DR4, DR5, Fas) and
are able to trigger apoptosis when activated from the binding
of the corresponding ligand (e.g., TNF-α, TRAIL, FasL) (Holler
et al., 2000). This extrinsic pathway of apoptosis continues with
the activation of a death-inducing signaling complex (DISC)
adjacent to the death domain of the receptor. Activated DISC
catalyzes the proteolytic cleavage and activation of procaspase-
8 (Love, 2003; Vanden Berghe et al., 2014; Figure 2). Activated
caspase-8 either directly activates caspase-3 or mediates cleavage
of BID to truncated BID (tBID), which integrates different death
pathways at the mitochondria. tBID translocates to mitochondria
where it interacts with other proapoptotic proteins and triggers
the release of apoptogenic factors leading to caspase-dependent
and caspase-independent cell death. Death receptors can also
trigger necroptosis especially under conditions when caspase-8
is inactive (Vanden Berghe et al., 2014) (see section below on
regulated necrosis).

FIGURE 2 | Apoptotic and necroptotic mechanisms. The intrinsic pathway is triggered by mitochondrial impairment related to glutamate overflow leading to excessive

intracellular Ca2+ accumulation and accumulation of NO and ROS. Such intramitochondrial alterations can trigger a shift in localization of pro-apoptotic proteins such

as cytochrome C (CytC) from the inner mitochondrial membrane to the intermembrane space. In addition, perturbation in the nucleus, endoplasmic reticulum or in

other organelles can increase the pro- vs. anti-apoptotic BCL2 protein family balance, JNK, caspase-2 activity or p53 expression at the level of the mitochondrial outer

membrane. Such changes trigger mitochondrial outer membrane permeabilization (MOMP) and release of pro-apoptotic proteins into the cytosol. Cyt C initiates the

assembly of the apoptosome leading to the activation of caspase-9 and subsequently the executioner caspase-3 and DNA cleavage through activation of

caspase-activated DNase (CAD). Inhibitors of apoptosis (IAPs) block the apoptosome and caspase activity. Apoptosis-inducing factor (AIF) binds to cyclophilin A and

the complex translocates to the nucleus and triggers chromatinolysis. Brain injury including HI results also in an increase of circulating death receptor ligands such as

TNF-α, Fas, TRAIL etc. In response to ligand-receptor binding, complex I is formed at the membrane comprising the receptor, adaptor protein and RIP1 which is

rapidly polyubiquinated (Ub) by cIAP. This complex can trigger the NFκB pathway and a prosurvival response. However, deubiquinating enzymes and Smac (which

degrades cIAPs) release RIP1 and commit the cell to a cell death pathway. In the presence of caspases, RIP1 forms a complex with active caspase-8 and FADD,

triggering the extrinsic apoptotic pathway. Caspase-8 can directly trigger executioner caspase-3 or cleave and activate BID (forming truncated BID, tBID) which can

trigger MOMP. Caspase-8 can also prevent the induction of necroptosis by cleaving key proteins. In the absence of caspases, RIP1 interacts with RIP3 which

autophosphorylates and subsequently recruits MLKL to the necrosome complex. Phosphorylated MLKL will target the necrosome to membrane lipid-rich regions

such as mitochondrial or plasma membranes, forming pores allowing influx of ions and cell swelling.
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Apoptosis in the Immature Brain
Apoptosis is critical for brain development and determines the
size and shape of the central nervous system (Kuan et al., 2000).
In some regions more than half of neurons initially formed
undergo apoptotic cell death (Raff et al., 1993). Many of the
proteins involved in apoptosis such as caspase-3 (Blomgren et al.,
2001), APAF1 (Ota et al., 2002), and BCL2 -family proteins
(Merry et al., 1994; Vekrellis et al., 1997; Soane et al., 2008) are
upregulated during brain development. Mice devoid of caspase-
3 (Kuida et al., 1996) or caspase-9 (Kuida et al., 1998) exhibit
hyperplastic disorganized brains (whereas other organs like the
thymus with ongoing apoptosis develop normally) supporting
the concept that caspases are of particular importance in shaping
the developing brain. Thus, several components of the intrinsic
pathway are markedly upregulated in the postnatal brain because
of ongoing physiological apoptosis as part of CNS development.

Role of the Intrinsic Pathway in Perinatal
Brain Injury
Mitochondria in the developing brain are prone to
permeabilization in response to HI (Northington et al., 2001;
Wang et al., 2001, 2004). Proapoptotic proteins (e.g., Cyt C and
apoptosis inducing factor, AIF) are released from mitochondria,
the apoptosome forms, and downstream executioner caspases
(particularly caspase-3) are activated after hypoxic–ischemic
insult (Cheng et al., 1998; Wang et al., 2001; Sugawara et al.,
2004). Pathways dependent on AIF (Zhu et al., 2003, 2007a,b)
and caspases seem to be more strongly activated in the immature
brain than in the adult brain (Hu et al., 2000; Zhu et al., 2005),
and mitochondrial permeabilization has been proposed to
mark the point of no return in hypoxic–ischemic injury of the
immature brain (Hagberg, 2004; Galluzzi et al., 2009).

