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Highlights 

 The mechanisms responsible for the selective recognition of cells by surface-imprinted polymers 

(SIPs) have been examined.  

 We have shown that the recognition of cells by SIPs depend partly on the geometrical matching 

between template cells and imprinted cavities on the SIP layer as well as interactions with 

phospholipid moieties incorporated into the SIP cavities. 

 The phospholipids play a significant role in the cell-SIP binding mechanism through long range 

hydrophobic forces while SIP-imbedded proteins do not seem to play a role. 

Abstract 

Previous studies have shown that selective synthetic cell receptors can be produced by cell 

imprinting on polymer layers. However, knowledge on the fundamental detection mechanisms 

remains limited. In this article, while using yeast cells (Saccharomyces cerevisiae) as model 

cells, the factors influencing cellular recognition by surface-imprinted polymers (SIPs) are 

studied by means of spectroscopic and microscopy techniques and a transducer platform based 

on interfacial thermal transport, the so-called heat-transfer method (HTM). These analyses 

indicate that cell imprinting creates selective binding sites on the surface of the SIP layer in the 
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form of binding cavities that match the cells in shape and size. Also, we show that phospholipid 

moieties are incorporated into the SIP cavities during imprinting, while membrane proteins do 

not seem to be transferred. More importantly, we demonstrate that the incorporated 

phospholipids significantly enhance cell adhesion to the SIP, and thus play a significant role in 

the cell-SIP binding mechanism. Furthermore, the hydrophobicity of the SIP layer was found 

to be considerably higher when compared with a non-imprinted polymer layer (NIP), an effect 

that could not be attributed to the presence of cavities on the surface of the SIP layer. Therefore, 

we suggest that the role of phospholipids in the SIP recognition mechanism is mediated by long 

range hydrophobic forces. 

Keywords: Cell detection; surface-imprinted polymers; cell adhesion; phospholipids; 

membrane proteins; biomimetic sensors. 

1. Introduction  

In many cases, the correct diagnosis of a disease depends on the specific identification of 

cells or pathogens contained in body fluids. Similarly, the prevention of large-scale outbreaks 

of infectious diseases does not only depend on personal hygiene, but also on the detection of 

pathogens such as bacteria and viruses in water, food and air. The most important cell detection 

techniques are based on polymerase chain reaction (PCR), oligonucleotide DNA microarrays, 

microscopy, flow cytometry, fluorescent in situ hybridization, and pyrosequencing [1-6]. 

Although these techniques are very sensitive, they require expensive equipment that have to be 

used in a lab environment by trained personnel. It is therefore desirable to develop portable, 

low-cost systems that are able to detect cells or pathogens in a fast and selective manner.  

An interesting approach to construct such devices is to incorporate surface imprinted 

polymers (SIPs), acting as biomimetic cell receptors into sensor platforms [7]. SIPs can be made 

via several approaches and have been imprinted with various templates including proteins [8-



 
4 

 

10], yeast [11, 12], viruses [13, 14], bacteria [15, 16], and mammalian cells [17, 18]. SIP-

covered electrodes are typically combined with low-cost, user-friendly readout platforms based 

on microgravimetric [19-21], electrochemical [22-24], optical [25, 26], and thermal transducer 

principles [27-29]. One of the most interesting surface imprinting approaches is the so-called 

stamping or microcontact printing approach, where a layer of template cells is applied onto the 

surface of a stamp. The stamp is then pressed onto a semi-cured polymer layer which is prepared 

in parallel on a suitable substrate material. During curing, the polymer is crosslinked around 

the cells. After removal of the cells, microcavities are left behind on the surface of the polymer 

that are able to rebind the template [11, 18]. 

In addition to their low-cost, straightforward synthesis procedure, superior thermal, 

physical and chemical stability as well as their regenerative capacity [30], SIPs display 

remarkable selectivity for their targets. However, the rebinding mechanisms driving this 

selectivity are not fully understood yet. It has been suggested that curing the polymer in the 

presence of template cells initiates the organization of the polymer chains around the templates, 

such that the geometrical and chemical information of the cell surface is captured by the 

polymer, which in turn creates binding sites on the polymer surface with high affinity and 

selectivity for the template cells [31, 32]. However, these claims are rather suggestive, 

therefore, an in-depth study is required to unveil the working mechanisms that enable these 

receptors to selectively rebind their targets.  

