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Abstract

Cell fate choice and commitment of multipotent progenitor cells to a differentiated lineage

requires broad changes of their gene expression profile. But how progenitor cells overcome

the stability of their gene expression configuration (attractor) to exit the attractor in one direc-

tion remains elusive. Here we show that commitment of blood progenitor cells to the ery-

throid or myeloid lineage is preceded by the destabilization of their high-dimensional

attractor state, such that differentiating cells undergo a critical state transition. Single-cell

resolution analysis of gene expression in populations of differentiating cells affords a new

quantitative index for predicting critical transitions in a high-dimensional state space based

on decrease of correlation between cells and concomitant increase of correlation between

genes as cells approach a tipping point. The detection of “rebellious cells” that enter the fate

opposite to the one intended corroborates the model of preceding destabilization of a pro-

genitor attractor. Thus, early warning signals associated with critical transitions can be

detected in statistical ensembles of high-dimensional systems, offering a formal theory-

based approach for analyzing single-cell molecular profiles that goes beyond current

computational pattern recognition, does not require knowledge of specific pathways, and

could be used to predict impending major shifts in development and disease.

Author Summary

A certain type of multipotent progenitor cell of the blood can commit to either the white

(myeloid) or the red (erythroid) blood cell lineage, thus making a discrete binary cell fate

decision. To test a theory on fundamental principles of cell fate dynamics (as opposed to

the usually studied molecular mechanisms), we monitored such a fate decision in vitro

using single-cell resolution gene expression analysis. We found that blood progenitor cells

undergoing a fate decision to commit to either lineage after treatment with fate-determin-

ing cytokines, according to theory, first destabilized their original state. Cell states hereby
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diversified, manifesting the predicted flattening of an attractor’s potential well, which

allows the increasingly vacillating progenitor cells to “spill” into adjacent potential wells

corresponding to either lineage—myeloid or erythroid. This destabilization of an old sta-

ble state until suddenly opening access to new stable states is consistent with a critical

transition (tipping point). We propose and demonstrate a new type of early warning sig-

nal that precedes critical transitions: an index IC based on a change in the high-dimen-

sional cell population structure obtained from single-cell resolution measurements. This

index may be used to predict imminent tipping point–like transitions in multicell systems,

e.g., before pathological changes in tissues.

Introduction

Amultipotent stem cell or a progenitor cell is in a state that poises it to be able to commit to

one of multiple available options of predestined cell lineages and to differentiate. However, its

state-characteristic gene expression profile is stably maintained because the cell is in a stable

(or meta-stable) attractor (potential well) [1,2] generated by the gene regulatory network

(GRN) in the high-dimensional gene expression state space. An attractor state represents a

local minimum or, as sometimes referred to, a ground state [3], the lowest point in the basin of

attraction of the attractor. The high-dimensional attractor guarantees that the state-character-

istic genome-wide gene expression pattern is self-stabilizing, withstanding the stochastic

molecular fluctuations. Therefore, as cells differentiate and alter their gene expression pattern

in a coordinated manner to ultimately implement the expression pattern of the new cell type,

they must first overcome this stabilization of the progenitor ground state imposed by the

GRN.

Individual multipotent progenitor cells can, due to the stochastic gene expression fluctua-

tions, temporarily and by chance, approach the border of the basin of attraction of their

attractor and thereby be transiently primed to exit the progenitor state in a random direction,

giving rise to the occasionally observed spontaneous, apparently stochastic differentiation into

one of a set of alternative lineages. It is thought that the associated (unlikely) chance configura-

tions of expression in the appropriate set of regulatory genes could place an outlier cell so as to

facilitate its jump over basin boundaries into the neighboring basin of attraction of a destina-

tion lineage [4–6]. Once in the new basin, the cell will robustly establish the new gene expres-

sion pattern of the respective destination cell type as it enters the new attractor state [2].

In the qualitative parlance invoking gene regulatory circuitries, a committed cell’s robust,

self-sustained, and apparently irreversible move toward a new (differentiated) state once it has

left the old (undifferentiated) state is often explained by the reinforcing activity of a positive

feedback control loop. By contrast, the formal approach that treats complex regulatory net-

works in an integrative manner as a high-dimensional dynamical system posits that stable cell

states (cell types) are attractor states. This formalism naturally explains, without invoking spe-

cific gene regulatory circuitries, why spontaneous differentiation without instructive signal can

produce the highly specific gene expression patterns of existing cell types [1, 2].

Under physiological conditions, spontaneous differentiation is rare. But appropriate tissue

signals can trigger an efficient exit from the progenitor attractor and the commitment to a spe-

cific cell lineage. Here, the fundamental question remains as to how such signals overcome the

stability of the progenitor attractor state and direct the fate decision toward another attractor

representing a particular cell type. One possibility is that differentiation signals operate simply

by coordinating gene expression changes in a deterministic manner so as to place the cells
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either at a specific site on the border of the basin of attraction of the progenitor cell, thus prim-

ing the cell to be susceptible to noise-driven entry into the desired destination attractor of the

new lineage, or already at a state within the basin of attraction of that destination cell type.

This older view [7], schematically intuited in Fig 1 (right panels), does not involve any distor-

tion of the attractor basins. The alternative possibility is that the differentiation signal may

cause a destabilization of the (high-dimensional) gene expression attractor state, thereby dras-

tically facilitating the (noise-driven) exit from the progenitor attractor and entry into a new

attractor state. The destabilization can be imagined as a flattening of the potential well. Then, a

bias (tilt) in the direction of destabilization (asymmetric flattening of the attractor well) would

allow the differentiation signal to influence the fate decision toward a given lineage [8].

A destabilization that results in the disappearance of an attractor state constitutes a bifurca-

tion event in a nonlinear dynamical system: a “sudden” qualitative shift of a system’s configu-

ration of steady states x(t) (here, from existence to nonexistence of the progenitor attractor)

while a control parameter, the bifurcation parameter μ in the systems equations that describe

the dynamics of the system, ẋ(t) = F(x(t), μ), is continuously altered [9–10]. Here, however,

the system equations of the high-dimensional system (see S1 Fig), notably, the bifurcation

parameters μ, are typically not known. In such cases, a phenomenological description of the

bifurcation behavior is more appropriate, in which the bifurcation appears as a critical state

transition [11–12]. Herein, a presumed stable attractor state is observed to gradually destabilize

until the system (cell) suddenly passes a tipping point. At this critical point, the attractor basin

is completely flattened (at least with respect to one state space dimension), and a new neigh-

boring attractor state that is discretely distinct from the initial one becomes accessible. The sys-

tem (the cell) can then rapidly descend into it.

Critical state transitions have been implicated in abrupt shifts in ecosystems, climates, and

social systems, and also in disease transitions [13]. The preceding destabilization of the system

is equivalent to a weakening of the stabilizing forces. Hence, it is manifest in increased (noise-

driven) excursions of the system state x(t) away from its stable steady-state (equilibrium) point

x�, as well as in a slowed return to it. These manifestations are plausible within the permissive

image of a flattening attractor basin. Such observables of a system approaching a bifurcation

event are the early warning signals of an impending critical transition and can often be quanti-

fied as an increase in the amplitude and temporal autocorrelation of the stochastic fluctuations

of the systems variable x(t) around x� [11–12].

While critical transitions have been widely studied in systems whose system state can be

described by a one-dimensional state variable x(t) [11–13], cell states are defined by a high-

dimensional state vector x(t) [14], which, for practical purposes, can be defined by the reliably

measurable transcript abundance of a set ofm genes that participate in the shift of gene expres-

sion patterns associated with the cell state transition. Systems equations that describe the

change in time of a GRN state x(t) could, in principle, be formulated to model all the regula-

tory interactions of the relevant regulatory genes and predict the existence of a bifurcation in

the dynamics of x(t). However, because the specification of the regulatory interactions

required for such dynamical models are typically not available in sufficient detail despite our

increasing knowledge of the topology of GRNs (S1 Fig), the identity of the relevant bifurcation

parameter whose gradual change would drive the differentiation process remains elusive. Nev-

ertheless, numerous generic mathematical models of the dynamics of small GRNs driving cell

differentiation for specific cell types have been proposed and successfully predict attractor

states and bifurcations that map to the observed cell state behaviors [8,15–20].

Given the uncertainties in GRN specification for cell fate decisions, we depart from such

explicit modeling of GRN dynamics and study them within the phenomenological framework

of critical state transitions. This is warranted because cell lineage commitment by a multipotent
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Fig 1. Single-cell analysis of transcript expression during binary fate decision in EML cells. (A) A progenitor EML cell population
was stimulated with the cytokines erythropoietin (EPO) (left), interleukin-3/granulocyte macrophage-colony stimulating factor (IL-3/
GM-CSF) (right), or with a combination of EPO and GM-CSF/IL-3 (center). Flow cytometry histograms of Sca1 surface expression were
gated into Sca1LOW (L), Sca1MEDIUM (M), and Sca1HIGH (H) fractions or subpopulations (green boxes) during fluorescence-activated cell
sorting (FACS) of single cells at the indicated days for use in later analysis (Fig 2). At d3, further division to account for the extreme
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cell is, in fact, characterized by a sudden, discontinuous shift of a stable cell state to another

state. But instead of monitoring a single state variable x(t) continuously, we measure a set of

m = 17 transcripts that serve as components of the high-dimensional state vector x(t) and are

members of a core regulatory network that is involved in the commitment of a multipotent

progenitor cell to either the myeloid or erythroid lineage (S1 Fig). Because high-dimensional

gene expression profiles can currently only be measured in a destructive manner, their changes

cannot be monitored in a continuous way but only at discrete time points in replicate systems.

High-dimensional critical state transitions have been studied for global shifts in microarray-

based transcriptomes [21], but this type of data on x(t) is an aggregate of heterogeneous mix-

tures of dynamical systems (i.e., cells).

Here we take advantage of single-cell resolution measurements of the state vector x(t) rep-

resenting the GRN state of an actual system (a cell), defined by its abundance of them species

of transcripts but for a population of cells that represents a statistical ensemble of n systems

(cells). We derive a generic quantity, the index IC(t), that is computed from the (n ×m) data

matrix X(t) at discrete time points t during the differentiation process. Thus, in essence, we

make up for the lack of a continuous time series that captures the fluctuations of cell state by

exploiting the availability of the individual states in a statistical ensemble of n cells, measured

as time snapshots. We show formally and experimentally that a (relative) increase of IC(t)

serves as an early warning signal of a critical transition that coincides with lineage commit-

ment following a gradual destabilization of the multipotent progenitor state. Thus, we exploit

high-dimensionality and the new granularity afforded by single-cell gene expression analysis

of a cell population and take into consideration first principles from the theory of nonlinear

dynamical systems to predict, without explicit modeling of the underlying regulatory interac-

tions, an impending qualitative phenotype shift. Our theory also explains the observation of

“rebellious cells” during binary fate decisions and, together with the findings, unites the old

dichotomy between selection and instruction in cell fate determination.

