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One of the functions of the immune system is to recognize and destroy abnormal or infected cells to maintain 
homeostasis. This is accomplished by cytotoxic lymphocytes. Cytotoxicity is a highly organized multifactor process. 
Here, we reviewed the apoptosis pathways induced by the two main cytotoxic lymphocyte subsets, natural killer 
(NK) cells and CD8+ T cells. In base to recent experimental evidence, we reviewed NK receptors involved in 
recognition of target-cell, as well as lytic molecules such as perforin, granzymes-A and -B, and granulysin. In 
addition, we reviewed the Fas-FasL intercellular linkage mediated pathway, and briefly the cross-linking of tumor 
necrosis factor (TNF) and TNF receptor pathway. We discussed three models of possible molecular interaction 
between lytic molecules from effector cytotoxic cells and target-cell membrane to induction of apoptosis. Cellular & 
Molecular Immunology. 2009;6(1):15-25. 
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Introduction 
 
Cytotoxic function constitutes an important part of the 
cell-mediated immune system. Cytotoxicity is a highly 
organized multifactor process performed by different cells 
from the immune system. This process consists in inducing 
target cell death through cytotoxic effector cells. Natural 
killer (NK) cells and CD8+ T cells are two of the main cell 
populations considered as cytotoxic cells, because their most 
important activity is to remove abnormal or infected cells to 
prevent the development of malignancies, and to eliminate 
intracellular pathogens (1-4).  

NK cells are large, granular lymphocytes that mediate 
crucial functions of innate immunity mainly against viral 
infections (4). NK cells destroy target cells negatively or 
deficiently expressing classical and non-classical major 
histocompatibility complex class I (MHC-I) molecules, such 
as human leukocyte antigens HLA-A, HLA-B, HLA-C, 
HLA-E and HLA-G (5-8). Somatic cells express HLA-A, -B, 
-C, and -E, whereas HLA-G is found in the human placenta 
(9). NK cell cytolytic activity is also induced through the 

expression of cell stress-induced MHC class I-related chain A 
(MICA) and B (MICB) proteins (10). In contrast, CD8+ T 
cells kill target cells by recognition of MHC-I restricted 
peptide antigens or CD1-restricted nonpeptide antigens (11, 
12). For the recognition of antigens, CD8+ T cells use an 
antigen-specific receptor, which is the outcome of genomic 
segment recombination during the development (13). 

NK cell activity occurs in an antigen-nonspecific manner 
mediated by a wide range of inhibitory and activating surface 
receptors. These NK receptors have been grouped in: a) 
C-type lectin-like receptors (CD94 and NKG2 family); b) 
immunoglobulin-like transcripts (ILTs) or leucocyte immuno- 
globulin-like receptors (LILRs); and c) killer immuno- 
globulin-like receptors (KIRs).  

Regarding the first group, CD94 molecule forms a 
hetero-dimeric complex with any member of the NKG2 
family (NKG2-A, -B, -C, -D, -E, and -F). The activating or 
inhibitory function of the heterodimer complex depends on 
the cytoplasm region of NKG2 molecules. Accordingly, 
NKG2A and B have immunoreceptor tyrosine-based 
inhibition motif (ITIM) groups that act as inhibitors (14-16), 
whereas NKG2C, NKG2D, and NKG2E lack ITIMs, instead 
they transmit activating signals (17-19). NKG2C is 
associated with a 12 kDa DNA-activating protein (DAP-12), 
a factor containing an immunoreceptor tyrosine-based 
activating motif (ITAM) that provides cellular activating 
signals (17). Although NKG2D lacks ITAMs, it forms an 
activating receptor complex with a 10 kDa DAP (DAP-10), 
which contains a binding site for the recruitment of the 
phosphatidylinositol 3-kinase (PI3K) required for signal 
transduction (18, 20). NKG2E is similar to NKG2C in its 
cytoplasmic domain (19), which allows its association with 
DAP-12 (21). It seems that, NKG2F could regulate cell 
activation by competition for DAP12 with other receptors, 
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such as NKG2C and NKG2E, although its exact function is 
not fully known (21).  

