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ABSTRACT Network densification, massive multiple-input multiple-output (MIMO), and millimeter-wave

(mmWave) bands have recently emerged as some of the physical layer enablers for the future generations of

wireless communication networks (5G and beyond). Grounded on prior work on sub-6-GHz cell-freemassive

MIMO architectures, a novel framework for cell-free mmWave massive MIMO systems is introduced that

considers the use of low-complexity hybrid precoders/decoders while factors in the impact of using capacity-

constrained fronthaul links. A suboptimal pilot allocation strategy is proposed that is grounded on the

idea of clustering by dissimilarity. Furthermore, based on mathematically tractable expressions for the per-

user achievable rates and the fronthaul capacity consumption, max–min power allocation and fronthaul

quantization optimization algorithms are proposed that, combining the use of block coordinate descent

methods with sequential linear optimization programs, ensure a uniformly good quality of service over the

whole coverage area of the network. The simulation results show that the proposed pilot allocation strategy

eludes the computational burden of the optimal small-scale CSI-based scheme while clearly outperforming

the classical random pilot allocation approaches. Moreover, they also reveal the various existing trade-

offs among the achievable max–min per-user rate, the fronthaul requirements, and the optimal hardware

complexity (i.e., the number of antennas and the number of RF chains).

INDEX TERMS Cell-free, massive MIMO, millimeter wave, hybrid precoding, constrained-capacity

fronthaul.

I. INTRODUCTION

A. MOTIVATION AND PREVIOUS WORK

Driven by the continuously increasing demands for high

system throughput, low latency, ultra reliability, improved

fairness and near-instant connectivity, fifth generation (5G)

wireless communication networks are being standardized [1]

while, at the same time, insights and innovations from indus-

try and academia are paving the road for the coming of the

sixth generation (6G) [2]. As stated by Marzetta et al. in

[3, Chapter 1], there are three basic pillars at the physical layer

that can be used to sustain the spectral and energy efficiencies

that these networks are expected to provide: (i) employing

massive multiple-input multiple-output (MIMO), (ii) using

ultra dense network (UDN) deployments, and (iii) exploiting

new frequency bands.

Massive MIMO systems, equipped with a large number

of antenna elements, are intended to be used as multiuser-
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MIMO (MU-MIMO) arrangements in which the number of

antenna elements at each access point (AP) is much larger

than the number of mobile stations (MSs) simultaneously

served over the same time/frequency resources. The operation

of massive MIMO schemes is based on the availability of

channel state information (CSI) acquired through time divi-

sion duplexing (TDD) operation and the use of uplink (UL)

pilot signals. Such a setting allows for very high spectral and

energy efficiencies using simple linear signal processing in

the form of conjugate beamforming or zero-forcing (ZF)1

[3], [5].

In UDNs, a large number of APs deployed within a given

coverage area cooperate to jointly transmit/receive to/from a

(relatively) reduced number of MSs thanks to the availability

1As stated by Björnson et al. in [4], the simple ZF precoder approaches
the performance provided by the capacity-achieving dirty paper cod-
ing/successive interference cancellation (DPC/SIC) precoder/decoder and,
thus, the use of much more complex precoding/decoding schemes can
only offer negligible performance improvements when compared to the ZF
approach, at the cost of increasing the amount of feedback information from
the MSs to the APs.
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of high-performance low-latency fronthaul links connecting

the APs to a central coordinating node. Coordination among

APs can effectively control (or even eliminate) intercellu-

lar interference in an approach that was first referred to as

network MIMO [6], [7], later led to the concept of coordi-

natedmultipoint (CoMP) transmission [8] and, more recently,

to that of cloud radio access network (C-RAN) [9]. In a C-

RAN, the APs, which are treated as a distributed MIMO

system, are connected to a cloud-computing based central

processing unit (CPU) in charge, among many others, of the

baseband processing tasks of all APs. Conceptually similar

to the C-RAN architecture, but explicitly relying on assump-

tions specific of the massive MIMO regime, distributed

massive MIMO-based UDNs have been recently termed as

cell-free massive MIMO networks [10], [11]. In these net-

works, a massive number of APs connected to a CPU are

distributed across the coverage area and, as in the cellu-

lar collocated massive MIMO schemes, exploit the channel

hardening and favorable propagation properties to coherently

serve a large number of MSs over the same time/frequency

resources. Typically using simple linear signal processing

schemes, they are claimed to provide uniformly good quality

of service (QoS) to the whole set of served MSs irrespective

of their particular location in the coverage area.

Since the microwave radio spectrum (from 300 MHz to

6 GHz) is highly congested, the use of massive antenna

systems and network densification alone may not be suffi-

cient to meet the QoS demands in next generation wireless

communications networks. Thus, another promising physi-

cal layer solution that is expected to play a pivotal role in

5G and beyond 5G communication systems is to increase

the available spectrum by exploring new less-congested fre-

quency bands. In particular, there has been a growing inter-

est in exploiting the so-called millimeter wave (mmWave)

bands [12]–[15]. The available spectrum at these frequen-

cies is orders of magnitude higher than that available at the

microwave bands and, moreover, the very small wavelengths

of mmWaves, combined with the technological advances

in low-power CMOS radio frequency (RF) miniaturization,

allow for the integration of a large number of antenna ele-

ments into small form factors. Large antenna arrays can then

be used to effectively implement mmWave massive MIMO

schemes (see, for instance, [16], [17] and references therein)

that, with appropriate beamforming, can more than compen-

sate for the orders-of-magnitude increase in free-space path-

loss produced by the use of higher frequencies.

The performance of cell-free massive MIMO using con-

ventional sub-6 GHz frequency bands and assuming infinite-

capacity fronthaul links has been extensively studied in, for

instance, [11], [18]–[20]. Cell-free massive MIMO networks

using capacity-constrained fronthaul links have also been

considered in [21], [22] but assuming, again, the use of

fully digital precoders in conventional sub-6 GHz frequency

bands. Sub-6 GHzmassiveMIMO systems are often assumed

to implement a fully-digital baseband signal processing

requiring a dedicated RF chain for each antenna element.

The present status of mmWave technology, however, char-

acterized by high-power consumption levels and high pro-

duction costs, precludes the fully-digital implementation of

massive MIMO architectures, and typically forces mmWave

systems to rely on hybrid digital-analog signal processing

architectures. In these hybrid transceiver architectures, a large

antenna array connects to a limited number of RF chains

via high-dimensional RF precoders, typically implemented

using analog phase shifters and/or analog switches, and low-

dimensional baseband digital precoders are then used at the

output of the RF chains [23]–[25]. The network of phase

shifters connecting the array of antennas to the RF chains

determines whether the structure is fully or partially con-

nected [26]. Thus, the assumptions, methods and analytical

expressions in [11], [18]–[22] cannot by applied directly

when assuming the use of mmWave frequency bands. Despite

its evident potential, as far as we know, besides [27], [28]

there is no other research work on cell-free mmWave massive

MIMO systems and, furthermore, the authors of these works

did not face one of the main challenges in the implementation

of cooperative UDNs, that is, the fact that these systems

require of a substantial information exchange between the

APs and the CPU via capacity-constrained fronthaul links.

Moreover, they also considered the use of oversimplified

mmWave channel models and RF precoding stages, without

constraining the available number of RF-chains at each AP.

B. AIM AND CONTRIBUTIONS

Motivated by the above considerations, our main aim in this

paper is to address the design and performance evaluation

of realistic cell-free mmWave massive MIMO systems using

hybrid precoders and assuming the availability of capacity-

constrained fronthaul links connecting the APs and the CPU.

The main contributions of our work can be summarized as

follows:
• The performance of both the downlink (DL) and UL

of cell-free mmWave massive MIMO systems is con-

sidered with particular emphasis on the per-user rate,

rather than the system sum-rate, by posingmax-min fair-

ness resource allocation problems that take into account

the effects of imperfect channel estimation, power con-

trol, non-orthogonality of pilot sequences, and fronthaul

capacity constraints. Instead of assuming the use of

rather simple uniform quantization processes when for-

warding information on the capacity-constrained fron-

thauls, the proposed optimization problems assume the

use of large-block lattice quantization codes able to

approximate a Gaussian quantization noise distribution.

Optimal solutions to these problems are proposed that

combine the use of block coordinate descent methods

with sequential linear programs.

• A hybrid beamforming implementation is proposed

where the RF high-dimensionality phase shifter-

based precoding/decoding stage is based on large-

scale second-order statistics of the propagation

channel, and hence does not need the estimation
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of high-dimensionality instantaneous CSI. The low-

dimensionality basebandMU-MIMOprecoding/decoding

stage can then be easily implemented by standard signal

processing schemes using small-scale estimated CSI.

As will be shown in the numerical results section, such

a reduced complexity hybrid precoding scheme, when

combined with appropriate user selection, performs

very well in the fronthaul capacity-constrained UDN

mmWave-based scenarios under consideration.

