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The cell fate determination factor DACH1 plays a key role in cellular differentiation in metazoans. DACH1 is engaged in
multiple context-dependent complexes that activate or repress transcription. DACH1 can be recruited to DNA via the
Six1/Eya bipartite transcription (DNA binding/coactivator) complex. c-Jun is a critical component of the activator protein
(AP)-1 transcription factor complex and can promote contact-independent growth. Herein, DACH1 inhibited c-Jun–
induced DNA synthesis and cellular proliferation. Excision of c-Jun with Cre recombinase, in c-junf1/f1 3T3 cells, abrogated
DACH1-mediated inhibition of DNA synthesis. c-Jun expression rescued DACH1-mediated inhibition of cellular pro-
liferation. DACH1 inhibited induction of c-Jun by physiological stimuli and repressed c-jun target genes (cyclin A,
�-PAK, and stathmin). DACH1 bound c-Jun and inhibited AP-1 transcriptional activity. c-jun and c-fos were transcrip-
tionally repressed by DACH1, requiring the conserved N-terminal (dac and ski/sno [DS]) domain. c-fos transcriptional
repression by DACH1 requires the SRF site of the c-fos promoter. DACH1 inhibited c-Jun transactivation through the �
domain of c-Jun. DACH1 coprecipitated the histone deacetylase proteins (HDAC1, HDAC2, and NCoR), providing a
mechanism by which DACH1 represses c-Jun activity through the conserved � domain. An oncogenic v-Jun deleted of the
� domain was resistant to DACH1 repression. Collectively, these studies demonstrate a novel mechanism by which
DACH1 blocks c-Jun-mediated contact-independent growth through repressing the c-Jun � domain.

INTRODUCTION

Homo- or heterodimeric transcription factors with basic re-
gion-leucine zipper structure, including Jun, Fos, ATF, and
Maf subfamilies, regulate transcription of activator protein
(AP)-1–responsive genes in a DNA sequence-specific man-
ner. c-Jun encodes a critical component of the AP-1 tran-
scription factor complex. Proliferative signals induce expres-
sion of both c-Fos and c-Jun (Karin et al., 1997; Schreiber et
al., 1999). Mice genetically engineered to abolish either c-Jun
or c-Jun NH2-terminal kinase (JNK) activity results in em-
bryonic lethality (Jochum et al., 2001). Of the four mitogen-
activated protein kinase (MAPK) subfamilies, c-Jun activity
is regulated primarily by Jun kinase (Morton et al., 2003).
The abundance of c-Jun is regulated by transcriptional in-
duction and subsequent degradation through ubiquitination
(Angel and Karin, 1991; Treier et al., 1994; Fuchs et al., 1996;
Musti et al., 1997).

The c-Jun protein structure consists of multiple functional
domains, including an amino-terminal transactivation do-
main, a regulatory (� domain), a carboxy-terminal basic

DNA binding domain, and a leucine zipper protein dimer-
ization domain. The � domain is critical for transcriptional
activation by c-Jun. One of the first reported functions of the
� domain was its engagement of cell type-specific inhibitors
of c-Jun (Bohmann and Tjian, 1989; Baichwal and Tjian, 1990;
Baichwal et al., 1991). JNK docks to c-Jun on residues within
the � domain (Kallunki et al., 1995, 1996). Phosphorylation of
c-Jun is thought to facilitate interaction of the c-Jun/AP-1
complex with coactivators. Transcriptional coactivators en-
coding histone acetyl transferase (HAT) activity, such as the
CREB-binding protein (CBP) coactivator, bind to c-Jun facil-
itating the interaction between the AP-1 complex and the
basal transcriptional machinery (Mayr and Montminy,
2001). JNK-mediated phosphorylation also accelerates c-Jun
degradation by allowing recognition of the E3 ligase from
the Fbw 7-containing Skp/Culin/F-box protein complex. In
addition, JNK enhances activity of the E3 ligase, promoting
degradation of c-Jun and JunB (Gao et al., 2004; Nateri et al.,
2004).

c-Jun contributes to contact-independent growth and is
essential for the development of chemically induced tumors
in mice (Eferl et al., 2003). Both cellular Jun (c-Jun) and viral
Jun (v-Jun) induce oncogenic transformation (Vogt, 2001).
The retrovirally transduced allele of c-Jun, v-Jun, induces
fibrosarcoma in chickens (for review, see Vogt, 2001). Onco-
genic v-jun encodes a protein with complete deletion of the
� domain and fails to bind JNK. The role of the � domain
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itself versus JNK phosphorylation sites within the � domain,
in cell cycle control, cellular proliferation, and oncogenesis is
complex. Although c-Jun promotes G1/S phase progression
independently of its phosphorylation status (Wisdom et al.,
1999), c-Jun phosphorylation of serines 63 and 73 were re-
quired for Ha-Ras–induced cellular transformation in some
(Smeal et al., 1991), but not all studies (Kennedy et al., 2003).
Finally, although point mutation analysis demonstrated the
oncogenic effects of the � domain deletion can be uncoupled
from JNK signaling (Sprowles and Wisdom, 2003), mice and
cells harboring a mutant allele of c-jun show reduced tumor-
igenesis by activated Ras signaling (Bannister et al., 1991).

A variety of mechanisms attenuate c-Jun–mediated activ-
ity (Schutte et al., 1989). Factors regulating c-jun stability
inhibit c-Jun function through reducing its abundance.
These factors include macrophage migration inhibitory fac-
tor (MIF) (Kleemann et al., 2000), E3 ligase Fbw 7-containing
Skp/Culin/F-box protein complex (SCFFbw) (Gao et al.,
2004), and the E3 ligase Itch (Nateri et al., 2004). Jab1 asso-
ciation with MIF inhibits Jab1-mediated AP-1 activity. Thus,
the cytokine MIF serves to transduce cytokine signaling to
nuclear c-Jun function. Components of the AP-1 complex
itself can inhibit c-Jun activity. The AP-1 transcription factor
family is composed of Jun, Fos, and ATF subunits, which
interact through their leucine zipper motif and bind DNA
through a basic region. Jun proteins form homo- and het-
erodimers. Several other basic proteins heterodimerize with
c-Jun, including Maf (v-Maf, c-Maf, MafB, MafG, and MafK)
proteins and the neural retina leucine zipper gene product 1
(Nr1), which may thereby regulate the activity of c-Jun
(Angel and Karin, 1991). Finally, c-Jun–binding repressor
proteins have been described. The c-Jun–interacting proteins
JDP1 and JDP2 regulate UV-mediated apoptosis (Piu et al.,
2001). Recent genome-wide interrogation identified an in-
hibitor of AP-1–responsive target genes as the DACH1 gene,
which is known to be involved in compound eye develop-
ment (Wu et al., 2003).