The molecular mechanisms of mitochondrial
permeabilization under these conditions are still not completely
understood. Mitochondria can permeabilize through either
BAX–BAK-dependent pore formation or opening of the
mitochondrial permeability transition pore (MPT-pore)
(Galluzzi et al., 2009; Rasola et al., 2010). The MPT-pore is
dependent on cyclophilin D, and is formed when both the
inner and outer leaflets of the mitochondrion are at their
closest points (Rasola et al., 2010). The molecular identity of
the MPT-pore is still lacking but recent studies suggest that
ATP synthase is an important component (Giorgio et al.,
2013; Bonora and Pinton, 2014; Gerle, 2016). Permeabilization
of the inner mitochondrial membrane results in leakage of
solutes, depolarization due to equilibration of the proton
gradient, and swelling of the mitochondrion due to disruption
of the outer membrane. Cell death mediated by the MPT-pore
(in contrast with BAX-mediated permeabilization, below)
is predominantly necrotic (through Ca2+ imbalance and
bioenergetic failure) and facilitates development of adult brain
ischemic injury, because deficiency of the cyclophilin D gene
Ppid and cyclophilin D inhibitors are neuroprotective (Kuroda
et al., 1999; Schinzel et al., 2005). However, in the immature
brain, cyclophilin D gene (Ppid) deficiency aggravates rather than
lessens hypoxic–ischemic injury, and cyclophilin D inhibitors

do not reduce injury (Puka-Sundvall et al., 2001; Wang et al.,
2009). Instead, BAX-inhibitory peptides (Wang et al., 2009,
2010; Sun et al., 2015) and BAX deficiency (Gibson et al., 2001)
substantially protect the immature brain in mice, suggesting
that BAX-dependent permeabilization of the outer membrane
(rather than cyclophilin-D-mediated opening of the MPT-pore)
is critical in the developing brain and results in apoptotic
cell death. Furthermore, studies which ablate the effects of
BAX-mediated mitochondrial membrane permeabilization (e.g.,
knockout models of BIM and BAD (Ness et al., 2006), Tat-
BCL-xL (Yin et al., 2006), Bcl-xL transgenic mice (Parsadanian
et al., 1998) all exhibit reduced brain injury after neonatal HI).
Interestingly, BCL-xL seems to reduce primarily the delayed
apoptotic cell death rather than the early (necrotic) loss of cells
(Dietz et al., 2007). In rats subjected to neonatal HI, there is a
peak of caspase-3 activity observed 24 h after the insult (Cheng
et al., 1998) which remains elevated for a significant number of
days (Wang et al., 2001). Caspase inhibitors have been shown
to be neuroprotective in immature models of hypoxia-ischemia
(Cheng et al., 1998; Zhu et al., 2007a,b).

AIF can also translocate to the mitochondrial intermembrane
space in response to oxidative stress, induction of poly (ADP-
ribose) polymerase (PARP) 1, and activation of proteases (e.g.,
calpains or cathepsins). This translocation is necessary for
the subsequent relocation of AIF to the nucleus after MOMP
(Modjtahedi et al., 2006; Krantic et al., 2007). Indeed, AIF does
translocate to the nucleus after neonatal HI (Zhu et al., 2003)
and mice with lower expression of AIF are less vulnerable to
HI especially in combination with administration of a caspase
inhibitor (Zhu et al., 2007b) suggesting that mitochondrial
AIF release contributes to brain injury in such situations. AIF
binds to cyclophilin A in the cytosol, the protein complex
translocates to the nucleus and induces non-caspase dependent
chromatinolysis (Zhu et al., 2007a). This specific route of cell
death that depends on PARP-1 and AIF is often referred to
as Parthanatos (Figure 1) rather than apoptosis (Fatokun et al.,
2014) and exhibits morphologic features of regulated necrosis
rather than apoptosis (Vanden Berghe et al., 2014). The protein
IDUNA has been discovered to inhibit this pathway in the adult
brain (Andrabi et al., 2011) which seems to apply also to the
immature brain (Yang et al., 2017). Taken together, these data
suggest that BAX-dependent MOMP is a critical event in delayed
brain injury in the immature brain because it leads to both
activation of caspase-dependent and caspase-independent cell
death.

Upstream Regulators of MOMP and Apoptosis

Excitotoxicity
Excitotoxicity involves the accumulation of extracellular
excitatory amino acids, such as glutamate leading to activation
of NMDA and AMPA receptors which in turn trigger influx
of calcium and sodium into the cell (Johnston, 2005). The
subsequent increase of intracellular calcium elicits production
of NO as well as reactive oxidative species which contributes to
mitochondrial perturbation and MOMP leading to apoptotic cell
death (Figure 2; Hagberg et al., 2014).
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p53
p53 is a tumor suppressor that triggers apoptosis via multiple
pathways including cell cycle arrest and the regulation
of autophagy through transactivating proapoptotic and
repressing antiapoptotic genes (Morrison et al., 2003; Green
and Kroemer, 2009). It is highly conserved and regulates
cell death resulting from a wide variety of both physiological
and pathological stimuli. p53 also has cytoplasmic actions
at the mitochondrial level and can promote BAX-dependent
mitochondrial permeabilization (Green and Kroemer, 2009).
In unstressed neurons, p53 expression is generally low, limited
by its association with its negative regulator MDM2 which
functions as a ubiquitin ligase, targeting polyubiquitinated p53
for degradation (Honda et al., 1997). Cellular stress displaces
p53 from MDM2, and subsequently p53 expression is stabilized
through substantial posttranslational modification (Morrison
et al., 2003). The classical role for p53 is as an activator of
transcription, and, on stabilization, it accumulates in the nucleus
where it upregulates the transcription of proapoptotic genes
such as PUMA, BAX, and NOXA (Riley et al., 2008). More
recently a transcription-independent role was described in which
activated p53 accumulates in the cytosol where it is sequestered
by the antiapoptotic BCL2 proteins for example, BCL-XL (Green
and Kroemer, 2009). However, increased PUMA expression
mediated by nuclear p53 displaces BCL-XL allowing p53 to
activate BAX, promoting its oligomerization, mitochondrial
outer membrane permeabilization, and inducing apoptosis
(Chipuk et al., 2005; Green and Kroemer, 2009). Indeed, p53 is
upregulated and accumulates in the nucleus and mitochondria
in an in vivo rat model of neonatal HI (Nijboer et al., 2008a,b).
In consequence, there is an upregulation of apoptotic pathways
leading to activation of caspase-3. The authors identified a
pathway involving NFκB upstream of p53 and were able to
decrease p53 accumulation (thus increasing neuronal survival),
in response to neonatal HI by treating with the NFκB inhibitor
peptide (Nijboer et al., 2008a,b; Van Der Kooij et al., 2010).
Furthermore, pifithrin-µ (an inhibitor of mitochondrial p53;
Strom et al., 2006) administered after neonatal HI in rats
provided significant protection with a 6 h therapeutic window
(Nijboer et al., 2011), supporting that the p53-BAX dependent
pathway is important in HI brain injury. However, we recently
found that p53 gene deficiency only provided partial protection
in the posterior part of the brain in response to moderate HI
(Baburamani et al., 2017) and we suspect that the protective
effect of pifithrin-µ may relate to factors independent of p53,
such as heat shock proteins and inflammation (Leu et al., 2009;
Fleiss et al., 2015).