In this article, the factors influencing the recognition of cells by their corresponding SIPs 

will be explored using yeast cells (Saccharomyces cerevisiae) as model cells as they are robust, 

readily available and were the first to be used for microcontact printing [11,12]. Our preliminary 

hypothesis is that geometric compatibility and complementary functional groups on lipids and 

proteins, transferred from the cell membrane to the SIP layer play a major role in the recognition 
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mechanisms. To investigate this, morphological analysis of the receptor layers by atomic force 

microscopy (AFM) and scanning electron microscopy (SEM) was carried out before and after 

cell detection events to study the transfer of geometrical information to the imprints. The 

wetting behavior of the SIP receptor was evaluated using water contact angle analysis, while 

Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) 

were used to identify whether cell membrane entities are transferred to the SIP layer during 

imprinting. In order to gain insight into the role of transferred membrane remnants (particularly 

proteins and phospholipids) on cell-SIP binding, SIP layers were created using different 

strategies and cell-rebinding was studied in real time using the heat-transfer method. To study 

the role of proteins, SIP layers were exposed to pepsin to degrade any SIP-embedded proteins 

and the effect of this treatment on the performance of the SIP layer was evaluated. Additionally, 

a polyurethane layer was imprinted with phospholipid vesicles 

(dipalmitoylphosphatidylcholine, DPPC) to determine if phospholipids drive SIP-based cell 

detection. 

2. Materials and Methods 

         2.1 Surface imprinting 

Polydimethylsiloxane (PDMS) stamps were used to imprint template material (cells, lipid 

vesicles and silica beads) on polyurethane layers. The PDMS stamps were synthesized using 

the Sylgard 184 elastomer kit (Malvom N.V., Schelle, Belgium). Yeast cells (S. cerevisiae) 

used for imprinting were prepared by suspending baker's yeast from Dr. Oetker (Bielefeld, 

Germany) in phosphate buffered saline (PBS). A cell concentration of 10 mg/ml was used for 

imprinting. In addition, a 5 mg/ml-suspension of 2.0 m-mesoporous silica beads in water 

(molecular weight = 60.08 g/mol, 99.9% purity, pore size  2 nm, Sigma-Aldrich, Diegem, 

Belgium) was used for creating silica bead imprints. 
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Lipid vesicles were prepared by dissolving DPPC (Avanti Polar Lipids, Alabaster, USA) 

in chloroform stabilized with 0.6% ethanol. A lipid film was produced by evaporating 

chloroform under a gentle nitrogen flow and later storing it for 15 hours in a nitrogen 

atmosphere to remove any remaining solvents. The dry lipid film was then hydrated with 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid buffer [HEPES (10 mM HEPES (99%) and 150 

mM NaCl ( 99.5%) Sigma-Aldrich, Diegem, Belgium), pH 7.4] to 1 mg/ml with continuous 

stirring to form large multilamellar vesicles (LMVs). SEM images of the vesicles indicate that 

they aggregated in time to form  400 nm-size vesicles prior to imprinting. To control the 

temperature of the lipids during hydration, the lipid-containing flask was suspended in a water 

bath at a temperature of 56 °C, which is considerably higher than the DPPC melting 

temperature, Tm ≈ 41 °C [33]. 

The SIPs for cell detection were created by depositing a layer of yeast onto a PDMS 

stamp. A 10 mg/ml cell suspension was applied on the stamp and the cells were left to sediment 

for 30 mins. Afterwards, the cells were spin-coated on the stamp at 3000 rpm for 60 seconds 

with an acceleration of 1000 rpm/s to produce a uniform and dry monolayer of cells. 

Sedimentation and spin coating were performed at room temperature. All subsequent steps were 

performed under an inert nitrogen atmosphere. The polyurethane synthesis protocol has been 

described by the authors in previous work [18].  The prepolymerization mixture was made by 

dissolving 122 mg of the initiator 4,4’- diisocyanatodiphenylmethane, 222 mg of the polyol 

monomer bisphenol A, and 25 mg of the phloroglucinol, serving as crosslinker, in 500 µl of 

anhydrous tetrahydrofuran (THF). All these reagents were used as received from Sigma Aldrich 

N.V. (Diegem, Belgium) and had a purity of at least 99.9 %. Nucleophilic addition 

polymerization was initiated thermally at 65 °C. The mixture was cured until the gelling point 

was reached (± 180 minutes) and diluted 5x in THF for spin coating. A thin layer (thickness  

1.2 µm) of the polymer gel was deposited onto an aluminum chip (1 cm × 1 cm, Brico N.V., 
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Korbeek-Lo, Belgium) by spin coating for 60 seconds at 2000 rpm, and 1000 rpm/s. Afterwards, 

the template-covered PDMS stamp was pressed onto the polyurethane layer with a pressure of 

about 70 Pa and the ensemble kept for 18 hours at 65 °C for the polymer to fully cure and 

interact with the template cells. Finally, the stamp was removed and the bound template cells 

were washed off the chip using a 1 % sodium dodecyl sulfate (SDS) solution. Imprints for lipid 

vesicles and silica beads were prepared using the same protocol. Non-imprinted polymer layers 

(NIPs), used for reference measurements, were prepared identically but using a non-loaded 

stamp. More details can be found in reference 18. 