Development of the compound eye in Drosophila is gov-
erned by a regulatory network of genes. The eyeless, sine
oculis, eyes absent, and dachshund genes are required for nor-
mal eye development, and ectopic expression of eyeless, eyes
absent, and dachshund induce ectopic eye formation. This
regulatory pathway, conserved among metazoans and the
vertebrate homologues of eyeless (Pax6), sine oculis (Six1-6),
eyes absent (Eya1-4), and dachshund (DACH1-2), contributes
to organism development (Kawakami et al., 2000). The six
genes encode a conserved Six and Homeo domain sequence-
specific DNA binding family of transcription factors. Eya
functions as a coactivator for Six proteins, and functions in a
phosphatase-dependent manner (Lee et al., 2000a). The
dachshund genes encode cointegrator proteins recruited to
Six binding sites at the promoters of target genes that pro-
mote cellular differentiation and cell cycle exit. A conserved
domain (dac and ski/sno domain 1), which has significant
identity with Ski/Sno ([DS] domain), is conserved from
Drosophila to the human (Chen et al., 1997; Davis et al., 1999;
Kawakami et al., 2000). The DACH1 protein binds the CBP
coactivator or interacts directly with corepressors to regulate
transcriptional activity (Ikeda et al., 2002; Li et al., 2003). The
recruitment of DACH1 to Six binding sites is regulated
through mechanisms that have as yet to be defined.

In view of the finding that c-Jun plays a key role in
oncogene-induced transformation and that DACH1 func-
tions as an inhibitor of AP-1–responsive gene expression, we
investigated the potential role for DACH1 in c-Jun–mediated
cellular growth. DACH1 inhibited c-Jun-mediated DNA syn-
thesis and contact-independent growth. AP-1 activity was

repressed by DACH1 requiring a conserved ([DS]) domain.
Repression of c-Jun transcription and transactivation by
DACH1 required the DACH1 DS domain. DACH1 bound a
corepressor complex, including HDAC1/HDAC3 and re-
pressed c-Jun transactivation through the c-Jun � domain.
c-Jun transactivation and contact-independent growth is
controlled by the cell fate determination factor DACH1.

MATERIALS AND METHODS

Plasmid Constructions
The expression plasmids that include an N-terminal FLAG peptide for
DACH1, DACH1 DS-domain alone (DS), or DACH1 DS-domain deleted
(�DS) were described previously (Wu et al., 2003). The FLAG-tagged DACH1
c-DNA was subcloned into the MSCV-IRES-GFP and pLRT vector. The full-
length DACH1 cDNA was subcloned in frame with the VP16 activation
domain in the pVP16 vector to form a DACH1–VP16 fusion protein. DACH1
short hairpin RNA (shRNA) in the pSM2 expression vector was purchased
from Open Biosystems (Huntsville, AL) and subcloned into the LMP retro-
viral vector. The Ski cDNAs was subcloned into the 3x Flag-CMV7.1 vector
(Sigma-Aldrich, St. Louis, MO). The expression vector encoding adenovirus-
induced Cre expression or control viruses were described previously (Wang
et al., 1995). The cyclin A promoter (Katabami et al., 2005) and stathmin
promoter (Kinoshita et al., 2003) reporter genes were described previously.
The wt c-fos-LUC, serum response element (SRE), or ternary complex factor
(TCF) mutants (PM12 and PM18) were described previously (Wang et al.,
1998). AP-1 Luc (3TPlux), c-Jun Luc and JunB Luc were described previously
(Watanabe et al., 1996). The expression vectors for c-Jun linked to Gal4 or E2
and truncated c-Jun were described previously (Baichwal and Tjian, 1990;
Baichwal et al., 1991). The Ha-Ras expression vector was described previously
(Albanese et al., 1995).

Cell Culture, DNA Transfection, and Luciferase Assays
Cell culture, DNA transfection, and luciferase assays were performed as
described previously (Fu et al., 2000, 2002, 2003). The NIH3T3, HEK293T, and
MCF-7 cell line were cultured in DMEM supplemented with 10% fetal calf
serum, 1% penicillin, and 1% streptomycin. c-junfl/fl 3T3 cells were derived
from mouse embryo fibroblast from c-junfl/fl transgenic mouse (Zenz et al.,
2003) by using the standard 3T3 protocol. Rat1a-J4 cells express c-Jun in a
doxycycline-controlled manner (Katabami et al., 2005). Cells were plated at a
density of 1 � 105 cells in a 24-well plate on the day before transfection with
Superfect according to the manufacturer’s protocol (QIAGEN, Valencia, CA).
At least two different plasmid preparations of each construct were used. In
cotransfection experiments, a dose response was determined in each experi-
ment with 50 and 200 ng of expression vector and the promoter reporter
plasmids (1 �g). Luciferase activity was normalized for transfection by using
�-galactosidase reporters as an internal control. Luciferase assays were per-
formed at room temperature by using an Autolumat LB 953 (Berthold Tech-
nologies, Bad Wildbad, Germany). The -fold effect was determined for 50–200
ng of expression vector with comparison made to the effect of the empty
expression vector cassette and statistical analyses was performed using the
Mann–Whitney U-test.

Small-interfering RNA (siRNA) Transfection, Western
Blot, and Immunoprecipitation Assays
The Dach1 siRNA target sequence is 5�-AAAGTGGCTTCCTTTACGGTG.
Control siRNA was purchased from Santa Cruz Biotechnology (Santa Cruz,
CA). Dach1-specific siRNAs or control siRNAs (100 or 200 nM) were trans-
fected following the Oligofectamine protocol (Invitrogen, Carlsbad, CA).
Transfection efficiency was monitored by no-silencing fluorescein siRNA
from QIAGEN. 3T3 cells were infected with DACH1 shRNA or control
retrovirus and selected by puromycin. Western blot analysis using antibodies
to c-Jun (Santa Cruz Biotechnology), cyclin A (Santa Cruz Biotechnology),
�-PAK (Santa Cruz Biotechnology), E2 tag (Abcam, Cambridge, MA), FLAG
tag (Sigma-Aldrich), and the loading control guanine dissociation inhibitor
(GDI) was conducted as described previously (Lee et al., 2000b; Wu et al.,
2003). HEK293T cells were used for the detection of protein–protein interac-
tion in vivo and immunoprecipitation was conducted as described previously
using an anti-hemagglutinin (HA) antibody and immunoblotting with anti-
bodies to HDAC1 (SC-7872), HDAC3 (SC-17795), NCoR (SC-8994), p300 (SC-
585), and c-Jun (SC-44 and SC-1694).

Cell Cycle and DNA Synthesis Analysis
Cell cycle parameters were determined using laser scanning cytometry. Cells
were processed by standard methods by using propidium iodide staining of
cell DNA. Each sample was analyzed by flow cytometry with a FACScan flow
cytometer (BD Biosciences, Mansfield, MA) by using a 488-nm laser. Histo-
grams were analyzed for cell cycle compartments using ModFit version 2.0
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(Verity Software House, Topsham, ME). A minimum of 20,000 events was
collected to maximize statistical validity of the compartmental analysis. DNA
synthesis was analyzed by [3H]thymidine (TdR) incorporation. Cells (105)
were plated into 24-well plate and cultured for 36 h. Then, 1 �Ci of [3H]TdR
was added to each well, and culture was continued for 2 h. Cells were washed
and fixed before measuring incorporated [3H]TdR by liquid scintillation.

Cell Proliferation Assays
For the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay,
NIH3T3 cells infected with MSCV-IRES-GFP, MSCV-DACH1-IRES-GFP, or
MSCV-DACH1�DS-IRES-GFP were seeded into 96-well plates in normal
growth medium, and cell growth was measured every day by MTT bromide
assays. c-Jun–expressing Rat1a-J4 cells were plated in growth medium in
either the presence or absence of 2 �g/ml doxycycline. To measure growth
curve, cells were seeded into 12-well plates and serially counted for 5–6 d.