• A suboptimal pilot allocation strategy is proposed

that, based on the idea of clustering by dissimilarity,

avoids the computational complexity of the optimal pilot

allocation scheme. The performance of the proposed

dissimilarity cluster-based pilot assignment algorithm is

compared with that of both the pure random pilot allo-

cation approach and the balanced random pilot strategy.

• For those cases in which the number of active MSs in

the network is greater than the number of available RF

chains at a particular AP, a MS selection algorithm is

proposed that aims at maximizing the minimum aver-

age sum-energy (i.e., Frobenius norm) of the equivalent

channel between the APs and any of the active MSs,

constrained by the fact that each AP can only beamform

to a number of MSs less or equal than the number of

available RF chains.

C. PAPER ORGANIZATION AND NOTATIONAL REMARKS

The remainder of this paper is organized as follows.

In Section II the proposed cell-free mmWave massive MIMO

system is introduced. Different subsections are devoted to the

description of the channel model, the large-scale and small-

scale training phases, the channel estimation process, and

the DL and UL payload transmission phases. The achievable

DL and UL rates are presented in Section III and further

developed in Appendices A and B. Section IV is dedicated

to the calculation of the capacity consumption of both the

DL and UL fronthaul links. The pilot assignment, power allo-

cation and quantization optimization processes are described

in Sections V and VI. Numerical results and discussions are

provided in Section VII and, finally, concluding remarks are

summarized in Section VIII.

Notation: Vectors and matrices are denoted by lower-case

and upper-case boldface symbols. The q-dimensional identity

matrix is represented by Iq. The operator det(X) represents

the determinant of matrix X , tr(X) denotes its trace, ‖X‖F is

its Frobenius norm, whereas X−1, XT , X∗ and XH denote its

inverse, transpose, conjugate and conjugate transpose (also

known as Hermitian), respectively. With a slight abuse of

notation, the operator diag(x) is used to denote a diagonal

matrix with the entries of vector x on its main diagonal, and

the operator diag(X) is used to denote a vector containing the

entries in the main diagonal of matrix X . The expectation

operator is denoted by E{·}. Finally, CN (m,R) denotes a

circularly symmetric complex Gaussian vector distributions

with mean m and covariance R, N (0, σ 2) denotes a real

valued zero-mean Gaussian random variable with standard

FIGURE 1. Allocation of the samples in large-scale and short-scale
coherence intervals.

deviation σ , and U [a, b] represents a random variable uni-

formly distributed in the range [a, b].

II. SYSTEM MODEL

Let us consider a cell-free massive MIMO system where a

CPU coordinates the communication between M APs and

K single-antenna MSs randomly distributed in a large area.

Each of the APs communicates with the CPU via error-free

fronthaul links with DL and UL capacities CFd and CFu,

respectively. Baseband processing of the transmitted/received

signals is performed at the CPU, while the RF operations are

carried out at the APs. Each AP is equipped with an array of

N > K antennas and L ≤ N RF chains. A fully-connected

architecture is considered where each RF chain is connected

to the whole set of antenna elements using N analog phase

shifters. Without loss of essential generality, it is assumed in

this paper that the number of active RF chains at each of the

APs in the network is equal to LA = min{K ,L}. That is,
if K ≤ L, all APs in the cell-free network provide service

to the whole set of MSs and if K > L, instead, each AP can

only provide service to L out of the K MSs in the network

and, thus, an algorithm must be devised to decide which are

the MSs to be beamformed by each of the APs.

The propagation channels linking the APs to the MSs

are typically characterized by small-scale parameters that

are (almost) static over a coherence time-frequency inter-

val of τc time-frequency samples (see [3, Chapter 2]), and

large-scale parameters (i.e., path loss propagation losses and

covariance matrices) that can be safely assumed to be static

over a time-frequency interval τLc ≫ τc. As shown in the

following subsections, these channel characteristics can be

leveraged to simplify both the channel estimation and the

precoding/combining processes. In particular, DL and UL

transmissions between APs and MSs are organized in a half-

duplex TDD operation whereby each coherence interval is

split into three phases, namely, the UL training phase, the DL

payload data transmission phase and the UL payload data

transmission phase, and every large-scale coherence interval

τLc the system performs an estimation of the large-scale

parameters of the channel (see Fig. 1). In the UL training

phase, all MSs transmit UL training orthogonal pilots allow-

ing the APs to estimate the propagation channels to every MS
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FIGURE 2. Operational schedule of the proposed cell-free mmWave
massive MIMO system.

in the network.2 Subsequently, these channel estimates are

used to detect the signals transmitted from the MSs in the UL

payload data transmission phase and to compute the precod-

ing filters governing the DL payload data transmission. Not

shown are guard intervals between UL and DL transmissions.

In order to ease the identification of the different tasks that

need to be conducted at both the CPU and the APs, Fig. 2

provides the operational schedule of the proposed cell-free

mmWave massive MIMO system and the sections of this

paper describing each of these tasks.

A. CHANNEL MODEL

MmWave propagation is characterized by very high

distance-based propagation losses that lead to sparse scatter-

ing multipath propagation. Furthermore, the use of mmWave

transmitters and receivers with large tightly-packet antenna

arrays results in high antenna correlation levels. These char-

acteristics make most of the statistical channel models used

in conventional sub-6 GHz MIMO research work inaccurate

when dealing with mmWave scenarios. Thus, a modified

version of the discrete-time narrowband clustered channel

model proposed byAkdeniz et al. in [14] and further extended

by Samimi and Rappaport in [29] will be used in this paper

to capture the peculiarities of mmWave channels.

The link between the mth AP and the kth MS will be

considered to be in one out of three possible conditions:

outage, line-of-sight (LOS) or non-line-of-sight (NLOS) with

probabilities:

pout(dmk ) = max
(

0, 1 − e−aoutdmk+bout
)

, (1a)

pLOS(dmk ) = (1 − pout(dmk )) e
−aLOSdmk , (1b)

pNLOS(dmk ) = 1 − pout(dmk ) − pLOS(dmk ), (1c)

respectively, where dmk is the distance (in meters) between

the AP and the MS, and, according to [14, Table 1], 1/aout =
30 m, bout = 5.2, and 1/aLOS = 67.1 m. Those links that

are in outage will be characterized with infinite propagation

losses, while for the links that are not in outage, the propaga-

tion losses will be characterized using a standard linear model

2Note that channel reciprocity can be exploited in TDD systems and
therefore only UL pilots need to be transmitted.

with shadowing as

PL(dmk )[dB] = α + 10β log10(dmk ) + χmk , (2)

whereα andβ are the least square fits of floating intercept and

slope and depend on the carrier frequency and on whether the

link is in LOS or NLOS (see [14, Table 1]), and χmk denotes

the large-scale shadow fading component, which is modelled

as a zero mean spatially correlated normal random variable

with standard deviation σχ (again, see [14, Table 1] to obtain

the typical values of σχ for LOS and NLOS links) whose

spatial correlation model is described in [11, (54)-(55)].

The UL channel vector hmk ∈ C
N×1 between MS k and

APmwill be modelled as the sum of the contributions of Cmk
scattering clusters, each contributing Pmk propagation paths

as

hmk =
Cmk
∑

c=1

Pmk
∑

p=1

αmk,cpa
(

θmk,cp, φmk,cp
)

, (3)

where αmk,cp is the complex small-scale fading gain on the

pth path of cluster c, and a
(

θmk,cp, φmk,cp
)

represents the

AP normalized array response vector at the azimuth and

elevation angles θmk,cp and φmk,cp, respectively. These angles,

as stated by Akdeniz et al. in [14, Section III.E] can be

generated as wrapped Gaussians around the cluster central

angles with standard deviation given by the root mean square

(rms) angular spreads for the cluster. The azimuth cluster

central angles are uniformly distributed in the range [−π, π]

and the elevation cluster central angles are set to the LOS

elevation angle. Moreover, the cluster rms angular spreads

are exponentially distributed with a mean equal to 1/λrms
that depends on the carrier frequency and on whether we

are considering the azimuth or elevation directions (see [14,

Table 1]). The number of clusters is distributed as a random

variable of the form

Cmk ∼ max {Poisson(σC ), 1} , (4)

where σC is set to the empirical mean ofCmk . The small-scale

fading gains are distributed as

αmk,cp ∼ CN
(

0, γmk,c10
−PL(dmk )/10

)

, (5)

where the cluster c is assumed to contribute with a fraction of

power given by

γmk,c =
Nγ ′

mk,c

Pmk
∑Cmk

j=1 γ ′
mk,j

, (6)

with

γ ′
mk,j = U

rτ −1
mk,j 10

Zmk,j/10, (7)

Umk,j ∼ U [0, 1], Zmk,j ∼ N (0, ζ 2), and the constants rτ and

ζ 2 being treated as model parameters (see [14, Table 1]).