To evaluate the potential role of proteins on the SIP-based cell recognition mechanism, 

both a SIP and a NIP were treated with a pepsin solution to remove all proteins from the 

surfaces. The pepsin enzyme solution (pH 2) was prepared as recommended by the supplier; 

0.4 % pepsin (Sigma Aldrich) in 10 mM hydrochloric acid (PROLABO®, Paris, France). After 

washing the chips in 1 % SDS and rinsing them with a phosphate buffered saline solution (1 x 

PBS), they were gently dried with nitrogen gas before being covered with the pepsin solution. 

Next, they were left for one hour at 37 °C to activate the pepsin enzyme. Finally, the chips were 

washed and rinsed again with PBS to prepare them for use. 

         2.2 Morphological analysis 

The transfer of geometrical information to the imprints was analyzed using SEM and 

AFM. AFM measurements were performed in non-contact mode using a NX 10 AFM (Park 

Instruments, Suwon, South Korea) equipped with standard pyramidal-shaped silicon nitride 

(Si3N4) cantilever tips (length, 125 μm) with a nominal spring constant of 40 N/m (ST 

Instruments, Sliedrecht, The Netherlands). SEM imaging was performed using a FEI Quanta 

200F-scanning electron microscope (FEI, Hillsboro, Oregon, USA). The surfaces of all 

substrates were carbon-coated to create thin conductive layers prior to the measurements. 
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         2.3 Contact angle measurements   

The wetting properties of the SIP (imprinted with cells and silica beads) and NIP layers 

were evaluated by contact angle measurements using an optical contact angle device (Data 

Physics OCA, Lancashire, UK). Measurements were performed at room temperature using a    

5 µm-diameter water drop at a dosing rate of 1.00 µl/s. For each substrate, the contact angle 

was determined by taking the mean of four measurements performed at four positions on the 

chip. Prior to the measurements, all the chips, except the non-extracted yeast SIP were washed 

in SDS and rinsed with Milli-Q. 

         2.4 Chemical analysis 

To analyze the chemical functionalities within the cavities of the SIP, XPS was used 

alongside FTIR. For XPS, an Al K X-ray source was used to determine the surface chemical 

composition by scanning the surface for binding energies ranging from 80 eV to 200 eV 

(SPECS  PHOIBOS 100MCD-5, Berlin, Germany). This is the region where phosphorus 2s 

and 2p3/2 peaks are located. On the other hand, FTIR spectra were acquired in specular 

reflectance at 60° using a Nicolet™ iS™ 5 FTIR Spectrometer (Thermo Scientific™ Inc., 

Massachusetts, USA). A blank aluminum substrate was used for background measurements. 

For each sample, 128 scans at a resolution of 4 cm-1 were used to collect absorption spectra. 

The OMNIC™ Spectra Software (Thermo Scientific™ Inc.) was used to collect and analyze the 

spectra. 

         2.5 HTM measurements 

The interaction of cells with SIPs and NIPs was monitored using the HTM setup [18]. 

The sensor chip was mounted in a custom made 110 µl-microfluidic flow cell using an O-ring 

as a water tight seal. The O-ring defines a contact area of 28 mm2 between the sensor surface 

and the liquid in the flow cell. The backside of the substrate, consisting of polished aluminum, 

was mechanically fixed to a copper block, which serves as a heat source, heated by a 22 Ω 
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power resistor (MPH20, Farnell, Belgium). During measurements, the sensor surface was 

exposed to cells using an automated pump-driven syringe (ProSense, NE-500, The 

Netherlands). Two 500 µm K-type thermocouples (TC Direct, The Netherlands), were used to 

monitor the temperature of the copper block (T1) and the temperature of the liquid at the center 

of the flow cell (T2). A software-based proportional-integral-derivative controller (PID) was 

used to maintain the temperature of the copper block at a constant temperature of 37 °C during 

the entire experiment. All measurements were performed at a room temperature of 19.0 °C. 

Figure 1 shows a schematic diagram of the HTM setup. 

During all measurements, the temperature of the copper block was first stabilized in PBS 

buffer for 20 minutes before injecting a yeast cell suspension (10 mg/ml) into the flow cell at a 

rate of 2.5 ml/min for 72 seconds. The system was left to stabilize again for 20 minutes before 

being flushed with PBS at a rate of 0.25 ml/min for 12 minutes to remove all non-specifically 

bound cells. This was followed by a final 20-minute stabilization step. Cell recognition is based 

on the premise that bound cells on the substrate layer impede thermal transport, resulting in a 

decrease in the liquid temperature T2. By monitoring T2, the time evolution of the heat transfer 

resistance, Rth, is determined from the temperature difference (T1-T2) and the power P, required 

to maintain the copper block at the requested temperature (equation 1).  