NKG2A, B, C, E, or F receptors are expressed on NK 
cells, CD8+ TCR  and  lymphocytes, CD4+ T cell 
subsets, and NKT cells (1, 10, 22-25), all of which recognize 
HLA-E (17, 21, 26-28) complexed to an MHC class I leader 
sequence (29). In this fashion, they monitor the expression of 
MHC-I molecules on target cells. Likewise, NKG2D is also 
expressed on NK cells,  T cells, and CD8+  T cells, 
which recognize MICA and MICB ligands on stressed cells 
(30).  

The second group of NK cell receptors corresponds to 
ILTs, also known as LILRs. The ILT cell surface molecules 
constitute a family of activating and inhibitory receptors 
expressed on myeloid and lymphoid cells. ILT1 (LIR7) is a 
receptor expressed on myeloid and lymphoid cells, but that 
lacks ITIMs (31). It has been reported that ILT1/LIR7 
activates human eosinophils and basophils (32, 33). ILT7 is a 
similar activating receptor that has been proposed as a 
marker for plasmacytoid dendritic cells (34, 35). ILT1 and 
ILT7 are associated with the FcRI- adaptor molecule in 
their cytoplasmic tails (31, 34). Regarding other members of 
this family, ILT2 (LIR1), ILT3, ILT4 (LIR2), and ILT5 are all 
polymorphic inhibitory receptors containing ITIMs in their 
cytoplasmic tails (36). ILT2 is expressed on NK cells, 
dendritic cells, and all T cells (37), whereas ILT4 is found 
mainly in monocytes (38). ILT2 and ILT4 bind preferentially 
to the nonclassic MHC molecule HLA-G, with a higher 
affinity than to classic MHC-I, suggesting that these 
molecules can regulate the immune response in the 
maternal-fetal interface (38-40). ILT3 is a receptor expressed 
on dendritic cells, monocytes, and endothelial cells (41). It 
has been reported that ILT3 expression on endothelial cells is 
induced by interleukin (IL)-10 and interferon (IFN)- (42, 
43). ILT6 is a receptor with scarce polymorphism (44) that 
activates T cell proliferation when produced by macrophages 
in a soluble form (45). Other receptors have also been 
identified, including ILT8, ILT9, and ILT10, but their 
functions are still unknown (46, 47).  

Concerning KIRs, these molecules possess a characteris- 
tic structure of immunoglobulin domains in the extracellular 
region. They have also a cytoplasmic tail that determines 
their biological function (48). Long cytoplasmic domains 
contain ITIM groups that cause inhibitory effects, while short 
domains are activators and contain a lysine residue 
comparable to those from the NKG2 activator group to which 
DAP is linked. KIR molecules are denominated either short 
(S) or long (L), for example KIR3DL, based on the 
extracellular domain number and the length of the cytoplasm 
domain. Classic and non-classic MHC-I molecules are KIR 
ligands, such as HLA-G and HLA-Cw3, which are 
recognized by KIR2DL4 and KIR2DL2, respectively (6, 40). 

In spite that CD8+ T cells and NK cells differ in the target 
cell-recognition and activation mode, their effector functions 
are carried out in the same way (Figure 1). A final 
consequence from cytotoxic activity is target cell death. 
However, the exact nature of how cell death occurs is very 
important, since this determines the amount of damage 

inflicted upon neighboring cells. Cell death can be caused by 
either necrosis or apoptosis. 

Necrosis: In this process, cells undergo irreversible 
morphological changes that take place in a fast and 
disorderly manner. A large number of intracellular 
components are released into the intercellular space due to 
cell burst. Necrosis causes damage to the surrounding tissue 
because it promotes an inflammatory process (49). 

Apoptosis: Cells also undergo morphological changes, 
but these take place in a programmed and controlled fashion. 
Initially, there is a limited chemical alteration on the 
apoptotic cell membrane, followed by nuclear chromatin 
condensation, cytoplasmic shrinking, dilated endoplasmic 
reticulum and, finally, a packaging of intracellular contents 
into cell bladders denominated “apoptotic bodies”. These 
apoptotic bodies are then phagocyted by surrounding 
phagocytes, thus preventing the release of the cytoplasmic 
content to the outside. Hence, the development of an 
inflammatory response and damage to the neighboring cells 
are avoided (49, 50).  