Results

Single-Cell Resolution Gene Expression Analysis Suggests Preexisting
Stable Attractor States

To determine if differentiation goes through a tipping point in high-dimensional gene expres-

sion state space, we studied the commitment of the murine multipotent hematopoietic precur-

sor cell line EML [22] into an erythroid or a myeloid fate when released from the progenitor

state and stimulated either with EPO (erythropoietin) or with GM-CSF (granulocyte macro-

phage colony-stimulating factor) / IL-3 (interleukin 3), respectively [4]. In a third experiment,

we treated EML cells with a combination of EPO and GM-CSF/IL-3 to separate destabilization

from fate choice, because we reasoned that the latter should be neutralized by the conflicting

combination treatment. To ensure that heterogeneity of the starting cell population is strictly

outliers (Lʹ, Hʹ)* indicates “rebellious cells” (see text). As previously reported [4], myeloid differentiation in EML cells is driven by the
Sca1HIGH fraction of cells and the global decrease of Sca1 expression is delayed, and can bounce back to intermediate state once cell
have passed the bimodal (d3) stage. (B) For visualization of individual cells’ transcript expression patterns (ofm = 17 genes), cells were
projected onto a dimension-reduced state space spanned by the first three principal components (PC) following principal component
analysis (PCA, see S1 Appendix). Each sphere represents a cell, colored according to treatment: untreated progenitors (grey); cells
treated with EPO (red), cells treated with GM-CSF/IL-3 (blue); and combined-treated cells (purple). (C) To calculate a quasi-potential
landscape for the three cell types for visualization of the idea of attractors as potential wells, a Gaussian filter with σ = 2 was applied to
PC1 and PC2 coordinates of cells at d0 and d6 treated with EPO and GM-CSF/IL-3, leading to a smooth 2-dimensional distribution p.
With the (quasi-)steady state assumption, the attractor landscape was visualized relative to a base level of 0 by − log(p +1). This time-
invariant schematic is only a visual guide and does not model the landscape distortion during the bifurcation. Numerical data for the PCA
graphs can be found in the supporting file S2 Data.

doi:10.1371/journal.pbio.2000640.g001
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Fig 2. Critical transition during lineage commitment. (A)Cell–cell correlation matrices displaying the Pearson correlation
coefficientR(Sk, Sl) for all pairs of cells in states Sk and Sl (see S2 Appendix).R calculated for a set of 150 progenitor cells,
500 EPO-treated, 500 GM-CSF/IL-3-treated, and 450 combination-treated (COMB) cells from data used in Fig 1. Black
squares (diagonal) emphasize the higher correlation between cells within the nominally same population. Two control genes
(GAPDH and TBP) were excluded from this analysis. Lʹ, L, M, H, Hʹ indicate the Sca1 fractions shown in Fig 1: extremely
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due to dynamic fluctuations and not due to preexisting, differentially preprimed cells of

unknown developmental history (which then would merely be selectively enriched for particu-

lar fates by the respective growth factors) [23], we used a clonal cell line as opposed to purified

primary cells. This permitted the study of the actual phenotypic diversification in maximally

uniform cell populations of cells recently derived from a single common ancestor under

invariant and homogenous conditions to assure common history and maximal phenotypic

homogeneity. While such a progenitor cell line may not reflect biological reality because the

cells are likely trapped in a ground state attractor not necessarily present in vivo [3, 24], as

readily revealed by molecular profiling, it offers a robust model system to expose and study

fundamental principles of dynamical systems that do not depend on idiosyncrasies of the spe-

cific biology.

We monitored transcript expression patterns at single-cell resolution using qPCR to

acquire information about the stability of a nominal cell state x(t) presented by the cell popula-

tion, which constitutes a statistical ensemble of (randomly distinct) replicates of a system. For

instance, increase in cell state diversity would suggest destabilization of the nominal cell state.

We found that qPCR was far more sensitive than single-cell RNA-seq in the detection of low

abundance transcripts (S1 Appendix, A.7). The problem of low sensitivity is amplified by the

low capture rate of transcripts in single cell–gene expression analysis (typically 60% to 90% of

transcripts of a given cell are lost) and by technical (sampling) noise [25–27]. This can lead to

false-positive sets of mutually exclusive expression of transcripts and thereby inflate cell-cell

diversity, which is a crucial quantity in our analysis (S1 Appendix, A.8) [28].

Exit from the progenitor state was first verified by flow cytometry measurement of the

downregulation of the stem-cell markers Sca1 and c-kit. The induction of a bimodal distribu-

tion with a new discrete subpopulation with lower Sca1 (and c-kit) surface protein expression

confirmed the switch-like state transition to a committed state (Fig 1A). Fig 1B shows the time

course of single-cell transcript patterns of 17 selected genes known to be functionally involved

in or to mark the fate commitment of EML cells, plus two “housekeeping genes” (S1 Fig and

S1 Table).

The single-cell states were visualized by plotting each cell as a point in the Cartesian space

spanned by the three principal components (PC) from a principal component analysis (PCA)

of concatenated expression data across all time points to reduce the 19-dimensional state space

(17 genes of interest + 2 reference genes; see S1 Appendix). As seen in Fig 1B, the “cloud” of

untreated cells (grey, depicted for reference for each time point) spread upon treatment (col-

ored balls; where red and blue colors are a priori labels, indicating treatment with EPO or

GM-CSF/IL-3, respectively), and reached highest diversity at day 3 (d3). The cells then coa-

lesced into two distinct dense clusters at day 6 (d6), representing the cells committed to the

erythroid (red) and myeloid (blue) lineages, which were identified by the characteristic expres-

sion of erythroid or myeloid transcript levels (S2 Fig and S1 Table). As shown in S3 Fig, in this

single-cell qPCR, measurement noise was only a small fraction of biological cell-to-cell vari-

ability; thus, the dispersion of points in state space predominantly reflects biological diversity

of cells. Loading of gene scores show that PC1 captures the erythroid–myeloid dichotomy,

low, low, medium, high, and extremely high level of Sca1 expression, respectively. (B) Average Pearson correlation
coefficients for cell–cell pairs (left) and gene–gene pairs (center) as well as the state transition index Ic = h|R(gi, gj)|i / hR(S

k,
Sl)i at various time points. Correlation coefficients were calculated for the central fractions/subpopulations in panel A(*).
Error bars indicate SEM. (C)Gene–gene correlation matrices for the 17 genes of interest and the two endogenous control
genes for the three treatments at various time points where correlation is indicated either by color (lower matrix triangle) or
solid color segment in pie chart. Color values for magnitude of correlation coefficient for both matrices (A, C) are shown in
color bar. Numerical data for the graphs in (B) and (C) can be found in S2 Data.

doi:10.1371/journal.pbio.2000640.g002
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whereas PC2 reflects the stemness–differentiation axis (S4 Fig). For visualization purposes,

single-cell resolution measurement, which provides the local cell density for each position in

state space, can be depicted as the elevation of an approximate (fixed) quasipotential landscape

(Fig 1C, legend) [29], which serves as visual guide and shows the three attractor states as min-

ima (potential wells) compressed into one landscape.

Interestingly, progenitor cells receiving a combined treatment also diverged at d3 but stayed

in an intermediate, undecided region of the state space before consistently joining the myeloid

cluster (Fig 1B). Thus, the conflict of signals delayed the fate decision, but a uniform decision

was eventually made. This decision-making, in view of ambiguous signals, corroborates the

notion that gene expression change during lineage determination is not simply instructed by

external growth factors but also governed by intrinsic constraints that channel cells toward

predestined fates—the attractors of the GRN. Importantly, this model does not allow for stable

intermediates, as Waddington first observed [30]. In this case, it appears that the attractor for

the myeloid fate is more readily accessible or that, in our combined differentiation protocol,

the myeloid signal somehow dominates, although the cells that resolved the conflict still

remained distinguishable from the pure myeloid cells.

Destabilization of the Progenitor State and the Critical State Transition
Index IC

Independent of the (unknown) detailed dynamics of the underlying GRN, a destabilization

and disappearance even of a high-dimensional attractor state is a bifurcation event and, there-

fore, should display the signatures of an approach to a critical state transition [11] at which

cells would undergo a discontinuous switch toward the destination state. While the bimodal

distribution of Sca1 (Fig 1A) after d3 indeed suggests a quasi-discrete transition, it cannot

reveal a destabilization of a high-dimensional state x(t) prior to the switch. Recently reported

cases of critical transitions in stressed ecosystems and disease processes (refs. in [13]) pertain

to low-dimensional systems in which, typically, one system variable x(t) was observed longitu-

dinally over time. By contrast, here we examine time snapshots of states of a high-dimensional

system (m = 17-dimensional cell state vector) embodied by the GRN.

Based on theoretical consideration, we showed that a critical destabilization and transition

to a new attractor will be manifest in two changes in the correlation statistics (as explained and

derived in S2 Appendix, B.1–B.3) of the (n ×m) data matrix X(t) [31]:

The first change is (trivially) a decrease of cell–cell correlation R(cell k, cell l) between all

pairs of the n cell state vectors in them = 17-dimensional gene space. This reflects the expected

increase of amplitudes of random fluctuation of gene expression due to the weakening attract-

ing force in the flattening basin of attraction prior to the bifurcation [32]. This decrease in the

coefficients of correlation R between all pairs of n cell state vectors captures an increase in cell–

cell diversity.

The second change is the concomitant increase of gene–gene correlation R(gene i, gene j)

between all pairs of them gene vectors that describe the gene expression values of each gene

across all the cells. Unlike the former, this change is less intuitive. The increase in the corre-

lation coefficients between all pairs of them gene vectors (with n components each), as

mathematically derived in S2 Appendix, arises because of the symmetry-breaking destabili-

zation in a high-dimensional attractor. In short, this can be made plausible from two differ-

ent perspectives:

1. In statistical terms, this change is a consequence of the range restriction effect on correla-

tion, when the dominance of the symmetric stochastic fluctuations of gene expression

Cell Fate Decision as Critical Transition
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around the attractor state, which minimizes gene–gene correlations, yields to the nonsym-

metric, regulated change of gene expression (S2 Appendix, B.2) [31,33].

2. In the dynamical system description, this change is a formal consequence of the appearance

of a saddle point in them-dimensional state space through which the individual cells pass

during the bifurcation, and in doing so align along a reaction coordinate, thus occupying a

subspace of reduced dimensionality (see S2 Appendix, B.3).

Note that here, “correlation” (between cells or genes) does not simply have the usual func-

tion of indicating an association between two variables but is derived from elementary princi-

ples of the constraints in data and of dynamical systems theory. The above considerations

concerning the two opposite changes in the two correlation statistics then motivate an index

for critical transitions, IC:

ICðtÞ ¼
hjRðg i; g jÞji

hRðSk; SlÞi
;

where g are gene vectors, S are the cell state vectors at sampling time t, and hR(. . .,. . .)i denotes

the average of all Pearson’s correlation coefficients of respective pairs of vectors. We postulate

that IC increases toward a maximum when cells go through the critical state transition (S2

Appendix). Recently, Chen et al. proposed a similar index for full transcriptome time courses,

which, for lack of single-cell resolution state vectors, has to estimate state diversification and

requires a separate explicit selection of a subset of genes among which the correlation is com-

puted [21]. Here we start from a predefined set ofm = 17 selected genes that are known to

change significantly (as actuator or as marker) during fate commitment in order to demon-

strate the signature of a high-dimensional critical state transition.