  Rth = (T1− T2)P     (1)  

The origin of the thermal resistance of cells is not completely clear. However, lipid bilayers 

have been reported to exhibit a high thermal resistance that is significantly higher than that of 

bulk water [34]. Therefore, the high thermal resistance of cells can be partly attributed to their 

phospholipid bilayers. It is important to note that the heat-transfer resistance, Rth, is a device-

specific quantity because a certain fraction of the heating power, P, dissipates to the ambient 

without passing through the sensitive surface.  
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3. Results and Discussion 

3.1. HTM measurements on NIP and SIP 

In a first series of experiments, the SIP's potential for reliably detecting yeast cells was 

assessed using a yeast SIP and a NIP. The SIP and NIP layers were exposed to yeast cells in 

the HTM setup and their responses were analyzed at T1 = 37 °C ± 0.1 °C. Figure 2 shows a 

comparison between the time-dependent thermal resistance of the NIP and the SIP in response 

to a 10 mg/ml suspension of target cells (yeast). The lower baseline level for the SIP layer can 

be attributed to the reduced thickness of the polymer within the imprinted cavities. In fact, the 

morphology of the imprints, discussed later in section 3.2, shows that some cavities are so deep 

that they almost touch the surface of the aluminum chip. As polyurethane is a thermal insulator, 

these cavities constitute preferential heat channels [18]. In both cases, the Rth increases after 

injection of the cells, indicating cell attachment to the surface. However, the Rth increase of 0.7 

°C/W measured with a NIP is considerably lower than the Rth increase of 2.0 °C/W measured 

with a SIP, thus indicating that the SIP has a higher binding affinity for the target cells. 

Following the rinsing step with PBS, the Rth increase for the NIP layer decreases fully to the 

background level, while that for the SIP decreased to ≈ 20 %. This suggests that specific cell-

binding occurs for the SIP, but not for the NIP. 

         3.2 Morphological analysis of imprints  

A first step in understanding how cells bind to their imprints was performed by analyzing 

the morphology of the cavities in relation to the cells using AFM and SEM. Figures 3a and 3b 

show AFM and SEM images of a yeast cell SIP prior to template extraction (non-extracted 

SIP). As shown, the surface is completely covered with yeast cells with an average diameter of 

2.5 µm, which confirms that yeast cells are imprinted onto the polymer layer. Figures 3c and 

3d show the same polymer layer after extraction of the cells. The surface is fully covered with 
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imprinted spherical cavities with a surface coverage of approximately 8,250,000 cells per cm2. 

In addition, the cavities are comparable to the cells in size and shape. Such shape and size 

matching of imprinted cavities with template cells has been reported in previous studies [18].  

To gain further insight into the morphology of the cavities, a SEM image of a single cavity 

was acquired as displayed in Figure 4. The cavity is roughly spherical with its internal wall 

displaying nano-scale roughness. The origin and composition of these nano-scale features are 

not exactly clear, but left-over cell membrane fragments or a transfer of the cell's surface 

roughness to the polymer layer are plausible explanations.  

Similar to the SIP made with yeast cells, a silica SIP was created using silica beads, which 

are inert and comparable in size to yeast cells (2 µm). The purpose of these imprints was to 

evaluate the relative contribution of the imprinted spherical cavities to the hydrophobicity of 

the SIP receptor layer. Figure 5 shows the AFM image of the polyurethane layer produced after 

extraction of the silica beads. As shown, imprinting with silica beads yields cavities on the 

polymer layer that match in size and shape with the silica beads.  

The geometrical matching of the cells and their imprints indicates that template cells are 

capable of binding into the imprinted cavities. To verify whether cells bind indeed into these 

cavities, a yeast SIP and NIP, which had been exposed to yeast cells in the HTM device and 

rinsed stringently with PBS were analysed by AFM and SEM. The images, shown in Figure 

6a (AFM) and 6b (SEM) reveal cells bound in the imprinted cavities of the SIP. Thus, imprinted 

cavities provide selective binding sites where cells bind strongly. On the contrary, Figure 6c 

shows the NIP layer void of cells, suggesting that the binding between cells and the NIP is 

weak, hence confirming that the imprinted cavities play a role in the selective recognition of 

the template cells by their corresponding SIP.  
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         3.3 Effect of surface hydrophobicity 

The results described in Figure 6 suggest that the SIP cavities exhibit special properties 

that are responsible for their higher affinity towards the cells. One possible property is the 

hydrophobicity of the SIP surface. Indeed, it is well known that surface hydrophobicity 

enhances cell adhesion to surfaces through long range hydrophobic forces, with the extent and 

magnitude of these forces predictable from contact angle measurements [35,36]. For instance, 

the adhesion of Candida albicans (a species of yeast) on plastic surfaces and bacteria on 

polystyrene surfaces have been shown to increase with increasing water contact angle [37,38].  