Although the small-scale fading gains αmk,cp are assumed

to be static throughout the coherence interval and then change
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independently (i.e., block fading), the spatial covariance

matrices

Rmk = E

{

hmkh
H
mk

}

= 10−PL(dmk )/10

Cmk
∑

c=1

γmk,c

×
Pmk
∑

p=1

a
(

θmk,cp, φmk,cp
)

aH
(

θmk,cp, φmk,cp
)

, (8)

are assumed to vary at a much smaller pace (i.e., τLc ≫ τc).

B. LARGE-SCALE TRAINING PHASE: RF

PRECODER/COMBINER DESIGN

In order to exploit the UL/DL channel reciprocity using the

TDD frame structure shown in Fig. 1, it is assumed in this

paper that the N × LA RF matrixWRF
m , describing the effects

of the active analog phase shifters at themth AP, is common to

the DL (RF precoding phase) and UL (RF combining phase).

Furthermore, denoting by Km =
{

κm1, . . . , κmLA
}

the set of

LA MSs beamformed by the mth AP, it is assumed thatWRF
m

is a function of only the spatial channel covariance matrices

{Rmk}k∈Km
, known at the mth AP through spatial channel

covariance estimation for hybrid analog-digital MIMO pre-

coding architectures (see e.g. [30]–[33]).

Using eigen-decomposition, the covariance matrix of

the propagation channel linking MS k and AP m can

be expressed as Rmk = Umk3mkU
H
mk , where 3mk =

diag
([

λmk,1 . . . λmk,rmk
])

contains the rmk non-null eigenval-

ues of Rmk , andUmk is the N × rmk matrix of the correspond-

ing eigenvectors. Hence, assuming the use of (constrained)

statistical eigen beamforming [34], [35], the analog RF pre-

coder/combiner can be designed as

WRF
m =

[

wRF
mκm1

. . . wRF
mκmLA

]

=
[

e−j
6 umκm1,max . . . e

−j 6 umκmLA
,max

]

, (9)

where umk,max is the dominant eigenvector of Rmk associ-

ated to the maximum eigenvalue λmk,max, and the function
6 x returns the phase angles, in radians, for each element

of the complex vector x. Note that using the RF precod-

ing/combining matrix, the equivalent channel vector between

MS k andAPm, including the RF precoding/decodingmatrix,

is defined as

gmk = WRF
m

T
hmk ∈ C

LA×1, (10)

whose dimension is much less than the number of antennas

of the massive MIMO array used at the mth AP, thus largely

simplifying the small-scale training phase.

C. LARGE-SCALE TRAINING PHASE: SELECTION OF MSs

TO BEAM FORM FROM EACH AP

As previously stated, in those highly probable cases in which

the number of active MSs in the network is greater than the

number of available RF chains at each AP (i.e., K > L),

the mth AP, with m ∈ {1, . . . ,M}, can only beamform

to a group of L out of the K MSs in the network, which

are indexed by the set Km = {κm1, . . . , κmL}. As the RF

beamforming matrices at the APs are a function of only

the large-scale spatial channel covariance matrices and are

common to both the UL and the DL, the selection of the sets

of MSs to beamform from each AP must also be based only

on the available large-scale CSI. Inspired by the Frobenius

norm-based suboptimal user selection algorithm proposed by

Shen et al. in [36], a selection algorithm is proposed that aims

at maximizing the sum of the average energy (i.e., average

Frobenius norm) of the equivalent channels (including the

corresponding beamformer) between the M APs and the K

MSs with the constraints that, first, the minimum average

energy of the equivalent channel between theM APs and any

of the active MSs must be maximized and, second, that each

AP can only beamform to L MSs. Note that this optimization

problem, which tends to provide some degree of (average)

max-min fairness among MSs, can be efficiently solved by

using an iterative reverse-delete algorithm (similar to that

used in graph theory to obtain a minimum spanning tree

from a given connected, edge-weighted graph). In particular,

at the beginning of the ith iteration of the algorithm the cell-

free network is represented by a very simple edge-weighted

directed graph withM source nodes and K sink nodes, where

the mth source node, representing the mth AP, is connected

to a group K
(i)
m of sink nodes, representing the active MSs

beamformed by the mth AP. The connection (edge) between

the mth source node and the lth sink node in K
(i)
m is weighted

by the average Frobenius norm of the equivalent channel

linking the mth AP and MS l ∈ K
(i)
m , that can be obtained

as

ξml = E

{

∥

∥

∥
wRF
ml

T
hml

∥

∥

∥

2

F

}

= wRF
ml

T
Rmlw

RF
ml . (11)

The average sum energy of the equivalent channels between

the M APs and MS k at the beginning of the ith iteration is

E
(i)
k =

∑

m∈M(i)
k

ξmk , (12)

where M
(i)
k is the set of APs beamforming to MS k at

the beginning of the ith iteration. During this iteration,

the reverse-delete algorithm removes the edge (i.e., the RF

chain and associated beamformer) that, first, goes out of one

of those APs still beamforming to more than L MSs and,

second, has the minimum weight maximizing the minimum

average sum energy after removal. The algorithm begins with

a fully connected graph and stops when all APs beamform

to exactly L MSs. Hence, note that M (K − L) iterations are

needed to select the sets Km for m ∈ {1, . . . ,M}.

D. SMALL-SCALE TRAINING PHASE

Communication in any coherence interval of a TDD-based

massiveMIMO system invariably starts with theMSs sending

the pilot sequences to allow the channel to be estimated at the
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APs. Let τp denote the UL training phase duration (measured

in samples on a time-frequency grid) per coherence interval.

During the UL training phase, all K MSs simultaneously

transmit pilot sequences of τp samples to the APs and thus,

the LA × τp received UL signal matrix at the mth AP is given

by

Ypm =
√

τpPp

K
∑

k ′=1

gmk ′ϕTk ′ + Npm, (13)

where Pp is the transmit power of each pilot symbol, ϕk
denotes the τp × 1 training sequence assigned to MS k ,

with ‖ϕk‖2F = 1, and Npm is an LA × τp matrix of

i.i.d. additive noise samples with each entry distributed as3

CN (0, σ 2
u (N )). Ideally, training sequences should be chosen

to be mutually orthogonal, however, since in most practical

scenarios it holds that K > τp, a given training sequence

is assigned to more than one MS, thus resulting in the so-

called pilot contamination, a widely studied phenomenon in

the context of collocated massive MIMO systems. For addi-

tional details on the relation between channel estimation, pilot

signals length and pilot contamination error, please refer to

[3], [5], [10], [11], [37].

E. CHANNEL ESTIMATION

Channel estimation is known to play a central role in the

performance of massive MIMO schemes [38] and also in the

specific context of cell-free architectures [11]. The minimum

mean square error (MMSE) estimation filter for the channel

between the kth active MS and the mth AP can be calculated

as

Dmk = argmin
D

E

{

∥

∥gmk − DYpmϕ∗
k

∥

∥

2
}

=
√

τpPpR
RF
mkQ

−1
mk , (14)

where

RRF
mk = E

{

gmkg
H
mk

}

= WRF
m

T
RmkW

RF
m

∗
, (15)

and

Qmk = τpPp

K
∑

k ′=1

RRF
mk ′

∣

∣

∣
ϕTk ′ϕ

∗
k

∣

∣

∣

2
+ σ 2

u (N )ILA . (16)

Hence, the corresponding estimated channel vector can be

expressed as

ĝmk = DmkYpmϕ∗
k =

√

τpPpR
RF
mkQ

−1
mkYpmϕ∗

k . (17)

3Note that in theUL of a fully-connected hybrid beamforming architecture
each reception chain is composed of N antenna elements, each connected
to a low-noise amplifier (LNA) characterized by a power gain GLNA and
a noise temperature TLNA. Each of the N LNAs feeds an analog passive
phase shifter characterized by an insertion loss LPS. The outputs of the N
phase shifters are introduced to a power combiner whose insertion losses
are typically proportional to the number of inputs, that is, LPC = NLPCin .
Finally, the output of the power combiner is introduced to an RF chain
characterized by a power gain GRF and a noise temperature TRF. Thus,
the equivalent noise temperature of each receive chain can be obtained as

Tu = N

(

T0 + TLNA +
T0(LPSLPCin

−1)

GLNA
+

TRFLPSLPCin
GLNA

)

.

FIGURE 3. System block diagram during the DL payload transmission
phase.

The MMSE channel vector estimates can be shown to be

distributed as ĝmk ∼ CN
(

0, R̂
RF

mk

)

, where

R̂
RF

mk , τpPpR
RF
mkQ

−1
mkR

RF
mk

H
. (18)

Furthermore, the channel vector gmk can be decomposed as

gmk = ĝmk+g̃mk , where g̃mk is theMMSE channel estimation

error, which is statistically independent of both gmk and ĝmk .

