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Non-Cellular Satellite-UAV Networks for

Wide-Area Internet of Things
Chengxiao Liu, Wei Feng, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE,

Cheng-Xiang Wang, Fellow, IEEE, and Ning Ge, Member, IEEE

Abstract—In 5G and beyond networks, serving massive In-
ternet of Things (IoT) devices in wide areas is critical. Due
to the limited coverage of terrestrial cellular networks and
severe channel environment of conventional satellite networks,
it is beneficial to build a hybrid satellite-unmanned aerial
vehicle (UAV) network. However, it is cost-ineffective to serve
massive IoT devices using conventional cellular architectures.
Thus, the consideration of non-cellular architecture is of great
importance for hybrid satellite-UAV networks. To further cope
with the spectrum scarcity problem under non-cellular architec-
ture, building a cognitive satellite-UAV network (CSUN) will be
desirable. In this paper, we focus on the comprehensive resource
allocation of broadband CSUNs. A process-oriented optimization
framework is proposed, which considers the whole flight process
of UAVs in a large time scale under non-cellular architecture. The
system performance is evaluated with the slowly-varying channel
state information (CSI) under different conditions. Using the
process-oriented optimization framework, the data transmission
efficiency maximization problem and the minimum data trans-
mission efficiency optimization problem are studied with energy
constraints and interference power constraints. Using the time-
sharing relaxation and feasible region relaxation techniques, the
communication resources of CSUNs, including the subchannel
usage, transmit power and hovering time, are jointly optimized in
an iterative way. Simulation results demonstrate the superiority
of the proposed algorithms over the existing algorithms.

Index Terms—Cognitive satellite-UAV networks, massive ac-
cess, non-cellular network, resource allocation, wide-area IoT.

I. INTRODUCTION

In 5G and beyond networks, the demand for wide-area Inter-

net of Things (IoT) with massive devices keeps increasing [1]–

[3]. Thus, it is critical to support massive access in emerging

terrestrial and satellite networks [4]. However, limited by the

geographical environment, most IoT devices in wide areas,

e.g., probe vehicles in oceans and mountains, are outside the

coverage of terrestrial cellular networks [3]. Consequently,

conventional cellular-based IoT technologies, such as Narrow

Band-IoT (NB-IoT) and Long Range Radio (LoRa), are hard

to be directly used for wide-area IoT devices. Besides, it is

also challenging for current satellite networks to serve these
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devices, due to the high communication latency and severe

channel environment [4].

To overcome these challenges, integrating unmanned aerial

vehicles (UAVs) into satellite networks is widely regarded

as an effective way. Nevertheless, existing works ignored the

difficulties in building a broadband satellite-UAV network for

massive IoT devices. In practice, massive IoT devices in wide

areas are always unevenly distributed [5], [6], so that it is

cost-ineffective to serve them based on conventional cellular

architectures [7]. Hence, the design of non-cellular architecture

is considered for efficient use of resources. Furthermore,

to cope with the spectrum scarcity problem of broadband

satellite-UAV networks under non-cellular architecture, it is

beneficial to apply cognitive spectrum sharing techniques

by building a cognitive satellite-UAV network (CSUN) [8].

Motivated by these observations, a comprehensive design of

resource allocation strategies under non-cellular architecture is

studied for CSUNs.

A. Related Works

Conventional IoT technologies are able to support massive

access in urban scenarios [9]–[11]. In [9], emerging IoT net-

works were sufficiently surveyed, which pointed out that NB-

IoT and LoRa are two typical technologies. The authors of [10]

discussed the application of LoRa technique in smart cities.

In [11], the architecture and applications of NB-IoT technique

were surveyed. However, these technologies were designed

under conventional cellular architecture, which are hard to

allocate the limited communication resources to massive IoT

devices in wide areas.

To serve the IoT devices outside the coverage of cellu-

lar networks, satellite communication is widely regarded as

an enabling technique [12]. In satellite networks, spectrum

scarcity is an everlasting problem. To handle this problem,

cognitive spectrum sharing techniques were used to extend

the spectrum of satellite networks [13]. In previous works,

the spectrum sharing of satellite-terrestrial networks has been

widely discussed, where interference mitigation techniques are

crucial [14]–[16]. In [14], a hybrid analog-digital transmit

beamforming technique was presented to mitigate the inter-

system interference. The authors of [15] proposed a semi-

adaptive beamforming scheme for hybrid satellite-terrestrial

networks. In [16], an optimal beamforming technique was

designed considering the imperfections of realistic satellite-

terrestrial networks. However, these techniques did not con-

sider the mobility of UAVs, so that the cognitive spectrum

sharing techniques should be redesigned for CSUNs.
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Recent studies on UAV communications focused on the

trajectory planning and resource allocation of UAVs [17]–

[22]. In [17], the energy efficiency of UAVs was optimized,

considering the energy consumption of the UAV propulsion.