Fig 2A shows the n × n heat map for cell–cell correlation coefficients R(Sk, Sl) for all pairs of

the n = 1,600 cells for the three treatments (EPO, GM-CSF/IL-3 and combined) at each time

point t. The diagonal shows that correlation of cells within the populations decreases at d1 and

notably at d3, compared to d0, and increases again at d6, indicative of a transient diversifica-

tion of cell states and a return to a more homogenous population consistent with an attractor

state. Because we also recorded the cells’ position with respect to the Sca1 surface marker

expression (roughly partitioning the population into three fractions, Sca1-high (H), Sca1-me-

dium (M) and Sca1-low (L) [see Fig 1A]), one can see that the decrease of correlation was not

due to comparing cells across subpopulations in bimodal populations (Fig 1A). The higher

correlation among the cells within the extreme-low Sca1 fraction (Lʹ) in both EPO and

GM-CSF/IL-3 treatment is consistent with advanced commitment of cells that are enriched in

the Sca1-low fraction toward the erythroid fate, as previously reported [4]. By contrast, the

high correlation among theH cells at the end of EPO treatment reflects “rebellious” cells that

became myeloid under EPO treatment (see below).

The second criterion of a critical state transition, the increase in gene–gene correlation

hR(gi, gj)i, is shown in Fig 2B. Both EPO and GM-CSF/IL-3 treatment resulted in almost a dou-

bling of hR(gi, gj)i at d3, which returned toward baseline at d6. The heat maps (Fig 2C) show

that the increase of hR(gi, gj)i resulted from correlated (red) as well as anticorrelated gene pairs

(blue) at d1 and, more pronounced, at d3. By contrast, genes were mostly uncorrelated in the

progenitor state, consistent with the dominance of random fluctuations around the attractor

state (explained in S2 Appendix).

Together, the cell–cell and gene–gene correlation computed from the single-cell gene

expression level data matrix X(t) indeed gave rise to a temporal course of the index IC that

increased toward (and culminates around) d3 after induction of both fate commitments, as

Cell Fate Decision as Critical Transition
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predicted by theory if the cell population approaches a critical transition. The maximum of IC
at d3 coincided roughly with the beginning of lineage separation in state space (Fig 1B). The

decrease after d3 is plausible if one considers that cells enter a new attractor hereafter. How-

ever, this decrease is not strictly predicted by the theory because the assumption of ergodicity

is not necessarily met if cells in distinct attractors are considered (S2 Appendix, B.2).

Robustness of the Index IC

We next analyzed published single-cell gene expression data to further examine the robustness

of index IC. Due to the intrinsic structure of the formula for IC, which is the ratio of the result

of applying the same operation (averaging of all Pearson correlation coefficients) to a data

matrix and to its transpose, it is expected that significant deviations of the value of IC from 1 in

random data is extremely improbable, as bootstrap analysis of our data confirms (p< 10−10;

see S2 Appendix, B.1).

We first examined whether the increase of IC precedes discontinuous cell phenotype transi-

tions in other systems. Few studies monitor a cell developmental process at multiple time

points prior to the key phenotype transition event, but one publicly available dataset [34] used

single-cell RNA-seq for whole transcriptome profiling of the differentiation of bipotent lung

epithelium progenitor cells into the AT1 and the AT2 subtypes during embryonic develop-

ment and appeared to be suited for our purpose. The fate commitment to AT2 cells takes place

between E16.5 and E18.5. Computing IC for all reported transcripts at the various time points

showed that IC indeed increased significantly between E16.5 and E18.5, which was indeed due

to concomitant decrease of cell–cell correlation and increase of gene–gene correlation (S3

Appendix, C.1).

Because, in this case, transcriptome-wide data was available, we next asked whether the

numberm of genes analyzed could affect IC. Note that IC is derived under the assumption that

the genes defining the cell state vector are members of the dynamical system (the core GRN)

that drives or is affected by the critical transition at study, and that only the change of IC but

not its absolute value has a biological meaning. Thus, we examined a situation similar to the

problem in reference [21], when the core set of genes is not known a priori. What can be

expected when a transcriptome-wide gene set is considered? Because the majority of genes in

the transcriptome are not members of the relevant core GRN, one possibility is that including

a larger number of genes for computing IC would decrease the sensitivity of IC. On the other

hand, because the expression behavior of all genes in the transcriptome are already largely cor-

related overall, this could, due to increased possibility of the range restriction effect (S2 Appen-

dix, B.2) [35], boost the changes in hR(gi, gj)i and increase sensitivity of IC when more genes

are considered. We thus compared randomly selected subsets of 2,000, 200, and 20 genes in

the lung cell differentiation data for computing IC and performed bootstrap analysis to deter-

mine the significance of change of IC. As shown in the Supporting Information (S3 Appendix,

C.1), in all cases, IC increased significantly toward the point of fate commitment (and also

decreased afterwards as cells terminally differentiated to virtually the same extent for all

three cases); however, the error was smaller when the number of genes considered was larger.

Thus, the fact that, in our data from the EML cells, we see a drastic and significant increase

of IC by more than two-fold (Fig 2B) suggests that considering a small number of genes as we

did here—entailed by the use of the more sensitive qPCR—sets the bar higher for statistical

significance.

To test a case in which the range restriction effect does not hold because of large cell–cell

variability (minimal baseline cell-cell correlation), we analyzed the single-cell transcriptome

data of the most heterogeneous natural cell population we could find: glioblastoma cells [36].

Cell Fate Decision as Critical Transition
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Random sampling of increasingly larger sets of genes to compute IC indeed showed that, with

increasing number of genes considered, the average cell–cell correlation hR(Sk, Sl)i decreased

—the opposite of the above cases. This elevated the absolute value of IC as well as its statistical

fluctuations. Thus, in case of low inherent cell–cell correlation, increasing the number of (ran-

domly chosen) genes increases noise. However, even with 2,000 genes used and higher vari-

ance of IC, a change of IC by two-fold as we observe (Fig 2B) would still have been significant at

p< 0.01 (S3 Appendix, C.2).

In summary, IC is robust to varying the number of genesm used for its computation and

for a wide range of preexisting intrinsic correlation between the cells. But sensitivity is higher

in less heterogeneous cell populations (as are cell lines) and is increased by the use of a selected

set of genes known to participate in the phenotype transition.

An Alternative Projection of Differentiation Trajectory Also Shows
Evidence of Critical Transition

To exclude the possibility that the observed pattern of gene expression changes indicating a

critical transition is an idiosyncrasy linked to monitoring the exit from the progenitor attractor

along the particular state space direction of decreasing Sca1 expression, we also monitored and

dissected differentiation along the axis of the increase of differentiation marker CD11b, a reli-

able indicator of myeloid differentiation (Fig 3A). Following GM-CSF/IL-3 treatment, first

CD11b surface expression increased and then Sca1 decreased; that is, the cells moved from

the CD11bLOW/Sca1HIGH to the CD11bHIGH/Sca1LOW state. We observed that at d3, the time

around which maximal destabilization was expected, the entire cell population split into

three subpopulations with respect to CD11b: Sca1HIGH/CD11bLOW (termed α), Sca1HIGH/

CD11bHIGH (β), and, unexpectedly, Sca1LOW/CD11bVERY-LOW (γ) (Fig 3A). Single-cell tran-
script analysis suggests that the α-subpopulation corresponds to the destabilized but not yet

fully committed cells because it displays the highest cell–cell diversity and high correlation of

the gene vectors (Fig 3B, S5 Fig). The cells of subpopulation β were most advanced toward the

myeloid lineage (high expression of Gfi1, CEBPα and cJun transcripts), consistent with the

high CD11b expression, whereas cells of subpopulation γ correspond to rebellious cells that
moved in the opposite direction from that intended by the treatment with GM-CSF/IL-3 (see

below) and, thus, displayed erythroid gene expression patterns, including a large number of

EpoR positive cells (S5A–S5D Fig). The index IC is drastically increased in all three cell popula-

tions at d3 (Fig 3B, inset), indicating a destabilization of the progenitor attractor. Because IC
was computed separately for each subpopulation, this also suggests that its increase was not

driven by the increase in gene–gene correlation as a trivial consequence of separation into dis-

tinct cell types.

At d6, the γ population disappears (Fig 3A), consistent with the rebellious cells in the PCA

analysis of Fig 1B. However, addition of EPO to sorted subpopulations in growth factor–free

cultures rescued the γ cells (Fig 3C) and, to a lesser extent, the α cells, but not the myeloid com-

mitted β cells. This finding not only confirms that the γ cells have aberrantly moved toward

the erythroid lineage despite instruction for commitment to the myeloid lineage but also cor-

roborates the notion of cell selection in fate control in which cytokines act as growth factors to

determine lineage by providing the survival and mitogenic signals to the early committed cells

that express the cognate receptor, in this case the EpoR [37–41].

Critical Slowing Down of Relaxation of Outlier Subpopulations

We next examined a dynamical signature (early warning signal) of an approach to a critical

transition used in low-dimensional systems: the slowing down of relaxation back to the
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Fig 3. Intermediate stage of myeloid commitment along CD11b dimension exhibits destabilization of
progenitor state. (A) Flow cytometry dot plot of expression of Sca1 and CD11b upon treatment of the progenitor EML
cells with GM-CSF/IL-3. Three distinct subpopulations on d3, designated, α, β and γ, in the tri-modal distribution of
CD11b flow cytometry histogram underneath (red line, treated; blue line, untreated). (B)Cell–cell correlation for 72
progenitor cells and 48 cells from each of the α, β, and γ subpopulations, and gene–gene correlation for all 17 genes of
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original attractor states due to reduced attracting force [13, 41]. Here, critical slowing down

was exposed by measuring the relaxation of sorted outlier cells, which are (transiently) in an

extreme state with respect to projection into just one dimension, that of Sca1 [4]. We thus iso-

lated the Sca1LOW tail of populations either treated for 1 d with GM-CSF/IL3 to destabilize the

progenitor state, or in untreated populations. As previously shown, the Sca1LOW fraction re-

establishes the parental distribution within 5 to 6 d [4]. By contrast, cells exposed to GM-CSF/

IL-3 for just 1 d (which had not yet visibly altered Sca1 expression) required at least 9 d to

reconstitute the parental Sca1 expression distribution (Fig 4). Although there could be many

reasons for the impaired relaxation, including any nonspecific, nonphysiological perturbation

of the progenitor state by the cytokines, these reasons may themselves be seen as a manifesta-

tion of attractor destabilization, and this finding is at least phenomenologically in line with a

critical slowing down.