Apoptosis can be induced by three pathways: a) granule- 
dependent exocytosis pathway, b) Fas-FasL intercellular 
linkage-mediated pathway, and c) cross-linking of TNF and 
TNFR type I.  
 
Granule-dependent exocytosis pathway 
 
This pathway is established through intracellular signaling 
after target cell recognition by a cytotoxic lymphocyte (NK 
or cytotoxic T cell). In exocytosis or degranulation, there is 
microtubules mobilization that leads the preformed granules 
or lysosomes of the cytotoxic cell towards the point of 
contact with the target cell, releasing stored lytic molecules 
(51, 52). Degranulation can be detected by exposure of the 
lysosomal-membrane-associated glycoproteins, CD107a, 
CD107b, and CD63, on the lymphocyte surface (53). These 
molecules are found in the granule-membrane inner surface 
and are exposed onto the lymphocyte surface through 
degranulation (53-55). It has been suggested that lysosomal- 
membrane-associated glycoproteins and the soluble protein 
cathepsin-B play an important role in avoiding lymphocyte 
self-destruction. The lytic granule contains a proteoglycan 
matrix that maintains protease enzymes in an inactive stage 
(56). The lytic granules mature through an hMunc13-4- 
dependent maturation process that is required to efficiently 
release lytic molecules on the target cell (57). The lytic 
molecules stored in granules that induce apoptosis are 
perforin, granzymes (Grzs), and granulysin. 
 
Perforin 
The importance of this molecule has been evaluated in 
animal models or human disease observations. Mice with 
perforin deficiency develop spontaneous lymphoma (58) and, 
in patients with familial hematophagocytic lymphohistio- 
cytosis, a mutation in the perforin gene causes evident 
diminution of their immune response to infections by 
intracellular pathogens (59). 
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Despite to be the first protein isolated from lytic granules, 
perforin has caused controversies because its structure, action 
mechanism, and synergism with other molecules are unclear 
(60). Structurally, perforin has an N-terminal domain with 
lytic ability, and then a region of 150 amino acid residues 
whose function remains unknown (61). In the middle of 
perforin there is an -helix amphipathic domain that 
regulates its transmembranal insertion and confers the 
stability required to form pores upon the target cell 
membrane (62). Finally, it has a C-terminal domain, this 
region is able to make catenary’s interactions of calcium- 
dependent membrane binding (63). The second domain of the 
latter region is essential for the binding between cell 
membrane and perforin; at the end of the 20 amino acid 
residues, there is a signal sequence for N-glycosydic linkage 
and a breaking site considered important for perforin 
activation (64). 

Perforin is found in a soluble monomer shape within 
granules and, after the cytotoxic-cell/target-cell junction, 
perforin is released by exocytosis (54). Once it is anchored, 
perforin begins the polymerization in the presence of Ca2+ to 
form cylindrical pores with an internal diameter of 5 to 20 
nm (63, 65, 66). The perforin pores can serve as passive 
conductos of granzymes and granulysin through the target 
cell membrane and could also allow an ionic exchange, 
which causes an osmotic unbalance and in consequence, the 
cell death (Figure 2A) (65). However, in spite of this being 
the most accepted hypothesis, there is little experimental 
evidence to support it. The controversy lies in the mechanism 
and function of perforin. Motyka et al. have shown that in the 

absence of perforin, granzyme (Grz)-B is introduced into the 
target cell because granzyme forms a complex with the 
mannose-6-phosphate receptor independently from cations. 
Subsequently, the complex is internalized by endocytosis. 
Once inside the cell, the granzymes and granulysin are 
released favoring interaction with their substrate to induce 
apoptosis (Figure 2B) (67). However, Trapani et al. suggest 
that the mannose receptor is not nessesary for the entry of 
Grz-B into the target cell (68). Keefe D et al. showed 
evidence that Grzs adhere to the cell surface by electrostatic 
linkage, whereas the perforin pore induces Ca2+ flow from 
the extracellular towards the intracellular environment (69). 
Ca2+ entrance causes activation in the target cell, which 
attempts to amend the pore in the cell membrane to avoid 
necrosis (69). In consequence, the Grzs are internalized 
together with perforin and are released in the cytoplasm of 
the target cell (Figure 2C). However, the presence of perforin 
is required to induce apoptosis (70). The evidence indicates 
that perhaps perforin is not essential for the entrance of 
proteases into the target cell, but it is required for cytolysis. 
In different proposed models, the function of perforin is not 
elucidated, and has been limited to cell surface, or to 
endosome membrane, or both. The query remains about how 
granzymes are released from the endosome (whether they are 
internalized by endocytosis) because their dimensions and 
molecular structure would prevent their passing through the 
perforin pore. It could be speculated at least a chemical or 
physical factor (pH, other proteins, etc.) originated from the 
intracellular trade, might be altering the structure and/or the 
size of either the Grzs or the pore (Figure 2).  