The authors of [18] proposed a placement strategy to optimize

the reliability of UAV networks, on the basis of novel UAV

channel models [19], [20]. In [21], an energy efficiency

optimization method was proposed by jointly optimizing the

transmit power and hovering time of the UAV swarm. The

authors of [22] maximized the secrecy rate of a UAV-enabled

network through resource allocation. Based on these works,

the authors of [23], [24] further discussed the integration of

UAVs with satellite networks. In [23], a coordinated multi-

point transmission scheme was proposed for a UAV-aided

cognitive satellite-terrestrial network, where the trajectory and

transmit power of UAVs were jointly optimized under inter-

ference temperature constraints at different time slots. The

authors of [24] investigated the optimal hovering altitude and

transmit power of UAVs, which maximized the uplink sum

rate under interference power constraints in a space-air-ground

integrated IoT network.

Note that the works in [17], [18], [21]–[24] optimized the

UAV-enabled networks under conventional cellular architec-

tures, by means of trajectory planning and power allocation.

However, these works are based on ideal assumptions, ignoring

the intrinsic difficulties of building a broadband CSUN. On

one hand, it is cost-ineffective to cover massive IoT devices by

densely setting satellites and UAVs under conventional cellular

architecture [7], which motivates us to design a non-cellular

architecture for CSUNs. On the other hand, the resource

allocation strategy of a broadband CSUN under non-cellular

architecture is complicated, which has not been considered

by existing works. Hence, it is of vital importance to discuss

the comprehensive resource allocation strategy of broadband

CSUNs under non-cellular architecture.

B. Main Contributions

In this paper, we focus on the resource allocation of

CSUNs during the flight process of UAVs. Towards this end,

a process-oriented optimization framework is proposed under

non-cellular architecture. As a long period of time is required

to complete the flight process, the process-oriented framework

optimizes the resource allocation strategy in a large time scale.

The main contributions are summarized as follows.

• We establish a process-oriented model of CSUNs, which

means that the UAV flight process is studied in a large

time scale. Furthermore, to be more realistic, both the

imperfect acquisition of channel state information (CSI)

and the energy constraints of the UAV swarm are con-

sidered. Besides, the interference constraints under non-

cellular architecture are also accounted for. The path loss

and shadowing of the UAV channel is generated based

on the realistic geographical environment using channel

models recommended by ITU-R [25], [26].

• A data transmission efficiency maximization problem is

formulated based on the process-oriented model under

non-cellular architecture. The original problem is then
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Fig. 1. Illustration of a general CSUN under non-cellular architecture, where
the g-th subchannel is used.

simplified and decomposed into three subproblems, where

the subchannel usage, transmit power and hovering time

are optimized separately by using the time-sharing relax-

ation technique. Based on the solutions to the subprob-

lems, the original problem is solved in an iterative way.

• To further improve the coverage ability of CSUNs, we

reformulate the original objective function to a max-

min one. The solution to the newly derived minimum

data transmission efficiency optimization problem is also

proposed. Then, the max-min optimization problem is

decomposed into three subproblems. The subproblems are

solved using feasible region relaxation techniques. Using

these techniques, the original max-min problem is also

solved in an iterative way.

The rest of this paper is organized as follows. We introduce

the system model and the channel model in Section II. In

Section III, the data transmission efficiency maximization

problem is formulated and solved. We further discuss the

minimum data transmission efficiency optimization problem

and its solution in Section IV. Section V presents simulation

results and discussions, and the conclusions of this work are

given in Section VI.

II. SYSTEM MODEL

We consider a general CSUN under a non-cellular architec-

ture, which consists of NU UAV users (UUs) that are served

by the UAV swarm during a flight process, and Ns satellite

users (SUs) that are served by the satellite, as shown in Fig.

1. Without loss of generality, we assume that each UU is

equipped with M antennas, and each SU has single antenna.