To confirm whether hydrophobicity plays a role in the ability of SIPs to strongly bind cells, 

contact angle measurements were performed on a non-extracted yeast SIP, yeast SIP, NIP and 

silica SIP. The average contact angles were respectively 37°  2, 92°  3, 75°  2 and 72°  2 

(Figure 7).  These values were determined from four measurements performed on different 

spots of the same sample. The contact angle of the non-extracted SIP can be assumed to be the 

contact angle of the template cells and is similar to the ones measured for other species of yeast 

such as C. albicans [39]. The low contact angle measured on this surface can be explained by 

the presence of large amounts of oxygen- and hydroxyl-rich moieties within the cell walls of S. 

cerevisiae, such as glucans (78%), chitins (37.3%) and mannoproteins (24.4), which make 

the cell surface hydrophilic [40]. The influence of the underlaying polyurethane layer on the 

contact angle can be assumed to be negligible because of the high surface coverage of the 

polymer-trapped template cells. Conversely, the higher contact angle measured on the NIP (75° 

 2) is comparable to the contact angle of 75° ± 1 measured on similar polyurethanes 

(polyethers) as expected [41]. The higher hydrophobicity of the NIP compared to the non-

extracted SIP can be attributed to the fewer and more interspersed oxygen moieties of the 

polyurethane chains which are masked by the longer and predominant hydrophobic domains. 

Interestingly, the contact angle of the silica SIP (72°  2) is comparable to that of the NIP, thus, 
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suggesting that the measured value is more related to the polyurethane layer than to the spherical 

cavities embossed on the polymer layer. Therefore, it can be concluded that the morphological 

presence of the cavities does not significantly change the hydrophobicity of the surface. Most 

importantly, the contact angle measured on the yeast SIP is significantly higher as compared 

with the NIP and silica SIP. Thus, the strong binding between these hydrophobic layers and the 

template yeast cells described in Figure 6 suggests that the wetting properties of the SIP layer 

play a major role in the mechanisms by which cells bind to SIP. However, the higher contact 

angle of this layer cannot be explained by the presence of the cavities themselves, as mentioned 

earlier, which implies that the hydrophobicity of the layer is due to chemical modifications by 

the cell-imprinting process itself. A possible hypothesis is that hydrophobic moieties from the 

cell-membrane, such as phospholipids, are incorporated into the cavity surface, increasing its 

hydrophobicity and thereby increasing the contact angle.  

         3.4 Identification of chemical groups transferred to the SIP layer 

In order to identify the chemical moieties that are potentially transferred to the imprinted 

cavities, all surfaces were analyzed using FTIR and XPS to check for the presence of the main 

components of a cell membrane; phospholipids and membrane proteins. Figure 8 shows the 

FTIR spectra of a NIP (red), a yeast SIP (purple), and a non-extracted yeast SIP (blue). The 

latter shows very high absorbance peaks at wavenumbers characteristic of proteins and lipids 

as expected, due to the presence of cells on its surface. More specifically, the O-H stretching 

vibrations at 3550 cm-1 (proteins, phosphates and bonded water), C-H stretching of sp³ carbons 

(2873 cm-1, 2933 cm-1 and 2966 cm-1), C-H stretching of sp² carbons (3064 cm-1 and 3034 cm-

1) and secondary amides (amide I at 1596 cm-1 and amide II at 1613 cm-1). However, the 

secondary amide bands, which are part of a typical protein signature, are also present in 

polyurethane spectra [42]. Therefore, their presence on the SIP would give little information 

regarding the transfer of proteins.  
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In addition, the occurrence of C=O stretching vibration bands around 1725 cm-1 indicates 

the presence of carboxylic acids, amides or esters. As depicted in the inset of Figure 8, a double 

carbonyl peak occurs in the spectrum acquired from the non-extracted SIP. On the other hand, 

the NIP and SIP spectra show single and smooth peaks. The extra carbonyl peak can be 

attributed to the C=O stretching in carboxylic acids in proteins, suggesting that there may be no 

proteins on the SIP and NIP. Most importantly, carboxylic acids produce a characteristically 

broad absorption band in the 2500 – 3300 cm-1 range (O-H stretching), which overlaps with the 

C-H bands. This band is clearly visible on the non-extracted SIP’s spectrum, unlike the SIP and 

NIP whose OH bands are rather narrow, smooth and clearly distinct from the C-H bands. 

Therefore, based on these observations, it is unlikely that proteins are left on the SIP layer.  

