
Received June 24, 2019, accepted July 30, 2019, date of publication August 29, 2019, date of current version September 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938410

Cell Fault Management Using Machine
Learning Techniques

DAVID MULVEY 1, CHUAN HENG FOH 1, (Senior Member, IEEE),

MUHAMMAD ALI IMRAN 2, (Senior Member, IEEE),
AND RAHIM TAFAZOLLI1, (Senior Member, IEEE)
15G Innovation Center, University of Surrey, Guildford GU2 7XH, U.K.
2School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.

Corresponding author: David Mulvey (d.mulvey@surrey.ac.uk)

This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Global Research Fund through

Project under Grant EP/P028764/1.

ABSTRACT This paper surveys the literature relating to the application of machine learning to fault

management in cellular networks from an operational perspective. We summarise the main issues as 5G

networks evolve, and their implications for fault management. We describe the relevant machine learning

techniques through to deep learning, and survey the progress which has been made in their application, based

on the building blocks of a typical fault management system. We review recent work to develop the abilities

of deep learning systems to explain and justify their recommendations to network operators. We discuss

forthcoming changes in network architecture which are likely to impact fault management and offer a vision

of how fault management systems can exploit deep learning in the future. We identify a series of research

topics for further study in order to achieve this.

INDEX TERMS Cellular networks, self healing, cell outage, cell degradation, fault diagnosis, deep learning,

explainable AI.

I. INTRODUCTION

The pressure to achieve greater data rates from limited radio

spectrum resources is driving changes in cellular network

architecture as 5G evolves. A decentralised Radio Access

Network (RAN) architecture has emerged where groups of

small, densely deployed cells are associated with a sin-

gle macrocell, with signalling transmission retained by the

macrocell but user traffic largely devolved to the small

cells [1], [2] and [3]. In addition, optional interfaces between

baseband and RF processing have been defined, enabling the

potential virtualisation of some RAN functions.

In the new RAN architecture, Coordinated Multi-

point (CoMP) transmission techniques, based on Multi User

Multiple Input Multiple Output (MU-MIMO) configurations,

are used to maximise radio throughput [4]. Small cells in

urban settings use three-dimensional MIMO, with planar

array antennas containing significant numbers of antenna

elements [5].

At the same time, other work has been going on to

address the topic of energy efficiency, given that the energy
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consumption of cellular networks is typically dominated by

that of the base stations. This will require complex strate-

gies to adjust cell coverage and turn base stations off and

on again depending on traffic levels, without disruption to

users [6].

These additional capabilities included in the new RAN

architecture will require it to have many more configurable

parameters than previous generations [7], [8] and [9], whose

settings may vary according to local conditions. This will

mean that the classic strategy of building a set of rules to

handle faults is likely to begin to break down as the ruleset

becomes too large, complex and difficult to maintain. In this

situation there is an opportunity to exploit the benefits of

machine learning (ML) based techniques, in particular deep

learning, which do not require an explicit causal model, such

as a ruleset, in order to be effective.

We define fault management as the set of tasks required to

detect cell faults and then identify and implement corrective

actions to restore full operation.We also include any activities

required to determine the root cause of a fault, in order to

take steps to prevent a recurrence. We exclude administrative

tasks for tracking faults and organising remedial work from

the scope of this definition.
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These tasks may be carried out by the network manage-

ment team or may be at least partly automated. In the latter

case, such features are being specified and developed for

mobile networks under the banner of the Self Organising

Network (SON). The EU SOCRATES project has defined use

cases for the SON, leading to subsequent formalisation in the

3GPP standards [10]–[12] and [13]. The main threads within

the SON are self configuration, self optimisation and self

healing, all of which have some relevance to fault manage-

ment, especially self healing. The top level SON standard [11]

provides for both partial and full automation. In the former

case, referred to as open loop SON, operator confirmation

is required before control actions are implemented. In the

latter case, known as closed loop SON, the system is fully

automatic requiring no operator intervention.

Three approaches to fault management have been

described in the literature: rule based systems, algorithmic

approaches and most recently machine learning techniques.

Rule based systems have the key advantage that presenting

their chain of reasoning to a user is relatively straightfor-

ward, but have the major disadvantage that they require the

use of network domain expertise to set up and maintain the

ruleset.

Algorithmic approaches can be very effective but lack the

transparency of rule based systems and are typically lim-

ited to a narrow problem area, requiring the use of diverse

algorithms to cover the complete fault management prob-

lem space, each requiring input from both network domain

experts and algorithm specialists to set it up and maintain

it.

Machine learning (ML) approaches, by contrast, can offer

several benefits. At the root cause analysis stage, ML tech-

niques can be used to trawl through very large volumes of

fault data to suggest possible symptom-cause linkages which

an expert can then review.

For real time fault management, ML techniques [14]–[16]

and [17] have the advantage that they can be trained from

fault data with limited domain expert input, and can then be

retrained semi-automatically as the network changes. Unlike

algorithmic methods, ML techniques are typically able to

cover a broad range of problem areas, reducing the need

for input from staff with knowledge of specialist algorithms.

Deep neural networks, a recent development in ML [18], [19]

and [20], are able to process very large and complex input data

sets without the need for much of the dedicated handcrafted

preprocessing code required by rule based and algorithmic

techniques.

An issue has emerged, however, in that the most promising

recent ML techniques such as deep learning, unlike earlier

approaches such as Bayesian networks, do not attempt to

build a casual model of the network and instead exploit cor-

relations between data items reported by the network. Hence

these techniques take no account of underlying engineering

principles in arriving at their decisions. A key challenge,

therefore, will be to find away to give such systems the ability

to explain and justify their recommendations.

The main contributions of this paper are as follows:

• we review and discuss the application of ML techniques

to cell fault management from an operational perspec-

tive, considering fault management as a cooperative

activity between the network management team and a

range of electronic systems

• we propose a revised fault management lifecycle based

on emerging industry practice

• we cover root cause analysis in addition to the classic

self healing tasks (detection, diagnosis and compensa-

tion) covered by previous surveys

• we cover deep learning as well as earlier ML approaches

and their non-ML predecessors

• we review the approaches which can be taken to enable

an ML subsystem to explain its recommendations

• we propose a standard set of metrics against which to

evaluate fault management systems

This paper is organised as follows. After reviewing related

work, we propose a revised lifecycle for fault management

aligned with the most recent operational practice, and dis-

cuss the issues in capturing the data required to support the

processes within this framework. We discuss pre-ML tech-

niques and their limitations before moving on to introduce the

key ML approaches. We then survey the application of ML

techniques to fault management in mobile networks, based

on the key building blocks of a typical fault management

system. After this, we consider the impact of recent changes

in network architecture and identify the gaps between the key

attributes of a future fault management system and the current

state of the art. Finallywe list areas for future research to close

these gaps.

II. RELATED WORK

Previous surveys in fault management focus on SONs as

fully automated systems, with some discussion of how ML

approaches can be applied to self healing. In this paper,

we also include system-operator interaction, over the full

range of fault management activities as defined above includ-

ing root cause analysis, taking into account the most recent

developments in deep neural networks.

Aliu et al. [21] cover all aspects of self organisation in cel-

lular networks, with particular emphasis on self optimisation;

the authors note that relatively little work has been reported

on self healing in relation to the other SON functions. The

paper gives an overview of cell outage detection and com-

pensation and provides a useful taxonomy of machine learn-

ing techniques applicable to SONs generally. This includes

neural networks but coverage of these is restricted to self

organising maps. Among other future research topics the

paper highlights the need for work to ensure satisfactory

interworking between self healing and energy saving cell

hibernation schemes.

Klaine et al. [22] also survey machine learning applied

to self organising networks, under the headings of self opti-

misation, self configuration and self healing. Self healing is
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FIGURE 1. Self healing lifecycle.

defined to cover fault detection, fault classification and cell

outage management (detection through to fault compensa-

tion). A wide range of earlier machine learning techniques is

covered and discussed. There is one reference covering neural

networks applied to self healing, which uses a feedforward

network.

Asghar et al. [23], by contrast, focus on self healing and

survey a broad range of techniques which have been applied

to detection, diagnosis and compensation for cell outages.

These include ML approaches, but discussion of the more

recent techniques including NNs is limited. They raise a num-

ber of very interesting points on future challenges, mainly

recommending algorithmic approaches as the way forward

rather than the application of ML techniques.

All the above papers focus on closed loop rather than

open loop SON. Self healing is taken to be an automatic

subsystem which is able to run autonomously, and so the

capabilities required to interact with a human user are not

covered.

In the current paper, however, we consider fault

management as a cooperative activity between the network

management team and automated technologies designed to

alleviate their workload. Hence we cover both open and

closed loop SON, as well as support for expert investigations

into underlying issues. We consider more recent techniques

which are just beginning to be applied to fault manage-

ment, such as deep neural networks and deep reinforcement

learning. We also include the analysis of successful operator

actions as an alternative perspective to fault data analysis.

As part of this, we also assess the person to machine interac-

tion issues that will need to be addressed to enable network

management teams to work effectively with these new tools.