To reduce the cost of UAV communications, the UAV swarm is

assumed with K single-antenna UAVs, which can serve UUs

in a coordinated manner. Besides, the UAV swarm works in a

stable and energy-efficient hover-to-transmit mode [27], [28]

to provide downlink services, i.e., the UAV swarm will hover

above a group of UUs and transmit data for some time, and
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then fly to the next group of UUs to serve them. This process

is repeated until all service demands from UUs are satisfied.

In CSUNs under non-cellular architecture, the UAV swarm

and the satellite use the same frequency band to serve users.

We assume the frequency band can be divided into G sub-

channels, which are shared by all UUs and SUs. To serve

massive UUs with limited spectrum resources, we divide the

UUs into N groups [4], and the n-th group of users is served

by the UAV swarm at the n-th time slot. Moreover, we assume

that the n-th group has Un UUs, where
∑N

n=1 Un = NU is

naturally satisfied. Accordingly, the received signal of the u-th

UU in the n-th user group using the g-th subchannel can be

expressed as

rn,u,g = Hn,u,gsn,u,g + qn,u,g (1)

where n ∈ {1, ..., N}, u ∈ {1, ..., Un}, g ∈ {1, ..., G},

Hn,u,g ∈ C
M×K denotes the channel matrix, sn,u,g ∈ C

K

is the transmit signal of K UAVs and qn,u,g ∈ C
K denotes

the additive white Gaussian noise following CN (0M , σ
2IM ),

where 0M ∈ C
M and IM ∈ C

M×M are the all-zero vector

and the identity matrix respectively.

In (1), we consider a realistic UAV channel model, which

includes both fast and slow elements of a realistic UAV

channel [18], given by

Hn,u,g = Sn,u,gLn,u,g. (2)

In (2), the components of Sn,u,g ∈ C
M×K are i.i.d. standard

complex Gaussian random variables. These variables can de-

scribe the fast fading (e.g. multipath fading) of UAV channel.

Besides, Ln,u,g = diag {ln,u,1,g, ..., ln,u,K,g} ∈ C
K×K is

a diagonal matrix which can describe the slowly-varying

parameters of the UAV channel. To be more realistic, we

use the space-air channel models in Recommendation ITU-

R P.525 and Recommendation ITU-R P.676-10 to generate

Ln,u,g according to the geographical information [25], [26].

Using this channel model, both the line-of-sight (LOS) links

and the non-line-of-sight (NLOS) links between UAVs and

users can be appropriately described.

More importantly, the consideration of the realistic channel

model will introduce additional challenges to CSUNs. In

previous works [29], [30], the UAV trajectory and commu-

nication were jointly designed based on a simplified position-

related channel model. However, the UAV trajectory is actually

coupled with the inter-system interference under the influence

of varying channel environment in CSUNs, which is too com-

plicated to be analyzed. To simplify the mathematical analysis,

we assume the trajectory of UAVs can be designed prior to

the flight [21], and the locations of users are also known, e.g.,

provided by global positioning system [22]. Hence, we can

acquire the slowly-varying large-scale CSI, i.e., Ln,u,g in (2),

prior to the flight. On the other hand, Sn,u,g in (2) varies

fast and can not be precisely acquired by UAVs [21]. We

assume the transmitter only knows the distribution of Sn,u,g .

Such design actually focuses on the long-term behavior of the

whole flight process, which indicates that the system model is

process-oriented.

It is worth noting that the communication resources are

allocated to UAVs in docking stations using large-scale CSI,

which can realize the coordination among UAVs in an offline

way. Denoting Pn,g = diag {pn,1,g, ..., pn,K,g} as the transmit

power of the UAV swarm when it is hovering above the n-th

user group using the g-th subchannel, the downlink rate of UU

can be written as

Rn,u,g = log2det

(

IM +
1

σ2
Sn,u,gLn,u,gPn,gLn,u,gS

H
n,u,g

)

.