F. DOWNLINK PAYLOAD DATA TRANSMISSION

Let us define sd = [sd 1 . . . sdK ]
T as the K × 1 vector of

symbols jointly (cooperatively) transmitted from the APs to

the MSs, such that E
{

sd s
H
d

}

= IK . Let us also define xm =
Pm (sd ) as the N × 1 vector of signals transmitted from the

mth AP, where Pm (sd ) is used to denote the mathematical

operations (linear and/or non-linear) used to obtain xm from

sd . Note that this vector must comply with a power constraint

E
{

‖xm‖2F
}

≤ Pm, where Pm is the maximum average trans-

mit power available at AP m. Using this notation, the signal

received by MS k can be expressed as

yd k =
M
∑

m=1

hTmkxm + nd k , (19)

where nd k ∼ CN (0, σ 2
d ) is the Gaussian noise sample at

MS k . The vector yd =
[

yd 1 . . . ydK
]T

containing the signals

received by the K scheduled MSs in the network can then be

expressed as

yd =
M
∑

m=1

HT
mxm + nd , (20)

where Hm = [hm1 . . . hmK ] and nd = [nd 1 . . . ndK ]
T .

As schematically represented in Fig. 3, the mathematical

operations that symbol vector sd undergoes before being

transmitted, generically represented as xm = Pm(sd ), for all

m ∈ {1, . . . ,M}, include, first, a power allocation process and
a baseband precoding task at the CPU, second, a quantization

process of all or part of the data that must be sent from

the CPU to the APs through the fronthaul links and, third,

an unquantization process and anRF precoding task at each of

the APs. Let us denote byQdm(x) andQd
−1
m (x) the quantiza-

tion and unquantization mathematical operations performed
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by the compress-after-precoding (CAP)-based CPU-AP func-

tional split on a vector of signal samples x to be transmitted

by the mth AP. Due to the distortion introduced by the quan-

tization/unquantization processes, we have that [39], [40]

Q̂dm(x) , Qd
−1
m (Qdm(x)) = x+ qdm, (21)

where qdm is the quantization noise vector, which is assumed

to be statistically distributed as qdm ∼ CN
(

0, σ 2
qdm

I
)

.

As shown by Zamir et al. in [39], this assumption is supported

by the fact that large-block lattice quantization codes are able

to approximate a Gaussian quantization noise distribution.

Thus, the mathematical operations describing the CPU-AP

functional split considered in this paper can be summarized

as

xm = Pm(sd ) = WRF
m Q̂dm

(

WBB
d mϒ1/2sd

)

= WRF
m

(

WBB
d mϒ1/2sd + qdm

)

, (22)

where WBB
d =

[

WBB
d 1

T
. . . WBB

d M

T
]T

∈ C
MLA×K , with

WBB
d m =

[

wBB
dm1 . . . wBB

dmK

]

∈ C
LA×K denoting the baseband

precoding matrix affecting the signal transmitted by the mth

AP, and ϒ = diag ([υ1 . . . υK ]) is a K × K diagonal matrix

containing the power control coefficients in its main diagonal,

which are chosen to satisfy the following necessary power

constraint at the mth AP

E

{

‖xm‖2F
}

=
K
∑

k=1

υkθ
BB/RF
mk + σ 2

q dm

∥

∥

∥
WRF

m

∥

∥

∥

2

F

=
K
∑

k=1

υkθ
BB/RF
mk + σ 2

q dm
LAN ≤ Pm, (23)

where we have used the definition

θBB/RFmk = E

{

∥

∥

∥
WRF

m wBB
dmk

∥

∥

∥

2

F

}

. (24)

Using the proposed hybrid CAP approach, the signal

received by the K MSs can be rewritten as

yd =
M
∑

m=1

HT
mW

RF
m WBB

d mϒ1/2sd

+
M
∑

m=1

HT
mW

RF
m qdm + nd

= GTWBB
d ϒ1/2sd + ηd , (25)

where G = [GT1 . . . GTM ]T , with Gm = WRF
m

T
Hm, repre-

senting the equivalent MIMO channel matrix between the K

MSs and the M APs, including the RF precoding/decoding

matrices, and

ηd = GT qd + nd , (26)

includes the thermal noise as well as the quantization noise

samples received from all the APs in the network. Now, using

the classical ZFMU-MIMObaseband precoder to harness the

spatial multiplexing, we have that

WBB
d = Ĝ

∗ (
Ĝ
T
Ĝ

∗)−1

(27)

or, equivalently,

WBB
d m = Ĝ

∗
m

(

Ĝ
T
Ĝ

∗)−1

∀m, (28)

where we have assumed that G = Ĝ + G̃ and Gm = Ĝm +
G̃m. Consequently, the signal received by the kth MS can be

expressed as

yd k = gTk Ĝ
∗ (
Ĝ
T
Ĝ

∗)−1

ϒ1/2sd + ηd k

=
(

ĝ
T
k + g̃Tk

)

Ĝ
∗ (
Ĝ
T
Ĝ

∗)−1

ϒ1/2sd + ηd k

= √
υksd k + g̃Tk Ĝ

∗ (
Ĝ
T
Ĝ

∗)−1

ϒ1/2sd + ηd k (29)

where ηd k = gTk qd + nd k . The first term denotes the useful

received signal, the second term contains the interference

terms due to the use of imperfect CSI (pilot contamination),

and the third term encompass both the quantification and

thermal noise samples.

G. UPLINK PAYLOAD DATA TRANSMISSION

In the UL, the vector of received signals at the output of the

LA RF chains (including the RF phase shifters) of the mth AP

is given by

rum =
√

Pu

K
∑

k ′=1

gmk ′
√

ωk ′suk ′ + num

=
√

PuGm�1/2su + num, (30)

where Pu is the maximum average UL transmit power avail-

able at any of the active MSs, su = [su1 . . . suK ]
T denotes

the vector of symbols transmitted by the K active MS,

� = diag([ω1 . . . ωK ]), with 0 ≤ ωk ≤ 1, is a matrix

containing the power control coefficients used at theMSs, and

num ∼ CN (0, σ 2
u (N )ILA ) is the vector of additive thermal

noise samples at the output of the LA RF chains of the mth

AP. The received vector of signals at each of the APs in

the network is quantized and forwarded to the CPU via the

UL fronthaul links, where they are unquantized and jointly

processed using a set of baseband combining vectors. Using

a similar approach to that employed to model the DL trans-

mission, the received vector of (unquantized) samples from

the mth AP can be expressed as4

zum = Q̂um (rum) = rum + qum, (31)

where qum is the quantization noise vector, which is assumed

to be statistically distributed as qum ∼ CN
(

0, σ 2
qum

ILA

)

.

4Note that the schematic block diagram describing the UL payload data
transmission phase is similar to the one shown in Fig. 3, however, the pro-
cessing flux is reversed, the power allocation is performed at the MSs,
the quantization and unquantization tasks are performed at the APs and CPU,
respectively, and the fronthaul capacity is equal to CF u.
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Now, assuming the use of ZF MIMO detection, the CPU uses

the detection matrix

WBB
u =

(

Ĝ
H
Ĝ
)−1

Ĝ
H = WBB

d

T
(32)

or, equivalently

WBB
um =

(

Ĝ
H
Ĝ
)−1

Ĝ
H

m = WBB
dm

T
, ∀m, (33)

to jointly process the vector zu =
[

zu
T
1 . . . zu

T
M

]T
and obtain

the vector of detected samples

yu = WBB
u zu =

√

PuW
BB
u G�1/2su + ηu

=
√

Pu�
1/2su +

√

PuW
BB
u G̃�1/2su + ηu, (34)

where ηu = WBB
u

(

qu + nu
)

. Again, the first term denotes the

useful received signal, the second term contains the interfer-

ence terms due to the use of imperfect CSI, and the third term

includes both the quantification and thermal noise samples.

The detected sample corresponding to the symbol transmitted

by the kth MS can then be obtained as

yuk =
√

Puω
1/2
k suk +

√

Pu

[

WBB
u G̃�1/2su

]

k
+ ηuk , (35)

where [x]k denotes the kth entry of vector x.