 
 

Figure 1. CD8+ T cells and NK cells recognize the target cell through different receptors. Although both cytotoxic cells act upon target 
cells inducing apoptosis, the mechanism of lymphocytes mediated-cell recognition is different. NK cells kill target cells in an 
antigen-nonspecific manner regulated by a wide range of inhibitory and activating surface receptors. In contrast, CD8+ T cells destroy target 
cells by recognition of HLA class I restricted peptide antigen. Fas molecule is expressed on target cells, whereas FasL molecule is expressed 
on cytotoxic cells. TCR, T cell receptor; ILT, immunoglobulin-like transcripts; NKG2, NK cell group 2 transmembrane receptors; KIR, killer 
immunoglobulin-like receptor.  
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Concentration of the perforin released at the contact site 
between the cytotoxic effector cell and the target cell is still 
unknown. For functional studies on the role of perforin, 
dose-response assays are needed, which, in consequence 
could help to determine its optimal concentration for future 
experiments. At the sublytic concentration of perforin, a 10% 
necrotic cell death is observed, and the range varies from 50 
to 500 ng/ml. At a lower concentration, the granzymes are 
not released, whereas, at a higher concentration, perforin 
causes necrosis on most cells. Perforin is an unstable 
molecule; therefore, the amounts vary according to the 
cytotoxic cell population (69, 71). 
 
Granzymes 

Granzymes are soluble proteins of a globular structure, 
belonging to the serine-proteases family. Grz-A and Grz-B 
are the most abundant within lytic granules (72). Grazymes 
are released as a multi-molecular complex, inducing 
apoptosis by caspases-independent or -dependent pathways 
(71). Caspases are found in cell cytoplasm as inactive 
precursor molecules that need to be hydrolyzed to begin their 
activity. According to their function, Grzs are grouped as 
follows: a) inflammatory, b) initiator (of stress signals), and c) 
effector (of apoptosis) (71, 73). 

Grz-A induces caspase-independent apoptosis, activating 
a slow process of cell death. It cleaves single-stranded DNA, 

and hydrolyzes proteins containing basic amino acids such as 
arginine or lysine (74, 75). Grz-A activates an endoplasmic 
reticulum associated complex (the SET complex), which is 
conformed by two tumor-suppressor proteins, phospho- 
protein 32 (pp32) and nonmetastatic protein 23 homologue 1 
(NM23-H1), and three Grz-A substrates: oncoprotein SET, 
high mobility group 2 (HMG-2) protein, and apurinic 
endonuclease 1 (Ape1) (74, 76, 77). A characteristic of 
apoptosis is the increase of reactive oxygen species (ROS) 
and decrease of the mitochondrial membrane potential, a 
process that seems to play a pivotal role in the SET 
translocation into cell nucleus via mechanism that is not fully 
understood (Figure 3) (74, 75, 78). Once inside the cell 
nucleus, Grz-A cleaves SET (specific inhibitor for 
NM23-H1), and the cleavage of SET releases NM23-H1, 
which degrades chromosomal DNA (Figure 3) (74, 76). It is 
also postulated that Grz-A cleaves to histone 1, modifying the 
nucleosomal center, so chromatin is relaxed and DNA is 
fragmented by endonucleases (79). Extracellular activity of 
Grz-A has been also reported by either fragmenting the IL-1 
pro-peptide at the Asp116 site to give rise to the active form 
of IL-1 or activating fibroblasts to secrete cytokines, such as 
IL-6, IL-8 and IFN- (74, 76, 80, 81). 