III. FAULT MANAGEMENT FRAMEWORK

A. DEFINITIONS

For the purposes of this paper, we consider a fault to be a state

of the radio network or one or more of its elements which

causes the network to fail to meet its service specification.

For the RAN we can define the service being provided as the

connectivity from the core network across the RAN to the end

user’s mobile device. The types of faults we consider, with

typical examples, are given in Table 1.

TABLE 1. Typical examples of cell faults.

A set of symptoms indicating a fault, observed at the service

level and from other evidence within the network, may be due

to one or more underlying causes, in the context of a set of

network conditions.

Causes of faults may include hardware failures, software

defects, design flaws, misconfigured parameters, incorrect

actions by the network operations team and unauthorised

external interventions (cyber attacks) which have succeeded

in penetrating the network’s security defences.

Fault symptomsmay have several possible causes; an unac-

ceptably high dropped call rate, for example, could be due

to factors such as a hardware failure, an incorrect setting

of a parameter e.g. antenna tilt, or even a change in the

local surroundings which causes a reduction in radio signal

strength.

Different types of faults may need to be handled differently.

Specific unintentional misconfigurations, for example, can be

fixed with the likelihood that the issue will remain resolved.

Deliberate disruptions, however, may recur unless steps are

taken to prevent external attack or mitigate its effects. Even

in the unintentional case it may be necessary to prevent

future failures by measures such as retraining or additional

checks. We discuss the issue of analysing the root cause

of a fault and devising preventive measures in more detail

below.

At the compensation stage a failure is compensated for

by a self healing or system resilience feature (such as an

automatic switch from main to standby) but the failure is

typically not yet rectified, so that it becomes a dormant

fault.
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FIGURE 2. Fault management lifecycle.

In this paper we consider all the fault types listed in Table 1.

We assume that there is a separate operational process in

place (outside the scope of this paper) for dormant faults to

be logged and managed, which reports such faults to the fault

management system so that they can be considered together

with the presenting fault symptoms.

B. FAULT LIFECYCLE

Many of the studieswe reference in this paper are based on the

lifecycle for self healing systems (see Fig. 9), which focuses

on the immediate activities required to get the network back

into operation following a fault [24]. Recent operational fault

management practice, however, has been based on a slightly

different lifecycle which has a wider scope. We propose a

revised and extended lifecycle, which is intended to reconcile

these two approaches (see Fig. 2).

The self healing systems lifecycle described in [24] con-

sists of a single phase of fault handling with four stages:

detection, diagnosis (also known as localisation), compensa-

tion (also known as mitigation) and recovery. On completion

of the fault recovery stage the self healing process is com-

plete, in that the system has now been restored to full normal

operation.

The ISO20000 fault management standard, however,

which is coming to be accepted in industry, considers fault

management as having two phases:

1. Incident Management, where the primary objective is to

restore service following detection of a fault.

2. Problem Management, where the objective is to investi-

gate in depth a single complex fault, or a number of appar-

ently related faults, in order to devise suitable corrective

action.

It can be seen that the lifecycle for self healing maps neatly

onto that for incident management. Problem management,

on the other hand, requires the addition of a second phase

consisting of two stages which we may call root cause anal-

ysis and root cause corrective action.

At present, diagnosis and root cause analysis are not

always distinguished clearly in the literature, although the

ML approaches to the two areas may well be different.

To clarify this, we propose to divide the activity currently

referred to as fault diagnosis into two separate parts, with

different functions, to allow the relevant ML techniques to

be considered separately.

We may call the first part Action Determination, repre-

senting the diagnostic activities within IncidentManagement.

Here the goal is simply to determine which compensation

action to take given the symptoms. The second part can then

be mapped on to the Root Cause Analysis stage of Prob-

lem Management. This part is potentially more demanding

in that it is now necessary to analyse the fault in sufficient

detail to be able to devise suitable corrective action to prevent

a recurrence.

IV. FAULT MANAGEMENT DATA

In this section we consider the data required to implement

the fault management framework outlined in the previous

section, how this can be collected and what issues can arise.

In later sections wewill then go on to discuss how these issues

can be addressed.

A. DATA SOURCES

In order to carry out fault detection and diagnosis, the sys-

tem needs access to live data and to historic network data,
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TABLE 2. Examples of key data for cell fault management.

captured both during normal operation and also when a vari-

ety of faults are present. Key sources of data include alarms,

other events, Key Performance Indicators (KPIs), radio cov-

erage reports and network configuration data.

In [25], a systematic framework is put forward for defin-

ing and managing the datasets relevant to SONs, including

self healing systems, which can be drawn upon to consider

the dataset required for fault management. The set of stan-

dard KPIs for cellular networks defined in [26] also forms

a useful starting point; however Szilagyi et al. highlight

that additional, lower level, data is likely to be required for

cell fault detection and diagnosis [27]. Typical examples of

key data referred to in fault management studies are given

in Table 2.

B. DATA COLLECTION

To be useful for fault management, all data needs to be logged

with a timestamp and also a spatial reference, which should at

least identify the cell ID. For radio measurements it is highly

desirable that the spatial reference should also include the

location of the mobile at the time the measurements were

made [33]. Relevant aspects of the network configuration at

the time of logging also need to be recorded [24].

The 3GPP standards specify a mechanism for automatic

cell data collection known as the cell trace facility, which

reports the data to a central trace collection entity [34],

[35] and [36]. This facility provides the ability to selectively

enable and disable different trace functions in different areas

of the network. For example, the Radio Link Failure (RLF)

function can be used to instruct a specific eNodeB to collect

and report UE radio link failure messages.

The traditional method of obtaining radio coverage data

is drive testing, which is, however, increasingly expensive.

Consequently 3GPP set up the Minimise Drive Test-

ing (MDT) initiative, and as a result of this work have now

incorporated MDT data collection into the cell trace mecha-

nism. This function collects UE measurements of radio KPIs

such as RSRP and RSRQ, either regularly or in response

to certain network events, and passes them to the cell trace

facility for logging [37], [38] and [39].

At around the same time,mobile devices evolved to include

a GPS location tracker, which was able to provide location

data to a higher accuracy and resolution than previously

possible. As well as significantly enhancing the quality of

radio reporting data for fault management, it has been recog-

nised that this can be used to improve many aspects of radio

network performance including interference management,

scheduling and handover decisions [40], [41].

C. DATA QUALITY ISSUES

Typical examples of low level quality issues which can arise

are noise, missing data and irrelevant data. Radio data, for

example, can be subject to unwanted disturbances due to

shadowing and fast fading of the signal. Equipment status

reports, on the other hand, may consist entirely of clean

data but some reports may be lost in transmission. Even

with the level of control provided by the cell trace facility,

reports may include data which is not relevant to the prob-

lem being addressed. Alternatively the volume of low level

data items may be too high for efficient processing, or the

data may only be available in a continuous stream whereas

the ML technique may require data to be submitted in

batches.

At a higher level, it may not be straightforward even to

detect that a fault has occurred, given the available data. This

is the case with the so-called ‘‘sleeping cell’’ problem [42].

This scenario arises because some faults, such as RF

cable failures, cannot reported to the network management

centre although they may cause a radio outage. If such a

fault occurs, the user service may be significantly impacted

without the network management centre being aware of the

problem.

In some situations, individual data items may each be

weakly correlated with the occurrence of a given fault or one

of its causes, but for certain combinations of data items the

correlation may increase significantly. Another possibility is

that some of the data items may be correlated with each other,

so that the dataset contains a level of redundancy which could

lead to inefficient processing.

Alternatively far too much potentially relevant data may

be generated, such as when a single low level fault, e.g a

power supply failure, causes multiple alarm messages to be

triggered, making it difficult for the network operators to

determine the underlying cause.

In the next three sections we look at how all these issues

can be overcome, either by suitable pre-processing of the data

or by the fault management techniques themselves. Before

this, we explain whyML approaches emerged by considering

pre-ML techniques and their limitations.
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V. PRE-ML FAULT MANAGEMENT SYSTEMS

Pre-ML fault management techniques can be divided into two

principal categories: logic based and algorithmic.

Logic based approaches use a set of rules to explicitly

encode knowledge about the relationships between fault

symptoms and causes. Algorithmic techniques, on the other

hand, incorporate expert knowledge implicitly within the

software implementing the algorithm. We discuss each of

these approaches in turn and look at the limitations of both

methods.

A. LOGIC BASED APPROACHES

In logic based approaches, the rules may be based on pred-

icate logic (where predicates are either true or false) or one

of a number of developments of this to allow predicates to

be associated with a probability rather than a binary truth

value [43].

The earliest implementations were based on a hard coded

program, with access to the rules embedded in the program

at appropriate points. The rules themselves were encoded in a

table or defined explicitly using a rule syntax. A development

of this was the expert system, which separates out control into

a separate entity, the inference engine, which is responsible

for selection of which rules to activate [44]. In this architec-

ture the rules are held in a data store known as the knowledge

base.

A key application of logic-based systems is to address the

multiple alarm issue described in Section IV above. This

uses a technique called alarm correlation, in which low level

alarms are filtered and aggregated based on a ruleset, to pro-

vide a more effective presentation of the network status to the

operators [45].