III. ACHIEVABLE RATES

Analysis techniques similar to those applied, for instance,

in [3], [11], [18], [41]–[43], are used in this section to derive

DL and UL achievable rates. In particular, the sum of the sec-

ond and third terms on the right hand side (RHS) of (29), for

the DL case, and (35), for the UL case, are treated as effec-

tive noise. The additive terms constituting the effective noise

are, in both DL and UL cases, mutually uncorrelated, and

uncorrelated with sd k and suk , respectively. Therefore, both

the desired signal and the so-called effective noise are uncor-

related. Now, recalling the fact that uncorrelated Gaussian

noise represents the worst case, from a capacity point of view,

and that the complex-valued fast fading random variables

characterizing the propagation channels between different

pairs of AP-MS connections are independent, the DL and UL

achievable rates (measured in bits per second per Hertz) for

MS k can be obtained as stated in the following theorems:

Theorem 1 (Downlink achievable rate): An achievable

rate of MS k using the analog precoders WRF
m , for all

m ∈ {1, . . . ,M}, and the ZF baseband precoder WBB
d =

Ĝ
∗ (
Ĝ
T
Ĝ

∗)−1

is Rd k = log2 (1 + SINRd k), with

SINRd k = υk
∑K

k ′=1 υk ′̟kk ′ + σ 2
ηdk

, (36)

where

σ 2
ηdk

=
M
∑

m=1

σ 2
q dm

tr
(

RRF
mk

)

+ σ 2
d , (37)

and

̟kk ′ =
[

diag
(

E

{

WBB
d

H
g̃∗
k g̃

T
kW

BB
d

})]

k ′
. (38)

Proof: See Appendix A. �

Theorem 2 (Uplink achievable rate): An achievable UL

rate for the kth MS in the Cell-Free Massive MIMO sys-

tem with limited capacity fronthaul links and using ZF

MIMO detection, for any M , N and K , is given by Ruk =
log2 (1 + SINRuk), with

SINRuk = Puωk

Pu
∑K

k ′=1 ωk ′δkk ′ + σ 2
ηuk

, (39)

where

δkk ′ =
[

diag
(

E

{

G̃
H
wBB
uk

H
wBB
uk G̃

})]

k ′
(40)

with wBB
uk denoting the kth row ofWBB

u , or, equivalently,

δkk ′ =
[

diag
(

E

{

WBB
u g̃k ′ g̃

H
k ′W

BB
u

H
})]

k
, (41)

and

σ 2
ηuk

=
M
∑

m=1

(

σ 2
q um

+ σ 2
u (N )

)

νumk , (42)

with

νumk =
[

diag
(

E

{

WBB
umW

BB
um

H
})]

k
. (43)

Proof: See Appendix B. �

Note that [18], as well as this paper, are based on the use

of ZF precoding, consequently, the corresponding signal-to-

interference-plus-noise ratio (SINR) equations must unavoid-

ably bear some resemblance. Nevertheless, as it has been

stressed in the text, the conceptual backgrounds used to obtain

these analytical expressions are markedly different in the

sense that our approach incorporates the influence of the

mmWave-based RF signal processing and constraints, while

taking into account the quantization/unquantization effects

associated to the use of capacity-constrained fronthaul links.

IV. FRONTHAUL CAPACITY CONSUMPTION

The DL quantization process performed at themth AP can be

expressed as

Q̂dm

(

WBB
d mϒ1/2sd

)

= WBB
d mϒ1/2sd + qdm. (44)

From standard random coding arguments [44], vec-

tor sd can be safely assumed to be distributed as

sd ∼ CN (0, IK ) and thus, the quantized vector

Q̂dm

(

WBB
d mϒ1/2sd

)

is distributed as Q̂dm

(

WBB
d mϒ1/2sd

)

∼
CN

(

0,WBB
d mϒWBB

d m

H + σ 2
q dm

ILA

)

. Furthermore, as the dif-

ferential entropy of a vector x ∼ CN (ω, 2) is given by

H(x) = log det(πe2) [44], the required average rate to

transfer the quantized vector Q̂dm

(

WBB
d mϒ1/2sd

)

on the cor-

responding DL fronthaul link can be obtained as (in bps/Hz)

Ĉdm = E

{

I
(

Q̂dm

(

WBB
d mϒ1/2sd

)

;WBB
d mϒ1/2sd

)}

= E

{

H
(

Q̂dm

(

WBB
d mϒ1/2sd

))}

−E

{

H
(

Q̂dm

(

WBB
d mϒ1/2sd

)

∣

∣WBB
d mϒ1/2sd

)}

= E

{

log2 det

(

1

σ 2
q dm

WBB
d mϒWBB

d m

H + ILA

)}

, (45)
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where I (x̂; x) is used to denote the mutual information

between vectors x̂ and x, andH(x̂|x) is the differential entropy
of x̂ conditioned on x. Since the determinant is a log-concave

function on the set of positive semidefinite matrices, it fol-

lows from Jensen’s inequality that

Ĉdm ≤ log2 det

(

1

σ 2
q dm

E

{

WBB
d mϒWBB

d m

H
}

+ILA

)

= log2 det

(

1

σ 2
q dm

K
∑

k=1

υkE
{

wBB
mkw

BB
mk

H
}

+ILA

)

. (46)

Analogously, the UL quantization process performed at the

mth AP is given by Q̂um (rum) = rum + qum. Thus, using

arguments similar to those used in the DL case, the required

average rate to transfer the quantized vector Q̂um (rum) on the

corresponding UL fronthaul link can be upper bounded as (in

bps/Hz)

Ĉum = E

{

I
(

Q̂um (rum) ; rum
)}

= E

{

H
(

Q̂um (rum)

)}

− E

{

H
(

Q̂um (rum)
∣

∣rum

)}

≤ log2 det

(

Pu

σ 2
q um

K
∑

k=1

ωkR
RF
mk +

(

σ 2
u (N )

σ 2
q um

+ 1

)

ILA

)

.

(47)

V. PILOT ASSIGNMENT

To warrant an appropriate system performance, the radio

resource management (RRM) unit must efficiently manage

both the pilot assignment and the UL and DL power control.

As the pilots are not power controlled, pilot assignment and

power control can be conducted independently. Since the

length of the pilot sequences is limited to τp, there only exist

τp orthogonal pilot sequences. In a network with K ≤ τp
MSs, an optimal pilot assignment strategy simply allocates

K orthogonal pilots to the K MSs. The real pilot assignment

problem arises when K > τp. In this case, fully orthogonal

pilot assignment is no longer possible and hence, other pilot

assignment strategies must be devised.

On the one hand, designing an optimal pilot assignment

strategy aiming at maximizing the minimum rate allocated

to the active MSs in the network is a very difficult com-

binatorial problem, computationally unmanageable in most

network setups of practical interest [11]. On the other hand,

using straightforward strategies such as, for instance, the pure

random pilot assignment (RPA) scheme [45], where each

MS is randomly assigned one pilot sequence out of the set

of τp orthogonal pilot sequences, or the balanced random

pilot assignment (BRPA) scheme, where eachMS is allocated

a pilot sequence that is sequentially and cyclically selected

from the ordered set of available orthogonal pilots, provides

poor performance results. In order to avoid the computa-

tional complexity of the optimal strategies while improving

the performance of the baseline RPA or BRPA approaches,

a suboptimal solution is proposed in this paper that is based

on the idea of clustering by dissimilarity. This suboptimal

approach, that will be termed as the dissimilarity cluster-

based pilot assignment (DCPA) strategy, is motivated by the

following key observation:

Key observation: In those scenarios where K > τp,

cell-free communication is severely impaired whenever MSs

showing very similar large-scale propagation patterns to

the set of APs (that is, MSs typically located nearby) are

allocated the same pilot sequence. In this case, the inter-MS

interference leads to very poor channel estimates at all APs

and, eventually, to low SINRs.

The clustering algorithm proposed in this work basically

ensures that pilot sequences are only reused by MSs showing

dissimilar large-scale propagation patterns to the APs (that

is, MSs typically located sufficiently apart). Two key aspects

regarding the clustering operation are thus, on the one hand,

to decide which should be the large-scale propagation pattern

that ought to be used to represent a given MS and, on the

other hand, to decide what metric should be used to measure

similarity among the large-scale propagation patterns char-

acterizing different MSs. To this end, and resting upon the

premise that the CPU has perfect knowledge of the large-

scale gains, let ξ k = [ξ1k . . . ξMk ]
T denote theM × 1 vector

containing the average Frobenius norms of the equivalent

channels linking the kth MS to allM APs in the cell-free net-

work. Vector ξ k can be considered as an effective fingerprint

characterizing the location of MS k . Now, although no single

definition of a similarity measure exists, the so-called cosine

similarity measure is one of the most commonly used simi-

larity metrics when dealing with real-valued vectors. Hence,

as the fingerprint vectors characterizing the different MSs

are non-negative real-valued, the cosine similarity measure

between two fingerprint vectors ξ k and ξ k ′ , defined as

fD
(

ξ k , ξ k ′
)

= ξTk ξ k ′

‖ξ k‖2‖ξ k ′‖2
, (48)

will be used as a proper similarity metric in our work. The

resulting similarity values range from 0, meaning orthogonal-

ity (perfect dissimilarity), to 1, meaning exact match (perfect

similarity).

The proposed DCPA algorithm proceeds as follows. In a

first step, it calculates the fingerprint of an imaginary MS

centroid, defined as

ξC = 1

K

K
∑

k=1

ξ k . (49)

Then, it moves onward to the calculation of the cosine similar-

ity measures among the fingerprint vectors characterizing the

K MSs in the network and the fingerprint of the centroid, that

is, the algorithm proceeds to the calculation of fD
(

ξ k , ξC
)

, for

all k ∈ {1, . . . ,K }. The MSs are then sorted in descending

order of similarity with the centroid, that is, the algorithm

obtains the ordered set of subindices O = {o1, o2, . . . , oK },
such that fD

(

ξo1 , ξC
)

≤ fD
(

ξo2 , ξC
)

≤ · · · ≤ fD
(

ξoK , ξC
)

.