Grz-B cleaves protein substrates in the carboxyl side on 
acidic amino acids, especially aspartic acid; some Grz-B 
substrates appear in pre- or post-mitochondrial phase (71). 

 
 

Figure 2. Three proposed models for internalization of lytic molecules. (A) Perforin polymerizes on the target cell membrane forming a 
pore through which granzymes (Grz)-A, -B, and granulysin enter to induce apoptosis. (B) The target cell membrane expresses 
mannose-6-phosphate receptor that forms a complex with Grz-B, which is then internalized together with Grz-A and granulysin inside 
vesicles and released by pore-forming perforin into the cytoplasm, where these molecules exert their function. (C) The pore formed by 
perforin allows the entry of extracellular Ca2+ activating the target cell, which attempts to repair the damage and endocytoses the membrane 
region together with lytic molecules adhered by electrostatic linkages. TCR, T cell receptor; red sphere, Ca2+ ions; > [Ca2+], high 
concentration of calcium ions; < [Ca2+], low concentration of calcium ions.  
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Grz-B can induce apoptosis rapidly through two pathways. In 
the first, it activates caspase 3 directly, which promotes the 
fragmentation of DNA, or of nuclear membrane crucial 
components or of the cytoskeleton (82, 83). In the second 
pathway, Grz-B promotes permeability of the mitochondrial 
outer membrane and cleaves Bid, a molecule from the Bcl-2 
family (82). In turn, Bid induces cytochrome-C release from 
mitochondria and other apoptogenic intermembrane 
molecules, such as HtrA2/Omi, endoG, and AIF into the 
cytoplasm (84). Cytochrome-C is important to trigger the 
formation of apoptosomes and activation of caspase 9, which 
enhances caspase 3 activation, decreasing mitochondrial 
function and, in consequence, causing cell death (83) (Figure 

3). It has been reported that caspase 8 is activated under 
physiologic conditions in order to accelerate the target cell 
destruction (82). Some authors propose that Grz-B 
preferentially triggers apoptosis due to an alteration of the 
mitochondrial membrane rather than by the direct action of 
caspases (71, 73). However, it continues to be a controversial 
topic. 

Although it has been reported that the activity from both 
granzymes, Grz-A and Grz-B, is dependent on cathepsin-C, 
Sutton et al. observed that in cathepsin-C-knockout mice, 
apoptosis is induced by Grz-B, pointing out that only Grz-A 
is cathepsin-dependent, suggesting that wild-type cytotoxic 
cells secrete more Grz-B for DNA fragmentation in a 
caspase-dependent manner (85). 

Lytic granule contains also orphan granzymes, but their 
function is less been defined. However, these molecules are 
essential for cytolysis of the target cell in knockout mice. In 
humans, Grz-K is a trypsin-like protease that induces 
apoptosis by Bid-dependent mitochondrial outer membrane 
damage (86). Grz-H is a chymotrypsin-like protease 
(chymase) that seems to have synergistic functions with 
Graz-B (87). Grz-M is a serine protease highly expressed in 
NK cells, and it induces cell death without DNA frag- 
mentation (88). Grz-M cleaves the actin-plasma membrane 

 
Figure 3. Mechanisms by which lytic molecules act upon target 
cell. Once inside the target cell, Grz-A activates an endoplasmic 
reticulum (ER) associated complex, which is conformed by 
phosphoprotein 32 (pp32), nonmetastatic protein 23 homologue 1 
(NM23-H1), oncoprotein SET, high mobility group 2 (HMG-2) 
protein, and apurinic endonuclease 1 (Ape1). The increase of 
reactive oxygen species (ROS) and less of the mitochondrial 
membrane potential induce the translocation of the SET/NM23-H1 
complex into cell nucleus by an unclear mechanism. Then, Grz-A 
cleaves SET, which activates NM23-H1, an endonuclease that 
fragments chromosomal DNA. In addition, Grz-B cleaves Bid or 
activates caspase 3 directly, which degrades DNA. Truncated-Bid, 
in turn, causes permeability of the mitochondrial outer membrane 
and cytochrome-C release with a diminution of mitochondrial 
function. Cytochrome-C induces activation of caspase 9 that 
enhances the apoptosis process by downstream activation of caspase 
3. TCR, T cell receptor. 
 