(3)

Furthermore, to describe the data transmission efficiency of the

UAV swarm, the subchannel usage and hovering time of UAVs

should be regarded. We define xn,u,g ∈ {0, 1} as indicator

variables for subchannel usage, where xn,u,g = 1 means that

the g-th subchannel is occupied by the u-th UU of the n-th

user group. We also define Tn as the hovering time of the

UAV swarm at the n-th user group. Based on (3), the data

transmission efficiency of the UAV swarm is written as

D(P,T,x) =

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xn,u,gTnRn,u,g (4)

where P = {Pn,g ∀n, g} is the set of transmit power,

T = (T1, ..., TN )T is the hovering time of the UAV swarm,

x = {xn,u,g ∀n, u, g} is the set of indicator variables. As

the instantaneous CSI, i.e., Sn, is not known, we consider the

ergodic data transmission efficiency given by [31]

De(P,T,x) = ES {D(P,T,x)} (5)

where S = {Sn,u,g, ∀n, u, g} is the set of small-scale chan-

nel parameters, ES represents the expectation with respect

to small-scale parameters, which is used for evaluating the

performance of the whole flight process in a large time scale.

In CSUNs under non-cellular architecture, Ns single-

antenna SUs will be interfered by the transmit signal of the

UAV swarm when a subchannel is simultaneously used by

UUs and SUs. Besides, there also exists interference between

the satellite and UUs. Regarding the high latency of satellite

communications [32], it is hard to adjust the signal of satellites

instantaneously, so that the interference between the satellite

and UUs is regarded to be unchanged. Hence, we ignore

the interference between the satellite and UUs for simplicity,

and focus on the interference between the UAV swarm and

SUs. Without loss of generality, we assume the interfering

channel also satisfies the UAV channel model in (2). We can

characterize the g-th subchannel between the UAV swarm and

the i-th SU at the n-th time slot by

hn,i,g = sn,i,gLn,i,g (6)

where i ∈ {1, ..., Ns}, the components of sn,i,g =
(sn,i,1,g, ..., sn,i,K,g) ∈ C

1×K are also i.i.d standard complex

Gaussian random variables. Following the same line of reason-

ing as (4) and (5), we can formulate the interference power of

the UAV swarm at the i-th SU as

In,i=
Un
∑

u=1

G
∑

g=1

xn,u,gyn,i,g

Esn,i,g

{

sn,i,gLn,i,gPn,gLn,i,gs
H
n,i,g

}
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=

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xn,u,gyn,i,gl
2
n,i,k,gpn,k,g (7)

when the UAV swarm is hovering above the n-th user group,

where k ∈ {1, ...,K} denotes the identifier of UAV, y =
{yn,i,g ∈ {0, 1} ∀n, i, g} shows that the i-th SU will use the

g-th subchannel at the n-th time slot if yn,i,g = 1, Esn,i,g

denotes the expectation with repect to small-scale parameters.

Moreover, the UAV swarm in CSUN is encountering prac-

tical constraints due to the limited on-board energy of UAVs.

Specifically, the constraints of the total energy, the transmit

power and the hovering time of UAVs should be jointly con-

sidered. For energy constraints, when the UAVs are working

in the hover-to-transmit mode, both the propulsion energy and

the communication energy are important [33]. In this model,

as the trajectory of UAVs is assumed to be known prior to

the flight, the propulsion energy is assumed to be constant

accordingly. Hence, we can formulate the energy constraints

of the UAV swarm as [21]

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xn,u,gpn,k,gTn ≤ Ek ∀k (8)

where the subchannel usage indicator x is regarded in (8) so

that the transmit energy would be allocated to the subchannels

which are being used by UUs. Such design can save the energy

consumption of UAVs, because the communication energy

would not be allocated to unused subchannels. Accordingly,

the transmit power constraints are derived as

Un
∑

u=1

G
∑

g=1

xn,u,gpn,k,g ≤ pmax ∀n, k. (9)

Besides, the hovering time of the UAV swarm should also

be carefully regarded [21]. The hovering time constraints are

formulated by
N
∑

n=1

Tn ≤ Ttotal (10)

Tn ≤ Tmax ∀n (11)

where (10) denotes the constraint of total hovering time and

(11) is the constraint of the maximum hovering time.

III. PROCESS-ORIENTED DATA TRANSMISSION

EFFICIENCY MAXIMIZATION

In this section, we propose an algorithm to maximize the

data transmission efficiency of the UAV swarm based on

the process-oriented model. The proposed algorithm jointly

considers the subchannel allocation, the transmit power allo-

cation and the hovering time scheduling to optimize the overall

data transmission efficiency. The data transmission efficiency

maximization problem is formulated as

max
P,T,x

De(P,T,x) (12a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xn,u,gyn,i,gl
2
n,i,k,gpn,k,g ≤ ǫp ∀n, i (12b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xn,u,gpn,k,gTn ≤ Ek ∀k (12c)