A further refinement is the model based approach, which

separates out the behaviour of each type of network element

from the network topology, and models the expected normal

behaviour of each element to enable this to be compared with

the actual behaviour in order to determine whether a fault

exists [46].

As a sophisticated example of this approach, Yan et al.

developed a root cause analysis toolset called G-RCA [47].

This is designed for IP networks and includes a service

dependency model incorporating topological relationships as

well as dependencies between protocol layers. Candidate

diagnosis rules are extracted from historic data using spatial

and temporal ‘‘joining rules’’ specifying the allowable gap in

time or distance in space between symptoms and potential

causes. The resulting rules are verified by domain experts

(the network operators) and then incorporated into a causality

graph which controls the diagnosis of incoming symptoms.

B. ALGORITHMIC TECHNIQUES

The logic based approach is sufficiently generic to cover a

wide variety of faults. Algorithmic techniques, on the other

hand, are typically designed to address one very specific

issue. An example of this is the problem of compensation for

radio transmit/receive array failures, where Yeo et al. used a

genetic algorithm to optimise radio performance of the failed

array, and subsequently improved on this approach by using a

particle swarm optimisation algorithm [48] and [49]. Closely

related to this is the problem of compensation for cell outages,

for which some recent examples of algorithmic techniques

again include particle swarm optimisation and also use of a

proportional-fair utility algorithm [50] and [51].

C. LIMITATIONS

Logic based systems have proved effective in use but suffer

from a number of serious limitations. Strict application of

binary logic has been found to result in too many special

conditions and so it has become necessary to group together

various sets of symptoms and use probabilistic logic. Even

so, rule bases can grow to the point where maintaining con-

sistency becomes a major issue [43]. Given the complexity

of 5G and the expected numbers of parameter settings, it may

prove infeasible to use rule based systems at the level of detail

required for effective diagnosis.

Expert input is required to set up and maintain the rule

base and this can be scarce and expensive; the expert may not

necessarily be able to articulate their knowledge so knowl-

edge capture can be challenging [52]. Even the more recent

systems with automated extraction of candidate diagnostic

rules can require significant input from domain experts and

software specialists to verify the logic initially and to main-

tain it as changes are made to the network.

Logic based systems require the same pre-processing tech-

niques to handle low level data issues as for ML systems (see

Section VII below), and in addition may also require exten-

sive domain and problem specific data conversion routines at

the front end to turn complex analogue measurements, such

as comparison against a profile, into simple predicates for

processing by the ruleset.

Algorithmic approaches entail similar pre-processing over-

head, together with significant expert input to code, set up

and maintain the fault management subsystem. In addition

such techniques are typically designed to solve one particular

issue and do not generalise to other issues, which may lead to

a large number of different low level software modules to be

supported.

VI. OVERVIEW OF MACHINE LEARNING FOR CELL FAULT

MANAGEMENT

By contrast with traditional logic based techniques,

ML approaches can automate much of the work of setting

up and maintaining the fault management system, so that

expert input is only needed to validate the system rather

than to specify all the details. Unlike algorithmic approaches,

ML techniques can in many cases be used to handle a range

of issues rather than being crafted to address one specific

problem.

This section provides an overview of selected ML tech-

niques which have been used in cell fault management studies

or have shown potential for cell fault management from their
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FIGURE 3. Taxonomy for ML techniques in cell fault management.

successful application in similar work. We also critically

evaluate the advantages and disadvantages of ML approaches

in relation to previous approaches.

For the purposes of this paper we use Murphy’s definition

of ML: ‘‘we define machine learning as a set of methods

that can automatically detect patterns in data, and then use

the uncovered patterns to predict future data, or to perform

other kinds of decision-making under uncertainty’’ [53]. We

can divide ML techniques applicable to fault management

into two types. The first uses analytical techniques, where the

system provides useful information derived from a raw data

set [53], [54]. The second employs active techniques, where

the system takes actions subject to a feedback and reward

system [55]. To date, detection and diagnosis have been

carried out using purely analytical approaches whereas active

techniques have been exclusively applied to the compensation

stage.

A taxonomy diagram for the principal ML techniques

which have been used in cell fault management studies is

given in Fig. 3.

A. ANALYTICAL TECHNIQUES

1) INTRODUCTION

All analytical ML techniques use two principal input data

sets: training data made up of historical data, from which

learning can take place, and active live data samples pro-

cessed by the system when in operational use. In the ML

world, the attributes of the input data are referred to as fea-

tures; hence the dimensionality of the data is the number of

features.

We can consider the analytical techniques as having the

following attributes, which are described in more detail

below:

• output type (continuous, discrete)

• supervision mode (supervised, unsupervised)

• training method (parametric, non parametric)

• scope (global, local)

If the output type of an ML system is continuous, being

used to predict some property derived from the input data set,

the system is known as a regression system. By contrast, sys-

tems in which the output type is discrete, so that each output

represents a class to which each input has been assigned, are

referred to as classification systems.

The supervision mode is dependent on the composition of

the training dataset. In supervised learning the training data

set includes values for the output data as well as the input

data; these will be either predicted values in the regression

case or class labels in the classification case. In unsupervised

learning no predictions or labels are provided; the system

uses input data only.

The training method used may be parametric or non para-

metric. A parametric method fits a model to the training data

during a training phase by adjusting the model parameters

to minimise a suitable cost metric. The model is then used

during a subsequent operational phase to predict from or

classify live data. A non parametric method, on the other

hand, uses the training data directly during the operational

phase rather than learning a predictive or classification model

beforehand.

The scope of either method may be global, in which case

the algorithm takes as input the whole of the training dataset

and any parameters are constant across the whole data range,

or local, in which case the algorithm considers limited regions

of the data space at a time and any parameters have local

validity only, typically with a method of minimising discon-

tinuities at the borders between the regions.

Methods may be based on purely linear calculation tech-

niques, or may in addition include non linear mathematical

approaches. An important class of model based approaches

which combines both of these is the neural network (NN).

NNs consist of a set of nodes, each of which applies a specific

linear weighting to each of its inputs and then may apply a

non-linear transformation to compress the result. Nodes are

typically organised in layers, providing input and output and

also often including internal or hidden layers. Recent general

advances in NNs have focused on so-called deep NNs, which

for the purposes of this paper we may define as NNs with two

or more hidden layers [56].

A good example of the NN approach is the feedforwardNN

(FFNN), typically used in cellular networks as a classifier.

This is trained by optimising the weights, using both the

forward and the backward paths through the network, to min-

imise a ‘‘loss function’’ giving a measure of the difference

between the labelled classification and that predicted by the

NN. During the operational phase, classification then takes

place using the forward path only.

An FFNN is unsuitable for processing input sequences as

it can only consider a fixed set of inputs at a given time. This

limitation would mean that an FFNN would be restricted to

processing fixed length sequences and the number of input

weights required would be the product of the number of fea-

tures and the sequence length. To overcome this, the recurrent

NN (RNN) feeds back the values of the states of each hidden

layer and weights them to include in the calculations for

the new state values for that layer for the next item in the

sequence. This allows the weights to be shared between all

items in the sequence and permits the processing of sequences
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of arbitrary length. As with the FFNN, the RNN is trained

using labelled data.

A convolutional NN (CNN) by contrast, is designed to pro-

cess two dimensional inputs, typically extracted from image

data. As with an FFNN, a convolutional network consists of

an input layer, an output layer and a number of hidden layers.

The CNN, however, consists of two principal types of hidden

layer: the convolutional layer and the pooling layer.

The convolutional layer carries out a set of weighted convo-

lution operations on small subsets of the layer’s inputs, using

the same weights for each subset. The pooling layer, on the

other hand, takes the outputs from the convolution layer and

aggregates then across larger subsets of the data. This has the

effect of making the results insensitive to particular aspects

of the image such as the exact location or orientation of an

item within the image. Repeating these processes over many

hidden layers allows the CNN to learn its own features, such

as lines or angles, which can become progressively more

complex in the later hidden layers. Just as with the FFNN

and the RNN, the CNN is trained using labelled data.

All the NNs described so far are typically used to predict

the classification of data items, based on labelled training

examples. The autoencoder, however, is designed to predict

its own inputs. This can be useful when dealing with noisy

inputs, when a so-called denoising autoencoder [57] can be

used to recover a clean version of the inputs. The network

consists of an encoder and a decoder, and is trained using a

loss function providing a measure of the difference between

the actual input and the autoencoder’s prediction of it. For

more detail on recent developments in neural networks appli-

cable to wireless networks see [18], [19] and [20].

At present, relatively little use of neural networks has been

made in cell fault management, although an FFNN has been

used for cell outage detection [58]. We discuss later on in this

paper how deep NNs can be used in cell fault management

and the challenges that will need to be overcome in order to

achieve this.

2) SUPERVISED LEARNING - CLASSIFIERS

Detection and diagnosis techniques typically make use of

classifiers based on supervised learning; binary classifiers

are sufficient for detection where there are only two pos-

sibilities, faulty or not faulty, whereas for diagnosis, where

theremay be several possible causes, multiclass classifiers are

required.