Colony Formation Assay
Rat1a-J4 cells (4.0 � 103) were plated in triplicate in 3 ml of 0.3% agarose (sea
plaque) in complete growth medium in the presence or absence of 2 �g/ml
doxycycline overlaid on a 0.5% agarose base, also in complete growth me-
dium. Two weeks after incubation, colonies �50 �m in diameter were
counted using an Omnicon 3600 image analysis system. The colonies were
visualized after staining with 0.04% crystal violet in methanol for 1–2 h.

Chromatin Immunoprecipitation (ChIP) Assay
ChIP assays were performed as described previously (Fu et al., 2004). Poly-
merase chain reaction (PCR) primers were as follows: for murine cyclin
A: forward, 5�-CCTCAGGCTCCCGCCCTGTAAGATTCC and reverse, 5�-
TCAAGTAGCCCGCGACTATTGAATAT; and for murine cyclin D1 AP-1
site: forward, 5�-CCGGTGGTCTGGTTCCTGGA and reverse, 5�-CCCCGAAA-
ATTCCAGCAACA. The cells were cross-linked with formaldehyde buffer for
10 min at 37°C, and the procedure was followed as described in Fu et al.
(2004). Double ChIP assay was performed first using polyclonal c-Jun anti-
body, and then elution was diluted with 10X volume of immunoprecipitation
(IP) buffer and then immune-precipitated with anti-FLAG M2 antibody fol-
lowing standard protocol.

RESULTS

c-Jun Is Required for DACH1-mediated Inhibition of
Cellular Proliferation

To determine the role of Dachshund1 in fibroblast cellular
proliferation and growth, NIH3T3 cells were transduced
with a retroviral expression plasmid encoding DACH1
linked to green fluorescent protein (GFP) through an inter-
nal ribosomal entry site. Homogeneously transduced popu-
lations of NIH3T3 cells were compared with cells trans-

duced with an empty expression vector (MSCV-IRES-GFP).
DACH1 expression inhibited tritiated thymidine uptake by
75% (Figure 1A). To determine the domain of DACH1 in-
volved in cellular proliferation, a mutation of the conserved
DS domain was assessed. NIH3T3 cells transduced with the
mutant DACH1 protein, which was expressed in equal
amounts by Western blotting, failed to inhibit tritiated thy-
midine uptake (Figure 1A). Cellular proliferation assays
were conducted by serial counting of cell number (Figure
1B) and the MTT stain (Figure 1C). Cells transduced with
DACH1 failed to proliferate, whereas cells transduced with
either a mutant DACH1 deleted of the DS domain or the
GFP vector alone proliferated with similar efficiency. Fluo-
rescence-activated cell sorting (FACS) analysis of DACH1-
transduced NIH3T3 cells demonstrated an inhibition of
DNA synthesis that was dependent upon the DS domain
(Figure 1D). Expression of the DACH1 mutant, DACH1�DS
was similar to the DACH1 wild type as assessed by Western
blot analysis of the FLAG epitope at the N terminus of each
protein (Figure 1E).

Previous studies had shown AP-1 reporter activity was
inhibited by DACH1 (Wu et al., 2003). Endogenous AP-1
activity contributes to 3T3 cell proliferation. To examine the
importance of c-Jun as an endogenous target of DACH1-
mediated inhibition of DNA synthesis, we used c-jun–defi-
cient 3T3 cells. c-jun�/� mice die in gestation from cardio-
vascular and hepatic defects (Eferl et al., 1999). Significant
functional differences have been observed in mouse embry-
onic fibroblasts derived from embryonic stem cell knockout,
compared with cells derived by acute target gene excision by
using floxed alleles and Cre recombinase (Sage et al., 2003).
We therefore derived c-junfl/fl 3T3 cells from c-junfl/fl mice
(Zenz et al., 2003) by using a standard protocol (Todaro and
Green, 1963). The c-junfl/fl 3T3 cells were transduced with
Cre recombinase (Sage et al., 2003), and the deletion of c-Jun
was confirmed by Western blot analysis (Figure 2A). These
cells were transduced with either a DACH1 retroviral ex-
pression vector or equal amount of control viral vector, and
Western blot analysis and cellular proliferation assays were
conducted. c-jun deletion was associated with a reduction in
cyclin D1 and cyclin A expression consistent with prior

Figure 1. DACH1 inhibits cellular proliferation
and DNA synthesis of NIH3T3 cells. (A) NIH3T3
cells were transfected with expression vectors en-
coding either DACH1, or a mutant of DACH1 de-
leting the DS domain (�DS) or a control vector
(GFP). Forty-eight hours after transfection, tritiated
thymidine incorporation was determined (*p �

0.01). The cell proliferation rate was assessed for
NIH3T3 cells transduced with retroviral expression
vectors encoding the GFP, DACH1, or �DS. Prolif-
eration analyses were conducted by either counting
cellular number (B) or MTT assay (C). (D) FACS
analysis of NIH3T3 cells transduced with retroviral
expression vectors. The proportion of cells in S
phase is shown. Data are mean � SEM of n � 6
separate experiments (*p � 0.01). (E) Western blot
analysis to the FLAG-tag at the N terminus of
DACH1 or DACH1�DS. �-Actin is used as a loading
control showing similar level of expression of the wt
and mutant DACH1 proteins.

DACH1 Represses c-Jun � Domain
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findings that c-jun induces cyclin D1 and cyclin A (Albanese
et al., 1995). DACH1 expression in c-junfl/fl cells reduced
cyclin D1 abundance 30%, and cyclin A expression 50%
(Figure 2A). DACH1 expression in parental c-junfl/fl 3T3 cells
reduced proliferation rates �35%. In cells deleted of c-jun
(c-junfl/fl 	 Cre), expression of DACH1 failed to inhibit cel-
lular proliferation (Figure 2B). A detailed time course was
conducted to determine the role of c-jun in DACH1-medi-
ated inhibition of cellular proliferation through daily count-
ing of cells (Figure 2C). Cellular proliferation of wild-type
cells was inhibited by DACH1 expression; however, the
proliferation rate of cells deleted of c-jun was not affected by
DACH1 expression (Figure 2C). To determine whether ex-
pression of c-Jun could overcome DACH1-mediated repres-
sion of cellular proliferation, a cell line encoding a doxycy-
cline-inducible c-jun cDNA was used (3T3 Tet-c-Jun). The
induction of c-Jun expression by the addition of doxycycline
stimulated cellular proliferation (Figure 2D). Transduction
of the NIH3T3 cells with DACH1 reduced cellular prolifer-
ation �60% at 6 d. Induction of c-Jun abundance, through
the addition of doxycycline, restored cellular proliferation
by �85% (Figure 2E). Together, these studies demonstrate
DACH1 inhibition of cellular proliferation requires c-jun and
can be overcome by c-Jun expression.