Un
∑

u=1

G
∑

g=1

xn,u,gpn,k,g ≤ pmax ∀n, k (12d)

N
∑

n=1

Tn ≤ Ttotal (12e)

Tn ≤ Tmax ∀n (12f)

Un
∑

u=1

xn,u,g ≤ 1 ∀n, g (12g)

xn,u,g ∈ {0, 1} pn,k,g ≥ 0 Tn ≥ 0 ∀n, u, k, g (12h)

where (12b)–(12f) are practical constraints of the UAV swarm

as was discussed in (7)–(11), ǫp denotes the interference

power threshold, and (12g) means that a subchannel can only

be allocated to one user. The problem in (12) is a mixed-

integer nonlinear programming (MINLP) problem, which is

not convex and hard to be solved directly. In this section,

we propose a method to simplify (12) and then propose an

iterative algorithm to solve it.

A. Problem Transformation

We utilize the techniques proposed in [21] to simplify (12).

First, we formulate a new objective function Da(P,T,x,w)
as, which can closely approximate De(P,T,x) without ex-

pectation,

Da(P,T,w,x) =
N
∑

n=1

Un
∑

u=1

G
∑

g=1

xn,u,gTnRa(Pn,g, wn,u,g)

(13)

where

Ra(Pn,g, wn,u,g) =

K
∑

k=1

log2

(

1 +
Ml2n,u,k,gpn,k,g

wn,u,gσ2

)

+M
[

log2wn,u,g − log2e(1− w−1
n,u,g)

]

(14)

and w = {wn,u,g ∀n, u, g} is a set of slack variables which

satisfies

wn,u,g = 1 +
K
∑

k=1

l2n,u,k,gpn,k,g

σ2 +Ml2n,u,k,gpn,k,gw
−1
n,u,g

. (15)

The equation in (14) shows that the approximated rate is a sum

of the modified data rate and the compensation term which is

related to the slack variable w. The equations in (15) indicate

that w is an implicit function with respect to P, so that w

is not an optimization variable and the optimization of P is

more important. Besides, the accuracy of this approximation

technique has been discussed in [31] in details. With (13) and

(15), (12) is transformed to

max
P,T,x

Da(P,T,w,x) (16a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xn,u,gyn,i,gl
2
n,i,k,gpn,k,g ≤ ǫp ∀n, i (16b)
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N
∑

n=1

Un
∑

u=1

G
∑

g=1

xn,u,gpn,k,gTn ≤ Ek ∀k (16c)

Un
∑

u=1

G
∑

g=1

xn,u,gpn,k,g ≤ pmax ∀n, k (16d)

N
∑

n=1

Tn ≤ Ttotal (16e)

Tn ≤ Tmax ∀n (16f)

Un
∑

u=1

xn,u,g ≤ 1 ∀n, g (16g)

wn,u,g

= 1 +

K
∑

k=1

l2n,u,k,gpn,k,g

σ2 +Ml2n,u,k,gpn,k,gw
−1
n,u,g

∀n, u, g

(16h)

xn,u,g ∈ {0, 1} pn,k,g ≥ 0 Tn ≥ 0 ∀n, u, k, g (16i)

where the new constraint (16h) is introduced by the coupling

between P and w according to (15).

B. Problem Decomposition

The new problem in (16) is not convex, due to the coupling

between P, T and x. To solve this problem, we decompose

(16) into three subproblems. In the first subproblem, x is

the optimization variable, while P and T are regarded as

constants. This subproblem is an integer linear programming

(ILP) problem, and its solution is referred to as the subchannel

allocation scheme. Moreover, in the second subproblem, P

is the optimization variable while T and x are regarded as

constants. Its solution is referred to as the coordinated power

allocation scheme. Besides, for the third subproblem, T is the

optimization variable while P and x are regarded as constants.

Its solution is referred to as the hovering time scheduling

scheme.