A comparison of themajor classifiers used in fault manage-

ment is given in Table 3. The simplest is logistic regression,

a parametric linear classifier, which finds a hyperplane to be

used to separate the data, based on the minimum total squared

distances from all the data points. It can be extended to permit

non-linear boundaries by calculating new features which are

polynomial or other functions of the original features.

The support vector machine (SVM) is also a parametric

classifier but includes an internal non-linear transformation

which allows it to handle non-linear boundaries. The SVM’s

distinctive feature is that it sets the boundary by taking

TABLE 3. Principal ML techniques 1: Classifiers.

into account just the points close to where the boundary is

expected to be, referred to in the literature as the support

vectors. These points are identified in relation to a specified

margin on either side of the boundary. A refinement is to

set a budget for misclassification errors (points deliberately

allowed to be on the wrong side of the boundary or in the

margin). The position of the boundary is then adjusted by

an optimisation function to minimise the classification error

subject to this budget.

The k nearest neighbours (kNN)method is a non-parametric

approach. When used as a classifier, kNN requires training

data to be gathered from normal and faulty operation, with

the data labelled to distinguish between normal operation and

each type of fault. It then classifies each live data point by

majority voting based on the labels of its k nearest neighbours

in the training set. A recently reported technique [59] is

the Transductive Confidence Machine (TCM), which can be

thought of as a variation of kNN which also uses a labelled

VOLUME 7, 2019 124521



D. Mulvey et al.: Cell Fault Management Using Machine Learning Techniques

TABLE 4. Principal ML techniques 2: Pattern extractors.

training set. There is also a type of kNN which can be used

as anomaly detector. This method uses a training data set

representing normal operation; for each live data point the

system calculates a metric based on the distances from the

k nearest neighbours in the training dataset and compares it

with a threshold in order to detect anomalies.

The naive Bayesian classifier (NBC) works with a

Bayesian Network representing symptom-cause relationships

derived from historic fault data. It uses Bayes’ theorem to

rank the possible causes by probability given the symptoms.

Expert input is required to set up the network but the cause

probabilities can be estimated automatically if sufficient data

is available.

An NN used as a classifier, irrespective of the number and

type of the hidden layers, typically will have an output stage

designed to estimate the probability of each input example

being in each of the classes and use this to make a classifica-

tion decision.

3) UNSUPERVISED LEARNING - PATTERN EXTRACTORS

All the above techniques depend on a training set with every

data item labelled individually, which can require a large

amount of expert input. As a result unsupervised learning

techniques have been developed (see Table 4), which auto-

matically extract a small number of patterns from large quan-

tities of data. The candidate patterns can then be reviewed

by experts, significantly reducing their workload in compar-

ison with searching the data manually. Having done this the

classifier can then classify the data by comparing it with the

patterns. Although these approaches are typically somewhat

computationally intensive during the training phase, none

of them requires significant computing resource during the

FIGURE 4. Reinforcement learning architecture.

TABLE 5. Principal ML techniques 3: Reinforcement learning.

operational phase, as only the classifier needs to be run at

this point.

One approach to pattern extraction is cluster analysis,

which aims to group the data into similar types or clusters.

An approach which has been used in fault diagnosis is self

organising maps [60], which are a type of neural network

that projects a high dimensional training data space onto a

very low dimensional (typically 1 or 2D) discrete data space

representing a small number of clusters.

Another approach, which has been used in the root cause

analysis of faults, is to use an association rule extractor

algorithm [61] to scan network event logs and traces to auto-

matically detect possible associations between a given set of

symptoms and potential causes, together with measures of

the strength of the associations. The associations are then

expressed as a set of rules or a causal graph for review by

a human expert.

B. ACTIVE TECHNIQUES

These are based on the principle of reinforcement learning

(RL), in which a part of the system known as the agent

(see Fig. 4) takes actions on the environment from which it

receives reward signals, which are used to influence the next

action.

The agent’s actions are determined by a policy, which has

to balance the benefits of exploitation, in other words taking

the action with the current highest expected future reward,

against exploration, which means taking another action with

a lower currently expected future reward in order to seek even

higher rewards in the future. To assist with this, another part
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of the system known as the value function is used to estimate

the total expected future reward of taking an action from a

given system state. For a task such as compensation, where

the goal is to achieve a stable result, the agent’s interaction

with the environment can be represented by a finite sequence

called an episode.

The two most popular RL techniques used in cell fault

management are Q-learning [62] and Actor-Critic learn-

ing [33]. These have each been used to compensate for cell

outages by adjusting the power levels and/or antenna tilt of

neighbouring cells. They are both based on the Temporal

Difference (TD) approach, in which the system evaluates

the expected reward by looking ahead one step only. This

gives the TD approach the advantage that it is not necessary

to provide it with a model of the environment, as it can

function by taking one action at a time and observing the

outcome.

In Q-learning, the policy is fixed. A typical policy

might specify that the system should normally take the

action with the highest calculated future reward (exploita-

tion), but in a small proportion of cases it should try

another action (exploration). At each step of the process

the value function for the action just taken, denoted by Q,

is updated based on the feedback received from the envi-

ronment. Hence Q is learned from experience as the sys-

tem explores different actions, and at each step the most

recent value of Q influences the system’s behaviour via the

policy.

In the Actor-Critic approach, by contrast, the system mod-

ifies the policy according to experience. The policy consists

of a state-action table specifying the required probability of

taking each action in a particular state. The critic forms an

error signal comparing the outcome of a given action with the

expected reward, which the actor uses to adjust the probability

for this action in the policy table. So if the outcome of a

particular action is positive, the probability of taking it again

will be increased, but if the outcome is negative it will be

decreased.

A key limitation of these RL techniques is that the size

of the state-action table is proportional to the product of

the number of system states s and the number of possible

actions a which can lead to scalability issues. To address

this, the deep RL technique introduces a deep neural network

to carry out the mapping from states to actions [63]. The

basic RL technique is then used to train the neural network

to identify the action with the highest reward for each state,

based on the experience of the RL subsystem. In order to

average out the effect of specific conditions during a given

episode, the state-action-reward data for each episode is

stored in a replay memory to enable training samples for

the neural network to be drawn randomly from multiple

episodes.

C. ADVANTAGES, DISADVANTAGES AND CHALLENGES

In comparison with algorithmic solutions, ML approaches

have the following general advantages and disadvantages.

Advantages:

1) built-in ability to process amuch larger number of input

features

2) can be retrained automatically eliminating the need for

manual retuning

3) can be applied to a range of issues using standard

libraries hence reduced need for specialist algorithm

expertise

4) reduced dependence on details of specific problem also

reduces the need for domain knowledge

5) deep learning techniques can also dispense with much

of the preprocessing code required by algorithmic

methods and earlier ML approaches

Disadvantages:

1) significant volumes of training data required; collection

of sufficient fault data may be a substantial organisa-

tional challenge

In relation to logic based systems, similar advantages and

disadvantages apply, with the following additions:

Advantages:

1) the ability to function without an explicit causal model

removes the difficulty of maintaining consistency of a

rule base as the problem domain becomes more com-

plex

Disadvantages:

1) significantly more difficult to present reasoning in sup-

port of recommendations

Hence the key challenges to overcome in support of the

introduction of ML techniques are:

1) systematic collection of fault data

2) development of the ability of ML systems to explain

and justify their recommendations

The first of these is primarily an organisational rather than

a research issue and can be left to mobile network providers.

The second has been recognised as a key blocker to progress

and intensive research is now under way to address this, as we

discuss below.

D. SUMMARY

In this section we have described the principalML techniques

which have been used in cell fault management, and for

each group of techniques we have explained in broad terms

which activity within fault management the techniques are

most applicable to. We have covered at a high level the

advantages, disadvantages and current challenges with ML

techniques. In the next section we will drill down to look in

more detail at the application of each technique to specific

fault management activities and the specific strengths and

limitations of each approach.

VII. APPLICATION OF MACHINE LEARNING TO FAULT

MANAGEMENT IN CELLULAR NETWORKS

To date, much of the work on application of ML techniques

to cellular network fault management has concentrated on the
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FIGURE 5. Preprocessing and fault detection.

‘‘sleeping cell’’ problem referred to in Section IV above, and

related cell performance degradations [42] and [27]. Some

recent work, however, has looked at more general faults in

mobile networks [61].

Between them, the studies surveyed have covered detec-

tion, diagnosis (action determination and root cause analysis)

and compensation. For implementation in the network envi-

ronment, all techniques require a further stage at the begin-

ning which we can call pre-processing. In this section we

review the ML techniques used by these studies, considering

each stage in turn. For ease of reference, Table 13 at the end

of this section lists all the studies presented here by stage(s)

covered.

A. PRE-PROCESSING

The purpose of the pre-processing stage is to address the low

level data quality issues identified in Section IV above and to

transform the data into a formwhich can be utilised efficiently

by the detection stage.

From the perspective of machine learning, we can identify

two stages of pre-processing, as shown in Fig. 5. The purpose

of stage 1 is to reduce data volume while improving the

quality, and present the input data as a series of feature vectors

as required by the ML subsystem. Stage 2, on the other hand,

transforms the features for optimal processing by the ML

subsystem.