 

 
Figure 4. Apoptosis mediated by Fas-FasL pathway. The 
interaction of the FasL trimer with Fas induces the trimerization of 
Fas-associated death domain (FADD) molecules that recruit 
procaspase 8 or 10. Then, procaspase 8 or 10 is activated. Increase 
of intracellular signaling enhances the recruitment of FADD 
molecules. Caspase 8 activates procaspases 3, 6 or 7, and activates 
Bid promoting cytochrome-C release. Caspase 8 also cleaves 
procaspase 9, which also becomes activated. Finally, activated 
caspases 3, 6, and 7, degrade chromosomal DNA leading to target 
cell death. 
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linker, ezrin, and the microtubule component -tubulin, 
disorganizing the microtubule network (89). In mice, there 
are other granzymes such as C, D, E, F, G, and K; and rats 
have granzymes C, I, K and M, which show distinct 
structural and functional characteristics (90).  
 
Granulysin 
As a cytolytic molecule and member of the saposin-like 
proteins family, granulysin is a small cationic protein 
encoded in the human chromosome 2 (there is no 
homologous molecule in the mouse). Granulysin is stored in 
granules from NK cells, cytotoxic T cells, helper T cells, and 
NKT cells; its active form weighs 9 kDa and it is expressed 
from 3 to 5 days after cell activation (91). Because 
granulysin has a structural similarity to the saposins. It has 
been suggested that its lytic activity occurs when its 
interactions, mainly with negative charges from target-cell 
mitochondrial membrane lipids, induce cell membrane 
damage (91). This mechanism induces release of 
cytochrome-C and decreases of mitochondrial function, 
which is related with the perforin-pore (92). Recently, Walch 
et al. showed that the granulysin-dependent cell lysis 
augments in the presence of perforin (93). Another 
mechanism by which this molecule induces cell death is 
through caspase-3 activation (92). The function of granulysin 
is not only limited to cytolysis but is also a leukocyte 
chemoattractant or activator at nano-molar concentrations in 
an inflammatory environment (94). In just micromolar 
concentrations, granulysin causes cellular lysis, thus this 
molecule plays an important role in the field of rejecting 
allografts (95). It has also been reported that granulysin level 
in blood serum is an important marker of immunological 
status in gastric carcinoma patients (96). 
 
Fas-FasL intercellular linkage-mediated pathway 
 
This apoptosis pathway is important in the control of 
constantly stimulated T cells, and in promoting tolerance to 
self-antigens, aside from being a homeostatic mechanism of 
the cytotoxic T cell activity. In defects of this pathway, mice 
develop lymphoproliferative disorders, and humans develop 
the autoimmune lymphoproliferative syndrome, of which 
there are various types (Ia, Ib, II, III, and IV) depending on 
the site at which the mutation is found. All of these processes 
are controlled by one punctual mutation (97). Other 
pathologic disorders reflect the importance of molecules 
involved in this pathway; for instance, when mice lpr and gdl 
genes are altered (human Fas and FasL homologous), they 
develop proliferative disease of the renal tubule (98). 
Likewise, there is over-expression of Fas in infected CD4+ T 
cells from patients with HIV (99). 

Effector T cells and NK cells express FasL (CD178), 
whereas target cells express Fas (CD95 or Apo-1), thus these 
cells are susceptible to apoptosis mediated by this pathway 
(100, 101). Fas molecule is a cell surface protein that weighs 
45 kDa. It was identified by an apoptosis-inducing antibody 
on human cell lines (102). Fas belongs to the tumor necrosis 

factor receptor (TNFR)-I type family. It has one extracellular 
domain rich in cysteins that binds FasL, and another 
cytoplasm domain involved in death signals (103). FasL is an 
inductive molecule expressed on T cells, and weighs 40 kDa. 
It is homologous to the cytokine tumor necrosis factor (TNF), 
and is a member of the TNFR-II type family (102). FasL is 
constitutively expressed on cells of immune privileged 
organs, such as brain, anterior chamber of eyes, and testes. In 
consequence, FasL protects these privileged sites from the 
action of immune system cells, as an additional regulatory 
mechanism of self-tolerance (104). The FasL expression 
depends on the transcription factors level. The positive 
regulators are NFAT, Egr2/Egr3, NFB, AP-1, c-myc SP1, 
and B1/Cdk1, whereas the negative regulators are c-Fos and 
CIITA (105-107). Some regulatory factors function by 
binding directly to FasL DNA, while others indirectly 
regulate transcription factors (107). 