Denoting the iteration index as r, we can first formulate the

subchannel allocation scheme as

max
xr

Da(P
r−1,Tr−1,wr−1,xr) (17a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r−1
n,k,g ≤ ǫp ∀n, i (17b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r−1
n,k,gT

r−1
n ≤ Ek ∀k (17c)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r−1
n,k,g ≤ pmax ∀n, k (17d)

Un
∑

u=1

xrn,u,g ≤ 1 ∀n, g (17e)

xrn,u,g ∈ {0, 1} ∀n, u, g. (17f)

Then, we can derive the power allocation subproblem as

max
Pr

Da(P
r,Tr−1,wr,xr) (18a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r
n,k,g ≤ ǫp ∀n, i (18b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,gT

r−1
n ≤ Ek ∀k (18c)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,g ≤ pmax ∀n, k (18d)

wr
n,u,g

= 1 +

K
∑

k=1

l2n,u,k,gp
r
n,k,g

σ2 +Ml2n,u,k,gp
r
n,k,g(w

r
n,u,g)

−1
∀n, u, g

(18e)

prn,k,g ≥ 0 ∀n, k, g (18f)

and we can derive the hovering time scheduling subproblem

as

max
Tr

Da(P
r,Tr,wr,xr) (19a)

s.t.

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,gT

r
n ≤ Ek ∀k (19b)

N
∑

n=1

T r
n ≤ Ttotal (19c)

0 ≤ T r
n ≤ Tmax ∀n. (19d)

It is easy to observe that the subproblem in (19) is a linear

programming algorithm, which can be directly solved using

conventional linear optimization tools [34]. Hence, we focus

on deriving the solution to (17) and (18), and the methods will

be described in Section III.C and Section III.D.

C. Subchannel Allocation

In this section, we propose a method to solve the subchannel

allocation subproblem (17). As (17) is an ILP problem, it is

hard to be solved directly. We use the time-sharing relaxation

technique to solve this problem [35]. Using time-sharing re-

laxation technique, the optimization variables xrn,u,g ∈ {0, 1}
are relaxed to continuous ones zrn,u,g ∈ [0, 1]. Actually, zrn,u,g
can be regarded as the fraction of time that is used by the u-th

UU in the n-th user group at the g-th subchannel. Hence, the

original problem (17) is transformed to

max
zr

Da(P
r−1,Tr−1,wr−1, zr) (20a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

zrn,u,gyn,i,gl
2
n,i,k,gp

r−1
n,k,g ≤ ǫp ∀n, i (20b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

zrn,u,gp
r−1
n,k,gT

r−1
n ≤ Ek ∀k (20c)

Un
∑

u=1

G
∑

g=1

zrn,u,gp
r−1
n,k,g ≤ pmax ∀n, k (20d)

Un
∑

u=1

zrn,u,g ≤ 1 ∀n, g (20e)

0 ≤ zrn,u,g ≤ 1 ∀n, u, g. (20f)
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From (20), we can see that the original ILP problem is con-

verted to a linear programming problem, which can be solved

using conventional linear optimization tools [34]. However, the

key point is how to recover the original integer variables with

continuous variables, i.e., calculate xr using zr.

To handle this problem, we formulate the Lagrangian dual

function of (20) as

L(zr,λ,µ,γ, ζ) = Da(P
r−1,Tr−1,wr−1, zr)

+

N
∑

n=1

Ns
∑

i=1

λn,i(ǫp −
Un
∑

u=1

K
∑

k=1

G
∑

g=1

zrn,u,gyn,i,gl
2
n,i,k,gp

r−1
n,k,g)

+

K
∑

k=1

µk(Ek −
N
∑

n=1

Un
∑

u=1

G
∑

g=1

zrn,u,gp
r−1
n,k,gT

r−1
n )

+

N
∑

n=1

K
∑

k=1

γn,k(pmax −
Un
∑

u=1

G
∑

g=1

zrn,u,gp
r−1
n,k,g)

+

N
∑

n=1

G
∑

g=1

ζn,g(1−
Un
∑

u=1

zrn,u,g) (21)

where λ,µ,γ, ζ are Lagrangian multipliers. Let us define

f(λ,µ,γ, ζ) = sup
zr

L(zr,λ,µ,γ, ζ). (22)

Then, we can derive the Lagrangian dual problem of (20) as

min
λ,µ,γ,ζ

f(λ,µ,γ, ζ) (23a)

s.t. λn,i ≥ 0 µk ≥ 0 γn,k ≥ 0 ζn,g ≥ 0 ∀n, i, k, g (23b)

The original linear optimization problem in (20) can be solved

after the solution to (23) is given. Although such solution is

still a continuous one, the integer variable xr can be derived

based on the formulation of (23). Further by using the Karush-

Kuhn-Tucker (KKT) conditions [34], we can give a strategy

to recover the original integer variable xr and update the

Lagrangian multipliers at every step of the iteration. Firstly,

we define

Vn,u,g =
∂L(zr,λ,µ,γ, ζ)