1) STAGE 1 - DATA QUALITY ENHANCEMENT

Stage 1 techniques are used to address the low level data

quality issues identified in Section IV above. Tailored dig-

ital filtering techniques may be used for noise reduction.

Missing data can be handled by missing data compensation,

in which dummy or interpolated data is used to fill gaps

which would otherwise disrupt processing. Specific screen-

ing code may be implemented to remove irrelevant data.

Aggregation techniques such as counting or accumulation

of data values over a set period can be used to reduce the

volume of data [29]. Data sampling is used to transform an

unlimited input time sequence into a finite set of vectors

to enable the ML subsystem to treat the inputs as sam-

ples from a larger population. Typically a sliding window is

used to capture successive sets of samples over a fixed time

period [64].

TABLE 6. Dimensionality reduction techniques in fault management.

2) STAGE 2 - DATA TRANSFORMATION

Examples of Stage 2 techniques include feature engineering,

data fusion and dimensionality reduction.

The aim of feature engineering is to derive new features

from the input data which can improve the performance

of the ML subsystem or allow a technique to be used in

situations where it would not otherwise be applicable. One

example of feature engineering is the use of a Fast Fourier

Transform (FFT) to detect periodic variations in a time

sequence [29]. Another example is where polynomial terms

are formed from the basic features, so that a non-linear bound-

ary in the input feature space can be transformed into a linear

boundary in the polynomial space.

Data fusion, on the other hand, addresses the situation

where any individual data item is weakly correlated with the

occurrence of a fault or one of its causes; by combining two

or more data items it may be possible to produce a feature

with higher correlation than any of its components.

Dimensionality reduction is needed where the number of

input dimensions is sufficient to cause degradation of the ML

system performance. It is particularly useful for removing

redundant information in the case where different features

are partially correlated with each other. The goal is to reduce

the number of features while retaining as much of the key

information from the input as possible. Three key techniques

which have been applied to fault management are listed

in Table 6.

At the current state of the art, the preprocessing phase

requires a significant level of hand coding to tune the front

end to match the input data to the ML technique being used.
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This typically requires scarce specialist effort and can limit

system flexibility in response to change.

B. DETECTION

The purpose of the detection stage is to determine whether

a fault is present or not, without committing significant

resources to diagnosis and compensation until a reliable deci-

sion has been made.

There are now many instances where ML approaches,

both parametric and non parametric, have been proposed for

use in detecting faults in cellular networks. These assume as

a minimum that a set of data is available representing normal

operation, against which anomalies representing faults can be

detected. All these techniques operate at the correlation level,

in other words they are not dependent on the availability of a

causal model of the network.

A sleeping cell situation arises where a radio failure is not

being reported to the network management system. Hence

sleeping cell failures have to be detected indirectly, using

related evidence such as radio signal strength, channel qual-

ity indicators and higher level indicators such as incoming

handovers and dropped call rates. Similar data may be used

to detect other anomalies, such as misconfigured parameters

which impact the extent and quality of the radio coverage.

Parametric techniques described in the literature are listed

in Table 7. In Time Domain Prediction, a KPI is compared

with a predicted value at each time step. Three examples of

this approach are network calculus, Auto Regressive Inte-

grated Moving Average (ARIMA) modelling, and Grey mod-

elling. In each case previous data from the sequence, repre-

senting normal operation, is used to learn the settings of the

model parameters which minimise the prediction error.

Comparison of Statistical Distributions takes place

between the live KPI data and a reference data set repre-

senting normal operation. To achieve this, it is necessary

to fit a statistical distribution to the normal reference data

set then either: (a) compare live KPI data directly with the

stored distribution to generate a normalised ‘‘KPI level’’

representing the degree of abnormality of the relevant KPI

or (b) fit a second distribution to the live data then either

compare parameters with the stored distribution or compare

the distributions directly.

Parametric Binary Classification is based on a labelled

training dataset including both normal and fault data. Two

approaches to achieve this are described in [42]. The first uses

the Classification and Regression Tree (CART) technique

to recursively partition the data into normal and anomalous

regions to be used for classification of live data. The second,

by contrast, uses a Linear Discriminant Function (LDF) to

learn the parameters of a hyperplane to be used to separate

normal and anomalous data.

In Anomaly Boundary Setting, a boundary is set between

normal and anomalous data on an unlabelled normal training

data set by excluding a specified number of outliers. The

boundary is then used to classify live data as normal or

anomalous. In [65] and [68], this is done by using a one class

TABLE 7. Parametric approaches to fault detection.

Support Vector Machine (SVM) which works generally as

described in Section VI above. In the specific case of the

one class SVM, the budget is used to allow a small number

of outliers in the normal data to be misclassified as faults,

in order to achieve optimum anomaly detection performance

on live data. In [75], anomaly boundary setting is done by

fitting a Gaussian distribution to normal data.

With NNs used as classifiers, the network weights are

optimised by against labelled normal and fault data. Once

trained, the NN can then be used to classify incoming live

data.

Feng et al. used a feedforward NN as a classifier in a cell

detection scenario; they encountered difficulties due to the

system becoming trapped in non-optimal local minima during

training, degrading system accuracy. This was resolved by

using a ‘‘differential evolution’’ algorithm as the NN opti-

miser [58].

Non-parametric techniques described in the literature are

listed in Table 8. In non-parametric Binary Classification,

anomaly detection is again treated as a binary classification

problem using labelled training data representing normal and

faulty operation. In this case, however, each live data point is
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TABLE 8. Non parametric approaches to fault detection.

classified as normal or anomalous by identifying its k nearest

neighbours in the training set and then classifying it based on

the majority of the neighbour classifications.

Distance or Density Comparison uses a training data set

representing normal operation only. In this method, anoma-

lies are detected either: (a) by computing some function of

the distances from the k nearest neighbours in the training set

and comparing this with a threshold or (b) by calculating the

local data density (the number of points in unit volume of

the feature space) for each live data point and comparing it

with the global average density, or the average density of its

k nearest neighbours.

Onireti et al. (see Table 12 below) report that in a macrocell

scenario, the global kth nearest neighbour approach was more

accurate than a local density based method [33].

Direct Cluster Analysis employs an unlabelled train-

ing data set representing both normal and faulty opera-

tion. This technique forms clusters from the training data

and classifies the clusters (as opposed to the raw data)

as normal or anomalous using other KPIs which differ in

value between normal and anomalous operational states.

Anomaly detection is then carried out by comparing the

distances of each live data point to the normal and anomalous

clusters.

The two types of training method have different strengths

and weaknesses from a RAN deployment perspective. Para-

metric techniques require access to a central database during

the initial training phase. Once the parameters have been

learned, however, the system can in principle be deployed in

the RAN without the need for further access to central data.

Non parametric techniques, on the other hand, do not require

an initial training phase but during live operation do require

access to a central historic fault database.

TABLE 9. Approaches to fault diagnosis 1: Action determination.

C. DIAGNOSIS 1: ACTION DETERMINATION

Upon detecting a symptom, the task of action determination

is to identify appropriate compensation actions in order to

restore normal service as far as possible. In earlier studies,

there was an attempt to construct a detailed causal model to

support this. In more recent work, however, there has been

a trend away from this towards a ‘‘black box’’ approach

working at the correlation level. Approaches described in the

literature are listed in Table 9.

A popular approach to diagnosis from the earliest studies

onwards is to use the Bayesian Networks/Naive Bayesian

Classifier method described in Section VI above. In this

approach, typically the expert is needed at the start to define

the logical relationships from which the network is built, but

the probabilities required can then be extracted from historic

data, if this is available [70], [83]–[85] and [86].

The use of the Naive Bayesian Classifier assumes that

only one cause is present at a time and that the symptoms

are independent given the cause. The studies acknowledge

that this is likely to be unrealistic for some faults in an

actual network but nonetheless report acceptable diagnostic

performance for the scenarios studied.

Symptoms may be presented to the classifier in continuous

form or alternatively they may be discretised first using one

or more thresholds to generate binary values. The thresh-

old levels can be set automatically using an ML technique

called Entropy Minimisation Discretisation (EMD) [83].
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FIGURE 6. Action determination using cluster analysis.

Barco et al. conclude that the continuous approach is prefer-

able if large fault data sets are available, whereas if only

small data sets are available the discrete approach should

be used [85]. Another method is to retain the conditional

probability calculations from the BN approach while relaxing

the requirement to build an explicit causal model. In contrast

with the BN approach to symptom data, Szilagyi et al. begin

by deriving a KPI level, which is a standardised measure of

the deviation of the current KPI value from that for normal

operation [27]. The system then calculates the likelihood that

the cause is present given each symptom (based on historic

relative frequencies), and multiplies this by the KPI level to

give a score for each candidate cause.

A more radical option is to directly classify the symptoms

from historic data, in which each symptom is labelled with a

cause, but without constructing a causal model. In [66], the k

nearest neighbours approach is used to classify incoming

symptom sets based on the classes of their k nearest neigh-

bours in the training set.

More recently a hybrid approach has been put forward

(see Fig. 6), which is to carry out a cluster analysis on the

symptoms first, then use a network approach to relate the

clusters of symptoms to potential causes. Ciocarlie et al.

used a Hierarchical Dirichelet Process for the cluster analysis

and an Markov Logic Network for classification [82]. They

set up the network manually after which the system learnt

the weightings from a training data set based on maximum

likelihood estimation. Gomez-Andrades et al. used a self

organising map to carry out the cluster analysis [87] and [60].