DACH1 Inhibits Colony Formation Requiring the
Conserved DS Domain

The expression of c-Jun is sufficient to induce contact-inde-
pendent growth of Rat1a cells (Schutte et al., 1989). The
stable cell line expressing doxycycline-inducible c-Jun was
infected with an MSCV virus encoding either GFP, DACH1
wt or DACH1 mutant. Western blot analysis demonstrated
the induction of c-Jun by doxycycline and transfected
DACH1 protein was detected by an antibody directed to the
N-terminal FLAG epitope (Figure 3A). DACH1 also inhib-
ited basal proliferation of Rat1a-J4 cells (Figure 3B). Previous
studies have demonstrated the importance of c-Jun in pro-
moting cell cycle transition (Ryseck et al., 1988; Kovary and
Bravo, 1991). The c-Jun–induced thymidine uptake, reflect-
ing DNA synthesis, was attenuated by DACH1 expression
(Figure 3C). Colony formation was induced by c-Jun expres-

sion (Figure 3D) as described previously (Katabami et al.,
2005). Transduction of the inducible c-Jun stable cell line
with a retroviral expression vector encoding DACH1 re-
duced the number of colonies by 40% (Figure 3E) and re-
duced the volume of individual colonies by �75% (Figure
3F). Expression of equal amount of a mutant DACH1 protein
deleted of the DS domain (�DS) failed to inhibit c-Jun–
induced contact-independent growth (Figure 3F). Together,
these results suggest that DACH1 inhibits c-Jun induced
cellular proliferation and blocks c-Jun–mediated contact-
independent growth. These results further suggest c-Jun is a
key molecular target of DACH1 inhibition of contact-inde-
pendent growth.

DACH1 Expression Inhibits Physiological Inducers of
c-jun Expression and c-jun Target Gene Expression

The c-jun gene is induced by diverse physiological stimuli,
including serum and growth factors. To determine whether
DACH1 expression was capable of inhibiting the induction
of c-Jun by physiological stimuli, NIH3T3 cells were treated
with serum. Cells were transduced with retroviral expres-
sion vectors encoding either DACH1 or the DACH1 mutant
(�DS). Consistent with prior studies, serum induced c-Jun
abundance approximately �10-fold. The c-Jun target genes
cyclin A and �-PAK were also induced by serum (Figure 4A,
lane l versus lane 2). NIH3T3 cells expressing DACH1 re-
duced serum-mediated expression of c-Jun by �50%. DACH1
expression reduced serum-induced expression of the c-Jun
target genes cyclin A and �-PAK. Deletion of the DACH1 DS
domain abrogated the DACH1-mediated inhibition of c-Jun,
cyclin A, and �-PAK expression at 3 h. Expression of CDK4
and �-tubulin were unaffected by DACH1 expression, indi-
cating the effect of DACH1, to inhibit c-Jun expression, is
gene specific.

To examine further the mechanism by which DACH1
repressed the c-jun target gene cyclin A, we deployed the
tetracycline-inducible c-jun stable Rat1a-J4 cell line (Figure
4B). Doxycycline addition induced c-Jun abundance, associ-
ated with the induction of the c-jun target genes cyclin A and
�-PAK. Transduction of Rat1a-J4 cells with DACH1 abro-
gated c-Jun-mediated induction of cyclin A and �-PAK,

Figure 2. DACH1 inhibition of cellular prolifera-
tion requires c-jun. (A) Western blot analysis of
c-junfl/fl 3T3 cells transduced with adenovirus ex-
pressing Cre recombinase. Cells were transduced
with the MSCV–DACH1 vector as indicated. West-
ern blot analysis shows Ad-Cre excision of c-jun
abrogated c-jun expression. Antibodies are to cyclin
D1, cyclin A, and �-tubulin. Cellular proliferation
assessed by MTT assay (B) and by cell counting of
DACH1-transduced cells (C) shown in A. (D) Pro-
liferation assay of 3T3 Tet-c-Jun cells, in which 2
�g/ml doxycycline for 48 h was used to induce
c-Jun protein level. (E) NIH3T3 cells transduced
with pLRT-GFP, pLRT-DACH1, or pLRT-DACH1
and pLRT-c-Jun expressing vector. Cellular number
was determined daily for 6 d with 2 �g/ml doxycy-
cline. c-Jun expression reversed DACH1-mediated
inhibition of cellular proliferation (p � 0.01).

K. Wu et al.

Molecular Biology of the Cell758



without affecting �-actin expression. Thus, DACH1 inhibits
c-Jun–mediated induction of cyclin A. To determine whether
endogenous DACH1 regulates c-Jun expression and c-Jun

target gene expression, DACH1 siRNA was used. DACH1
siRNA reduced DACH1 abundance by 
75% associated
with 2.5-fold induction of c-Jun abundance (Figure 4C). The

Figure 3. DACH1 inhibits c-Jun–mediated colony
formation and cellular proliferation. (A) Rat1a cells
stably expressing a doxycycline-inducible c-Jun
cDNA were transduced with MSCV virus encoding
either GFP, or DACH1 or �DS domain. Western blot
analysis of doxycycline-treated cells (Dox	) show
the induction of c-Jun protein and presence of
DACH1 by using the Flag epitope to the N terminus
of DACH1. �-Tubulin is a loading control. (B) Rat1a-
HA-c-Jun cells were analyzed for cellular prolifera-
tion by tritiated thymidine incorporation after 48 h.
(C) The DNA synthetic phase determined by FACS
analysis in presence or absence of 2 �g/ml doxycy-
cline. (D) Phase-contrast fluorescence microscopy of
Rat1a-J4 cells infected with an MSCV vector encod-
ing GFP, DACH1, or �DS in presence of 2 �g/ml
doxycycline. Quantification of colony number (E) or
colony volume (F) of Rat1a-J4 cells infected with
MSCV vector encoding GFP, DACH1, or �DS ana-
lyzed after 14 d. Data represent the mean � SEM of
n � 6 separate experiments (*p � 0.01).

Figure 4. DACH1 inhibits serum-induced expression
of c-Jun and c-Jun target genes. (A) Western blot anal-
ysis of NIH3T3 transduced with MSCV-GFP, MSCV-
DACH1 or MSCV-DACH1�DS. Cells were serum
starved and then treated with serum for the time points
indicated. Western blot, with the antibodies indicated,
demonstrated DACH1 inhibits c-jun induction by se-
rum. (B) The Rat1a-J4 cell line encoding tetracycline-
inducible c-jun was treated with doxycycline for 48 h to
induce c-Jun. Cells were transduced with retrovirus
expressing GFP or DACH1. The M2 antibody detects
the N-terminal FLAG-tag of DACH1. DACH1 inhibits
c-Jun mediated induction of cyclin A and �-PAK. �-Ac-
tin is a loading control. (C) NIH3T3 cells were treated
with DACH1 siRNA for 72 h. Western blot analysis was
conducted with the antibodies indicated. Reduction in
DACH1 abundance induces c-jun, and expression of the
c-jun target genes cyclin D1 and cyclin A. [3H]Thymi-
dine incorporation and percentage of cells in S phase is
shown. The cyclin A (D) and stathmin promoter (E),
linked to a luciferase reporter, were assessed in Rat1a-J4
cells. Cells were transduced with either expression vec-
tor for DACH1 or DACH1�DS. Data are shown as
luciferase activity as mean � SEM for n � 5 separate
transfections.
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c-jun target gene cyclin D1 (Albanese et al., 1995) was in-
duced threefold and cyclin A was induced two- to fivefold
(Figure 4C). Consistent with a key role for cyclin D1 in 3T3
cell DNA synthesis (Albanese et al., 2003) the DACH1
siRNA-mediated induction of cyclin D1 was associated with
an induction of DNA synthesis determined by [3H]thymi-
dine uptake and S-phase distribution by FACS (Figure 4C).