c-Jun N-terminal Kinases (JNKs)
c-Jun N-terminal Kinases (JNKs) are members of the mitogen-
activated protein kinase (MAPK) family and, as such, are
activated in response to stress. There are three mammalian junk
genes and 10 expressed isoforms as the result of alternative
splicing; however, it is JNK3 that is predominantly active in
the brain (Dreskin et al., 2001). In a mouse model in which
JNK3 expression is ablated, both adult and neonatal animals
were partially protected against HI insult, and, in newborn

animals, levels of c-jun were reduced compared with wild-type
animals (Kuan et al., 2003; Pirianov et al., 2007). Pharmacological
inhibition of JNK (either by TAT-JBD or D-JNKi) in neonatal
mice after HI resulted in reduced infarct size, preservation
of mitochondrial integrity and a more favorable behavioral
outcome (Nijboer et al., 2013). This correlates with an earlier
study suggesting that expression of c-Jun and its subsequent
phosphorylation was increased on ischemic injury (Herdegen
et al., 1998). JNK3 is hypothesized to act upstream of the
proapoptotic BCL2 family as JNK3-mediated increases in BIM
and PUMA expression were absent in JNK3 gene knock-out mice
(Pirianov et al., 2007). Furthermore, Forkhead transcriptional
factor (FOXO3a), a critical effector in JNK activation, is probably
also involved in the pro-apoptotic effect of JNK activation as
JNK inhibition prevents FOXO3a translocation to the nucleus
in the immature brain after HI (Li et al., 2015). In addition,
activation of caspase-3 was also decreased suggesting that
activation of JNK3 in response to hypoxic-ischemic insult results
in caspase-dependent apoptosis. The importance of JNK is
further supported by a recent study showing that inhibition of
Apoptosis signal-regulating kinase 1 (ASK1) confers protection
in HI. ASK1 activates JNK and prevented phosphorylation of
JNK, TUNEL expression, and caspase-3 activation in a neonatal
model of HI (Hao et al., 2016).

Caspase-2
Caspase-2 is a member of the initiator subgroup of caspases and
is developmentally regulated (Kumar et al., 1994). Activation
of caspase-2 is dependent on its dimerization and subsequent
cleavage which is facilitated through interaction with p53-
induced death domain-containing protein (PIDD) and RIP
associated ICH-1/CED3 homologous protein with a death
domain (RAIDD) (Duan and Dixit, 1997; Baliga et al., 2004;
Tinel and Tschopp, 2004) in some cellular systems. In addition,
caspase-2 can be triggered by nuclear DNA damage, endoplasmic
reticulum or Golgi stress via a mechanism not dependent on
PIDD/RAIDD (Galluzzi et al., 2014). Once activated, caspase-
2 promotes BID cleavage resulting in BAX translocation and
release of Cyt C (Lassus et al., 2002). Notably, neonatal caspase-
2 null mice are partially protected from excitotoxic and HI
injury (Carlsson et al., 2011), in contrast with adult caspase-
2 knockout mice (Bergeron et al., 1998). A high expression of
caspase-2 was found in neonatal mice, rats and in postmortem
human tissue from neonates (Carlsson et al., 2011). Interestingly,
a group II caspase inhibitor, TRP601, has been developed which
targets caspase-2 and caspase-3. Neonatal animals subjected to
excitotoxicity, arterial stroke or HI were significantly protected
against white and gray matter loss (Chauvier et al., 2011).

Cyclin-dependent kinase 5 (CDK5)
Cyclin-dependent kinase 5 (CDK5) belongs to a group of
serine/threonine kinases that takes part in the regulation
of the cell cycle under normal conditions. However, during
pathological situations, p35 is cleaved by calpains to generate
p25 which overactivates CDK5 leading to phosphorylation and
dysregulation of axonal TAU proteins and glucocorticoid
receptors enhancing apoptotic cell death. Inhibition of

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 August 2017 | Volume 11 | Article 248

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Thornton et al. Cell Death in the Developing Brain

p25/CDK5 before or after neonatal HI attenuates caspase-
3 activation (Tan et al., 2015), brain injury and improves
neurological outcome in neonatal rats suggesting that CDK5 is
another potential trigger of apoptotic cell death.

PTEN/AKT/GSK3β/foxo3a
PTEN/AKT/GSK3β/foxo3a pathway seems critical in the
induction of apoptosis in the neonatal brain. Phosphatase and
tensin homolog deleted on chromosome 10 (PTEN) antagonizes
phosphatidylinositol-3-kinase-AKT signaling. Inhibition of
PTEN has been shown to increase pAKT, decrease FOXO3a
translocation to the nucleus and downregulate BIM and
apoptotic cell death in the neonatal brain after HI (Zhao et al.,
2013). Phosphorylation of Akt also inhibits the activity of
glycogen synthase kinase-3β (GSK-3β), which triggers caspase-3
dependent apoptosis and the GSK-3β inhibitor Tideglusib
has been shown to reduce caspase-3 and -9 activation as well
as reduce HI brain injury (Wang et al., 2016). Furthermore,
neuroprotection by progesterone, insulin-like growth factor,
growth hormone and its analog Hexarelin all seems to be related
to activation of Akt and inhibition of GSK3β (Gustafson et al.,
1999; Brywe et al., 2005a,b; Li et al., 2014) and reduction of
caspase-3 dependent apoptosis.