Once the MSs have been sorted, the algorithm constructs τp
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clusters of MSs, namely K1, . . . ,Kτp , with

Kt = O
(

t : τp : K
)

=
{

ot , ot+τp , ot+2τp , . . .
}

, ∀t ∈ {1, . . . , τp}, (50)

and all MSs in cluster Kt , which are located far from each

other, are allocated the same pilot code ϕt . Note that the

application of this algorithm ensures that, as far as it is

possible, twoMSs having similar large-scale propagation fin-

gerprints are allocated different pilot codes and, thus, they do

not interfere to each other during the UL channel estimation

process. In other words, it aims at minimizing the residual

interuser interference terms in both (29) and (35).

VI. MAX-MIN POWER ALLOCATION AND OPTIMAL

QUANTIZATION

A. DOWNLINK POWER CONTROL AND QUANTIZATION

In line with previous research works on cell-free architectures

[10], [11], [18], [21], our aim in this subsection is to find the

power control coefficients υk , for all k ∈ {1, . . . ,K }, and the
quantization noise variances σ 2

q dm
, for all m ∈ {1, . . . ,M},

that maximize the minimum of the achievable DL rates of

all MSs while satisfying the average transmit power and DL

fronthaul capacity constraints at each AP. As the logarithmic

function is a monotonic increasing function of its argument,

maximizing the minimum achievable DL rate is equivalent

to maximizing the minimum achievable SINR [3], [10], [11],

[18] thus, mathematically, this optimization problem can be

formulated as

max
ϒ�0

σ qd�0

min
k∈{1,...,K }

υk
∑K

k ′=1 υk ′̟kk ′ + σ 2
ηdk

s.t.

K
∑

k=1

υkθ
BB/RF
mk ≤ Pm − σ 2

q dm
LAN , ∀m,

log2 det

(

K
∑

k=1

υk

σ 2
q dm

RBB
mk + ILA

)

≤ CFd , ∀m,

(51)

where we have used the definition σ qd = [σqd1 . . . σqdM ]T .

Optimization problem (51) is characterized by continuous

objective and constraint functions of interdependent block

variables, namely, ϒ and σ qd . A widely used approach for

solving optimization problems of this class is the so-called

block coordinate descend (BCD) method [46], [47]. This

is an iterative optimization approach that, at each iteration

and in a cyclic order, optimizes one of the blocks while the

remaining variables are held fixed. As stated by the authors

of [46], [47], convergence of the BCD method is ensured

whenever each of the subproblems to be optimized in every

iteration can be exactly solved to its unique optimal solution.

In the following we show that each of the subproblems into

which (51) is decomposed can be solved to its unique optimal

solution and, thus, both a linear rate of convergence and

optimal performance of the BCD approach are ensured at an

affordable complexity [46], [47].

The first important fact to note is that, given a power

allocation matrix ϒ(i−1) obtained at the (i − 1)th iteration,

and as the achievable user rates monotonically increase with

the capacity of the fronthaul links between the APs and

the CPU, the optimal solution for the acceptable fronthaul

quantization noise in the ith iteration is achieved when the

fronthaul capacity constraints are satisfied with equality, that

is, when

det

(

K
∑

k=1

υ
(i−1)
k

σ 2
q
(i)

dm

RBB
mk + ILA

)

= 2CF d , ∀m. (52)

Note that σ 2
q
(i)

dm
cannot be expressed in a closed-form alge-

braic expression as it only admits a solution in the form of a

transcendental function

σ 2
q

(i)

dm
= Fd

(

ϒ(i−1),
{

RBB
mk

}K

k=1
,CFd

)

(53)

that can be numerically solved by applying mathematical

software tools to (52).

Once the optimal block of variables σ q
(i)
d have been

obtained, the optimization problem in (51) can be rewritten

in terms of the power allocation matrix ϒ(i) as

max
ϒ(i)�0

min
k∈{1,...,K }

υ
(i)
k

K
∑

k ′=1

υ
(i)
k ′ γkk ′ +

M
∑

m=1

σ 2
q

(i)

dm
tr
(

RRF
mk

)

+ σ 2
d

s.t.

K
∑

k=1

υ
(i)
k θBB/RFmk ≤ Pm − NLAσ

2
q

(i)

dm
, ∀m. (54)

Note that this is a convergent quasi-linear optimization prob-

lem that can be solved using conventional standard convex

optimization methods [11], [18].

B. UPLINK POWER CONTROL AND QUANTIZATION

In this subsection we aim at finding the power control coef-

ficients ωk , for all k ∈ {1, . . . ,K }, and quantization noise

variances σ 2
q um

, for all m ∈ {1, . . . ,M}, that maximize the

minimum of the achievable ulink rates of all MSs while

satisfying the power control coefficient constraints at each

MS and the UL fronthaul capacity constraints at each AP.

This optimization problem can be formulated as

max
ω�0

σ qu�0

min
k∈{1,...,K }

Puωk

Pu
∑K

k ′=1 ωk ′δkk ′ + σ 2
ηuk

s.t. 0 ≤ ωk ≤ 1, ∀ k,

det

(

Pu

σ 2
q um

K
∑

k=1

ωkR
RF
mk + ϑmILA

)

≤ 2CF u , ∀m,

(55)

where σ qu = [σqu1 . . . σquM ]T , and we have used the defi-

nition ϑm = 1 + σ 2
u (N )/σ 2

q um
. As for the DL case, problem

(55) admits the use of the block coordinate descend (BCD)
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method where, in each iteration, the nonconvex transcenden-

tal function σ 2
q um

= Fu

(

�,
{

RRF
mk

}K

k=1
,Pu,CFu

)

is approx-

imated by a constant calculated using the power allocation

vector obtained in the previous iteration of the algorithm.

That is, in the ith iteration of the UL optimal power allocation

approach, the algorithm solves the optimization problem

max
�(i)�0

min
k∈{1,...,K }

Puω
(i)
k

Pu
∑K

k ′=1 ω
(i)
k ′ δkk ′ + σ

2(i)
ηuk

,

s.t. 0 ≤ ωk ≤ 1, ∀ k, (56)

where σ 2
q
(i)

um
= Fu

(

�(i−1),
{

RRF
mk

}K

k=1
,Pu,CFu

)

. Note that,

again, this is a convergent quasi-linear optimization problem

that can be solved using conventional convex optimization

methods [11], [18].

VII. NUMERICAL RESULTS

In this section, simulation results are obtained in order to

quantitatively study the performance of the proposed cell-

free mmWave massive MIMO network with constrained-

capacity fronthaul links. In particular, we demonstrate the

impact of using different pilot allocation strategies, the effects

of modifying the capacity of the fronthaul links and the RF

infrastructure at the APs, and the repercussion of changing

the density of APs per area unit. For simplicity of exposition,

and without loss of essential generality, a cell-free scenario

is considered where the M APs and K MSs are uniformly

distributed at random within a square coverage area of size

D × D m2. As described in subsection II-A, a modified ver-

sion of the discrete-time narrowband clustered channel model

proposed by Akdeniz et al. in [14] is used in the performance

evaluation. The parameters necessary to implement this chan-

nel model can be found in [14, Table 1]. Furthermore, similar

to what was done byNgo et al. in [11], a shadow fading spatial

correlation model with two components is also considered

(see [11, eqs. (54) and (55)]) where the decorrelation distance

is set to ddecorr = 50 m and the parameter δ is set to 0.5.

Default parameters used to set-up the simulation scenarios

under evaluation in the following subsections are summarized

in Table 1.

A. IMPACT OF THE PILOT ALLOCATION PROCESS

Our aim in this subsection is to benchmark the performance

of the proposed large-scale CSI-aware DCPA strategy against

both the pure RPA and the BRPA schemes. Accordingly,

the averagemax-min rate per user versus the number of active

MSs is presented in Fig. 4 for each of these pilot alloca-

tion strategies and for both the DL and the UL. All results

have been obtained assuming the default system parameters

described in Table 1, the use of L = 8 RF chains fully

connected to uniform linear antenna arrays with N = 64

antenna elements, and fronthaul links with a capacity of

CFd = CFu = 64 bit/s/Hz. The first important result to

note from Fig. 4 is that the pure RPA scheme is clearly

outperformed by both the BRPA and the DCPA strategies

irrespective of the of active MSs in the network. In fact,

TABLE 1. Summary of default simulation parameters.