To examine the presence of lipids on the SIP layer, the NIP spectrum was subtracted from 

the SIP spectrum. Figure 9a shows the result of this subtraction. The peak extending above and 

below 2600 cm-1 can be attributed to an O-H stretching absorption band. Bands in this region 

(2780 to 2630 cm-l) have been well characterized as the P-OH stretches in highly hydrogen-

bonded acid forms of phospholipids [43]. This indicates that molecules of a lipid-nature might 

be present on the SIP. Furthermore, the occurrence of this peak at lower wave numbers reveals 

more information about the nature of the phospholipids and the type of bonding between the 

lipids and the polymer. For instance, acidic lipids form strong hydrogen bonds and have FTIR 

peaks in the region between 2780 to 2630 cm-l [44]. Such lipids normally contain covalently 

bonded OH groups, giving them the ability to form strong hydrogen bonds. The cell membrane 

of S. cerevisiae contains several of these acidic lipids, e.g. phosphatidylethanolamine, 

phosphatidic acid and cardiolipin [45]. Ionized lipids on the other hand contain OH groups from 

bound water and their OH absorption bands are in the spectral region between 3430 and 3330 

cm-1 [46]. These results clearly suggest that lipids are transferred from the cell membrane to the 

SIP during the imprinting process. To gain more insight into the presence and nature of 
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phospholipids on the SIP layer, an analysis of the phosphate region of the spectrum (800 and 

1300 cm-1) was performed. In this region, PO2
-, P=O, and P–O–C absorption bands are unique 

for all phospholipids [47]. As shown in Figure 9b, peaks occur at 1080 and 1232 cm-1, which 

can be assigned to the symmetric and asymmetric phosphate diester stretches respectively in 

the central PO2
- group [48, 49]. In addition, the absorption peak at 1180 cm-1 can be associated 

with the symmetric ester C–O–P stretch in C–O–PO2
-, while the peaks at 1035 cm-1 and 1014 

cm-1 belong to the symmetric ester P–O–C and P-OH stretches, respectively [47, 50]. The 

existence of the characteristic phospholipid peaks (P=O, PO2
- and P–O–C) in this region 

strongly suggests that phospholipids are transferred to the SIP layer.  

With regard to the nature of the lipids, the peaks in the region between 1180 cm-1 and 

1080 cm-1 have been reported to belong to acidic phosphates, thus supporting the assignment 

of the peak at 2600 cm-1 to OH stretching in acidic phospholipids [50]. Besides the occurrence 

of characteristic phospholipid absorption peaks, further evidence to rule out false positives from 

the rinsing PBS buffer lies in both the presence of acidic phosphate peaks and the absence of 

OH vibration peaks in the 3430 cm-1 – 3330 cm-1 range, which often result from bound water 

in ionic phosphates such as PBS [50]. Finally, the absence of typical protein peaks in this 

spectrum again confirms that proteins may not be present on the SIP receptor. Table 1 shows a 

summary of the vibration wavenumbers characteristic of proteins and phospholipids as found 

on the different surfaces. In conclusion, only phospholipids remnants are left on the surface of 

the SIP during the imprinting process. 

To confirm the results of the FTIR experiments, XPS measurements were carried out to 

check for the presence of the characteristic phosphorus peaks of phosphates [(PO4)3-] at 

133.2 eV (2p3/2) and 190.7 eV (2s) (Figure 10). As shown, these peaks are only present on the 

two spectra of the SIPs. In particular, the intensity difference between the SIP and the NIP for 
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both peaks is 25 cpu, approximately. Therefore, the phosphorus present on the SIP must be a 

result of the imprinting process. In addition, all surfaces were rinsed in PBS followed by a 

stringent rinsing step with MilliQ water prior to measurements to prevent false positives from 

the rinsing buffer. The remaining strong peaks around 104.5 eV and 155 eV can be attributed 

to the excitation of plasmons in the aluminum substrate. 

The analysis of the SIP layer for transferred functional groups by both FTIR and XPS has 

shown that phospholipids, but not proteins, are probably transferred to the SIP layer during 

imprinting. These results imply that the high contact angle measured on the SIP layer (Figure 

7b) may be due to remnant lipids, specifically, due to their hydrocarbon chains. Studies show 

indeed that the presence of such hydrocarbon chains increases surface hydrophobicity. For 

instance, surfaces modified by either Langmuir-Blodgett monolayers of insoluble double-chain 

surfactants or single-chain alkanethiols have been demonstrated to be highly hydrophobic, with 

the degree of hydrophobicity influenced by both the chain ordering and headgroup [35, 51].   