This maps a dataset of continuous data to a set of discrete

points representing the clusters. After a degree of automatic

quality checking, the clusters are verified by an expert before

being used for classification of live data. Although this does

require a degree of expert input, the effort required is very

much less than if the clustering had not been carried out

first.

A recent paper related to cellular networks, however, has

taken a radically different approach to action determina-

tion [88]. The aim here is to automatically learn service

management policies and rules for triggering compensation

actions, from historic logs of faults and related operator

actions. Symptoms are detected from anomalies in a rolling

time sequence of key KPIs and associated with successful

actions occurring within a time window of the anomaly; a

logistic regression classifier is then trained from this data

FIGURE 7. Compensation using reinforcement learning.

TABLE 10. Approaches to compensation.

and used to classify new symptoms according to the action

required. No attempt is made to determine the cause; the

system operates at the correlation level and only considers

what action previously resolved the problem. It is critical to

this approach to consider only successful operator interven-

tions based on the subsequent outcome; in some cases expert

review of the historic logs is likely to be required to determine

which these are.

D. COMPENSATION

The aim of compensation is to restore the best possible level

of service given the remaining serviceable network resources,

according to priorities set by a policy specified by the network

operator.

Much of the work to date has concentrated on compen-

sation for cell outages. For this scenario, the most popular

approach is to adjust the downlink/uplink power levels and

antenna tilt settings of the neighbouring base stations [92].
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Machine-learning techniques utilising this method (see

Fig. 7) have been based on the Temporal Difference (TD)

approach to RL.Within this, two approaches have been taken:

1. Q-learning with fuzzy logic: [62], [89], [90]

2. Actor-Critic learning [91] and [33].

With the Q-learning approach, a convergence time for

outage compensation of 1000-1500 steps of 200ms has been

reported, giving a convergence time of 200-300 seconds [90].

Using the Actor-Critic approach, however, Onireti et al

achieved convergence within 500 steps of 1ms each, which

is around 0.5 seconds in total [33]. A key limit in the latter

case was the LTE Transmit Time Interval of 1ms, as this

determines how frequently actions can be carried out and

feedback received from the network.

Deep RL has been used for self optimisation in radio

networks [93] and [94] and is starting to be used in fault

management. Mismar and Evans [95], for example, working

with a cellular radio network, used the Q-learning approach

with a deep feedforward network in order to select from a

list of predefined fault handling actions given one of a set of

alarms indicating the fault type.

A key issue for the introduction of active techniques such

as RL and deep RL into live cellular radio networks is how

to allow them to build their experience without disrupting

the operation of the network. Two strategies would seem

possible: train the system on the live network or train against

some form of simulation of the network.

The first approach has the advantage that the system can

learn under the precise conditions in which it will oper-

ate, but for operational reasons it may be necessary to

restrict the impact of any learning action the RL system

is permitted to take. At present, however, it would appear

that limited work has been done to investigate the effects

of constraints on the range of explorative actions during

learning.

The second approach at first sight addresses the issue of

impact to the network but in this case it may be difficult to

ensure that the simulation can be configured to be a realistic

representation of any given location on the actual network.

As a result there may be a gap between the simulator and

the network requiring at least a degree of retraining on the

live network. This leads to two challenging research oppor-

tunities. The first is to investigate the interplay between con-

straints on explorative action and RL performance and work

out how this can be optimised. The second is to investigate

how learning on a simulated environment which is represen-

tative of typical network conditions can be generalised so that

the RL system can apply it to specific network locations with

minimum retraining.

E. DIAGNOSIS 2: ROOT CAUSE ANALYSIS

The purpose of root cause analysis is to investigate the under-

lying causes of an issue and devise suitable action to prevent

a recurrence. A key challenge is that such causes may not be

documented and the underlying network behaviour may not

be understood by more than a very few experts; it may even

FIGURE 8. Root cause analysis using association rule extraction.

TABLE 11. Approaches to fault diagnosis 2: Root cause analysis.

be the case that some aspects of network behaviour are not

understood by anyone [96].

Another key challenge is that, in comparison with fault

detection, root cause analysis is much more domain depen-

dent and therefore is a harder problem to address. As a

result, significantly less work has been reported on this topic.

A very comprehensive recent survey [97], however, lists and

compares a range of models and techniques to support this

task, including machine learning approaches.

Recent work has looked at ways to apply ML techniques

to root cause analysis in the situation where the root cause

is unknown and therefore undocumented, building on the

achievements of the more recent rule based systems which

incorporate an automatic rule extraction feature [47].

The general approach is to use an ML classification tech-

nique combine with an association rule extraction method

(see Fig. 8 and also Table 11). The association rule extrac-

tor is used to scan network event logs and traces to detect

possible associations between a given set of symptoms and

potential causes, together with measures of the strength of

the associations. The set of associations is then verified by

the system operators and used to train the classifier so that

incoming symptoms can be classified according to root cause.

Working with cellular network data, Yang et al. modified

the FP-Growth association rule extraction technique, so that

it could handle infrequent associations [61]. They then used k

nearest neighbours to classify the symptoms. Nie et al. [96],

studying Web based services, also took FP-Growth as their

starting point, but in their case extended the algorithm to

extract an initial causality graph from the historic data. In this
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case the classifier used was the Random Forest technique,

which works by combining the results of multiple classifi-

cation trees, each built from data randomly extracted from a

training set. In this case the training set was the initial causal-

ity graph and the output was a refined version of the input

graph. Kobayashi et al. used a causal inference algorithm to

extract a causality graph from network data logs; some expert

intervention is needed with this approach and the authors note

that this technique will need to be combined with a classifier

for use operationally [98].

The use ofML at the back end in association rule extraction

approaches gives them an advantage in relation to the logic

based approach described in [47] (see SectionV above) in that

it is not necessary to set up and maintain detailed diagnostic

rules. It is still necessary to draw upon expert input to verify

and rank the associations, but this requires much less effort

than setting up a causal graph from scratch. Unlike [47], how-

ever, neither of the recent studies contain a separate model of

the underlying service and network relationships. As a result

there is as yet no capability for distinguishing between slowly

and rapidly changing service-network relationships which

could be used to assist incremental mining and training.

These methods open up the possibility of semi-

automatically extracting symptom cause relationships from

large volumes of fault data with efficient use of scarce

expert input, in such a way that the result can be readily

transferred to a rule based diagnostic system. As already

discussed, however, in the future it may be necessary to

move away from rule based systems for diagnosis to deep

learning approaches working at the correlation level. This

leads to two challenging research issues. Firstly, if causal

level information does happen to be available, how feasible

might it be for deep learning systems to use this to take

short cuts to reduce training time and perhaps increase run

time efficiency. Secondly, how can symptom cause linkages

discovered during root cause analysis be exploited to provide

an explanation capability consistent with the deep learning

system behaviour.

F. COMPARATIVE QUANTITATIVE PERFORMANCE

Establishing comparative figures for fault management tech-

niques is hampered by the fact that there are no standard

metrics for reporting performance. In the cell outage detec-

tion case, however, a group of recent papers is available

which report their results in terms of a Receiver Operating

Curve (ROC) plot, ie true positive rate (TPR) against false

positive rate (FPR) as a parameter is varied, typically the

detection threshold. The area under the curve (AUC) is also a

key measure; a random detector would score 0.5 and an ideal

detector would score 1.0. Typical examples of the best results

currently available are shown in Table 12.

G. SUMMARY

Table 13 provides a simple cross reference between the stud-

ies referenced in this paper and the stages of the fault manage-

ment lifecycle. As can be seen, considerably more work has

TABLE 12. Cell outage detection techniques: Quantitive comparision.

TABLE 13. Mapping of ML studies to fault management stages.

been carried out on detection than on the other stages. For this

stage the best currently available approachwould appear to be

to use an anomaly detector (binary classifier) in supervised

learning mode, such as a Support Vector Machine (a para-

metric approach) or k Nearest Neighbours (a non-parametric

approach). Both techniques have the limitation, however, that

a significant amount of hand coded pre-processing of the

input data is required.

The research base for the action determination (diagnosis

1) stage is not as solid as for detection; from the avail-

able works, however, the best of the traditional approaches

would appear to be to carry out a cluster analysis on his-

toric fault data in unsupervised learning mode, in order

to separate out potential fault groups for review by an

expert, followed by use of an ML classifier such as k

Nearest Neighbours to allocate incoming symptom data to

a fault group. A radically different approach which has

recently been proposed is to learn compensation recommen-

dations directly from historic logs of successful operator

interventions.

For the compensation stage, studies have concentrated on

the specific case of a cell outage, where the best performing

approach is currently Actor-Critic RL, aiming to adjust trans-

mission power levels and antenna tilt angles of adjacent cells
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based on measurements of radio signal quality levels in the

outage cell area and those of its neighbours.