FIGURE 4. Average max-min rate per user versus the number of active
MSs for different pilot allocation strategies (N = 64 antennas, L = 8 RF
chains, CF d = CF u = 64 bit/s/Hz).

the RPA scheme cannot guarantee neither the absence of

pilot reuse, even for those cases in which K ≤ τp (in this

setup, τp = 15 time/frequency samples), nor the possibility

of having pilots that are allocated to a high number of MSs

and/or to MSs exhibiting very similar large-scale propagation

patterns to theAPs. Therefore, the higher the number of active

MSs, the higher the probability of having one or more users

suffering from high levels of pilot contamination, with the

consequent reduction of the achievable max-min user rate.

If we turn our attention to results provided by the BRPA

and DCPA strategies, two disjoint operation regions can be

distinguished. In the first one, comprising the scenarios in

which K ≤ τp, both approaches allocate orthogonal pilots to

the users (absence of pilot contamination) and thus naturally

provide the same performance. In the second one, however,

comprising the scenarios in which K > τp, pilots have to

be reused and, as a consequence, pilot contamination appears

(note the rather abrupt performance drop when going from
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K ≤ τp to K > τp). In these scenarios, based on a smart

exploitation of the available large-scale CSI, the proposed

DCPA approach reduces the amount of pilot contamination

experienced by the worst users in the network and it clearly

improves the achievable max-min user rates provided by the

channel-unaware BRPA scheme. Note that, irrespective of the

scenario under evaluation, increasing the number of active

MSs in the system translates into a per-user performance

drop, despite the fact that the global network performance

increases due to the exploitation of the well-known multiuser

diversity effects.

Another result that is worth emphasizing, since it will

repeatedly appear in the following subsections, is that,

although in scenarios with high-capacity fronthaul links the

achievable max-min DL user rate is higher than that provided

in the UL, as the number of active users in the network

increases, the performance obtained in both the DL and the

UL tend to become increasingly similar. This behavior can be

easily deduced from the analysis of the SINR expressions in

(36) and (39). As the number of active MSs in the cell-free

network increases, provided that it is greater than τp, the term

in the denominator corresponding to the residual interuser

interference due to pilot contamination becomes increasingly

dominant in comparison to the quantification and thermal

noise terms, eventually reaching the point where they can be

considered virtually negligible. Under these conditions, and

since the pre-coding filters used on both links are identical,

the DL and the UL experience similar SINR values and,

therefore, tend to provide the same achievable max-min rate

per user, except for small differences that can be attributed

to, on the one and, the dissimilar amount of quantified infor-

mation that has to be conveyed through the corresponding

fronthaul links and, on the other hand, disparities among the

thermal noise powers experienced at both the APs and the

MSs.

B. MODIFYING THE CAPACITY OF THE FRONTHAUL LINKS

AND THE RF INFRASTRUCTURE AT THE APs

The max-min achievable rate per user is plotted in Fig. 5

against the number of active MSs in the network, assum-

ing the use of fronthaul links with different constraining

capacities equal to 16, 32, 64 and 256 bit/s/Hz (for the net-

work setups under consideration, using fronthaul links with

a capacity of 256 bit/s/Hz is virtually equivalent to using

infinite-capacity fronthauls). As expected, results show that

increasing the fronthaul capacity is always beneficial if the

main aim is to increase the achievable max-min user rate.

Nevertheless, it is worth stressing that, keeping all the other

parameters constant, the marginal increment of performance

produced by each new increment of the fronthaul capacity

suffers from the law of diminishing returns, especially for

network setups with a high number of active MSs. That is,

although the performance increase produced by doubling the

fronthaul capacity from 16 bit/s/Hz to 32 bit/s/Hz, or even

from 32 bit/s/Hz to 64 bit/s/Hz, can be justifiable, increasing

the fronthaul capacity beyond 64 bit/s/Hz does not seem to be

FIGURE 5. Average max-min rate per user versus the number of active
MSs for different values of the fronthaul capacities (N = 64 antennas,
L = 8 RF chains, DCPA).

FIGURE 6. Average max-min rate per user versus the number of active
MSs for different values of the number of antennas at the APs (L = 8 RF
chains, CF d = CF u = 64 bit/s/Hz, DCPA).

reasonable from the point of view of increasing the achievable

performance of the system under the considered network

setups. As observed in the previous subsection, in cell-free

mmWavemassiveMIMO networks using high-capacity fron-

thaul links, the achievable max-min DL user rate is always

slightly higher than that achieved in the UL irrespective of

the number of active MSs. In scenarios with low-capacity

fronthaul links and a large number of active MSs, however,

the quantization noise experienced in the DL is higher than

its UL counterpart and thus, the achievable per-user rate in

the UL is slightly higher that than supplied in the DL.

To understand how the RF infrastructure used at the

APs influences the performance of the proposed cell-free

mmWave massive MIMO system under constrained-capacity

fronthaul links, Figs. 6 and 7 show the achievable max-min

user rate against the number of active MSs assuming the

use of uniform linear antenna arrays with different number
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FIGURE 7. Average max-min rate per user versus the number of active
MSs for different values of the number of RF chains at the APs (N = 64
antennas, CF d = CF u = 64 bit/s/Hz, DCPA).

of elements and fully-connected analog RF precoders with

different number of RF chains, respectively. In particular,

results presented in Fig. 6 have been obtained assuming the

use of an analog precoder with L = 8 RF chains fully-

connected to a linear uniform antenna array with N = 8, 16,

32, 64 or 128 antenna elements, whereas results presented

in Fig. 7 have been obtained assuming the use of L = 2, 4,

8 or 16 RF chains fully-connected to a linear uniform antenna

array with N = 64 antenna elements. The first conclusion we

may draw when looking at the results presented in Fig. 6 is

that, irrespective of the number of active MSs in the cell-free

network, increasing the number of antenna elements at the

APs in scenarios with high capacity fronthaul links (CFd =
CFu = 64 bit/s/Hz), although moderate and subject to the

law of diminishing returns, always produces an increase in the

achievable max-min user rate. As shown in Fig. 7, in contrast,

the impact produced by an increase in the number of RF

chains at the APs depends on the number of active MSs in

the network. In particular, when the number of active users is

high, the interuser interference term due to pilot contamina-

tion (imperfect CSI) dominates the factors in the denominator

of the SINR (i.e., makes the quantization and thermal noises

negligible) and thus, increasing the number of RF chains is

always beneficial when trying to increase the achievablemax-

min user rate.When the number of active users in the network

is low, however, the quantization noise, which is an increasing

function of L, is not negligible anymore when compared to

the interuser interference term (recall that this term is null

when the number of active MSs is less than or equal to τp)

and thus, increasing the number of RF chains at the APs can

be clearly disadvantageous.

Results presented in Figs. 5, 6 and 7 were obtained assum-

ing high-capacity fronthaul links with CFd = CFu =
64 bit/s/Hz. However, the amount of quantized data that has

to be conveyed from (to) the CPU to (from) the APs in the

DL (UL) depends on the number of antennas and RF chains

FIGURE 8. Average max-min rate per user versus the number of
antennas at the APs for different values of the fronthaul capacities
(K = 20 users, L = 8 RF chains, DCPA).

FIGURE 9. Average max-min rate per user versus the number of RF
chains at the APs for different values of the fronthaul capacities
(K = 20 users, N = 64 antennas, DCPA).

at the APs (see Section IV). Thus, in order to deepen in the

study of the impact the RF infrastructure may have on the

achievable performance of the proposed cell-free mmWave

massive MIMO system under constrained-capacity fronthaul

links, the average max-min user rate is plotted in Figs. 8 and 9

against the number of antenna elements and RF chains,

respectively, for different values of the fronthaul capacities

and assuming a fixed number of K = 20 active MSs in the

network. In network setups using very high capacity fronthaul

links (i.e., CFd = CFu = 256 bit/s/Hz), increasing the

number of antenna elements N and/or the number of RF

chains L (up to L = K ) is always beneficial as, in this case,

the noise introduced by the quantization process is negligi-

ble and the system can take full advantage of the increased

RF resources. As the capacity of the fronthaul links decreases,

however, the amount of noise introduced by the quantization

process increases with both N and L and, therefore, a sit-

uation arises where the potential performance improvement
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FIGURE 10. CDF of the DL and UL achievable max-min rate per user for different values of the number of APs and active MSs in the cell-free
network (N = 64 antennas, L = 8 RF chains, CF d = CF u = 64 bit/s/Hz, DCPA).

provided by the increase ofN and/or L is compromised by the

performance reduction due to fronthaul capacity constraints.

On the one hand, it can be observed in Fig. 8 that, for fixed

numbers of users and RF chains, there is a certain fronthaul

capacity constraint value (near 24 bit/s/Hz in the setup used

in this experiment) under which increasing the number of

antenna elements at the array is counterproductive. On the

other hand, results presented in Fig. 9 show that, for fixed

numbers of users and antenna elements at the arrays, there

is always an optimal number of RF chains to be deployed

(or activated) at the APs that is dependent on the capacity

of the fronthaul links. In particular, for the network setups

under consideration, the optimal number of RF chains is equal

to L = 10, 4, and 1 when using fronthaul links with a

capacity of 64 bit/s/Hz, 32 bit/s/Hz and less than 24 bit/s/Hz,

respectively. Using a number of RF chains beyond this opti-

mal value leads to a clear performance degradation since the

potential benefits of having extra hardware resources does

not compensate for the effects produced by the increase in

quantization noise due to fronthaul-capacity constraints.