It is important to mention that even though yeast cells are structurally different from other 

cell types, such as mammalian cells, due to the presence of a cell wall on the former, we believe 

that the conclusions from the FTIR and XPS analyses are also applicable to the latter. For 

instance, yeast cells, like mammalian cells have a high membrane-protein content in addition 

to a cell wall-protein content of about 14% by weight [40]. Therefore, the absence of proteins 

on the SIP is likely not yeast cell-specific. Furthermore, the yeast cell wall does not contain 

lipids, and consequently, the detected lipids on the SIP indicate that the cell wall maybe trapped 

in the polymer layer exposing the inner membrane phospholipids on the cavities’ surfaces. This 

appears to not only confirm the assumption that membrane fragments are left in the imprinted 

cavities (Figure 4), but also leads us to conclude that imprinting of mammalian cells and other 
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eukaryotic cells leaves membrane fragments with exposed phospholipids incorporated onto the 

SIP surface in a similar manner.          

3.5 The role of proteins and lipids  

To further explore the role played by membrane proteins and phospholipids in the binding 

of cells to the SIP receptor, HTM monitoring experiments were performed in a manner similar 

to the initial experiments on SIP and NIP layers described in Figure 2. Prior to measuring, yeast 

SIPs were treated with pepsin to remove any transferred proteins from the SIP. As a control, a 

NIP was also treated with pepsin in the same manner as the SIP. The pepsin-treated SIP and 

NIP layers were used in a yeast cell-rebinding study and the result was compared with the result 

obtained with their non-treated counterparts (Figure 11a, and 11b). As seen in Figure 11a, 

both curves are comparable, suggesting that with regards to the receptor layer, proteins are not 

involved in binding cells to the surface. Similarly, the pepsin-treated NIP layer showed a similar 

behavior as a regular NIP (Figure 11b). 

To study the influence of lipids on the cell-SIP binding mechanisms, a SIP was created 

using DPPC lipid vesicles as templates and the SIP’s ability to bind yeast cells monitored by 

the HTM. The results obtained are displayed in Figure 11c. An Rth increase of 1.5 °C/W is 

produced which is about two times higher than the Rth jump measured with a NIP (Figure 11b). 

This suggests that modifying the surface with lipid moieties promotes cell adhesion. This initial 

rise in thermal resistance is lower than the increase observed when the cell-imprinted SIP was 

exposed to a yeast cell suspension, indicating that the non-specific absorption of cells onto a 

cell-imprinted SIP is higher due to a higher affinity of the template cells towards their imprints. 

However, upon subsequent rinsing of the SIP imprinted with lipids vesicles, the Rth change falls 

to 42% of the initial increase corresponding to a persistent Rth increase of  0.5 °C/W compared 

to the baseline, which is similar to the net increase observed on a cell-imprinted SIP. This 
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suggests that selectivity is driven by the phospholipids moieties that are left behind in the 

binding cavities.  

The ability of lipids to influence cell-substrate adhesion has been reported and is currently 

being exploited in applications involving medical implants, in which a modification of the 

implantable material with lipids enhances epithelial cell adhesion [52]. Furthermore, while we 

demonstrate that lipids on surfaces enhance cell adhesion, Curtis et al., also showed that lipids 

on the cell membrane equally play a significant role on cell-substrate adhesion [53]. These 

results, together with the results described in Figure 7 suggest that the major mechanism by 

which lipids influence cell-SIP binding might be through hydrophobic forces [54]. 

4. Conclusions  

This study has provided further insights into the mechanisms involved in cellular 

recognition by SIPs. Specifically, selective recognition of cells by SIPs has been shown to 

depend partly on the geometrical matching between template cells and imprinted cavities on 

the SIP layer. Such matching ensures a maximal interaction surface between the receptor and 

the target cell. Furthermore, the interaction between the cells and the cavities appears to be 

influenced by phospholipids transferred from the cell membrane to the SIP layer. These 

transferred phospholipids render the cavities hydrophobic, thus, suggesting that lipids play a 

major role in the SIP recognition mechanism through long-range hydrophobic forces. 

Conversely, there is no evidence that proteins are transferred to the SIP cavities. Even if proteins 

were transferred, we show that the recognition of cells by SIP receptors is probably independent 

of SIP-embedded proteins, since the receptor layer remains effective after treatments of the 

surface to degrade proteins. However, this does not rule out a role for the surface proteins of 

the incoming target cell.  
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While we believe that the results from this study are applicable to the binding of other 

types of cells to their corresponding SIPs, the study has mostly focused on the chemical and 

physical modification of the SIP layer due to imprinting and the effect of this modification on 

the binding of cells from a suspension. Therefore, to provide a complete understanding of the 

specificity of SIP receptors towards their targets, more research is required. Such research could 

focus on the influence of cell-surface charge, membrane functional groups on the target cell 

(carbohydrates, proteins, lipids) and the medium properties on the cell-SIP interaction.  