FasL can be expressed in three ways: the first as highly 
arranged trimers anchored on the cell surface membrane, it is 
a primary mediator of apoptosis. In the second, FasL is 
anchored to intracellular membrane microvesicles, where it is 
stored until expressed on the cell surface in response to 
physiological stimuli. The last corresponds to a soluble FasL, 
which is generated by degradation of the membranous shape 
(during the first minutes of expression) due to the activity of 
a metalloprotease matrix whose function is to catalyze the 
degradation of extracellular matrix proteins (108-111). The 
soluble FasL molecule has either pro-apoptotic or anti- 
apoptotic properties since soluble FasL is an inefficient 
homotrimer binding to Fas. When these molecules interact, 
the outcome is null signaling with no apoptosis. On the 
contrary, soluble FasL can induce apoptosis after its 
association or aggregation with extracellular matrix proteins. 
In addition, apoptosis is induced when soluble FasL forms 
tetramers or highly arranged structures (111). Fas/FasL 
pathway plays an important role in graft rejection (112), 
where soluble FasL can be chemotactic to neutrophils, during 
the acute rejection of a graft transplant (113).  

Binding of Fas with FasL causes trimerization and 
recruitment of Fas-associated death domain (FADD) proteins 
through homotypic death domain interactions. In turn, 
trimerized FADD recruits either procaspase 8 or 10, which 
undergo a process of autoproteolysis to become an activated 
caspase (114). Assembly of these components results in the 
formation of a death-inducing signaling complex (DISC), 
which is pivotal in the receptors-dependent apoptosis (114). 
Caspase 8 interacts with procaspases 3, 6, or 7 and, through a 
process of transproteolysis, they become activated caspases. 
Finally, these effector caspases cleave DNA (Figure 4). 
Caspase 8 can also hydrolyze Bid, which causes damage to 
the mitochondrial outer membrane and trigger cytochrome-C 
release (115, 116) (Figure 4). 

Besides FasL, another member of the TNFR family is the 
TNF-related apoptosis-inducing ligand (TRAIL), also known 
as Apo-2L (117). TRAIL has two receptors, TRAIL-R1 
(death receptor 4, DR4) and TRAIL-R2 (DR5), which belong 
to the TNFR family too (118, 119). Once linked to TRAIL, 
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these receptors engage FADD proteins in their cytoplasmic 
portion. Then FADD proteins recruit procaspase 8 that is 
activated within the DISC (120, 121). Caspase 8 is able to 
trigger the apoptosis process either through interaction with 
procaspases 3, 6, 7 or Bid cleavage, as mentioned above. 

It has been reported that induction of apoptosis by death 
receptors occurs in two modes, dependent on the cell type. 
Cells that die due to apoptosis accompanied by large amounts 
of active caspase-8 originated at the DISC are denominated 
type I, whereas cells wherein receptor-mediated death relies 
mostly on the release of pro-apoptotic factors from the 
mitochondria are denominated type II (122). Type I cells 
rapidly internalize Fas into an endosomal compartment in a 
clathrin-actin dependent manner (123), which is a 
requirement to assemble of DISC components. Thus, type I 
cells require Fas internalization to enhance signaling events 
toward the apoptosis process (124). In contrast, FasL- 
stimulated type II cells require amplifying the apoptosis 
signal through a contribution from the mitochondria (123). 
Recently, it has been shown that FasL-induced endocytic 
vesicles reach the mitochondrial compartment leading to type 
II cell demise (125). 