Rebellious Cells as Manifestation of Noise at Bifurcation

Intriguingly, in both projections of monitoring differentiation along the axis of decreasing

Sca1 (Fig 1B) as well as increasing CD11b (Fig 3A, the γ-cells), at d3 in both cases some cells

consistently went in the “wrong” direction, opposite to the instruction by the respective cyto-

kines (i.e., some EPO-treated cells were associated with the myeloid cell cluster and vice versa).

Consistent with previous observations [4], the lineage of rebellious cells mirrored their Sca1

expression levels in the untreated population: EPO-treated cells moving toward the myeloid

fate at d3 stemmed from the Sca1HIGH fraction in the progenitor population, whereas

GM-CSF/IL3-treated cells fated toward the erythroid cells originated in the Sca1LOW fraction

(S6 Fig). This suggests that the priming of cells in the progenitor population toward the ery-

throid or myeloid fate (as reflected in the Sca1 surface expression [4]), respectively, predisposes

the cells to react in a rebellious way if the differentiation signal is opposed to their priming.

This is consistent with an initially more or less symmetrical destabilization of the progenitor

attractor state, such that wrongly primed cells are pushed toward the opposite lineage as the

basin of attraction flattens and vanishes. Note that the rebellious cells disappeared at d6, possi-

bly by transdifferentiating to the correct lineage or by dying out (if they are not rescued by

providing the commensurate growth factor; Fig 3C). The existence of rebellious cells may cor-

respond to the observation of mixed colonies in early colony assays for hematopoietic differen-

tiation [8,42,43].

The repeated observation of rebellious cells is consistent with a bifurcation at which two

new attractors become accessible, representing the dichotomy between the two sister lineages

[18]. The destabilization of the progenitor attractor, unlike in the canonical saddle-node bifur-

cation [11], opens up a choice of two attractors, and despite a bias toward either one imposed

by the lineage-determining growth factors, this still allows cells to spill into the “wrong”

attractor if molecular noise overcomes the instructive bias toward the intended lineage. Thus,

the existence of rebellious cells is also a signature of a critical transition.

To show that this polarized behavior is not an artifact of projection in one state space

dimension (in this case, with respect to Sca1 or CD11b surface expression) but holds in the

interest and two endogenous control genes. Pearson correlation coefficient displayed as heatmap; same color
scheme as in Fig 2. Bar graphs in box show the drastic increase of IC for all the three subpopulations at d3 compared
to the untreated progenitor cells, P(d0). IC computed as in Fig 1. (C)Rescue by EPO of the “rebellious” = unintended γ
subpopulation (pink curve) during myeloid differentiation. Three subpopulations (α, dark blue; β, light blue; γ, pink)
were FACS sorted and antibodies were removed and stimulated with EPO. Total cell number and viability were
quantified on day of sorting (d3) and four subsequent days. Viability was determined based on percent of cells
excluding trypan blue. Each point represents average +/- STD for two biological replicates.

doi:10.1371/journal.pbio.2000640.g003
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high-dimensional state space, we measured the transcriptomes of the subpopulations that

have either responded to the growth factor or appeared to have not responded, at least with

respect to change in Sca1 expression (Fig 5). As shown earlier (Fig 1), all three treatments,

with either cytokines as well as combined, triggered a split of the population into two dis-

tinct subpopulations with respect to the progenitor marker Sca1 (bimodal distribution at

d3, Fig 5A).

Intriguingly, cells from the Sca1HIGH subpopulation that appeared to have not responded

after 3 d in EPO because Sca1 stayed high (fraction #3 or H-Sca1 in Fig 5A) had a transcrip-

tome that resembled that of the cells that had responded to GM-CSF/IL-3 treatment and had

down-regulated Sca1 (fraction #8 or L-Sca1 in Fig 5A). Conversely, Sca1HIGH cells that had

apparently not responded yet at d3 to GM-CSF/IL-3 (fraction #9 in Fig 5A) displayed a more

pronounced change of the transcriptome that was remarkably similar to that of Sca1LOW cells

(fraction #2) that had responded to EPO (for quantitative analysis of transcriptome similari-

ties, see S2 Table). Extraction of those 17 genes in the microarray that were used in the single-

cell qPCR analysis and hierarchical cluster analysis with these genes (Fig 5B) recapitulated

these relationships, confirming that this set of genes represented the genome-wide high-

dimensional dynamics well. In the combined treatment cells exhibited a transcriptome

Fig 4. Critical Slowing down of state relaxation during fate commitment. Apparent critical slowing down
of relaxation and restoring of parental distribution of the sorted Sca1-low outlier fraction in the treated
population. Clonal EML progenitor cells were stimulated (top) with GM-CSF/IL-3 or not (bottom), and cells
with lowest 15% Sca1 expression were FACS-sorted one day after stimulation.

doi:10.1371/journal.pbio.2000640.g004

Cell Fate Decision as Critical Transition

PLOS Biology | DOI:10.1371/journal.pbio.2000640 December 27, 2016 14 / 28



behavior similar to that of the nominally myeloid fated (i.e. GM-CSF/IL-3 treated) cells, in

agreement with the single-cell transcript analysis (Fig 1).

Thus, transcriptome measurements of subpopulations that appear to have not responded to

the differentiation signal with respect to downregulating the progenitor state marker suggest

that they actually had responded but by altering gene expression in the non-observed state

space dimensions, underscoring the importance of considering high-dimensional dynamics.

The intriguing crosswise similarity of the transcriptome changes in the non-responders in one

treatment to that of the responders in the other treatment strongly supports the model of a

constrained dynamics with a finite number (here: two) of fate options. These are embodied by

attractor states that establish the predestined developmental potentials, and they become acces-

sible once the progenitor state is destabilized. The aberrant but highly defined behavior of

Fig 5. Whole-population transcriptome analysis reveals transient alternative program (rebellious cells). (A) Sca1 surface expression
population distribution in progenitor and cytokine-treated cells and transcriptomes of sorted subpopulations at indicated treatments/time points,
displayed as GEDI self-organizing maps [44]. Progenitor EML cells were stimulated with EPO alone, with GM-CSF/IL-3 alone or with the
combination of the two, and the Sca1-Medium (M) fractions (d0 and d6) and/or the Sca1-Low and -High subpopulations (d3) were FACS sorted
for microarray analysis. (B)Hierarchical cluster analysis of the microarray-based transcriptomes of samples in A (columns, correspondence
indicated by the green numbers) for a subset of the 17 genes analyzed in single-cell qPCR (rows). The entire experiment was performed twice
in two laboratories with similar results. Color bar represents transcript expression values in log-scale (seeMaterials andMethods).

doi:10.1371/journal.pbio.2000640.g005
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rebellious cells exposes the poised instability and a stochastic, non-instructive component in

fate determination.

We suspect that the rebellious cells represent those cells that, following the flattening of the

progenitor attractor initiated by the external differentiation signal, erroneously enter the non-

intended attractor because the stochastic gene expression fluctuations may, in some cells, over-

come the instructive signal that biases the destabilization toward a specific lineage attractor.

Nevertheless, the rebellious cells, being in the “wrong” fate, should eventually die because the

lack of survival signals provided by the presence of the respective growth factor, as their disap-

pearance in the measurement in Fig 1 implies. The rescue of the rebellious cells by the opposite

cytokines confirms this model (Fig 3C).

Thus, instruction (extrinsic determination) and selection (driven by intrinsic stochasticity

of responsiveness) synergize in fate control in a two-step scheme: cells must both be instructed

and be selected for by the differentiation signal in order to adopt a particular phenotype [38–

40]. This two-step process increases the fidelity of fate determination in the tissue. The

attractor destabilization concept unites these two mechanisms of lineage commitment that has

historically been opposed to each other but logically are not mutually exclusive [37,42,45].

Discussion

Here we present a novel use of single-cell gene expression analysis that is phenomenological

but informed by dynamical systems theory to make predictions (Fig 6). We show that exit

from the multipotent progenitor state and commitment to a particular cell lineage exhibit sig-

natures of a critical state transition that can be exposed by single-cell resolution gene expres-

sion analysis of a cell population undergoing cell fate commitment. This phenomenological

approach does not require detailed modelling of the dynamics of the underlying gene regula-

tory pathways and a definition of a bifurcation parameter, which is currently not realistic

given our insufficient knowledge of the GRN architecture. The key formal assumption is only

that the GRN state change implementing the cell fate decision and commitment is due to a

monotonical gradual alteration of the value of an (unidentified) bifurcation parameter that

drives the change of the attractor landscape through a bifurcation (without specifying which

type). Its chief consequence, the destabilization of a high-dimensional attractor state, can be

observed. To do so, we treat the cell population as a statistical ensemble that (ergodically)

explores the structure of a high-dimensional gene expression state space. The assessment of

the latter directly confirmed that the notion of a critical state transition and associated early

warning signals also extends to high-dimensional dynamics, as recently suggested [20,22]. Sin-

gle-cell resolution analysis of a statistical ensemble at discrete time points makes up for the

technical challenge of measuring the temporal fluctuations in cells, and the phenomenological

but formal framework of critical transitions obviates the need for explicit modeling of the sto-

chastic dynamics of gene regulatory circuits.

We show that high-dimensional critical dynamics of mammalian GRN can be captured by

measuring the transcript levels of a set of 17 genes in individual cells at multiple time points t

and by computing from such data the index IC(t), a quantity derived from the theory of non-lin-

ear dynamical systems that measures concomitant changes in cell–cell diversity and gene–gene

coordination. Ideally, the genes considered for computing ICwill encompass those that undergo

coordinated changes during the critical transition, as dictated by the GRN that drives the critical

transition. However, we show that 20 randomly selected genes from the transcriptome may also

suffice, likely because of the basal genome-wide coordination of gene expression.