To determine whether DACH1 directly regulated c-jun
target genes, the cyclin A and stathmin promoters were
assessed. Induction of c-Jun expression in the Rat1a-J4 cells
by addition of doxycycline induced the activity of the cyclin
A promoter activity fourfold (Figure 4D). Expression of
DACH1 inhibited c-Jun–mediated induction of cyclin A pro-
moter activity. Deletion of the DACH1 DS domain abolished
the DACH1 repression function (Figure 4D). Similarly the
stathmin promoter was induced by c-Jun, and c-Jun induc-
tion of the stathmin promoter was inhibited by DACH1,
requiring the DACH1 DS domain (Figure 4E).

DACH1 Occupies the AP-1 Site of Endogenous c-Jun
Target Genes in ChIP Assays

Because DACH1 repressed c-jun-mediated induction of sev-
eral AP-1 target genes (Wu et al., 2003), we sought to deter-
mine whether DACH1 occupied AP-1 sites of endogenous

genes in the context of their local chromatin structure. For
these studies, NIH3T3 cells were stably transduced with a
FLAG-tagged DACH1 expression vector. The cyclin A pro-
moter, a known c-Jun target gene, was examined. Using
oligonucleotides directed to the endogenous murine cyclin
A promoter AP-1/ATF-1 site, ChIP assays, conducted with
the anti-FLAG antibody, demonstrated the presence of
DACH1 in the context of the local chromatin structure of the
endogenous cyclin A promoter (Figure 5A). Control IgG did
not result in similar amplification. Analysis of the endoge-
nous murine cyclin D1 AP-1 site by using oligonucleotides
directed to the murine promoter demonstrated the pres-
ences of DACH1 at the cyclin D1 promoter AP-1 site (Figure
5B). The complex formation of c-Jun and Dach1 protein at
the AP-1 site of the cyclin D1 promoter was further con-
firmed by sequential immune-precipitation with c-Jun and
FLAG antibodies (Figure 5C). Further analysis of the endog-
enous proteins associated with DACH1 at the murine cyclin
D1 promoter was conducted. Oligonucleotides directed to
the murine cyclin D1 AP-1 site evidenced the presence of the
DACH1-associated corepressor proteins HDAC1, HDAC3,
mSin3A, and NCoR recruited to the murine cyclin D1 pro-
moter (Figure 5D). To determine the role of the cyclin D1
promoter AP-1 site in recruitment of DACH1, ChIP assays

Figure 5. Chromatin immunoprecipitation as-
says demonstrate DACH1 within the AP-1 site of
endogenous genes. ChIP assay conducted using
oligonucleotides to the endogenous murine (A)
cyclin A and (B) cyclin D1 promoter. Schematic
representation of cyclin A and cyclin D1 pro-
moter is shown. Amplification was conducted of
products precipitated with indicated antibodies
or control IgG. The cell line used is an NIH3T3
cell line expressing FLAG-tagged DACH1 under
control of the Tet enhancer (Tet-DACH1). Doxy-
cycline addition induced DACH1 protein abun-
dance. A similar amount of DACH1 was used as a
loading control. (C) The chromatin was first pre-
cipitated with antibody to c-Jun, and then the elu-
tion was diluted with IP buffer and immunopre-
cipitated with anti-FLAG. PCR amplification was
conducted of the AP-1 site of the cyclin D1 pro-
moter. (D) 3T3 cells were transduced with MSCV-
GFP, MSCV-DACH1, and MSCV-DACH1�DS.
ChIP assays were conducted of the endogenous
murine cyclin D1 promoter AP-1 site with the
indicated antibodies. The FLAG antibody is di-
rected to the N-terminal tag of DACH1 or
DACH1�DS. Equal amounts of DACH1 and
DACH1�DS are detected by Western blot of the
cells (data not shown). (E) ChIP assays of the
transfected human cyclin D1 promoter, either wild
type or mutant of the AP-1 binding site, was con-
ducted using antibodies directed to endogenous
HDAC1, HDAC3, mSin3A, and NCoR. (F) Immu-
noprecipitation Western blot analysis of DACH1
from HEK293T cells. The HA tagged DACH1 was
used for immune-precipitation, with subsequent
Western blot to the endogenous proteins indicated.
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were conducted comparing the wild-type and mutant cyclin
D1 AP-1 site promoters (Figure 5E). Expression of FLAG-
tagged DACH1 enhanced recruitment of DACH1 (FLAG),
together with HDAC1, HDAC3, mSin3A, and NCoR. Muta-
tion of the cyclin D1 AP-1 site reduced recruitment of each of
these proteins (Figure 5E). Immune-precipitation Western
blot indicated these proteins form a cellular complex (Fig-
ure 5F).

DACH1 Inhibition of AP-1 Family Members

To determine the domains of DACH1 involved in inhibiting
c-Jun function, an AP-1–responsive reporter gene (3TP-LUX)
was assessed in HEK293T cells. The activity of the AP-1
reporter gene was inhibited by DACH1 expression (Figure
6A). The deletion of the DACH1 DS domain abrogated
repression of AP-1 reporter activity, and the DS domain
alone was insufficient for repression of AP-1 activity (Figure
6A). We assessed the effect of DACH1 on the transcriptional
activity of the key AP-1 genes, c-jun, junB, and c-fos. The
transcriptional activity of the c-Jun promoter was repressed
by DACH1 expression, and this transcriptional repression
was abrogated by the deletion of the conserved DS domain

(Figure 6B). Similarly, the junB and c-fos promoters were
repressed by DACH1 expression, and the DS domain was
required for repression (Figure 6, C and D).

AP-1 activity is serum inducible, and serum induction of
the c-jun promoter was inhibited by DACH1 expression
(Figure 6E). Similarly, the c-fos promoter induction by serum
was inhibited by DACH1 expression (Figure 6F). DACH1
shares homology with Ski (Kozmik et al., 1999). To deter-
mine whether Ski functions as a transcriptional repressor of
c-fos or c-jun promoter activity, serum induction experi-
ments were conducted. Ski expression failed to repress se-
rum-induced c-jun and c-fos promoter activity (Figure 6G).
Thus, c-fos was repressed by DACH1 and not by Ski. To-
gether, these results demonstrate distinct transcriptional re-
pression profiles of DACH1 and the related Ski protein.