For the root cause analysis (diagnosis 2) stage, the state of

the art would appear to be to use an automatic rule extraction

technique working with historic fault data, typically using a

modified version of the FP-growth algorithm. The rules are

typically expressed in a causality graph, which then has to be

reviewed by an expert before being presented to a back end

ML classifier.

Overall, some progress is being made on reduction of the

amount of expert input required, by the use of an initial

unsupervised learning stage to reduce the volume of data to

be reviewed. There is a general trend away from techniques

based on a causal chain, towards approaches which operate at

the correlation level. While this has led to improved results,

at the same time it creates a problem in providing network

operators with a supporting justification for the ML system’s

recommendations which is based on engineering principles

and is consistent with whatever information can be provided

by root cause analysis.

In the following section we report on the DARPA XAI ini-

tiative, which accepts that correlation-level approaches such

as deep learning are likely to be here to stay and seeks to

remedy their current explainability deficiencies.

VIII. DISCUSSION

In this section we put forward a vision for the attributes of

future fault management systems for 5G networks and dis-

cuss how forthcoming changes in network architecture may

impact fault management systems. We then assess the gaps

between this vision and the current state of the art, sketch how

these might be addressed and identify a number of current

research issues with a view to closing these gaps. We discuss

the difficulties with emerging correlation-level techniques,

such as deep learning, in providing a justification for their

recommendations, and describe the DARPA XAI initiative

which is designed to address this issue.

A. ATTRIBUTES OF FUTURE FAULT MANAGEMENT

SYSTEMS

The fault management system may in the future contain one

or more ML elements, each supporting different stages of

the fault management lifecycle, which need to be efficiently

implemented within the context of the emerging 5G archi-

tecture. The system must be reliable and require minimal

attention during operation. This implies that it will need to

be designed to be resilient to its own faults. It should inter-

work with network equipment supplied by multiple vendors.

It should also configure itself automatically, both on initial

deployment and following a change to the network. The

self healing function should work harmoniously with other

network functional elements for self configuration and self

optimisation. The fault management system will need to

be compatible with emerging ‘‘zero-touch’’ (fully auto-

mated) network provisioning and change management sys-

tems. However the system is implemented, the network oper-

FIGURE 9. Split-cell RAN architecture.

ations team must see it as trustworthy and easy to work with.

The top level SON standard [11] specifies: ‘‘SON solutions

shall provide an easy transition from operator controlled

(open loop) to autonomous (closed loop) operation, as the

network operator gains more trust in the reliability of the

SON’’.

At present, there is no consensus in the literature as to the

key criteria to be used to evaluate the relative performance of

proposed alternative ML techniques, although several recent

papers use the Receiver Operating Curve (ROC) as the pre-

ferred measure of accuracy. To assist in arriving at a standard

approach, in Table 14 we propose a set of metrics with

suggested methods of measurement. These are divided into

two categories: (a) output metrics, or desired performance

attributes for the system, and (b) input metrics, which quan-

tify the resources required to achieve the specified system

performance. It can be anticipated that different target scores

for each metric will apply at different stages of the lifecycle;

for example a longer response time is likely to be acceptable

for root cause analysis than for action determination.

B. IMPACT OF NETWORK ARCHITECTURE EVOLUTION

1) OPERATION IN THE PRESENCE OF FAULTS

The need to reduce the cell size in order to increase the user

data rate has led to the 5G split-cell RAN architecture referred

to in the introduction (see also Fig 9). The need for large

numbers of densely deployed base stations is likely to result

in a higher fault rate per unit area, especially in urban regions.

At the same time, in order to contain operating costs, it will

be essential to manage the restoration activity carefully in

order to make optimal use of expensive site visits. This will

demand a new approach to resilience in the RAN, so that it

can continue to operate in the presence of multiple faults in

any one local area, which can then be resolved during a single

site visit.

Considerable work has already been done on resilience

frameworks for communications networks in general, much

of which will remain applicable to 5G networks [99], [100]

and [101]. Beyond this, a key development for 5G is virtual-

isation, which we discuss in the next section.

These trends have a number of implications for fault man-

agement. Firstly, the design of the self healing function will

need to be harmonised with that of the resilience features built
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TABLE 14. Proposed performance assessment metrics.

into the network. Secondly, the presence of dormant faults

will need to be taken into account by the self healing function.

Thirdly, the self healing function will need to be able to deal

with faults which impair its own effectiveness or that of the

resilience features.

The upside, however, is that the existence of dormant

faults, reported with some degree of labelling, should pro-

vide a much richer source of fault data than available up to

now.

2) VIRTUALISATION IN THE RAN

Two important recent developments are Network Features

Virtualisation (NFV), in which key network features are

decoupled from the underlying hardware, and Software

Defined Networking (SDN), which decouples the IP net-

work control and user planes. These have had consider-

able impact on the core network architecture and are now

beginning to spread to the RAN. The Cloud RAN (C-RAN)

approach achieves functional virtualisation by partitioning

the RAN into two parts, Base BandUnits (BBUs) and Remote

Radio Heads (RRHs) [6], [102]. This allows the radio fre-

quency (RF) processing to be devolved to the RRHs, while the

base band processing can be handled by a pool of virtualised

BBU functions, allocated to centralised physical processors

in such a way as to optimise processing speed and energy

consumption. Routing of data between these functions, by the

SDN-based IP network, is under the control of a similar

pool of virtual processers. The balance between centralised

virtual RAN processing and devolved physical processing is

dependent on the provision of sufficient fixed link bandwidth,

notably that of the so-called ‘‘fronthaul’’ link between the

BBU pool and the RRHs. However, it may be assumed that at

least part of the baseband processing will now be virtualised,

which will impact fault management, especially the diagnosis

task.

In any network, tracing of functional fault symptoms to

physical causes depends on knowing the mapping of func-

tions to physical processors. For the BBU pool within a

C-RAN architecture this mapping is likely to be complex and

will change dynamically. Traditional rule based approaches,

such as those used to set up fault alarms, may become infea-

sible as the ruleset could become very large and would need

to be dynamically updated to track the function mapping in

the network. The problem becomes even more challenging if

we consider the desirability of being able to map the service

to the RAN and IP network functional elements providing

it.

Hence there are a range of research opportunities to inves-

tigate how advanced ML techniques can be used to maintain

an up to date mapping of services and network functions to

physical hardware elements, perhaps by a process of contin-

ual online learning and discovery, and present this effectively

to the network management team.

3) EDGE COMPUTING AND DATA STORAGE

Meanwhile the emergence of the Internet of Things (IoT),

in particular vehicle to vehicle (V2V) and vehicle to infras-

tructure (V2I) networks [103], is placing stringent latency

requirements on the network, at the application layer as well

as the network layer and below. The higher data rates avail-

able in 5G are also likely to raise user expectations on latency

for delivery of large volumes of visual media content. These

requirements can only be met by including physical comput-

ing and data storage elements at the edge of the network,

working in cooperation with virtualised central functions in

an architecture referred to as a ‘‘fog network’’ [104].
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Further work is necessary to clarify the operational sce-

narios of such kinds of networks. One issue, for example,

is whether each physical element will support just one appli-

cation service (eg V2V or video caching) and if not what

would be the best way to support services with different char-

acteristics. A second key issue is how edge computing and

storage elements would be managed - whether by the network

service provider or by a separate organisation responsible

for applications. Research opportunities may include how

to extend the service mapping to include edge computing

elements and the applications they support, together with how

to harmonise the self healing function with the self optimising

functions required to managing caching and local processing.

C. GAPS BETWEEN TARGET ATTRIBUTES AND CURRENT

RESEARCH

Evolution of 5G will mean that with multiple radio chains

in each base station driving separate antenna elements, cell

output degradation may become a more likely scenario than

a complete cell outage, opening up a gap for further inves-

tigation. Although research to date has covered most of the

criteria listed in Table 14, there is work to be done on to

determine the appropriate balance between centralisation and

distribution of the system architecture in order to minimise

resource requirements. There are also currently gaps in the

areas of system flexibility and versatility. Beyond this, there

has been relatively little emphasis in the literature on system

trustworthiness and how theML system can work most effec-

tively with the network operations team. We discuss these

gaps in more detail below.

1) SYSTEM SENSITIVITY

Up to now, research has focused on the cell outage prob-

lem. However, with the introduction of 3D transmission and

more advanced forms of MIMO, base stations will now have

large numbers of antenna elements, typically configured as

a planar array. Each element has to be driven by a radio

chain; although a hybrid architecture can be used to share RF

chains between antenna elements, it will still be necessary to

have multiple radio chains in future base stations [105]–[108]

and [109]. In this new scenario, it is possible that base station

faults will result in degradations of the cell radio output more

often than complete outages, placing greater demands on

detection sensitivity.

Fortunately, the widespread availability of MDT radio

coverage reporting data provides an opportunity to increase

system sensitivity by recording the radio coverage profile for

each cell during normal operation. This is already proposed

for energy management, and will enable fault management

systems to reduce the impact of unwanted variables such

as pathloss by comparing reported KPI values with normal

values for a given location [110]. In some situations, such as

with femtocells and densely deployed small cells, the number

of users can be very small, so that radio reports may be

sparse or not available for some areas. This can be addressed

with ML techniques such as collaborative filtering [73].