∂zrn,u,g
+ ζn,g

= TnRa(Pn,g, wn,u,g)−
Ns
∑

i=1

K
∑

k=1

λn,iyn,i,gl
2
n,i,k,gp

r−1
n,k,g

−
K
∑

k=1

µkp
r−1
n,k,gT

r−1
n −

K
∑

k=1

γn,kp
r−1
n,k,g. (24)

In fact, a new objective function is defined in (24). The newly

defined function is a sum of the original data transmission

efficiency and the penalty terms. The consideration of penalty

terms can guarantee that all the constraints of the optimiza-

tion problem can be satisfied. Then, xr is recovered by the

maximum Vn,u,g using a similar technique in [35], i.e.,

xrn,u∗,g =

{

1, u∗ = argmaxu{Vn,u,g ∀n, g}

0, else.
(25)

Denoting the iteration index as t, the Lagrangian multipliers

are updated using the subgradiant method by

λtn,i =

[

λt−1
n,i + δt1

∂L(zr,λ,µ,γ, ζ)

∂λn,i

]+

(26)

Algorithm 1 Algorithm to solve (17)

Input: ǫp, {Ek, k = 1 ∼ K}, pmax, Tr−1, Pr−1, δ11 , δ12 , δ13 ;

1: Initialization: λ0 = 0, µ0 = 0,γ0 = 0, t = 1;

2: repeat

3: Calculate Vn,u,g using (24);

4: Update xr using (25);

5: Update λt using (26), where δt1 = δ11/t;
6: Update µt using (27), where δt2 = δ12/t;
7: Update γt using (28), where δt3 = δ13/t;
8: t = t+ 1;

9: until xr converges;

Output: xr.

µt
k =

[

µt−1
k + δt2

∂L(zr,λ,µ,γ, ζ)

∂µk

]+

(27)

γtn,k =

[

γt−1
n,k + δt3

∂L(zr,λ,µ,γ, ζ)

∂γn,k

]+

(28)

where [·]+ = max(·, 0) and

∂L(zr,λ,µ,γ, ζ)

∂λn,i
=ǫp

−
Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r−1
n,k,g

(29)

∂L(zr,λ,µ,γ, ζ)

∂µk

= Ek −
N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r−1
n,k,gT

r−1
n

(30)

∂L(zr,λ,µ,γ, ζ)

∂γn,k
= pmax −

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r−1
n,k,g. (31)

Based on (24)–(31), the subchannel allocation method is

summarized in Algorithm 1.

D. Coordinated Power Allocation

In this section, we give the solution to (18). It has been

proved in [31] that the objective function in (18a) is convex

when both Pr and wr satisfy (18e). However, (18e) shows

that the coupling between Pr and wr is too complicated, so

that it is hard to solve (18) directly with low computational

complexity. To reduce the complexity, we propose to relax

(18e) and solve (18) in a iterative way. Denoting the iteration

index as j, (18) can be reformulated as

max
Pj

Da(P
j ,Tr−1,wj−1,xr) (32a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

j
n,k,g ≤ ǫp ∀n, i (32b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
j
n,k,gT

r−1
n ≤ Ek ∀k (32c)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
j
n,k,g ≤ pmax ∀n, k (32d)
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pjn,k,g ≥ 0 ∀n, k, g (32e)

where wj−1 is regarded as a constant in (32). After Pj is

obtained, we can update wj by

wj
n,u,g = 1 +

K
∑

k=1

l2n,u,k,gp
j
n,k,g

σ2 +Ml2n,u,k,gp
j
n,k,g(w

j
n,u,g)−1

∀n, u, g

(33)

Based on the solution to (32) and (33), we can derive the

solution to (18) using Algorithm 2.