Regarding TRAIL receptors, the same biological 
phenomenon appears to occur. Kohlhaas et al. reported that 
the TRAIL receptor internalization is not necessary for DISC 
formation and apoptosis induction (126). However, the 
TRAIL-induced apoptosis entails a loss of mitochondrial 
membrane potential (127) perhaps by caspase 8 activity. 
Caspase 8 can induce a loss of mitochondrial membrane 
potential, which promotes releasing of cytochrome-C (83, 
122). The cytochrome-C is important to trigger apoptosis 
process in the target cell by downstream activation of caspase 
3 (83, 128) (Figure 4). 

One evident difference between the Fas-FasL intercellular 
linkage-mediated pathway and the granule-dependent 
exocytosis pathway is the persistent induction of apoptosis by 
FasL in cytotoxic T cells. The elimination of FasL from the 
cell surface requires 2 to 3 hours, this period permits to 
continue exerting cytotoxicity even in the absence of 
stimulus via TCR (129). Thus, Fas-expressing neighbor cells 
could be eliminated, though they did not express the specific 
antigen recognized by T cytotoxic cell. This explains the 
promiscuity of this pathway as compared to the granule- 
dependent pathway (130). Recently, Cunningham et al. 
showed that PI-9 (proteinase inhibitor 9) expression, an 
inhibitor of the human Grz-B, blocks cytotoxicity exerted by 
both the Fas-FasL pathway and the granule pathway in cell 
lines (131). This suggests that granzymes play an important 
role in the death receptor pathway or that PI-9 acts in an 
additional manner on caspases.  
 
Cross-linking of TNF and TNFR type I dependent 
pathway 
 
TNF is a cytokine produced by activated cells that induces 
cell apoptosis, inflammatory processes, cell activation, and 
differentiation (132, 133). The TNF molecule can induce 

receptor oligomerization increasing the ligand binding 
affinity (134). The receptors of TNF (TNFR) can be grouped 
into three classes: 1) having cytoplasmic death domains, 2) 
linked to adaptor molecules denominated TNF receptor 
associated factors (TRAFs), and 3) soluble receptors (135, 
136).  

In TNF-induced apoptosis by contribution of FADD 
molecules, initially after interaction with TNF, the TNFR 
undergoes multimerization to form the DISC signaling 
downstream through the caspase activation cascade and 
mitochondrial changes (137). Moreover, the TNF-TNFR 
complex also leads to the recruitment of TRAF molecules 
that signal downstream, activating the transcription factors 
NF-B and JNK (138, 139). Chandel et al. suggest that 
TRAFs play an important role in regulating the increase of 
intracellular reactive oxygen species (ROS), and that TRAFs 
regulate the cellular redox status (140). 

TNF-TNFR complex has also been shown to enhance 
NADPH oxidase activity promoting a burst of oxidative 
stress and leading to necrotic cell death (141, 142).  
 
Summary 
 
Cytotoxicity is an activity performed by specialized cells 
such as NK cells and CD8+ T cells. NK cells show diverse 
receptors for the recognition of altered-cells; these receptors 
activate or inhibit NK cell-cytotoxicity depending on 
signalization by ITAM or ITIM groups in the cytoplasmic 
portion, respectively.  

NK cells and CD8+ T cells, despite of acting upon target 
cells in the same way, inducing apoptosis, the mechanisms of 
lymphocytes mediated-cell recognition are different. NK 
cells destroy target-cells deficiently expressing molecules 
involved in antigen presentation, such as classic and non- 
classic MHC. This NK cell activity occurs independently of 
the presented specific antigen. In contrast, cytotoxic T cells 
kill target-cells processing and presenting specific antigen 
through MHC class I or CD1 molecules. 

Apoptosis can be induced by three pathways: a) 
granule-dependent exocytosis pathway, b) Fas-FasL 
intercellular linkage-mediated pathway, and c) cross-linking 
of TNF and TNFR type I. In the first pathway, lytic 
molecules such as perforin, granzymes, and granulysin 
participate. However, just how these molecules access the 
target-cell has not been clearly elucidated so far. In the 
second and third pathways, Fas or TNFR receptors 
trimerization is required to lead intracellular signalization 
towards the apoptosis process. 

Elucidation of the molecular mechanisms of apoptosis 
will allow gaining precise knowledge on the participating 
phenomena. On the other side, their elucidation will shed 
light on the biological problems involved in infectious and 
lymphoproliferative processes.  
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