IC is particularly useful for single-cell resolution snapshots of molecular profiles provided

by burgeoning RNA-seq and CyTOF technologies and taken in statistical ensembles of cells
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(i.e. cell populations) at multiple time points during a biological time course. IC captures the

information immanent in both them gene vectors (the expression level of a gene across a large

number n of individual cells) and the n cell vectors. Thus, IC does not require time-continuous

monitoring of fluctuations as in many studies of critical state transitions because the informa-

tion needed is in the high dimensionality (m) and in the statistical ensemble (n). Although the

decrease of cell–cell correlation (denominator of IC) as a sign of attractor destabilization is

intuitively obvious, IC is not an ad hoc statistical measure that identifies patterns in the data

but is grounded in first principles of non-linear dynamical systems [46], as is particularly evi-

dent in the numerator, the gene–gene correlation. Conceptually, it is possible to speculate on a

correspondence between the increase of gene–gene correlation to the appearance of long-

range correlations of state variables in time (autocorrelation) and/or space used in the classical

phenomenological analyses of critical state transitions [11] or of stressed populations [31],

Fig 6. Epigenetic landscapemodel of symmetry-breaking bifurcation event. The architecture and the specification of the individual
interactions of the gene regulatory network (left) determines the topography of the epigenetic landscape (center) in which the elevation
(formally, a quasi-potentialU) [29] visualizes the relative stability of individual cell states, represented by the position with respect to the x-
axis (state space). Thus, valleys represent stable attractor states. Fate commitment is induced by external differentiation signals, which
initiate the deformation of the landscape and can be divided into two phases: first, the destabilization of the (meta)stable attractor of the
progenitor cells (grey balls) and generation of a poised unstable state; and second, the opening of access to the destination attractors for
both the intended and non-intended fate, biased toward the former by the differentiation signal. This allows the cells (balls) to descend to the
new attractors. The disappearance of the progenitor attractor marks the critical transition (tipping point). As explained in S2 Appendix, the
increase in cell–cell variation and in gene–gene correlation as the progenitor attractor destabilizes and cells spread and align along the
particular direction (reaction coordinate) to exit the old attractor gives rise to a gradual increase of the index IC (right) as cells approach the
critical transition. This event coincides with lineage separation in state space and a major shift in cellular transcriptome. (Note, however, that
there is no proof that IC reaches a peak just at the tipping point.)

doi:10.1371/journal.pbio.2000640.g006
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although such an equivalence has yet to be formally shown. A recent study also examined the

approach to the bifurcation as a critical transition and its phenomenological manifestation in

the presence of stochastic fluctuations, albeit in a continuous two-dimensional system repre-

senting a version of the canonical toggle switch with two mutually suppressing genes. The

authors found that not only the cell diversity increases but also the anticorrelation of the two

genes [20].

On the biology of cell fate commitment, we show that bifurcation dynamics and single-cell

expression analysis naturally integrate the two opposing classical models of cell fate determina-

tion [38]: instruction by extrinsic factors that explicitly regulate the gene expression change in

each cell so as they adopt a particular cell fate [42] and selection of cells that have entered an

intrinsically predestined gene expression state (attractor) [37] by promoting their survival and

proliferation. Both models are supported by our observations. The deterministic bias toward

a prospective lineage in the destabilization of the progenitor state, as manifest in the early

changes of the transcriptome (Fig 5A), confirms that instruction plays a role in fate determina-

tion. Conversely, the survival of the rebellious cells when the appropriate growth factors are

later provided (to promote the non-intended fate) exposes a role for selection in cell lineage

determination (Fig 3C).

In the case of selection, the promotion of one differentiation fate over the other is straight-

forward. But how does instruction steer a cell toward the desired state if leaving the multipo-

tent state is driven by attractor destabilization? What causes the asymmetry of outcome that

ensures that cells in the desired lineage dominate over the rebellious cells? The term “biased

destabilization” used herein is more than a metaphoric explanation. It is grounded in the

underlying bifurcation dynamics and could be elaborated in formal ways if one were able to

explicitly model the dynamics of the relevant gene circuit for which many generic theoretical

models have been proposed [8,15–20]. In the simplest case, binary lineage branching has often

been modeled as a symmetrical supracritical pitchfork bifurcation [47]; here, the instructive

signal could alter the values of other parameters in addition to the bifurcation parameter, such

that one of the two post-bifurcation stable steady states (depending on the signal) is more sta-

ble than the other. In an alternative class of models, the bifurcation is inherently asymmetric,

e.g., modelled as an imperfect pitchfork bifurcation [48]. Such models are more realistic

because these nonsymmetrical bifurcations are structurally robust. Here, one of the two post-

bifurcation stable states is detached from the destabilizing progenitor attractor state and, thus,

is less accessible (requiring stronger gene expression noise) than the other, which can be

directly accessed from the vanishing progenitor attractor, as depicted in landscape diagrams,

as in Fig 6 and references [11–13]. The instructive signal could introduce the imperfection,

such that either one of the new attractors becomes separated. Future detailed analysis using

measurements of single cell states at much higher time-resolution could address these ques-

tions and distinguish between these possibilities.

In this study, we did not consider cell-to-cell communication mediated by local and soluble

signals, which can modulate the internal GRN dynamics and, hence, affect phenotype transi-

tions. This is an important aspect because the nonlinear, high-dimensional dynamics of cell

states driven by a GRN poises cell populations at metastable states, making them akin to an

excitable medium that, upon external perturbation, can respond in nonintuitive ways, as most

lucidly epitomized by the rebellious cells. This response introduces cell population heterogene-

ity, underscoring the importance of cell population dynamics in which subpopulations coexist

and shift their relative abundances in many ways that are affected by cell–cell communication

between cells of distinct types. Indeed, a transition from cell type A to cell type B often does

not follow first-order kinetics, suggesting non-cell autonomous effects (S.H., unpublished

observation). For instance, cells that have reached an attractor state may secrete signals that
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can either promote or suppress the transition into it. A cell–cell interaction network would

add an additional layer of dynamics to that of the intracellular GRN. The resulting (multiscale)

cell population dynamics would be manifest as an accentuated modulation of the attractor

landscape (Fig 6) but could still be captured using the phenomenological framework of critical

transitions because attractor destabilization preceding the phenotype switch does not depend

on the specific (physical) implementation of the bifurcation.

As single-cell resolution molecular profiling of cell states become routine, it will be impor-

tant to analyze this new type of data, embodied by the matrix X(t), in a fashion that is hypothe-

sis-driven or is informed by the underlying first principles of dynamical systems (Fig 6), as

opposed to solely using the current palette of ad hoc computational data analytics tools to find

cell clusters and reduce dimensionality [46]. Although still phenomenological, invoking con-

cepts of critical transitions provide a formal link to the fundamental principles.

It remains to be seen whether critical transitions can be as readily detected in other cell sys-

tems as in the few examples examined in this study. Moreover, the significance for diseases

and response to drugs of cell population dynamics with instabilities and critical behaviors

could be further elucidated as single-cell analysis becomes commonplace and we move beyond

descriptive data analysis. The notion of critical behaviors could be of practical utility for pre-

dicting major shifts in cell populations and tissues relevant in development and disease using

data from single-resolution measurements at multiple discrete time points.

NOTE ADDED IN PROOF: During the submission of this manuscript we became

aware of the work of Richard, et al., 2016 (doi: 10.1371/journal.pbio.1002585) which was

motivated by a different conceptual framework and used different analysis methods but

arrived at a similar conclusion.

Materials and Methods

Culture and Differentiation of EML Cells

Blood progenitor EML cells (ATCC CRL-11691) were cultured and maintained as described

previously [26]. Multipotent EML cell population was stimulated with either EPO (to differen-

tiate into erythroid cells), GM-CSF/IL-3 and ATRA (to obtain myeloid cells), or a mixture of

all cytokines for the “combined” treatment as previously reported [4,26]. Wright-Giemsa

staining was performed with some modification following a reported protocol [27]. In brief,

60,000 cells in 250 μl of PBS + 1% FBS buffer were cytospun at 350 rpm for 5 min per slide and

allowed to air dry for 10 min. Slides were subjected to five 1-second dips in methanol, followed

byWright-Giemsa staining solution (0.4% [w/v], Sigma). After a final rinse with water, slides

were allowed to air dry for 30 min. Colored phase contrast images were obtained using a Zeiss

Axiovert 200Mmicroscope.

Flow Cytometry and Fluorescence-Activated Cell Sorting (FACS)

Cell surface protein immunostaining and flow cytometry measurements were performed

using established methods [4]. Briefly, the antibodies Sca1-PE (BD Pharmingen #553335),

ckit-FITC (BD Pharmingen #553355), and CD11b-FITC (BD Pharmingen #557396) were used

at 1:1,000 dilutions in ice-cold PBS containing 1% fetal calf serum with (flow cytometry) or

without (FACS) 0.01% NaN3. Appropriate unstained and single-color controls were used for

gate definition and compensation setup. Isotype control antibodies (BD Pharmingen #553988

for FITC and #553930 for PE isotype) were used to establish the background signal caused by

nonspecific antibody binding. Propidium iodide (Roche #11348639001) staining was used to

identify dead cells that were removed from analyses. Flow cytometry analysis was performed
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on a BD FACSCalibur cell cytometer with 10,000 viable events for each sample. Data were

acquired using CellQuest Pro (BD) software and analyzed in FlowJo.

For FACS sorting, the Sca1 protein distribution was measured and the expression distribu-

tion was gated into three regions according to the Sca1 expression level as Sca1-Low, Mid, and

High on day 0, 1, and 6 or four regions on day 3 after differentiation initiation (Fig 1A). Single

cell sorting was conducted on a BD Biosciences FACSAria III in lysis buffer (see below). For

myeloid differentiation, cells were stained with antibodies for both Sca1 and CD11b protein

markers, and cell subpopulations were gated as illustrated in Fig 3A. For studies involving the

dynamics of sorted subpopulations, antibodies were removed after sorting using brief incuba-

tion in a low-pH buffer [4].

Single-Cell Gene-Expression Analysis Using OpenArray qPCR

Single cells were directly sorted into 5.0 μl of lysis buffer (CellsDirect kit, Invitrogen) contain-

ing 4.25 μl Resuspension Buffer and 0.25 μl Lysis Enhancer using a FACSAria III (BD Biosci-

ences). 0.5 μl RNaseOut (Invitrogen) was added to the lysis solution to protect the RNA from

degradation. To ensure that liquid droplets containing single cells were deposited at the center

of the well and not at the wall, the position was checked on the plastic film covering the PCR

plate. To reduce the possibility of cells sticking to the wall of the PCR well plate, we used low-

binding PCR plates (Axygen, #6509). As control sample, a small population of 100 cells were

sorted into a single well for qPCR analysis. To test for contamination of sorted cells with

mRNA from lysed dead cells, 5.5 μl liquid from the FACS instrument was collected and ana-

lyzed. After sorting, the samples were heated to 75˚C for 10 min to accelerate the lysis process,

and samples were stored at -80˚C. From these single-cell lysate samples, cDNA was directly

synthesized as described previously [26]. The obtained cDNA was preamplified by 18 cycles

[26] and subsequently diluted with Tris-EDTA buffer at a ratio of 1:10, resulting in templates

for the real-time PCR analysis. This protocol led to fewer than 30 quantification cycles (Cq)

during the single-cell qPCR analysis on an OpenArray system (Life Technologies). On this sys-

tem, each qPCR plate consists of 12×4 subarrays and each subarray contains 8×8 reaction

chambers of 33 nl volume (S7A Fig) [28]. Each sample was divided into a subarray with 64

reaction chambers prior to qPCR quantification. No-template (water) control was also run on

each plate to check for nonspecific products and/or presence of contaminants in the master

mix. Following the amplification, the corresponding curves and Cq values were processed

using the OpenArray Real-Time qPCR Analysis software (version 1.0.4) with a quantification

threshold of 100(+/-5). Specific PCR primers were preimmobilized in the chambers (S7B Fig)

and released in the first cycle by heat. For each subarray, 2 μl of target sample was loaded into

each well of a 384-well plate (Applied Biosystems); subsequently, 3 μl of the master mix reac-

tion consisting of TaqMan OpenArray Real-time PCRMaster Mix (Applied Biosystems) was

added to each well. Target and master mix were combined and centrifuged, and the 384-well

plate was processed in the OpenArray AccuFill system (Applied Biosystems). During process-

ing, 2.1 μl of the reaction solution was transferred automatically from each well into the corre-

sponding subarrays of a qPCR plate, where the reaction solution retains into the reaction wells

due to the differential hydrophilic–hydrophobic coating between wells and surface of the

qPCR array [28]. The qPCR step was performed using thermocycling conditions of 50˚C for 2

min, 95˚C for 10 min, 40 cycles of 95˚C for 15 sec, and 60˚C for 1 min.