We examined further the DNA sequences of the c-fos
promoter required for transcriptional repression by DACH1.
A point mutant of the SCF binding site and the TCF binding
site of the c-fos promoter were compared (Figure 7A). Con-
sistent with previous findings (Hill et al., 1995), mutation of
either the c-fos SRE or TCF binding site reduced serum-
induced activation of the c-fos promoter (Figure 7B). The

Figure 6. DACH1 inhibits serum-induced activation
of AP-1 activity. (A) HEK293T cells were transfected
with luciferase reporter plasmids encoding either a
multimeric AP-1 site (A), the c-jun promoter (B), the
junB promoter (C), or the c-fos promoter (D) and
DACH1 mammalian expression vectors. A �-galactosi-
dase report gene driven by a �-actin promoter was used
to normalize the transfection deficiency. Data are
shown as -fold change in luciferase activity. Data are
mean � SEM of n � 6 separate transfections. (E–G) 3T3
cells were transfected with a reporter plasmid encoding
either the c-jun promoter (E) or c-fos promoter (F) and a
DACH1 mammalian expression vector. Cells were se-
rum starved and stimulated with 15% FBS for 6 h before
the luciferase activity was determined. 3T3 cells were
transfected with the luciferase reporter plasmid for the
c-jun or c-fos promoter and a mammalian expression
vector encoding Ski (G). Cells were treated as shown in
E and F. The expression vector encoding Ski does not
significantly reduce reporter activity. Data are mean �

SEM of n � 6 separate transfections.
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c-fos promoter encoding a point mutation of either the SRE
or the TCF site was compared for repression by DACH1.
DACH1 repressed activity of the c-fos promoter, encoding a
mutation of the TCF site (c-fos PM18) (Figure 7C). In con-
trast, point mutation of the SRE binding site (c-fos PM12)
abrogated repression by DACH1, inducing transactivation
rather than repression by DACH1 (Figure 7D). These results
demonstrate the SRE site of the c-fos promoter is a transcrip-
tional target of DACH1 repression in 3T3 cells. To determine
whether these effects were similar in other cell types, MCF-7
cells were assessed. The c-fos promoter was activated sixfold
by 12-O-tetradecanoylphorbol-13-acetate (TPA) (Figure 7E).
Point mutation of either the TCF or SRE site of the c-fos
promoter reduced activation by TPA. Consistent with find-
ings in NIH3T3 cells, DACH1 repressed the c-fos promoter
and point mutation of the SRE site abrogated repression
(Figure 7F). Collectively, these experiments demonstrate
DACH1 inhibits the physiological induction of the promot-
ers encoding AP-1 response genes, including c-jun, junB, and
c-fos. The mechanism by which DACH1 inhibits gene ex-
pression is distinct from the related protein Ski.

DACH1 Inhibition of c-Jun Transactivation Requires the �
Domain

To examine further the mechanisms by which DACH1 in-
hibited c-Jun transactivation, mammalian two-hybrid stud-
ies were undertaken. Comparison was made between either
wild-type c-Jun or c-Jun proteins encoding either a deletion
of the � domain (del � c-Jun) or the v-Jun protein. The v-Jun
protein differs from the wild-type c-Jun primarily by the
deletion of the � domain. Previous studies with these ex-
pression vectors have demonstrated the presence of a c-Jun
inhibitor functioning through the � domain (Baichwal and
Tjian, 1990). The heterologous transactivation domains of
c-Jun linked to the E2 DNA binding domain were assessed
using a multimeric E2 DNA binding domain, linked to a
luciferase reporter gene (Figure 8A). The wild-type and mu-
tant chimeric c-Jun proteins were expressed equally in
DACH1-transfected cells (Figure 8B). Activity of the c-Jun

protein was enhanced by oncogenic Ras (Ha-RasV12) con-
sistent with previous findings that Ras alleviates repression
of a c-Jun inhibitor (Baichwal et al., 1991). DACH1 expres-
sion inhibited c-Jun transactivation by Ha-RasV12 (Figure
8C). To determine the domains of c-Jun repressed by
DACH1, comparison were made between c-Jun and the
mutant c-Jun proteins. c-Jun E2 activity was repressed by
DACH1 in a dose-dependent manner. In contrast, the del �
c-Jun and v-Jun activities were not repressed by DACH1
(Figure 8D). To determine the role of endogenous DACH1 as
an inhibitor of c-jun transactivation function, DACH1
shRNA was used in 3T3 cells. The transactivation function of
c-jun was enhanced by expression of DACH1 shRNA (Fig-
ure 8E). Activity of both the c-Jun protein deleted of the �
domain and v-Jun was constitutively more active than the
corresponding c-Jun protein, and they were unaffected by
depletion of DACH1 abundance (Figure 8E). Similarly,
shRNA expression to DACH1 enhanced AP-1 activity using
on AP-1–responsive reporter gene (Figure 8F). These find-
ings suggest the � domain of c-Jun is required for endoge-
nous DACH1 repression of c-Jun transactivation activity.

To examine further the mechanisms by which DACH1
repressed oncogenic Ras-induced activity of c-Jun, a series of
Gal4-c-Jun expression vectors were used (Baichwal and
Tjian, 1990) (Figure 9A). The interaction between DACH1
and c-Jun was assessed using a mammalian two-hybrid
system, and activity of c-Jun was determined using a mul-
timeric Gal4 DNA binding site linked to a luciferase reporter
gene (Figure 9B). VP16-DACH1 demonstrated no functional
interaction with the Gal4-DBD. Cointroduction of VP16-
DACH1 enhanced transactivation with Gal4-c-Jun, indicat-
ing functional interaction between DACH1 and c-Jun and
the induction of transactivation by the recruitment of the
potent acidic transactivation surface of VP-16 to the minimal
E1B promoter. Thus, DACH1 functionally interacts with
c-Jun in a mammalian two-hybrid assay (Figure 9B). To
determine the effect of DACH1 expression on c-Jun activity,
DACH1 was coexpressed with an expression vector encod-
ing Gal4-c-Jun 5-253 and c-Jun activity determined using

Figure 7. DACH1 inhibition of c-fos pro-
moter activity requires the SRE, but not TCF
site. (A) Schematic representation of c-fos pro-
moter luciferase reporter vectors, indicating
the TCF and SRE sites. (B) 3T3 cells were
transiently transfected with a c-fos wild-type
or mutant promoter reporter constructs and
stimulated by serum for 7 h as shown. 3T3
cells were transiently transfected with c-fos
promoter point mutant PM18 (C) or PM12 (D)
luciferase reporter genes, and expression vec-
tors encoding DACH1 wild-type or mutant.
MCF-7 cells were transiently transfected with
either wild-type or mutant c-fos promoter lu-
ciferase reporters and treated with TPA for 3
or 7 h (E) or cotransfected with a mammalian
expression vector for DACH1 (F). All changes
showing mean � SEM of n � 6 separate trans-
fections.
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luciferase reporter activity. DACH1 repressed Gal4-c-Jun
activity (Figure 9C). The DACH1 mutant �DS, however, was
incapable of repressing Gal4-c-Jun activity (Figure 9C).
These findings are consistent with the previous studies, in
which DACH1 inhibition of AP-1 activity required the DS
domain. The activity of Gal4-c-Jun was enhanced by onco-
genic Ras, however, deletion of amino acids 1-139 abrogated
Ras-induced transactivation (Figure 9D), consistent with
previous findings (Baichwal et al., 1991). DACH1 inhibited
c-Jun activation by Ras (Figure 9E). Together, these results
demonstrate, first, that DACH1 inhibits oncogenic Ras-in-
duced transactivation of c-Jun; second, that DACH1 associ-
ates with and inhibits c-Jun activity; third, that physical
association of DACH1 with c-Jun is necessary but insuffi-
cient for repression; and fourth, that the c-Jun � domain is
required for DACH1 repression.