Timing of MOMP
The timing of mitochondrial permeabilization is debated, but
most study findings suggest that it happens 3–24 h after hypoxia–
ischemia—i.e., starting during the latent phase and proceeding
into the secondary phase of injury depending on severity of
insult, animal model, and brain region (Cheng et al., 1998;
Northington et al., 2001; Gill et al., 2002; Wang et al., 2004;
Zhu et al., 2005; Hagberg et al., 2014). These proposed timings
are also supported by evidence from interventions that block
mitochondrial permeabilization, which are effective if given up
to 6 h after hypoxia–ischemia (Wang et al., 2010; Chauvier et al.,
2011; Nijboer et al., 2011, 2013).

Extrinsic Pathway and Death Receptors in
Perinatal Brain Injury
During inflammation initiated by perinatal brain injury (Hagberg
et al., 2012), activation of intrinsic and extrinsic immune cells will
produce reactive oxygen species, release excitatory amino acid
agonists, proinflammatory cytokines (e.g., IL-1β, IL-18, TNF-α),
chemokines (Bona et al., 1999), and tumor necrosis factors (e.g.,
TNF-α, TNF-β, FasL, TRAIL, TWEAK) (Taylor et al., 2005; Yepes
et al., 2005; Hoffmann et al., 2009; Hagberg et al., 2015) that may
contribute to cell death.

TNF-α activity is mediated through activation of two
receptors: low-affinity TNFR1 (p55) and the high-affinity TNFR2
(p75) (Tartaglia et al., 1991), found in both neuronal (Dziewulska
and Mossakowski, 2003; Figiel and Dzwonek, 2007) and glial
cell populations (Dopp et al., 1997). Although the extracellular
domains of both receptors have a high degree of homology,
their intracellular domains differ significantly (Dembic et al.,
1990; Vanden Berghe et al., 2014). This leads to complex signal
transduction pathways that can be triggered and may result in
activation of the antagonistic functions of these two receptors

(Tartaglia et al., 1991; Marchetti et al., 2004). When activated,
the intracellular part of TNFR1 containing the death domain
triggers apoptosis (Hsu et al., 1995), whereas TNFR2 lacks
that domain—its activation triggers neuroprotection through
activation of NFκB (Song et al., 1997). There are several pieces
of evidence that suggest the involvement of the TNF pathway
in the development of white matter damage. Children who
develop cerebral palsy show increased blood levels of TNF-α
(Nelson et al., 1998), and TNFR1 is critical for LPS-mediated
sensitization to oxygen/glucose deprivation in vitro (Markus
et al., 2009). Moreover, deletion of the TNF gene cluster abolishes
LPS-mediated sensitization of the neonatal brain to HI insult
(Kendall et al., 2011). TNF-α treatment appears to be toxic for
oligodendroglial precursor cells (OPCs) (Yu et al., 2000) and
potentiates the IFN-γ toxicity on those cells in vitro (Andrews
et al., 1998). TNF is also implicated in brain neuroprotection. It
has been demonstrated that neuronal damage after ischemic and
excitotoxic insults are enhanced in TNFR KO mice (Bruce et al.,
1996). The neuroprotective role for TNF in cerebral ischemia is at
least partly attributed to TNFR2 activity (Lambertsen et al., 2009).

FasL is able to bind with Fas death receptor triggering
apoptosis and with Decoy receptor 3 (Pitti et al., 1998). HI
activates Fas death receptor signaling in the neonatal brain
(Felderhoff-Mueser et al., 2000) and HI brain injury is reduced
in mice lacking Fas death receptors (Graham et al., 2004). It is
shown that Fas expression in primary OPCs is higher than in
mature oligodendrocytes (Andrews et al., 1998), implying higher
susceptibility to FasL at earlier developmental stages.

Two TRAIL receptors in humans contain cytoplasmic death
domains (DR4 and DR5) and have the capacity to induce
apoptotic cell death (Pan et al., 1997; Walczak et al., 1997),
whereas Decoy receptor 1 and Decoy receptor 2 lack functional
death domains and thus are considered to act as decoy receptors
(Marsters et al., 1997; Sheridan et al., 1997). In mice, two
membrane decoy receptors mDcTRAILR1 and mDcTRAILR2
have been reported (Schneider et al., 2003), and only one death-
mediating TRAIL receptor, which has the highest homology with
the human TRAIL receptor DR5 (Wu et al., 1999). Using a
neonatal mouse model we recently found that the expression of
TRAIL, DR5, and mDcTRAILR2 was significantly increased after
HI (Kichev et al., 2014). TRAIL protein was expressed primarily
in microglia and astroglia, whereas DR5 co-localized with
neurons and oligodendroglial precursors in vivo. Recombinant
TRAIL exerted toxicity alone or in combination with oxygen
glucose deprivation and TNF-α/IFN-γ exposure in primary
neurons suggesting that the elevated TRAIL levels after HI may
aggravate brain injury during the recovery phase (Kichev et al.,
2014). This assumption is supported by studies showing that
injection of soluble DR5 receptor significantly reduces infarct
volume after ischemia at least in adult rodent models (Cui et al.,
2010).

Only one receptor for TWEAK has been identified so far in
both humans and rodents, the fibroblast growth factor inducible
14 (Fn14) (Wiley et al., 2001). The Fn14 cytoplasmic tail does
not contain a canonical death domain, and TWEAK binding
to Fn14 can induce multiple cell death pathways in different
cellular contexts (Potrovita et al., 2004; Cannella et al., 2007).
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Intracerebroventricular injection of soluble Fn14 (Yepes et al.,
2005) reduces significantly the infarct volume after ischemia in
adult rodent models but its role in immature brain injury is
unknown.