Testing Taman qPCR Assays

We used off-the-shelf primers designed by Applied BioSystems (Life Technologies) for the

analysis. The primers are usually designed to span exon–exon junction to target multiple splice
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variants of one transcript and to target only and specifically the gene of interest, avoiding

amplification of genomic DNA. S3 Table lists all genes of interest, the inventoried TaqMan

assay IDs (Applied Biosystems), and further relevant information when the manufacturer does

not provide primer and probe sequences. To evaluate qPCR assay performance, calibration

(standard) curves were generated by performing qPCR on a serial dilution of a prepared tem-

plate. Each of these dilutions was dispensed into two subarrays of OpenArray plate, leading to

six technical qPCR replicates for each single cell sample. To minimize the effect of sampling

errors on quantification precision, only sample/assay combinations with at least three quantifi-

able replicates were considered for preparing the standard curves. The GAPDH assay was not

preimmobilized on OpenArray plate but was independently tested on BioRad qPCR platform.

Analysis of Single-Cell Gene Expression Data

Data analysis is described in more details in S1 Appendix. Single-cell expression data were ini-

tially analysed with OpenArray qPCR analysis software. For quality control, amplification

curves were quality filtered and Ct thresholds were set for each assay with the same thresholds

used across all experiments and cell populations. Data were subsequently exported to Excel as

csv files. All of Cq values are available in S1 Data. Samples not expressing any gene were

excluded from the analysis. Experimentally determined LODs were used as cutoff Cqs (S3

Table). Each assay was performed in triplicates, and the median of the triplicates was used for

subsequent analysis. After this preprocessing, ΔCq was calculated as previously described [29].

Higher level of analysis such as correlation, clustering, and PCA was performed on log2-trans-

fromed expression data.

Gene Expression Profiling with Microarrays and Data Analysis

Microarray analyses were performed by the Vancouver Prostate Centre. EML progenitor cell

population was stimulated with EPO alone, IL-3/GM-CSF alone, or a combination of all cyto-

kines. On d3 and d6 after stimulation with different cytokines, the main “peaks” in the Sca1

distribution were gated and cell subpopulations were sorted using FACSAria III. Fig 5A illus-

trates the experimental design for the microarray experiments. Total RNA was extracted from

1×106 of sorted subpopulations using mirVana miRNA Isolation Kit (Ambion) following the

manufacturer’s instructions. Genomic DNA was removed from the isolated and purified RNA

using DNase I. Total RNA quality was assessed with the Agilent 2100 Bioanalyzer prior to

microarray analysis. Samples with a RIN value equal to or greater than 8.0 were deemed

acceptable for microarray analysis. Samples were prepared following Agilent’s One-Color

Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling v6.0. An input

of 100 ng of total RNA was used to generate Cyanine-3 labeled cRNA. Samples were hybrid-

ized on Agilent SurePrint G3 Mouse GE 8x60KMicroarray (Design ID 028005). Arrays were

scanned with the Agilent DNAMicroarray Scanner at a 3 μm scan resolution, and data was

processed with Agilent Feature Extraction 11.0.1.1. To filter out genes that were not expressed

above the background noise, a raw intensity cutoff value of 25 was applied because the correla-

tion between the technical replicates decreases for higher levels. Green processed signal was

quantile-normalized using the “normalize.quantiles” function in R that takes care of inter-chip

variability. To filter out genes which did not change between the samples, the distribution of

each gene across all samples was analyzed. Therefore, the standard deviation (STD) distribu-

tion was calculated and only genes with STD> 10% were selected. As a result, 6,297 genes

passed the criteria and were selected as the top 10% of genes among the samples. Self-organis-

ing maps (SOM) of the top 10% of most varied genes (6,297 genes) were generated using the

Gene Expression Dynamics Inspector program (GEDI) [44]. Cluster analysis was performed
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using the “clustergram” function in Matlab R2012a Bioinformatics toolbox using hierarchical

clustering with Euclidean distance metric and average linkage to generate the dendrogram.

Input data was log2-tranformed values of normalized fluorescent intensity signals for genes of

interest extracted from the samples and plotted as a heatmap. Data represented the average of

n = 2 independent biological replicates. The normalized fluorescent intensity values of 17

genes of interest in the curated network were extracted from each sample.

Supporting Information

S1 Fig. Manually curated model of gene regulatory network governing fate decision of

CMP.Network of experimentally verified regulatory interactions of transcription factors

involved in multipotency of the CMP state, fate decision and differentiation to the erythroid

and myeloid lineages (S1 Table). The canonical GATA1-PU.1 circuit is highlighted in green. A

few surface markers including c-kit (progenitor, grey box), EpoR (erythroid, red box) and

CD11b (myeloid, blue box) were included in the network to control the cell differentiation

behavior and used as markers for lineage commitment in experiments. The numbers point to

the row in the S1 Table that contains the references.

(JPG)

S2 Fig. Gene expression profile of single-cell samples during differentiation. Expression

profiles of 17 transcription factors and control genes (rows) in individual cells (columns) are

visualized as a heatmap. Cell columns are arranged for days d1, d3 and d6 with respect to dif-

ferent treatments where grey shades correspond to untreated progenitors (d0), red shades to

EPO treatment, blue shades indicate cells treated with GM-CSF/IL-3 and purple shades to

combined treatment EPO+GM-CSF/IL-3 cytokines. The different shades of each color indi-

cate the different Sca1 marker expression levels Sca1Low (L), Sca1Mid (M) and Sca1High (H)

determined during FACS sorting where darker shades denote higher Sca1 expression. Gene

rows were ordered according to their biological role as indicated on the left.

(JPG)

S3 Fig. Technical noise associated with single-cell RT-qPCR is significantly smaller than

biological cell-cell variability. (A)Quantification cycles (Cq) of 80 individual EML cells for

GATA1 expression is reported. Values are means ± STD for up to 128 technical replicates. (B)

Quantification cycles (Cq) of up to 110 technical replicates are presented for 3 selected single-

cells. Single-cell Cqs of biological samples clearly show a broader distribution relative to that of

technical replicates. (C) Box plots represent the variability in terms of CV for technical repli-

cates averaged over 110 realizations of the real-time PCR-steps on the ds-cDNA and the distri-

bution of CV across all 80 individual EML progenitor cells for the GATA1 expression. The

biological variation was significantly larger than the technical noise (p-value 2.2e-28, Mann-

Whitney U test). Similar results were obtained for PU.1 (not shown).

(JPG)

S4 Fig. Distinct trajectories of cell differentiation are observed upon stimulation of pro-

genitor cells with cytokines in the PCA state space. Principal component projections in a

total of ~1600 haematopoietic cells including progenitor (black), single-EPO treated (red-

shades), single-IL3/GM-CSF treated (blue-shades) and combined-treated (purple-shades) in

the first three components determined from expression of all 17 transcription factors and

endogenous control genes. (B) Principal component loadings for PC 2 and 3 indicate the

extent to which each gene contributes to the separation of cells along each component. (C)

PCA weights of genes for the first three PCs reveals the importance of the individual genes to

explain the difference between the different treatments and corresponding cell fate. (D) Cells
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in their attractor states still exhibit heterogeneous transcription profiles that can be traced back

to individual genes. Cells treated with GM-CSF/IL-3 for 6 days are clearly located within the

state space defined by the myeloid genes and cells treated by EPO exhibit 2 clusters where the

lower one is governed by erythroid genes and the higher one by stemness genes. (E) Variance

explained by principal components show that the first three components jointly explain more

than 70% of variation in the data.

(JPG)

S5 Fig. Gene expression in individual cells from the progenitor population and the α, β,
and γ subpopulations. (A-D) Heatmap representation of gene expression profiles for the

set of 17 genes of the curated network and 2 endogenous genes as control in total 216 single

cells including 72 progenitor cells (panel A) and 48 single cells from each of the three sub-

populations in the tri-modal Sca-1 population distribution on day 3 after GM-CSF/IL-3

treatment (Fig 3 in main text), α (B) β (C) and γ (D). Genes are ordered according to their

reported biological role, as erythroid-associated (red box), stemness (green box), myloid-

associated (blue box) and endogenous genes in all subplots. Based on the expressed genes,

the β subpopulation seems to be committed to the myeloid lineage while the γ subpopulation
is committed to the erythroid lineage. The α subpopulation exhibits an indeterminacy with a

bias towards the myeloid lineage. (E) PCA of all attractor cells (d0 and d6) as shown in the

S4 Fig combined with the cells from the α (yellow), β (green), and γ (pink) subpopulations
support the above described similarity to the untreated EML, the GM-CSF/IL-3 stimulated

and the EPO-stimulated cells, respectively. (F) Coefficient of variation CV of expression lev-

els of distinct genes is used as a cell-specific quantity to expose population dispersion and

has no direct physical meaning; it was calculated for each cell from the expression levels

across all genes for each subpopulation. Histograms represent the number of cells at differ-

ent level of the CV measure and show that cells in α subpopulation have higher spread of cel-

lular CV values.

(JPG)

S6 Fig. Single-cell gene expression analysis: PCA from Fig 1 recolored for origin in the

Sca1 population fraction. Colors of cells again (as in Fig 1) indicate treatment, but in addi-

tion, their provenience from the respective Sca-1 fraction in the progenitor population (d0).

Rebellious cells are cells that shift toward the non-intended fate, i.e. EPO-treated cells moving

towards the destination region of the differentiated myeloid cells in the top/right region and

IL-3/GM-CSF-treated cells moving toward the prospective destination region of the differenti-

ated erythroid cells in the bottom left region (see day 6 in top panel). To illustrate that the

rebellious are recruited from the respectively primed states, the Sca1-fraction (LOW, MID,

HIGH) in the progenitor population from which the cells originated was indicated by the

color hue (see legend on left) for the day 3 stage: the darker, the higher was d0-Sca1 expression.