With regards to applications, this study has elucidated some of the major factors that can 

be controlled to create more efficient SIP layers that are capable of improving the detection 

limits of SIP-based sensors. In addition, for commercial purposes, it is desirable to develop a 

synthetic route for the mass production of SIP receptors. In this case, template cells may be 

replaced by their synthetic analogues. To achieve this, an understanding of the specific 

molecules that are transferred to the SIP layer and their influence in cell-SIP binding is 

indispensable. Therefore, the present results bring us a step closer to transferring SIP-based cell 

detection principles from the proof of concept to commercial applications.   
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Captions 

Figure 1 The HTM set up used to detect cells. Bound cells block thermal transport through the 

SIP-liquid interface. This results in an increase in the heat transfer resistance, Rth, which causes 

a decrease in the liquid temperature, T2. T2 and T1 are measured by thermocouples and together 

with the supplied power, are used to determine the time-dependent Rth response at the receptor-

liquid interface.  

Figure 2 Binding Rth response by the HTM method. (a) A small, reversible increase in thermal 

resistance is measured on the NIP layer (b). The Rth response acquired with a yeast SIP showing 

a higher Rth increase, which is not fully reversed after flushing. 

Figure 3 (a) AFM image of a non-extracted SIP showing stamped template yeast cells. (b) 

Corresponding SEM image of a non-extracted yeast-imprinted polymer layer. (c) AFM image 

of a yeast SIP receptor produced after cell extraction showing cavities geometrically 

comparable to the cells. (d) SEM image of a yeast SIP upon cell extraction confirms the 

geometrical match between cells and the imprinted cavities shown in the AFM image.   

  

Figure 4 SEM image of a yeast-imprinted cavity revealing nano-scale roughness within the 

cavity.  

Figure 5 AFM image of silica-imprinted cavities on a polyurethane surface, showing cavities 

geometrically identical to the 2 µm-silica templates.  

Figure 6 Images of polymer layers after exposure to a 10 mg/ml suspension of yeast cells 

followed by a 12 minutes rinsing step in the HTM device. (a) AFM image of a yeast SIP layer 

revealing bound yeast cells. (b) SEM image of a yeast SIP equally showing bound yeast cells 
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in cavities and confirming AFM results. (c) SEM image of a NIP surface without cells after a 

similar experiment.  

Figure 7 Wetting behaviour of different polymer surfaces measured by water contact angle. (a) 

Contact angle of a non-extracted yeast SIP layer. (b) Contact angle of a yeast SIP. (c) Contact 

angle of a NIP. (d) Contact angle of polyurethane layer imprinted with silica beads. 

Figure 8 FTIR spectra of non-extracted yeast SIP, yeast SIP and NIP. The insert shows the 

C=O stretching vibration bands in more details for each of the layers under study.  

Figure 9 (a) Difference between a SIP and NIP spectrum showing peaks typical of 

phospholipids. (b) Enlarged view of the phosphate region of the SIP-NIP spectrum showing the 

different vibrational wavenumbers of the phosphate head group.  

Figure 10 XPS spectra obtained for a non-extracted yeast SIP, yeast SIP and NIP. The results 

indicate that phosphorus is present on the SIP but not on the NIP.  

Figure 11 HTM investigation of the role of proteins and phospholipids in the cell-SIP binding 

mechanism. (a) Rth response of a yeast SIP and a pepsin-treated yeast SIP layer at 37 °C. The 

pepsin treatment does not degrade the SIP’s ability to bind template cells. (b) Rth response of a 

NIP and a pepsin-treated NIP layer at 37 °C showing a similar Rth behavior for both. (c) Rth 

response of a SIP layer created using 400 nm DPPC phospholipid vesicles as the template.  
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Functional class Vibration bands Wave number 

(cm-1) 

Non-extracted 

yeast SIP 

Yeast SIP NIP 

Carboxylic acids 

(proteins) 

 

O-H 

 
2500-3350 *  × × 

C=O 

(Double bands) 
1710 – 1729  × × 

Phospholipids 

 

P-OH 

 
2600, 1014   × 

 

PO2
-  

(Asymmetric) 
1232   × 

 

PO2
- 

(Symmetric) 
1080  

 
 
 

× 
 

C-O-P in C-O-PO2
- 

(Symmetric)  
1180  

 
 
 

× 
 

P-O-C 

(Symmetric) 
1035  

 
 
 

× 
 

Table 1 Vibration wavenumbers characteristic of proteins and phospholipids as found on the 

different surfaces, non-extracted yeast SIP, yeast SIP and NIP.  

 Yes × No  
              * Very broad peak with overlapping C-H bands is typical for carboxylic acids 