C. IMPACT OF THE DENSITY OF APs

With the aim of evaluating the impact the density of APs

per area unit may have on the performance of the proposed

cell-free mmWave massive MIMO system, Fig. 10 represents

the cumulative distribution function (CDF) of the DL and

UL achievable max-min user rate for different values of the

number of APs in the network. It has been assumed in these

experiments a fixed number of active MSs equal to either

K = 25 or K = 8 MSs, the use of L = 8 RF chains fully-

connected to a linear uniform antenna array with N = 64

antenna elements, and the use of DL and UL fronthaul links

with a capacity CFd = CFu = 64 bit/s/Hz. As expected,

cell-free massive MIMO scenarios with a high density of

APs per area unit significantly outperform those with a low

density of APs per area unit in both median and 95%-likely

achievable per-user rate performance. However, the achiev-

able max-min user rate increase due to increasing the number

of APs in the network is, again, subject to the law of dimin-

ishing returns. For instance, in scenarios with K = 25 MSs,

the 95%-likely achievable user rate is equal to 2.55, 4.33,

6.11 and 6.50 bit/s/Hz for cell-frre massive MIMO networks

with M = 25, 50, 100 and 200 APs, respectively. That is,

doubling the number of APs per area unit does not result in

doubling the 95%-likely achievable user rate. Similar conclu-

sions can be drawn when looking at either the median or the

average achievable user rates.

As was observed in results presented in previous subsec-

tions for high-capacity fronthaul setups, when the number of

active users in the system is low, the achievable max-min rate

values in the DL are slightly higher than those achievable in

the UL. Instead, when the number of active users increases,

the achievable max-min user rates are virtually identical in

both the DL and the UL. Also, note that the dispersion of

the achievable max-min user rates around the median tends

to diminish as the density of APs increases. That is, cell-

free massive MIMO networks with a high density of APs per

area unit tend to offer max-min achievable rates that suffer

little variations irrespective of the location of the APs (i.e,

irrespective of the scenario under evaluation).

VIII. CONCLUSION

A novel analytical framework for the performance analysis

of cell-free mmWave massive MIMO networks has been

introduced in this paper. The proposed framework consid-

ers the use of low-complexity hybrid precoders/decoders

where the RF high-dimensionality phase shifter-based pre-

coding/decoding stage is based on large-scale second-order

channel statistics, while the low-dimensionality baseband

multiuser MIMO precoding/decoding stage can be easily

implemented by standard ZF signal processing schemes using

small-scale estimated CSI. Furthermore, it also takes into

account the impact of using capacity-constrained fronthaul

links that assume the use of large-block lattice quantiza-

tion codes able to approximate a Gaussian quantization

noise distribution, which constitutes an upper bound to

VOLUME 7, 2019 44609



G. Femenias, F. Riera-Palou: Cell-Free mmWave Massive MIMO Systems With Limited Fronthaul Capacity

the performance attained under any practical quantization

scheme. Max-min power allocation and fronthaul quantiza-

tion optimization problems have been posed thanks to the

development ofmathematically tractable expressions for both

the per-user achievable rates and the fronthaul capacity con-

sumption. These optimization problems have been solved by

combining the use of block coordinate descent methods with

sequential linear optimization programs. Results have shown

that the proposed DCPA suboptimal pilot allocation strategy,

which is based on the idea of clustering by dissimilarity,

overcomes the computational burden of the optimal small-

scale CSI-based pilot allocation scheme while clearly out-

performing the pure random and balanced random schemes.

It has also been shown that, although increasing the fronthaul

capacity and/or the density of APs per area unit is always

beneficial from the point of view of the achievable max-min

user rate, the marginal increment of performance produced

by each new increment of these parameters suffers from the

law of diminishing returns, especially for network setups

with a high number of active MSs. Moreover, simulation

results indicate that, as the capacity of the fronthaul links

decreases, the potential performance improvement provided

by the increase of the number of antenna elements N and/or

the number of RF chains L is compromised by the perfor-

mance reduction due to the corresponding increase of the

fronthaul quantization noise. In particular, for fixed num-

bers of users and RF chains, there is a certain fronthaul

capacity constraint value (near 24 bit/s/Hz in the setups

under consideration) under which increasing the number of

antenna elements at the array is counterproductive. Simi-

larly, for fixed numbers of users and antenna elements at the

arrays, there is always an optimal number of RF chains to

be deployed (or activated) at the APs that is dependent on

the capacity of the fronthaul links. For future work, it would

be interesting to develop low-complexity pilot- and power-

allocation techniques specifically designed to maximize the

energy efficiency of cell-free mmWave massive MIMO net-

works considering both the fronthaul capacity constraints and

the fronthaul power consumption. It would also be inter-

esting to explore the use of partially-connected RF precod-

ing/decoding architectures, the implementation of baseband

MU-MIMO precoding/decoding other than the ZF scheme,

the development of new user selection algorithms, and the

investigation of the effects a non-uniform distribution of MSs

and/or APs may have on the performance of the proposed

system.

APPENDIX A

PROOF OF THEOREM 1

Following an approach similar to that proposed by

Nayebi et al. in [18], the signal received by the kth MS in (29)

can be rewritten as yd k = yd k 0+yd k 1+yd k 2+nd k , where the
useful, interuser interference, and quantization noise terms

can be expressed as yd k 0 = √
υksd k , yd k 1 = g̃TkW

BB
d ϒ1/2sd ,

and yd k 2 = gTk qd =
∑M

m=1 g
T
kmqdm, respectively. Now,

considering that data symbols, quantization noise, thermal

noise, and channel-related coefficients are mutually inde-

pendent, the terms yd k 0, yd k 1, yd k 2 and nd k are mutually

uncorrelated and thus, based on the worst-case uncorrelated

additive noise [41], the achievable DL rate for user k is lower

bounded by Rd k = log2 (1 + SINRd k), with

SINRd k =
E

{

∣

∣yd k 0
∣

∣

2
}

E

{

∣

∣yd k 1
∣

∣

2
}

+ E

{

∣

∣yd k 2
∣

∣

2
}

+ σ 2
d

,

where E
{

∣

∣yd k 0
∣

∣

2
}

= υk ,

E

{

∣

∣yd k 1
∣

∣

2
}

= E

{

sHd ϒ1/2WBB
d

H
g̃∗
k g̃

T
kW

BB
d ϒ1/2sd

}

= tr
(

ϒE

{
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k g̃
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})

=
K
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k ′=1
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[

diag
(
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{

WBB
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H
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k g̃
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kW

BB
d

})]

k ′
,

and

E

{

∣

∣yd k 2
∣

∣

2
}

=
M
∑

m=1

E

{

qd
H
mg

∗
kmg

T
kmqdm

}

=
M
∑

m=1

σ 2
q dm

tr
(

RRF
mk

)

.

APPENDIX B

PROOF OF THEOREM 2

The detected signal at the CPU corresponding to the sym-

bol transmitted by the kth MS in (35) can be rewritten

as yuk = yuk 0 + yuk 1 + yuk 2 + yuk 3, where the use-

ful, interuser interference, quantization noise and thermal

noise terms can be expressed as yuk 0 =
√
Pu

√
ωksuk ,

yuk 1 =
√
Pu

[

WBB
u G̃�1/2su

]

k
, yuk 2 =

[

WBB
u qu

]

k
, and

yuk 3 =
[

WBB
u nu

]

k
, respectively. As in the DL, since data

symbols, quantization noise, thermal noise, and channel-

related coefficients are mutually independent, the terms yuk 0,

yuk 1, yd k 2 and yd k 3 are mutually uncorrelated and thus,

based on the worst-case uncorrelated additive noise [41],

the achievable UL rate for user k is lower bounded by

Ruk = log2 (1 + SINRuk), with

SINRuk =
E

{

∣

∣yd k 0
∣

∣

2
}

E

{

∣

∣yd k 1
∣

∣

2
}

+ E

{

∣

∣yd k 2
∣

∣

2
}

+ E

{

∣

∣yd k 3
∣

∣

2
} ,

where E
{

∣

∣yuk 0
∣

∣

2
}

= Puωk ,

E

{

∣

∣yuk 1
∣

∣

2
}

= PuE
{

sHu �1/2G̃
H
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H
wBB
uk G̃�1/2su

}

= Pu tr
(

�E

{
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H
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H
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= Pu

K
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diag
(

E
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H
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})]

k ′
,
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with wBB
uk denoting the kth row ofWBB

u , or, equivalently,

E
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diag
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and, finally,
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and, analogously,
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