Note that the perspective is slightly shifted from that of Fig 1 to show that there is no clean sep-

aration at d3 into two disjoint cluster. As previously noted (see MAIN TEXT), the Sca1HIGH

cells are primed towards the myeloid cells, whereas Sca1LOW cells are primed towards the ery-

throid cells. Note that although at this time point at d3 the cloud spreads and begins to split,

and there is no separation between IL-3/GM-CSF and EPO treated cells. However, rebellious

cells tend to originate from the Sca1-fraction for which they are primed. For instance, Sca1LOW

cells in the progenitor population which are known to be primed towards erythroid fate [4],

are the source of the rebellious cells which despite treatment with IL-3/GM-CSF move towards

the erythroid direction at d3 (light blue cells). Thus, priming determines fate more than

instruction by the external signal.

(JPG)
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S7 Fig. Representation of an OpenArray plate used for single-cell qPCR. (A) Each OpenAr-

ray (Applied Biosystems) is the size of a microscope slide. It holds 48 groups (subarrays, red

rectangular) of 64 holes of 33 nl volume in which one PCR reaction occurs. A hydrophilic

layer is at the interior surface of each hole and a hydrophobic layer is at the exterior surface of

the plate allowing for filling the hole by surface tension. In total, each array carries 3072 qPCR

reactions. (B) Specific PCR primers are pre-immobilized in individual holes (by manufacturer,

for customized assay patterns) and released by heat in the first cycle. (C) An example of the

distribution of single-cell samples (SC) along with NTC (no template water control), IRC

(inter-run calibrator) and 100-cell control (PC) samples on an OpenArray chip.

(JPG)

S8 Fig. Quality control of single-cell qCPR. (A) Inter-chip variability is evaluated using

inter-run calibrator (IRC) sample. Each curve represents the distribution of Cq values of each

gene across all OpenArray chips. The flat black curve represents the distribution of all genes

across all chips. The inter-gene differences are up to 2 orders of magnitude larger than the

inter-chip variability of the same gene. The inter-run calibrator was a 10-fold diluted sample of

18 cycles pre-amplified cDNA of 10 ng isolated RNA from EML progenitor cell population.

(B-D). Correlation between gene expression in an ensemble of 48 individual cells and 6 repli-

cates of 100-cell pools is plotted. Cells used were from subpopulations α, β and γ (subplots b-
d) as presented in Fig 3 and 19 genes as listed in S3 Table were measured in triplicate in all

single cells and bulk (100-cell) samples from each subpopulation. Mean expression for each

gene was calculated across all single cell or pool samples. Note that the scaled mean expression

for 100-cells pool was plotted against mean expression for single-cells. In all cases a high

correlation between single-cell data and bulk data with correlation coefficient of> 0.86 was

observed.

(JPG)

S1 Table. Regulatory interactions in the curated GRNmodel of binary fate decision in

CMP. Table of the regulatory interactions (either activating (A) or inhibiting (I)) between the

genes. For each interaction, the literature is referenced (numbered list in the right panel). All

interactions have been reported in for murine hematopoiesis.

(JPG)

S2 Table. Quantified dissimilarity between transcriptomes frommicro-arrays between

samples. Pair-wise dissimilarity between expression profiles (samples) was calculated based on

the normalized gene expression levels for 6297 filtered genes (see Material and Methods) with

1–R where R is the Pearson’s correlation coefficient which ranges from 0 to 1, meaning that 0

correspond to highest similarity and 1 to most different expression. Bootstrapping was per-

formed by randomly selecting 30% of the genes in any sample to calculate the pair-wise dissim-

ilarity metric and repeating the procedure 10,000 times to generate the reported standard

deviations.

(JPG)

S3 Table. Evaluation of qPCR assays. Table lists all primer pairs and relevant information

including IDs and amplicon length. All assays were inventoried. Identical PCR primers were

used in the pre-amplification step and the subsequent singleplex qPCR step. In addition, the

amplification efficiency and limit of detection (LOD) of the qPCR assays are given. To evaluate

efficiency and LOD, a 1:2 serial dilution was prepared from 18 cycles pre-amplified product

from 10 ng RNA purified from EML progenitor cell population. Amplification efficiency was

calculated according to: [10^(1/-S)-1] × 100%. The slope was obtained by linear regression of

the standards curve. Efficiency was determined as average of two biological replicates with 6
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qPCR technical replicates each. The Cq value for the LOD is defined as the most diluted sam-

ple that results in positive amplification for 5 out of 6 replicates.

(JPG)

S1 Data. Single-cell and 100-cell samples quantification cycles (raw) data. The quantifica-

tion cycles (Cq’s) for all analyzed single-cells as well as 100-cell-pool control samples are

reported. Single cells from untreated EML control cells as well as EML cells treated with EPO,

GM-CSF/IL-3 or a combination of all cytokines on d1, d3 and d6 of stimulation. Gene expres-

sion data for single-cell samples sorted from α, β and γ subpopulations generated upon

GM-CSF/IL-3 treatment of EML are also included. 6 replicates of the 100-cell samples were

also sorted from each fraction and/or subpopulation and analyzed as control.

(XLSX)

S2 Data. The numerical data that underlie the graphs in the figures in the main text. The

relevant data used in the figures are in separate spreadsheets within this file, with the sheet

names (tabs) indicating the associated figure.

(XLSX)

S3 Data. Flow cytometry data for Fig 4 of main text. FCS-format data files for individual his-

tograms of the two time courses (untreated and IL-3/GM-GM-CSF treated) as shown in Fig 4.

Each folder represents a time point for the untreated and the IL-3/GM-CSF treated cells and

contains two files for the sample histograms for Sca1 and the PI stained cells, respectively for

the given time point. The day 0 (d0) folders also contain the data for the isotype control (3

files). The day 1 (d1) folders also contains the pre-sorting samples for both PI and Sca1 stained

cells (4 files). Acronyms in folder/filenames:—‘EML’ = untreated EML cells—‘IL-3+GM-CSF’

or ‘MYL’ = cells treated to induce myeloid commitment—‘d3’ or ‘D3’ = flow cytometry per-

formed at day 3 after treatment, as explained in the text—‘PI’ = stained with Propidium iodide

(dead cells)—‘SCA1’ = stained for SCA1 Surface expression—‘LOW’ = cells sorted from the

SCA1LOW fraction at d1 and recultured—‘UNSORTD’ = non-sorted cells as control.

(ZIP)

S1 Appendix. Data Analysis.

(PDF)

S2 Appendix. Derivation of index IC and pedagogical explanations.

(PDF)

S3 Appendix. Additional support from analysis of public data.

(PDF)

Acknowledgments

The authors would like to thank Drs. Luonan Chen and Hong Qian for helpful discussions.

Author Contributions

Conceptualization: Sui Huang.

Data curation:Mitra Mojtahedi, Kalliopi Trachana.

Formal analysis: Alexander Skupin, Joseph Zhou, Alessandro Giuliani, Sui Huang.

Funding acquisition: Sui Huang.

Cell Fate Decision as Critical Transition

PLOS Biology | DOI:10.1371/journal.pbio.2000640 December 27, 2016 25 / 28

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000640.s012
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000640.s013
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000640.s014
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000640.s015
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000640.s016
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000640.s017


Investigation:Mitra Mojtahedi, Alexander Skupin, Joseph Zhou, Ivan G. Castaño, Hannah

Chang, Kalliopi Trachana, Sui Huang.

Methodology:Mitra Mojtahedi, Alexander Skupin, Joseph Zhou, Rebecca Y. Y. Leong-

Quong, Sui Huang.

Project administration: Rebecca Y. Y. Leong-Quong.

Resources: Rebecca Y. Y. Leong-Quong.

Supervision: Sui Huang.

Validation: Kalliopi Trachana.

Visualization: Alexander Skupin.

Writing – original draft:Mitra Mojtahedi, Alexander Skupin, Sui Huang.

Writing – review & editing:Mitra Mojtahedi, Alexander Skupin, Joseph Zhou, Alessandro

Giuliani, Sui Huang.

References
1. Macarthur BD, Ma’ayan A, Lemischka IR. Systems biology of stem cell fate and cellular reprogramming.

Nat Rev Mol Cell Biol. 2009; 10:672–81. doi: 10.1038/nrm2766 PMID: 19738627

2. Huang S. Cell lineage determination in state space: a systems view brings flexibility to dogmatic canoni-
cal rules. PLoS Biol. 2010; 8(e1000380):1–4.

3. Wray J, Kalkan T, Smith AG. The ground state of pluripotency. Biochem Soc Trans. 2010; 38:1027–
1032. doi: 10.1042/BST0381027 PMID: 20658998

4. Chang HH, Hemberg M, BarahonaM, Ingber DE, Huang S. Transcriptome-wide noise controls lineage
choice in mammalian progenitor cells. Nature. 2008; 453:544–7. doi: 10.1038/nature06965 PMID:
18497826

5. Hough SR, Laslett AL, Grimmond SB, Kolle G, Pera MF. A continuum of cell states spans pluripotency
and lineage commitment in human embryonic stem cells. PLoS ONE. 2009; 4(11):e7708. doi: 10.1371/
journal.pone.0007708 PMID: 19890402

6. Pina C, Fugazza C, Tipping AJ, Brown J, Soneji S, Teles J, et al. Inferring rules of lineage commitment
in haematopoiesis. Nat Cell Biol. 2010; 14:287–94.

7. Kauffman S. Homeostasis and differentiation in random genetic control networks. Nature. 1969; 224
(215): 177–178.

8. Huang S, Guo YP, May G, Enver T. Bifurcation dynamics of cell fate decision in bipotent progenitor
cells. Dev Biol. 2007; 305:695–713. doi: 10.1016/j.ydbio.2007.02.036 PMID: 17412320

9. Kaplan D, Glass L. Understanding Nonlinear Dynamics New York, Springer; 1995.

10. Perko L, Differential Equations and Dynamical Systems Texts in Applied Mathematics. Marsden JE, Sir-
ovich L, Golubisky M. editors. New York, Springer Book; 2006; 7:557.

11. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, BrockW, Dakos V, et al. Anticipating critical tran-
sitions. Science. 2012; 338:344–8. doi: 10.1126/science.1225244 PMID: 23087241

12. Scheffer M, Bascompte J, BrockWA, Brovkin V, Carpenter SR, Dakos V, et al. Early-warning signals
for critical transitions. Nature. 2009; 461(7260):53–59. doi: 10.1038/nature08227 PMID: 19727193

13. Trefois C, Antony PM, Goncalves J, Skupin A, Balling R. Critical transitions in chronic disease: transfer-
ring concepts from ecology to systemsmedicine. Curr Opin Biotechnol. 2015; 34:48–55. doi: 10.1016/j.
copbio.2014.11.020 PMID: 25498477

14. Huang S, Eichler G, Bar-Yam Y, Ingber DE. Cell fates as high-dimensional attractor states of a complex
gene regulatory network. Phys Rev Lett. 2005; 94(12):128701. doi: 10.1103/PhysRevLett.94.128701
PMID: 15903968

15. Chickarmane V, and Peterson C. A computational model for understanding stem cell, trophectoderm
and endoderm lineage determination. PLoS ONE. 2008; 3:e3478. doi: 10.1371/journal.pone.0003478
PMID: 18941526

16. Duff C, Smith-Miles K, Lopes L, Tian T. Mathematical modelling of stem cell differentiation: the PU.1-
GATA-1 interaction. J Math Biol. 2011; 64(3):449–68. doi: 10.1007/s00285-011-0419-3 PMID:
21461760

Cell Fate Decision as Critical Transition

PLOS Biology | DOI:10.1371/journal.pbio.2000640 December 27, 2016 26 / 28

http://dx.doi.org/10.1038/nrm2766
http://www.ncbi.nlm.nih.gov/pubmed/19738627
http://dx.doi.org/10.1042/BST0381027
http://www.ncbi.nlm.nih.gov/pubmed/20658998
http://dx.doi.org/10.1038/nature06965
http://www.ncbi.nlm.nih.gov/pubmed/18497826
http://dx.doi.org/10.1371/journal.pone.0007708
http://dx.doi.org/10.1371/journal.pone.0007708
http://www.ncbi.nlm.nih.gov/pubmed/19890402
http://dx.doi.org/10.1016/j.ydbio.2007.02.036
http://www.ncbi.nlm.nih.gov/pubmed/17412320
http://dx.doi.org/10.1126/science.1225244
http://www.ncbi.nlm.nih.gov/pubmed/23087241
http://dx.doi.org/10.1038/nature08227
http://www.ncbi.nlm.nih.gov/pubmed/19727193
http://dx.doi.org/10.1016/j.copbio.2014.11.020
http://dx.doi.org/10.1016/j.copbio.2014.11.020
http://www.ncbi.nlm.nih.gov/pubmed/25498477
http://dx.doi.org/10.1103/PhysRevLett.94.128701
http://www.ncbi.nlm.nih.gov/pubmed/15903968
http://dx.doi.org/10.1371/journal.pone.0003478
http://www.ncbi.nlm.nih.gov/pubmed/18941526
http://dx.doi.org/10.1007/s00285-011-0419-3
http://www.ncbi.nlm.nih.gov/pubmed/21461760


17. Ferrell JE. Bistability, bifurcations, andWaddington’s epigenetic landscape. Current biology. 2012; CB
22:R458–466. doi: 10.1016/j.cub.2012.03.045 PMID: 22677291

18. Jolly MJ, Huang B, Lu M, Mani SA, Levine H, Ben-Jacob E. Towards elucidating the connection
between epithelial-mesenchymal transitions and stemness. J R Soc Interface. 2014; 11:20140962. doi:
10.1098/rsif.2014.0962 PMID: 25339690

19. Furusawa C. Kaneko k. A dynamical-systems view of stem cell biology. Science. 2012; 338
(6104):215–217. doi: 10.1126/science.1224311 PMID: 23066073

20. Pal M, Ghosh S, Bose I. Non-genetic heterogeneity, criticality and cell differentiation. Phys Biol. 2014;
12(1): 016001. doi: 10.1088/1478-3975/12/1/016001 PMID: 25429686

21. Chen L, Liu R, Liu ZP, Li M, Aihara K. Detecting early-warning signals for sudden deterioration of com-
plex diseases by dynamical network biomarkers. Sci Rep. 2012; 2:18–20.

22. Tsai S, Bartelmez S, Sitnicka E, Collins S. Lymphohematopoietic pro-genitors immortalized by a retrovi-
ral vector harboring a dominant-negative ret-inoic acid receptor can recapitulate lymphoid, myeloid, and
erythroid develop-ment. Genes Dev. 1994; 8(23):2831–2841. PMID: 7995521

23. Paul F, Arkin Y, Giladi A, Adhemar Jaitin D, Kenigsberg E, Keren-Shaul H, et al. Transcriptional Hetero-
geneity and Lineage Commitment in Myeloid Progenitors. Cell. 2015; 163(7): 1663–1677. doi: 10.1016/
j.cell.2015.11.013 PMID: 26627738

24. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic
stem cell self-renewal. Nature. 2008; 453(7194):519–23. doi: 10.1038/nature06968 PMID: 18497825

25. Grun D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nature
methods. 2014; 11(6):637–40. doi: 10.1038/nmeth.2930 PMID: 24747814

26. Marinov GK,Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool
transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014; 24(3):496–
510. doi: 10.1101/gr.161034.113 PMID: 24299736

27. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME. Quantitative assessment of single-
cell RNA-sequencing methods. Nature methods. 2014; 11(1):41–6. doi: 10.1038/nmeth.2694 PMID:
24141493

28. Kim JK, Kolodziejczyk AA, Illicic T, Teichmann SA, Marioni JC. Characterizing noise structure in single-
cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun. 2015;
6:8687. doi: 10.1038/ncomms9687 PMID: 26489834

29. Zhou JX, Aliyu MDS, Aurell E, Huang S. Quasi-potential landscape in complex multi—stable systems. J
R Soc Interface. 2015; 12:1–15.

30. Waddington CH. Principles of Embryology. Allen Unwin Ltd. 1956.

31. Gorban AN, Smirnova EV, Tyukina T. Correlations, risk and crisis: From physiology to finance. Phys A
Stat Mech. its Appl. 2010; 389:3193–3217.

32. Wang J, Xu L, Wang E, Huang S. The potential landscape of genetic circuits imposes the arrow of time
in stem cell differentiation. Biophys J. 2010; 99:29–39. doi: 10.1016/j.bpj.2010.03.058 PMID: 20655830

33. Giuliani A. Statistical Mechanics of Gene Expression Networks: Increasing Connectivity as a Response
to Stressful Condition. Adv Syst Biol. 2014; 3:1–4.

34. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage
hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014; 509(7500):371–375.
doi: 10.1038/nature13173 PMID: 24739965

35. Giuliani A, Zbilut JP, Conti F, Manetti C, Miccheli A. Invariant features of metabolic networks: a data
analysis application on scaling properties of biochemical pathways. Physica A. 2014; 337(1–2):157–
170.

36. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM,Wakimoto H, et al. Single-cell RNA-seq high-
lights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190):1396–1401. doi:
10.1126/science.1254257 PMID: 24925914

37. Enver T, Heyworth CM, Dexter TM. Do stem cells play dice? Blood. 1998; 92: 358–41; discussion 352.

38. Enver T, Jacobsen SEW. Instructions writ in blood. Nature. 2009; 461.

39. Coffman RL, Reiner SL. Instruction, selection, or tampering with the odds? Science. 1999; 284:1283–
1285. PMID: 10383307

40. Callard RE. Decision-making by the immune response. Immunol. Cell Biol. 2007; 85:300–305. doi: 10.
1038/sj.icb.7100060 PMID: 17471303

41. Veraart AJ, Faassen EJ, Dakos V, Van nes EH, Lurling M, Scheffer M. Corrigendum: Recovery rates
reflect distance to a tipping point in a living system. Nature. 2012; 484:404–404.

Cell Fate Decision as Critical Transition

PLOS Biology | DOI:10.1371/journal.pbio.2000640 December 27, 2016 27 / 28

http://dx.doi.org/10.1016/j.cub.2012.03.045
http://www.ncbi.nlm.nih.gov/pubmed/22677291
http://dx.doi.org/10.1098/rsif.2014.0962
http://www.ncbi.nlm.nih.gov/pubmed/25339690
http://dx.doi.org/10.1126/science.1224311
http://www.ncbi.nlm.nih.gov/pubmed/23066073
http://dx.doi.org/10.1088/1478-3975/12/1/016001
http://www.ncbi.nlm.nih.gov/pubmed/25429686
http://www.ncbi.nlm.nih.gov/pubmed/7995521
http://dx.doi.org/10.1016/j.cell.2015.11.013
http://dx.doi.org/10.1016/j.cell.2015.11.013
http://www.ncbi.nlm.nih.gov/pubmed/26627738
http://dx.doi.org/10.1038/nature06968
http://www.ncbi.nlm.nih.gov/pubmed/18497825
http://dx.doi.org/10.1038/nmeth.2930
http://www.ncbi.nlm.nih.gov/pubmed/24747814
http://dx.doi.org/10.1101/gr.161034.113
http://www.ncbi.nlm.nih.gov/pubmed/24299736
http://dx.doi.org/10.1038/nmeth.2694
http://www.ncbi.nlm.nih.gov/pubmed/24141493
http://dx.doi.org/10.1038/ncomms9687
http://www.ncbi.nlm.nih.gov/pubmed/26489834
http://dx.doi.org/10.1016/j.bpj.2010.03.058
http://www.ncbi.nlm.nih.gov/pubmed/20655830
http://dx.doi.org/10.1038/nature13173
http://www.ncbi.nlm.nih.gov/pubmed/24739965
http://dx.doi.org/10.1126/science.1254257
http://www.ncbi.nlm.nih.gov/pubmed/24925914
http://www.ncbi.nlm.nih.gov/pubmed/10383307
http://dx.doi.org/10.1038/sj.icb.7100060
http://dx.doi.org/10.1038/sj.icb.7100060
http://www.ncbi.nlm.nih.gov/pubmed/17471303


42. Metcalf D. Stem cells, pre-progenitor cells and lineage-committed cells: Are our dogmas correct? Ann N
Y Acad Sci. 1999; 872:289–304. PMID: 10372131

43. OgawaM. Hemopoietic stem cells: stochastic differentiation and humoral control of prolifera-tion. Envi-
ron Health Perspect. 1989; 80:199–207. PMID: 2647480

44. Eichler GS, Huang S, Ingber DE. Gene Expression Dynamics Inspector (GEDI): for integrative analysis
of expression profiles. Bioinformatics. 2003; 22; 19(17): 2321–2. PMID: 14630665

45. Metcalf D. Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation.
Blood. 1998; 92(2):345–347; discussion 352.

46. Marr C, Zhou JX, Huang S. Single-cell gene expression profiling and cell state dynamics: collecting
data, correlating data points and connecting the dots. Curr Opin Biotechnol. 2016; 39:207–214. doi: 10.
1016/j.copbio.2016.04.015 PMID: 27152696

47. Zhou JX, Huang S. Understanding gene circuits at cell-fate branch points for rational cell reprogram-
ming. Trends Genet. 2011; 27(2):55–62. doi: 10.1016/j.tig.2010.11.002 PMID: 21146896

48. Liu P, Shi J, Wang Y. Imperfect transcritical and pitchfork bifurcations. J Funct Anal. 2007; 251(2):
573–600.

Cell Fate Decision as Critical Transition

PLOS Biology | DOI:10.1371/journal.pbio.2000640 December 27, 2016 28 / 28

http://www.ncbi.nlm.nih.gov/pubmed/10372131
http://www.ncbi.nlm.nih.gov/pubmed/2647480
http://www.ncbi.nlm.nih.gov/pubmed/14630665
http://dx.doi.org/10.1016/j.copbio.2016.04.015
http://dx.doi.org/10.1016/j.copbio.2016.04.015
http://www.ncbi.nlm.nih.gov/pubmed/27152696
http://dx.doi.org/10.1016/j.tig.2010.11.002
http://www.ncbi.nlm.nih.gov/pubmed/21146896