This technique exploits the correlation between signal

strength reports from users and those from adjacent base

stations to provide estimated radio reports to fill in the gaps.

It may also be possible to take advantage of the emergence of

the IoT to exploit the presence of such devices, many of which

are likely to have a fixed location, to improve the accuracy of

the stored coverage profile [111].

2) SYSTEM FLEXIBILITY

Current difficulties with network management systems

deployed in live networks include excessive effort to con-

figure and test the system, and fragility of the system in

the face of network upgrades, reconfigurations and other

changes. A key factor currently limiting system flexibility is

the number of lines and complexity of the hand crafted code

at the front end which has to be modified and retested in order

to accommodate external changes.

Recent advances in the application of deep NNs (typically

convolutional NNs and autoencoders) in other engineering

areas, which have input processing requirements as demand-

ing as mobile networks, suggest that it should be possible

to reduce the need for domain and problem-specific code

in stage 1 of the pre-processing, and potentially incorporate

much of stage 2 into the deep NN so that the functions of data

fusion, feature engineering and dimensionality reduction can

be carried out automatically [112]–[118].

3) SYSTEM VERSATILITY

An issue closely related to flexibility is interoperability

between the network management system and network ele-

ments provided by different vendors. Achievement of this

currently requires significant standardisation and testing

effort to align the interfaces of the different equipment

instances with that of the network management system and

may be hindered by commercial issues [119]. To improve

on this, once an ML based fault management system had

been trained on one vendor’s equipment, it would ideally be

possible to retrain it, without code changes, to interface to

similar equipment from another vendor.

In the ML literature this is referred to as the transfer learn-

ing issue, for which a useful survey of approaches is given

in by Pan and Yang [120]. The authors of this paper define

transfer learning as the extraction of knowledge from a source

task in order to apply it to a target task. In the interoperability

case, the source and target domains are very similar, hence

there would appear to be an opportunity for research into

the application of transfer learning approaches to maximise

system versatility.

4) SYSTEM TRUSTWORTHINESS

The papers referenced above typically focus on solutions to

current technical issues. If new techniques are to be suc-

cessfully introduced into a live network, however, it will be

critically important for the system to earn the confidence of

the network management team. Apart from meeting basic

requirements such as data quality and system reliability, this
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FIGURE 10. Explainability implementation techniques.

will mean that the fault management system will need to

be aligned operationally with the network management pro-

cesses, especially the procedures for approval of proposed

changes to the network. These typically require a senior

network manager to evaluate and approve recommendations

for change.

This in turn will mean that the system will need to pro-

vide some kind of explanation in support of fault diagnoses

and proposed fault compensation actions. This is particularly

challenging with recent deep learning approaches, which

draw their power from operating at the correlation level rather

than by building a causal model from which an explanation

could be derived.

This issue has been recognised by the research community

under the heading ‘‘Explainable AI’’, and is beginning to gain

considerable traction following the launch in 2016 of the XAI

programme by the US Defense Advanced Research Projects

Agency (DARPA) [132].

The DARPA launch document identifies three related

research challenges:

1) How to produce more explainable models

2) How to design the explanation interface

3) How to understand the psychological requirements for

effective explanations

Some work has already been done, based on cognitive

research, to identify the general attributes of an effective

machine learning explanation.

Ribeiro et al. and Miller et al. provide useful pointers to

what should be included in an effective explanation, based on

research on cognitive psychology [131] and [133].Miller et al

highlight that when people evaluate the quality of an explana-

tion, naturally they expect that causes cited in an explanation

should be correct but they also highly rate usefulness and

relevance [133]. Hence simple explanations based on selected

key causes are preferred to complex explanations provided

they are sufficiently accurate for the needs of the task in hand.

The DARPA document identifies the following illustra-

tive strategies for producing more explainable models (see

Fig. 10):

1) Develop modified or hybrid deep learning techniques

that learn more explainable features, explainable rep-

resentations, or explanation generation facilities

2) Develop alternative machine learning techniques that

learn more structured, interpretable or causal models

3) Develop techniques that would experiment with any

given machine learning model - as a black box - to infer

an approximate, explainable model

As can be seen from Fig. 10, the third strategy is an active

one, in which the inputs to the black box can be varied to

calculate the sensitivity of the output to changes to each of

the inputs. There is the option that the first strategy could

also be active, if it were found useful to allow the explanation

generator to influence the deep learning subsystem’s internal

states.

Tables 15-17 give examples of approaches to each of these

implementation strategies which could be applicable to cell

fault management. A recent, more general survey of XAI

approaches is given in [134]. A useful discussion on how to

select the most appropriate representation in the case of the

first strategy is given in [135].
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TABLE 15. Modified or hybrid deep learning strategies.

TABLE 16. Alternative interpretable model strategies.

Of the three strategies, the third one has the advantage that

it can work with any deep learning technique. The disad-

vantage, however, is that it is limited to the information that

can be discovered by varying the input around a series of set

points.

The second strategy requires the minimum additional work

to generate an explanation but comes with the limitations of

earlier model-basedML approaches, in particular the need for

expert input.

The first strategy requires the explanation generator to

be tailored to the structure of the deep learning technique,

TABLE 17. Black box explanation generation strategies.

but the ability to access internal data extends the range of

explainability options, given that it can be used in conjunction

with the third strategy if necessary.

Whichever technique or combination of techniques is cho-

sen, there are a number of challenging open research issues on

how to enable the fault management system take into account

the operational context as well as the technical aspects of

a given fault when providing a justification for proposed

actions. These include the prioritisation of the fault in relation

to current and expected traffic as well as risk analysis of pro-

posed actions in relation to current and anticipated network

conditions.

IX. FUTURE RESEARCH DIRECTIONS

The key hot topics at present are:

1) how to exploit the benefits of deep learning to achieve

improved performance with less preprocessing code

2) developing the fundamental techniques to enable deep

learning systems to explain their recommendations

Beyond this, the future direction of research in this field is

likely to be shaped by two key factors:

1) the changing architecture and characteristics of the

mobile network

2) the challenges arising from the need to implement ML

approaches in an operational context

Key research topics arising from the evolving network

architecture include the following:

1) keeping ahead of growth in network complexity espe-

cially in the area of diagnosis

2) handling the impact of virtualisationwhere the relation-

ships between the connectivity service, the functional

entities providing it and the underlying physical net-

work elements become complex and dynamic

3) how to address similar issues arising from the emer-

gence of edge computing and data storage elements,

operating at the application level, which may be under

the control of a different service provider

4) how to maintain harmonious interworking between self

organising functional areas as these becomemore com-

plex in response to network evolution

The research challenges arising from the need to imple-

ment ML solutions in an operational context include:

1) how to build in an awareness of contextual issues such

as fault prioritisation based on network traffic and risk
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assessment of proposed actions, balancing risk in rela-

tion to priority

2) investigate how exploratory action by active ML sys-

tems such as RL and deep RL can be constrained to

levels which are acceptable in a live network without

unduly impacting their performance

3) generalising system learning, especially for active ML

systems, so that training on a representative simulated

environment can applied to specific network locations

with minimum retraining

4) how best to exploit the results of root cause analysis

to optimise the performance of ML based self healing

systems and support the development of accurate expla-

nations

A key enabler for recent progress in the development of

deep NNs appears to have been the existence of very large,

representative datasets such as the MNIST handwritten digit

images database [136], and other industry specific databases,

which are publicly available and can be used to train and

evaluate candidate ML techniques. The application to cell

fault management would be to create an industry wide 5G

fault database which could then be used to stimulate the

development of improved ML approaches.

X. CONCLUSION

We have seen that a wide range of studies have already

shown that ML techniques can be successfully applied to

support root cause analysis and provide fully automated self

healing functions in the form of detection, diagnosis and

compensation of faults. A significant body of research work

on detection of cell outages, together with compensation

strategies to restore service, has led to an emerging consensus

on which are the most appropriate ML techniques to use for

these specific tasks.

At the present time, however, the state of the art is encoun-

tering two key limitations. From a technical perspective,

the need for a hard coded pre-processing stage in support

of current ML techniques is constraining their flexibility to

accommodate changes in the network. From an operational

standpoint, the focus on full automation has meant that rela-

tively little attention has been given to situations where it will

continue to be necessary for a human operator to be included

in the decision making loop.

Research in other engineering domains with similar fault

management issues suggests that recent ML techniques

based on deep learning can be applied in cellular net-

works to resolve the flexibility issue, if sufficient fault data

can be provided. Ideally such data would be made avail-

able as an open source database to stimulate research and

development.

Deep learning techniques, however, typically rely on cor-

relation based optimisers rather than explicit causal models,

which makes it hard for people to audit their conclusions.

This issue is being addressed by the DARPA XAI research

initiative, which has identified a number of potential strate-

gies bywhich deep learning systems could be given the ability

to justify their recommendations, and is supporting intensive

research work to demonstrate the feasibility of one or more

of these approaches.

Hence we can expect to see rapid advances in the applica-

tion of machine learning techniques to cell fault management

in the very near future, with particular emphasis on enhanced

deep learning approaches able to interact productively and

build trust in cases where it remains necessary for a human to

be included in the loop.
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