Necrosis and Necroptosis
The concept of necrosis as a form of cell death is long-
standing, first mentioned in 1859 in Virchow’s textbook on
Cellular Pathology (Majno and Joris, 1995). Necrosis is defined
as rapid, accidental or uncontrolled cell death characterized by
cell swelling and membrane rupture leading to an inflammatory
response (Laster et al., 1988; Lu et al., 2014; Table 1). After
insult, an initial depletion of ATP disrupts the action of plasma
membrane transporters such as Na+, K+ ATPase causing an
influx of Na+ and Cl− accompanied by increases in intracellular
Ca2+ and water (Fiers et al., 1999). The subsequent increase
in intracellular volume ultimately results in plasma membrane
collapse and the release of cell contents into the extracellular
space triggering the host’s inflammatory response caused by
exposure to DAMPs, such as mitochondrial DNA (Scaffidi et al.,
2002; Zhang et al., 2010; Figure 1).

However, within the last three decades, this view of passive
necrosis has been challenged by the discovery that in response
to ligands such as TNF family cytokines, regulated cell death
was triggered with a morphology resembling that of necrosis
(plasma membrane breach, mitochondrial swelling) (Ofengeim
and Yuan, 2013). Necroptosis or programmed necrosis (Laster
et al., 1988; Galluzzi et al., 2011, 2012c) is a form of highly
regulated cell death that occurs in an environment that is either
dramatically depleted of ATP (Leist et al., 1997; Nicotera et al.,
1998) or in which caspases are inhibited (Vercammen et al., 1998;
Cho et al., 2009; Kaiser et al., 2011).

The Cellular Mechanism of Necroptosis
In common with the extrinsic pathway of apoptosis, necroptosis
is commonly induced by death receptor ligands such as TNF-
α, Fas, TRAIL (Figure 2), or by Toll-like receptor (TLR) 3
and 4 signaling (Vanlangenakker et al., 2012). Binding of the
ligand to the TNF receptor initiates the assembly of a plasma
membrane-associated complex (Figure 2) into which the adaptor
protein TRADD and receptor-interacting kinase 1 (RIP1 also
known as RIPK1) are recruited by virtue of common death
domains (Stanger et al., 1995; Hsu et al., 1996; Hitomi et al.,
2008). The complex is further stabilized by the recruitment
of cellular inhibitor of apoptosis proteins (cIAPs, Bertrand
et al., 2008). However, RIP1 can initiate numerous signaling
pathways including pro-survival NF-κB and MAPK activation
(Ting et al., 1996; Bertrand et al., 2008). How, then, is its signaling
diverted to the induction of cell death? The answer lies in the
ubiquitination state of RIP1. Rapid polyubiquitination of RIP1
by cIAPs occurs as the DISC complex forms at the membrane,
and pushes RIP1 function toward NF-κB activation and MAPK
signaling (Bertrand et al., 2008). However, degradation of cIAPs
by autoubiquitination (assisted by the action of SMAC, Du et al.,
2000) and deubiquitination of RIP1 by deubiquinating enzymes
Cylindromatosis (CYLD) and A20 results in release of RIP1 from
the complex (Wertz et al., 2004; Moquin et al., 2013). This marks

the point at which the cell commits to a cell death outcome, but
even here, RIP1 signaling can still be diverted from necroptosis to
the induction of apoptosis if caspase-8 is present in the cell (Wang
et al., 2008). RIP1 can form a complex with Fas-associated death
domain (FADD) and caspase-8 initiating the latter’s conversion
to its active form and subsequently triggering apoptosis (Wang
et al., 2008; Remijsen et al., 2014; Figure 2).

Caspase-8 actively inhibits necroptosis through degradation
of RIP1 and RIP3 (Lin et al., 1999; Oberst et al., 2011) but
in the absence of caspase-8, viral or genetic inhibition (Cho
et al., 2009; Kaiser et al., 2011) or high RIP3 expression
(Zhang et al., 2009), necroptosis will occur. RIP1 and RIP3
interact through their RHIM (RIP homotypic interaction motif)
domains resulting in the formation of the necrosome, a
fibrillar, amyloid-like structure (Li et al., 2012) and further
recruitment of RIP3 to the necrosome occurs (Wu et al., 2014).
RIP3 autophosphorylates (Ser 227), and recruits its substrate
pseudokinase mixed lineage kinase domain-like (MLKL) into
the necrosome where it is phosphorylated by RIP3 at Thr 357
and Ser 358. Phosphorylation and activation of MLKL results in
its oligomerization (Wang et al., 2014) and in this form it can
bind membrane lipids such as phosphotidylinositol phosphate or
the mitochondrial-located cardiolipin (Dondelinger et al., 2014).
These activated necrosomes orchestrate the permeabilization
of both cell and organelle membranes and likely facilitate the
cataclysmic membrane lysis observed in the execution of necrosis
(Chen et al., 2014).

Necroptosis can also be induced by alternative routes. In the
absence of caspase-8 or if FADD is inhibited by phosphorylation,
interferons can transcriptionally upregulate the expression of the
RNA-responsive protein kinase, which is capable of interacting
with RIP1, subsequently promoting formation of the RIP1-
RIP3 necrosome (Thapa et al., 2013; Mccomb et al., 2014).
Interestingly, as with the role of RIP1 in NF-kB signaling, RIP1
acts as a scaffolding molecule as its kinase activity is dispensable
for interferon-mediated necroptosis. TLR3 and TLR4 activation
by LPS and dsRNA can trigger necroptosis in the absence of RIP1;
instead, the RHIM-domain-containing protein TRIF interacts
with RIP3 to recruit MLKL to the necrosome (He et al., 2011;
Kaiser et al., 2013). Infection by murine cytomegalovirus can
also trigger interaction between the RHIM domain protein DNA-
dependent activator of interferon regulatory factors and RIP3
resulting in virus-induced necroptosis (Upton et al., 2012).

The presence of RIP3 and MLKL is pivotal for the execution
of necroptosis, and it is worth remembering that only RIP3 and
MLKL are true markers of necroptosis as RIP1 can participate in
both prosurvival and apoptotic mechanisms as well as negatively
regulating necroptosis itself by inhibiting spontaneous RIP3
activation (Orozco et al., 2014).