To examine further the mechanisms by which DACH1
represses c-Jun, we compared the properties of DACH1-
mediated repression of c-Jun, with the properties of a pre-
viously described inhibitor of c-Jun. Previous studies using
in vivo competition assays identified an inhibitor of c-Jun
activity (Baichwal and Tjian, 1990; Baichwal et al., 1991). In
these prior studies, coexpression of the mammalian expres-
sion vector encoding either the wild-type or mutant c-Jun
was used to identify the domains of c-Jun required for
interaction with the � domain inhibitory factor (Baichwal
and Tjian, 1990; Baichwal et al., 1991). In our experiments,
the ability of DACH1 to repress activity of c-Jun-E2 was
overcome by c-Jun expression in trans (Figure 10A, lane 3
versus lane 5). To determine the domains of c-Jun capable of
binding DACH1, immunoprecipitation Western blot analy-
sis were conducted using truncated or mutant c-Jun (Figure
10B). The c-Jun mutants were detectable with a c-Jun anti-
body directed to the carboxy terminus of c-Jun. Immunopre-
cipitation of DACH1 with an antibody directed to the HA
epitope of DACH1 coprecipitated c-Jun. Deletion of the N-
terminal 91 amino acids of c-Jun abolished binding of
DACH1 to c-Jun. A c-Jun protein deleted of the A2 domain

Figure 8. DACH1 inhibits c-Jun transactivation, requiring the �
domain. (A) Schematic representation of c-Jun expression vectors.
(B) The HEK 293T cells transiently transfected with expression
vectors encoding either wild-type or mutant c-Jun as an E2 fusion
proteins or a DACH1 mammalian expression vector. Western blot
analysis is shown for antibodies to either c-Jun (E2) or DACH1
(Flag). GDI is used as a protein loading control. (C and D) HEK293T
cells were transiently transfected with a luciferase reporter encoding
a multimeric E2 binding site linked to a luciferase reporter [(E2)6

LUC] and the mammalian expression vectors encoding either c-Jun-
E2, Ha-Ras V12, or a DACH1 mammalian expression vector as
indicated. Luciferase activity is shown as -fold change normalized
to a �-galactosidase reporter gene used to normalize for transfection
efficiency. Data are expressed as mean � SEM for n � 7 separate
transfections. (E) 3T3 cells were transfected with the vectors de-
scribed in D, and the effect of shRNA to endogenous Dach1 was
assessed. (F) Activity of an AP-1–responsive reporter gene was
determined upon reduction of endogenous Dach1 through shRNA.

Figure 9. DACH1 and c-Jun interact in mammalian two-hybrid
system. (A) Schematic representation of c-Jun protein linked to a
Gal4 binding domain or DACH1, linked to the VP16 transactivation
domain. HEK293T cells were transfected with a multimeric lucif-
erase reporter gene UAS5 E1B TATA-LUC and mammalian expres-
sion vectors encoding the Gal4 DNA-binding domain linked to
c-Jun with VP16-DACH1 (B) or DACH1 (C). HEK293T cells were
transiently transfected with a luciferase reporter UAS5 E1BTATA-
LUC and mammalian expression vectors for c-Jun, Ras V12, or
DACH1 as shown (D–E). Data are mean � SEM of n � 7 separate
transfections normalized to the �-galactosidase for transfection ef-
ficiency.
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or mutated of either the DNA binding or dimerization do-
mains remained capable of binding DACH1 (Figure 10C).
Mutated of either the DNA binding domain or the dimer-
ization domain, each rescued DACH1 repression. But dele-
tion of the amino-terminal 91 amino acids (N91) and A2
domain resulted in a mutant that failed to overcome DACH1
repression (Figure 10D). Together, these findings are consis-
tent with a model in which DACH1 repression involves an
interaction in trans, which requires the c-Jun � and A2
domains but is independent of the c-Jun dimerization and
DNA binding domains. DACH1 binding to c-Jun is insuffi-
cient for repression as DACH1 bound a c-Jun mutant de-
leted of the A2 domain; yet, this mutant failed to rescue
DACH1 repression in trans. Together, these findings indi-
cated the c-Jun � and A2 domains interact in trans to mediate
DACH1 repression of c-Jun.

DISCUSSION

In the current study, DACH1 inhibited DNA synthesis and
cellular proliferation in 3T3 cells. Deletion of the c-Jun gene
by using c-junfl/fl 3T3 cells and Cre recombinase demon-
strated a requirement for c-Jun in DACH1-mediated inhibi-
tion of cellular proliferation. c-Jun overexpression rescued
DACH1-mediated inhibition of DNA synthesis. c-Jun pro-
motes G1 phase progression and c-Jun is necessary for G0/
G1- and S-phase progression (Ryseck et al., 1988; Kovary and
Bravo, 1991). The finding that DACH1 inhibited the DNA
synthetic phase of the cell cycle is consistent with the known
role of c-Jun to promote G1/S-phase transition. The mecha-
nism by which DACH1 inhibited c-Jun expression involved
inhibition of AP-1 activity. c-Fos and c-Jun, which contribute to

AP-1 activity, were transcriptionally repressed by DACH1.
c-Jun abundance is regulated in part by c-Jun gene transcrip-
tion (Angel et al., 1988; Treier et al., 1994; Fuchs et al., 1996;
Musti et al., 1997). The c-Jun promoter, which is autoregu-
lated by AP-1 activity mediated through an AP-1 binding site
(Angel et al., 1988; Kayahara et al., 2005) was repressed by
DACH1. Thus, c-Jun expression and transcription were both
inhibited by DACH1.

The current study identifies DACH1 as a c-Jun repressor
protein, extending prior observations that c-Jun binds JDP1
and JDP2 (Piu et al., 2001). Recent studies using genome-
wide microarray analysis suggested a potential new mech-
anism controlling AP-1 activity (Wu et al., 2003). In these
studies, inducible expression of the cell fate determination
factor DACH1 inhibited expression of the genes governing
cellular migration, adhesion, and growth, many of which are
AP-1 responsive (Wu et al., 2003). The abundance and activ-
ity of c-Jun is a critical determinant of tumor progression
and contact independent growth. Compelling evidence for a
key role of c-Jun in tumor progression was the finding that
disruption of the c-jun gene in murine hepatocytes prevents
the emergence of hepatocellular carcinoma (Eferl et al.,
2003). DACH1 repression of c-Jun expression provides an
additional mechanism controlling c-Jun abundance and
function. DACH1 protein is lost during tumor progression,
providing a mechanism by which c-Jun activity may be in-
creased, contributing to contact-independent growth. Thus, the
current study suggests an additional mechanism by which
c-Jun transformation function is kept in check through the
endogenous inhibitory protein DACH1.