Negative Regulation of Necroptosis
As can be inferred from above, there are a number of stages at
which necroptosis can be inhibited, both by endogenous events
and by addition of pharmacological reagents. The formation of
the necrosome relies on the removal of ubiquitin from RIP1 and
therefore upregulation of cIAPs or downregulation of Smads will
prevent complex formation (Geserick et al., 2009). Necroptosis
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and apoptosis are fundamentally linked as certain ligands can
trigger both pathways. In this situation, caspase-8 activation
state sits at the divergence point through its degradation of
RIP1 and RIP3; interestingly this negative regulation implies that
necroptosis cannot truly be considered a caspase-independent
form of cell death. Contributing to the prolonged ubiquitination
of RIP1, CYLD is a substrate for cleavage by active caspase-8
which can also cleave RIP1 and RIP3 and therefore necroptosis is
inhibited (Feng et al., 2007). In addition, caspase-8 homodimers
promote apoptosis whereas caspase-8-FLIP heterodimers actively
inhibit necroptosis (O’Donnell et al., 2011). During the search for
substrates of RIP3, a small molecule inhibitor necrosulfonamide
was identified which targets MLKL preventing formation of
the necrosome (Sun et al., 2012). A chemical inhibitor of
RIP1, necrostatin, and its derivatives (Degterev et al., 2008) has
also been instrumental in dissecting the necroptosis pathway
but as with many pharmacological compounds, care should
be taken in the interpretation of the results (Takahashi et al.,
2012; Degterev et al., 2013). It should be noted that RIP1 is
involved also in apoptotic and survival signaling (Figure 2)
so necrostatin-1 cannot be considered a specific inhibitor of
necroptosis. Depletion of RIP3 or its substrate MLKL can also
prevent necroptosis from taking place, favoring the apoptosis
route (Chen et al., 2013; Wu et al., 2013; Remijsen et al., 2014).
Finally, RIP3 may also play a role in the decision of the cell to
follow an apoptotic or necroptotic route although themechanism
is unclear (Cho et al., 2009; Declercq et al., 2011; Tait et al.,
2014).

Necroptosis and the Mitochondrion
Data implicating mitochondrial dysfunction in the execution of
necroptosis is still very contradictory although the production
of ROS and depletion of ATP support its involvement (Schulze-
Osthoff et al., 1992; Leist et al., 1999; Zhang et al., 2009). The
mitochondrial phosphatase PGAM5 has also been implicated in
necroptosis. PGAM5 is a substrate of RIP3 and when activated,
promotes the Drp1 translocation to themitochondria whereupon
it facilitates extensive mitochondrial division, ROS production
and necroptosis (Wang et al., 2012; Zhang et al., 2013). However,
recent evidence from PGAM5−/− mice do not support its
involvement in necroptosis (Moriwaki et al., 2016). Mitophagy
(autophagic recycling of mitochondria) was recently implicated
in the initiation of necroptosis. Inhibition of mitochondrial
division or genetic ablation of PINK1, a protein kinase initiator
of mitophagy, resulted in a decrease in necroptosis in an in
vivomodel of chronic obstructive pulmonary disease (Mizumura
et al., 2014). However, this has been confounded by a study
in cells in which mitochondrial number have been drastically
reduced. TNFα induced necroptosis was performed in cells
in which the mitophagy pathway was upregulated, ablating
mitochondria in 80% cell population. No significant protection
from cell death was observed (Tait et al., 2013). Clearly whether
mitochondria are involved in the development of necroptotic cell
death is still highly speculative and further work is required.

Necroptosis and HI Injury
The development of knockout mouse models of RIP3 and
MLKL, has permitted the analysis of pathological necroptosis
in a wide variety of injury models (Wu et al., 2013). A
role for necroptosis-mediated cell death has been suggested
in infection (Cho et al., 2009), inflammation (Duprez et al.,
2011), pancreatitis (Wu et al., 2013), atherosclerosis (Lin et al.,
2013) and ischemia-reperfusion injury (Linkermann et al.,
2012; Oerlemans et al., 2012). Of relevance to this review,
necroptotic cell death has been identified in both adult and
immature brain, in response to ischemic injury. The original
paper describing the discovery of necrostatin-1 found that after
middle carotid artery occlusion generating a transient focal
ischemia in rats, Necrostatin-1 treatment reduced infarct size
whether administered pre- or post-injury (Degterev et al., 2008,
2013). This was recapitulated in a subsequent study where
Necrostatin-1 was combined with anti-apoptotic drugs and
showed protection in both in vitro oxygen/glucose deprivation
experiments as well as in focal ischemia (Xu et al., 2010).
Following intracerebral hemorrhage, both hematoma volume
and neurovascular damage were also reduced by necrostatin-1
(King et al., 2014).

The role of necroptosis in immature brain injury has only
recently been explored. Initial observations by Northington and
colleagues suggesting that the morphological and molecular
landscape of neonatal brain death is more of a “continuum,”
ranging from apoptosis through necroptosis to necrosis
(Northington et al., 2007). Using a neonatal mouse model
of HI injury, injury progression was blocked, RIP1-RIP3
interaction prevented and NFκB and caspase-1 signaling
inhibited after necrostatin-1 injection post-injury (Northington
et al., 2011). Oxygen glucose deprivation (an in vitro mimic
of HI) induced necroptotic cell death in primary hippocampal
neurons, mediated by an upregulation of RIP3 expression
and a transient decrease of caspase-8 (Vieira et al., 2014).
This was mirrored in vivo after global cerebral ischemic insult
in which RIP3 expression was similarly upregulated (Vieira
et al., 2014). In acute neonatal injury, necrostatin-1 treatment
reduced injury volume and improved behavioral outcomes in
a model of traumatic brain injury (You et al., 2008). However,
apoptotic signaling is also widespread following HI injury in
neonatal mouse models (Hagberg et al., 2009) and necrostatin
treatment not only inhibits necroptosis, but also alters cell
death to a more apoptotic phenotype (Northington et al.,
2011) supporting the idea that a continuum of cell death takes
place depending on the injury environment. Necrostatin-1
decreased the accumulation of oxidants, prevented the decline
in mitochondrial complex I activity and improved ATP levels
24 and 96 h after neonatal HI (Chavez-Valdez et al., 2012). A
recent study of cell death after severe neonatal hypoxic-ischemic
injury identified that although necroptosis was apparent at
the core of the lesion, it was significantly higher in the peri-
infarct region in severe injury compared with moderate injury
(Askalan et al., 2015). A very recent study suggests that oxygen-
glucose deprivation insult resulting oligodendrocyte cell death
acts through a mechanism dependent on RIP3 upregulation.
Oxygen-glucose deprivation induced the interaction between
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RIP3 and MLKL as well as RIP3 and CaMKII. Not only
did interruption of these interactions mediate cell survival
in vitro, but disturbing RIP3 interactions in vivo prevented
myelination defects (Qu et al., 2017). Recently, endoplasmic
reticulum (ER) stress has been suggested to be important in the
necroptosis process. Neonatal HI induces shedding of dilated
ER fragments in the cytosol and upregulation of ER stress
markers and these alterations are reversed by Necrostatin-1
(Chavez-Valdez et al., 2016). Taken together, the emergence
of these studies holds the tantalizing possibility of new
neurotherapeutic targets to ameliorate HI-mediated neonatal
brain injury.

Autophagic Cell Death
In addition to apoptosis and necroptosis another, caspase-
independent, mechanism of cell death has been proposed
through overactivation of autophagy, a normally pro-survival
mechanism of recycling cellular components. The criteria
surrounding the definition of autophagic cell death is still debated
(Kroemer et al., 2009; Galluzzi et al., 2012c, 2015) but autophagy
is observed in a variety of physiological and pathological
events, such as normal development, nutrient deprivation,
neurodegeneration, immunity, and aging (Choi et al., 2013).
Autosis is sometimes used synonymously with autophagic cell
death. It is still unclear whether autosis is a subform of autophagic
cell death that depends in Na+/K+-ATPase or if all forms of

autophagic cell death relies on Na+/K+-ATPase (Liu and Levine,
2015) (see below).

Autophagy
Macroautophagy (subsequently referred to as autophagy) is a
process in which proteins, protein complexes and even organelles
are engulfed by an isolation membrane which extends to
form an autophagosome. Once mature, the outer membrane
of the autophagosome fuses with a lysosome to form an
autolysosome, the cargo of which is degraded by lysosomal
hydrolases (Marino et al., 2014; Figure 3). Autophagy is a highly
conserved process (indeed, over 30 autophagy-related (ATG)
proteins have been identified in yeast (Tsukada and Ohsumi,
1993; Suzuki and Ohsumi, 2007; Nakatogawa et al., 2009)
and is initiated by a regulated interplay of phosphorylation
and dephosphorylation. Autophagy is classically triggered in
response to nutrient deprivation which promotes formation of
the ULK1 pre-initiation complex comprising ULK1 (UNC-51-
like kinase1)-FIP200 (FAK kinase interacting protein of 200
kD)-ATG13-ATG101 (Figure 3). In a nutrient-rich environment,
this complex is normally inhibited by mammalian rapamycin
sensitive mTOR complex (mTORC1) but during starvation, it
is the mTORC1 which is inhibited (Chan, 2009; Hosokawa
et al., 2009; Jung et al., 2009). Activation of ULK1 by
phosphorylation results in activation of a phosphatidylinositol
(PI)-3 kinase complex comprising Beclin1, Vps34, ATG14L,

FIGURE 3 | Autophagy. In response to nutrient deprivation, inhibition of ULK1-FIP200-ATG13 complex by mTORC1 is removed. ULK1 autophosphorylates and

activates ATG13 and FIP200. AMPK, activated in response to starvation, contributes by phosphorylating and inhibiting components of the mTORC1 complex and

phosphorylating and further activating ULK1. ULK1 subsequently phosphorylates Beclin-1 and Vps34 resulting in nucleation of the isolation membrane. Inhibitory

phosphorylation of Vsp34 by AMPK is prevented by recruiting ATG14L to the complex and AMPK then phosphorylates and further activates Beclin-1. Lipids are

recruited to the growing phagophore and two ubiquitin-like conjugation pathways are triggered resulting in an ATG12-ATG5-ATG16 complex at the autophagosome

and LC3-II insertion into the membrane, where it recruits cargo. Lysosomes dock to the outer membrane of the autophagosome forming an autolysosome, and

allowing hydrolases to degrade its contents.
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and p150 (Itakura et al., 2008), usually inactivated by anti-
apoptotic BCL-2 family members (Pattingre et al., 2005).
The nutrient-sensing protein AMP-activated protein kinase
(AMPK) also plays a regulatory role throughout initiation
and nucleation phases (Carling et al., 2012). Active AMPK
phosphorylates and inactivates Raptor (Gwinn et al., 2008)
as well as concomitantly activating ULK1 by phosphorylation
(Egan D. et al., 2011; Egan D. F. et al., 2011). Subsequently,
recruitment of ATG14L into the Beclin complex inhibits AMPK
phosphorylation of Vps34 and promotes AMPK phosphorylation
of Beclin-1 (Kim et al., 2013). Together with ULK1, the
Beclin complex drives PI-3 phosphate formation and the
nucleation of the isolation membrane by recruiting a number
of ATG proteins to the emerging autophagosome (Figure 3).
Transmembrane proteins, such as VMP1 and ATG9 interact
with Beclin-1 and likely play a role in recruiting lipids to
the autophagosome (Yamamoto et al., 2012; Molejon et al.,
2013). At this point, two ubiquitin-like cascades are activated
resulting in the conjugation of ATG5 to ATG12 at the outer
membrane of the autophagosome and the conjugation of
cytosolic microtubule-associated protein 1A/1B light chain 3
(LC3) with phosphatidylethanolamine. This converts it from
LC3-I to LC3-II, whereupon it is inserted into the membranes
of the rapidly closing autophagosome and acts to recruit cargo
(Kabeya et al., 2000). This conversion from LC3-I to LC3-II
and its subsequent relocalization is often used as experimental
marker for autophagy as LC3-II remains membrane-associated
until the end of the process. Finally SNARE proteins recruit and
dock lysosomes to the outer membrane of the autophagosome
resulting in formation of the autolysosome, influx of acid
hydrolases and degradation of cellular contents (Longatti and
Tooze, 2009).