c-Jun is sufficient for the induction of anchorage-indepen-
dent growth of Rat1a cells (Schutte et al., 1989; Katabami
et al., 2005). Herein, c-Jun–induced contact-independent
growth was blocked by the cell fate determination factor
DACH1. DACH1 inhibition of c-Jun–induced cellular growth
required a conserved domain (DS domain). c-Jun acts in con-
junction with Ras-V12 to transform rodent fibroblasts (Alani
et al., 1991; Binetruy et al., 1991). c-Jun is required for trans-
formation by several collaborative oncogenes, including Ras,
c-Fos, Raf, c-Myc, Mos, and Abl (Rapp et al., 1994; Johnson et
al., 1996). The finding that DACH1 blocks c-Jun function
raises the possibility that DACH1 may inhibit multiple dis-
tinct oncogenic signaling pathways that converge on c-Jun.
The mechanism by which c-Jun induces cellular growth and
tumor progression is not well understood (Maeda and
Karin, 2003). It has been proposed that c-Jun contributes to
the onset and progression of tumorigenesis, in part through
c-Jun inhibition of apoptosis via a p53-dependent cellular
pathway (Eferl et al., 2003). The defect in proliferation of
c-jun–deficient cells has been attributed to elevated expres-
sion of p53 and p21CIP1, and several downstream targets of
c-Jun are required, but not sufficient, for induction of con-
tact-independent growth, including stathmin, HMG 1/Y,
and cyclin A (Kinoshita et al., 2003; Hommura et al., 2004;
Katabami et al., 2005). DACH1 inhibited the physiological
induction by serum of the c-Jun target genes cyclin A and
�-PAK. The expression of c-Jun with a doxycycline-induc-
ible stable cell line (Rat1a-J4) induced expression of cyclin A.
DACH1 inhibited c-Jun induction of cyclin A expression.
DACH1 inhibited c-Jun–mediated induction of several
known endogenous c-Jun target genes, including cyclin A
and stathmin; and DACH1 was identified within the context
of local chromatin of the endogenous AP-1 sites at the
known c-Jun–responsive promoter of cyclin A and cyclin
D1. DACH1 siRNA reduced DACH1 abundance and in-
duced expression of the c-Jun responsive genes c-Jun and
cyclin D1. Collectively, these studies demonstrate that

Figure 10. DACH1 repression of c-Jun activity is rescued in trans
by c-Jun requiring the N terminus. (A) HEK293T cells were tran-
siently transfected with a multimeric E2 binding site linked to a
luciferase reporter gene (E2)6-LUC and mammalian expression vec-
tors encoding c-Jun-E2, DACH1 or c-Jun. (B) Schematic representa-
tion of mammalian c-Jun expression vectors. (C) Western blot anal-
ysis of HEK293T cells transiently transfected with c-Jun wild-type or
mutant expression vectors with DACH1. HA epitope of DACH1
expression vector was used to immunoprecipitate DACH1. Copre-
cipitation of c-Jun is shown using a c-Jun–specific antibody. (D)
Rescue of DACH1 repression by mammalian c-Jun mutant expres-
sion vectors. Rescue is shown as a percentage of wild-type c-Jun for
each mutant. Data are mean � SEM of n � 6.
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DACH1 is a physiological regulator of endogenous c-Jun
function, inhibiting c-Jun expression and c-Jun target gene
expression.

The binding and inhibition of c-Jun transactivation by
DACH1 but not the structurally related Ski protein, suggests
these proteins have evolved to regulate distinct subsets of
transcriptional responses. Herein, the interaction of DACH1
with c-Jun was evidenced by mammalian two-hybrid and by
immunoprecipitation Western blotting. DACH1 inhibited
c-Jun transactivation when c-Jun was linked to a heterolo-
gous DNA binding domain. Deletion of the DS domain of
DACH1 abrogated interaction with c-Jun. Similarly, deletion
of the c-Jun N-terminal amino acids 1-91 abrogated binding
of c-Jun to DACH1. Coexpression of c-Jun titrated the inhib-
itory function of DACH1, consistent with the model in
which the relative abundance of c-Jun and DACH1 deter-
mined c-Jun transactivation.

In the current studies, DACH1 repression of c-Jun re-
quired the c-Jun � domain. Activity of the v-Jun E2 fusion
protein, which deletes the � domain, was resistant to
DACH1 repression. The c-Jun � domain engages cell-specific
inhibitors of c-Jun (Baichwal and Tjian, 1990). Putative in-
hibitors of this domain include catalytically inactive JNK
(Dai et al., 1995; Ljungdahl et al., 1997). JNK binds and
phosphorylates c-Jun at serine 63 and 73. The role of the �
domain itself versus JNK phosphorylation within the N
terminus of c-Jun for cellular DNA synthesis and transfor-
mation remains controversial. C-Jun promotion of G1 phase
progression seems to be independent of its phosphorylation
(Wisdom et al., 1999). The JNK binding site of c-Jun can also
be uncoupled from its transformation capabilities in same
studies (Sprowles and Wisdom, 2003). Thus, mutation of the
JNK phosphorylation sites did not affect the transformation
activity of c-Jun in chicken embryo fibroblasts (Vogt, 2001).
Furthermore, JNK-dependent phosphorylation of the c-Jun
N terminus may not be required for Ras-induced cellular
transformation (Johnson et al., 1996; Kennedy et al., 2003). In
contrast with these studies, mice and cells encoding a mu-
tant allele of c-jun in which the JNK phosphorylation site has
been mutated demonstrated an important role for these
residues in c-jun–dependent transformation (Behrens et al.,
2000). Furthermore, although mutation of serine 63 and 73 in
v-Jun did not alter transforming activity of v-jun, mutation
of these residues in c-jun reduced cooperation with Ha-Ras
in oncogenic transformation (Binetruy et al., 1991). The cur-
rent study is consistent with a role for DACH1 as an inhib-
itor of the c-Jun � domain.

The transactivation potential of c-Jun and its oncogenic
activity in cooperation with Ras are often correlated (Alani et
al., 1991; Smeal et al., 1991), although exceptions exist in
avian and yeast systems (Vogt, 2001). In the current study,
DACH1 inhibited c-Jun–mediated transactivation. DACH1
binding to the N-terminal domain of c-Jun may repress c-Jun
activity by recruiting a corepressor or interfering with coac-
tivator binding. CBP binds to the N-terminal region of c-Jun
(Bannister et al., 1991; Mayr and Montminy, 2001) as does
RH2/Gu-RNA-helicase (Westermarck et al., 2002). The core-
cruitment of histone deacetylase proteins HDAC1 and
HDAC3 by DACH1, to c-Jun and thereby to an AP-1 binding
site, provides one mechanism by which DACH1 may regu-
late AP-1 signaling. Recent studies suggested that the c-Jun
� domain may interact with a yet unidentified protein that
recruits HDAC3 (Weiss et al., 2003). The relative importance
of DACH1 in recruitment of histone deacetylase to c-Jun
remains to be further explored.

Herein, DACH1 repressed the c-fos promoter. DACH1
transcriptional repression was abolished by point mutation

of the SRE site. In the current study, serum-induced c-fos
promoter activity was reduced by point mutation in either
the TCF or SRE binding site. Extracellular stimuli enhance
TCF transcriptional activity through the MAPK family of
extracellular regulated kinases (extracellular signal-regu-
lated kinases, JNKs, and p38s), which phosphorylate the
TCF transactivation domain (Whitmarsh et al., 1995, 1997).
The SRF site of the c-fos promoter is induced by RhoA
independently of MAPKs (Sotiropoulos et al., 1999; Miralles
et al., 2003). RhoA induction of SRF involves ROCK and
phosphorylation of LIM kinase (Hill et al., 1995). Activation
of SRF involves a decrease in the cellular pool of monomeric
actin (Sotiropoulos et al., 1999). LIM kinase-dependent phos-
phorylation of cofilin induces the stabilization of polymer-
ized actin (F-actin), which is sensed by SRF to induce its
activity (Sotiropoulos et al., 1999; Miralles et al., 2003).
DACH1 regulates cytoskeletal proteins and their function as
evidenced by genome-wide analysis of molecular genetic
targets (Wu et al., 2003). Although speculative, the finding
that DACH1 inhibits c-fos promoter activity through the SRF
site is consistent with a role for DACH1 in regulating a
RhoA/ROCK/LIM kinase cytoskeletal signaling pathway.
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