Autophagic Cell Death
Although the pro-survival function and benefits of autophagy
are clear, extreme levels of autophagy have been proposed to
trigger cell death. As is the case for the cell death field in
general, the definition of autophagic cell death has recently
been refined in order to move away from a classification simply
based on morphology; accumulation of autophagosomes and
autophagic vacuoles are also observed in response to apoptosis
and necrosis (Galluzzi et al., 2012c). Autophagic cell death is
now described as cell death suppressed by inhibition of the
autophagy pathway as in some experimental systems, it has been
hard to distinguish between autophagy causing cell death by
triggering other cell death pathways (e.g., apoptosis, necrosis)
and autophagy causing cell death itself (Levine and Yuan, 2005;
Kroemer and Levine, 2008). Furthermore, a minimum of two
components of the pathway need to be targeted as a number of
proteins responsible for the execution of autophagy act in other,
non-autophagic pathways (Galluzzi et al., 2015). Even with these
stricter criteria, a number of examples of autophagic cell death
can be observed in a variety of cell types and tissues. Embryonic
fibroblasts from mice lacking the apoptosis regulators BAX
and BAK underwent cell death after treatment with apoptosis-
inducing agents (etoposide and staurosporine). However, this
cell death was autophagic in nature, prevented by autophagy

inhibitors and was characterized by autophagosome formation
(Shimizu et al., 2004, 2010). Knockdown of ATG5 expression
in HeLa cells results in resistance to cell death induced by
interferon-γ treatment and conversely, over-expression results
in autophagic cell death, even in the presence of a functioning
apoptotic pathway (Pyo et al., 2005). Beclin-1 overexpression can
be considered as facilitating autophagic cell death as knockdown
of ATG5 prevents cell death (Pattingre et al., 2005). Ablation
of beclin-1, ATG5 or ATG7 in transformed or cancer cell
lines will prevent the induction of autophagic cell death in
response to oxidative stress, such as H2O2 production (Chen
et al., 2008). Furthermore, inhibition of caspase-8 or caspase-
10 in certain cancer cell lines result in autophagic cell death
although the mechanism of cell death is unclear; inhibition
of catalases and a concomitant accumulation of ROS has
been observed (Yu et al., 2004, 2006; Lamy et al., 2013).
Very recently, another category of autophagic cell death has
been proposed, termed “autosis.” Exposure of Hela cells to
the cell-permeable Tat-Beclin peptide induced autophagic cell
death with a distinct morphology—early nuclear convolutions,
increased autolysosomes and later on, perinuclear swelling (Liu
et al., 2013). Physiological stresses, such as starvation and
hypoxia also induced a similar morphology although only
in a small subset of the total cell population. Interestingly,
this form of autophagic cell death is regulated by Na+, K+-
ATPase as autosis can be inhibited by treatment with cardiac
glycosides.

Autophagic Cell Death and HI Injury
Not only is autophagy activated due to neonatal nutrient
deprivation (Kuma et al., 2004), but acute cellular events which
occur during HI injury, such as calcium influx (Hoyer-Hansen
et al., 2007) and ROS production (Chen et al., 2009) are
also triggers for autophagy. It is therefore unsurprising that
increases in autophagic flux and markers of autophagy are
observed in rodent models of adult and neonatal HI (Zhu
et al., 2005, 2006; Carloni et al., 2008; Balduini et al., 2009;
Ginet et al., 2009). Whether this induction of autophagy is
beneficial or deleterious to the animal is currently unclear
(Levine and Yuan, 2005; Carloni et al., 2012, 2014) although
recent evidence suggests the latter may be true. Characteristics
of autophagic cell death have been observed in the absence of
apoptotic markers in various models of neonatal HI (Puyal and
Clarke, 2009; Puyal et al., 2009) and studies of hippocampal
slices exposed to OGD showed that pharmacological inhibition
of autophagy ablated neuronal cell death (Lu et al., 2015). In
support of this, a recent study into mice lacking Atg7 showed
evidence of reduced neonatal brain injury after HI (Xie et al.,
2016), interestingly there was an obvious inhibition of both
caspase-dependent and -independent cell death in multiple brain
regions. In vivo, pharmacological inhibition of autophagy prior
to induction of HI prevented the increase in LC3-II as well
as reducing memory impairment in behavioral tests (Xu et al.,
2016). Finally, melatonin treatment administered just prior to
and subsequently after HI in rat pups conveyed neuroprotection
through mechanisms targeting both apoptotic and autophagic
cell death (Hu et al., 2017).
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These recent findings are in line with previous studies
suggesting brain region- and gender-specific differences in
induction of autophagic cell death after neonatal brain injury
(Zhu et al., 2005, 2006; Koike et al., 2008; Weis et al., 2014).
Furthermore, it was recently shown that autosis, dependent on
Na+, K+-ATPase, was detected regionally in the hippocampus
after neonatal HI (Liu et al., 2013).

CONCLUSION

Previously, it was believed that cells died either through
accidental necrosis or regulated (programmed) apoptotic cell
death. Today it is becoming generally accepted that there
are several forms of regulated cell death (e.g., apoptosis,
autophagic cell death/autosis, necroptosis, parthanatos), defined
by biochemical hallmarks rather than (only) morphological
features. Indeed, recent experimental studies suggest that
accidental as well as most of the above mentioned types of
regulated cell death pathways are important in the context
of immature brain injury depending on the intensity and
type of insult, cell type, brain region and developmental age.
Furthermore, if one mode of cell death is inhibited, another route
may step in provided that the upstream triggering forces are
sufficiently strong. The provision of alternative routes through
which the cell can succumb to death has to be taken into
consideration in the search for novel neuroprotective strategies.
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