However, the convergence of Algorithm 2 is hard to be

proved directly. To elaborate this issue, we use the vari-

able substitution technique proposed in [21]. We substitute

wr
n,u,g = ev

r
n,u,g into (18), so that (18) is rewritten as

max
Pr

min
vr

Da(P
r,Tr−1,vr,xr) (34a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r
n,k,g ≤ ǫp ∀n, i (34b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,gT

r−1
n ≤ Ek ∀k (34c)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,g ≤ pmax ∀n, k (34d)

prn,k,g ≥ 0 vrn,u,g ≥ 0 ∀n, u, k, g (34e)

where

Da(P,T,v,x) =

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xn,u,gTnRa(P
r
n,g, v

r
n,u,g)

(35)

and

Ra(P
r
n,g, v

r
n,u,g)

=

K
∑

k=1

xn,u,gTn log2

(

1 +
Ml2n,u,k,gp

r
n,k,g

ev
r
n,u,gσ2

)

+ xn,u,gTnM log2e(v
r
n,u,g − 1 + e−vr

n,u,g ).
(36)

The equivalence between (18) and (34) can be proved by

[31, Theorem 1]. Observing the formulation of (34), it can

be further decomposed into two subproblems as

max
Pj

Da(P
j ,Tr−1,vj−1,xr) (37a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

j
n,k,g ≤ ǫp ∀n, i (37b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
j
n,k,gT

r−1
n ≤ Ek ∀k (37c)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
j
n,k,g ≤ pmax ∀n, k (37d)

pjn,k,g ≥ 0 ∀n, k, g (37e)

and

min
vj

Da(P
j ,Tr−1,vj ,xr) (38a)

Algorithm 2 Algorithm to solve (18)

Input: ǫp, {Ek, k = 1 ∼ K}, pmax, Tr−1, xr.

1: Initialization: ǫ0 = 1× 10−3, j = 1, P0 = 0, w0 = 1;

2: Solve (32), denoting the optimal solution as P∗, set P1 =
P∗;

3: while |1− Da(P
j−1,Tr−1,wj−1,xr)

Da(Pj ,Tr−1,wj ,xr) | > ǫ0 do

4: Update wj using (33);

5: j = j + 1;

6: Solve (32), denoting the optimal solution as P∗, set

Pj = P∗;

Output: Pj , wj .

s.t. vjn,u,g ≥ 0 ∀n, u, g. (38b)

Recalling the equivalence between (18) and (34), we can also

conclude that (37) is equivalent to (32) and (38) is equivalent

to (33). Thus, Algorithm 2 actually can find the solution to

(34) in an iterative way. As Da(P,T,v,x) is convex with

respect to v and concave with respect to P, the convergence

of Algorithm 2 is guaranteed based on the following theorem.

Theorem 1: Suppose

L(Pr,vr,ν, ξ,θ) = Da(P
r,Tr−1,vr,xr)

+
N
∑

n=1

Ns
∑

i=1

νn,i(ǫp −
Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r
n,k,g)

+

K
∑

k=1

ξk(Ek −
N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,gT

r−1
n )

+

N
∑

n=1

K
∑

k=1

θn,k(pmax −
Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,g) (39)

is the Lagrangian dual function of (34) where ν, ξ,θ are

Lagrangian multipliers, Pr and vr satisfy (34e). Algorithm 2

will converge to the unique saddle point of L(Pr,vr,ν, ξ,θ)
with respect to Pr and vr.

Proof: Firstly, we prove that the optimal solution to (34) is a

unique saddle point of L(Pr,vr,ν, ξ,θ) with respect to Pr

and vr. We know that Da(P
r,Tr−1,vr,xr) is concave with

respect to Pr and convex with respect to vr. Hence, it is not

difficult to certificate that L(Pr,vr,ν, ξ,θ) is also concave

with respect to Pr and convex with respect to vr, because

(34b)–(34d) are linear constraints with respect to Pr. As a

result, the optimal solution to (34) is a unique saddle point of

L(Pr,vr,ν, ξ,θ).

Actually, the purpose of Algorithm 2 is to find the optimal

solution to (34) following the direction of subgradient at

every step of the iteration. Hence, Algorithm 2 will naturally

converge to the unique saddle point of L(Pr,vr,ν, ξ,θ). �

Using the solutions to (17), (18) and (19), we propose

an iterative algorithm to solve the optimization problem in

(16). The steps of the proposed algorithm are summarized in

Algorithm 3.
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E. Convergence Analysis

In this section, the convergence of Algorithm 3 is analyzed.

Actually, Algorithm 3 is guaranteed to converge. Denoting

xr−1 as the solution to (17), Pr−1 as the solution to (18) and

Tr−1 as the solutions to (19) at the (r − 1)-th step. Firstly,

at the r-th step of iteration, we have xr after (17) is solved,

which satisfies

Da(P
r−1,Tr−1,wr−1,xr) ≥ Da(P

r−1,Tr−1,wr−1,xr−1).
(40)

The inequality in (40) is guaranteed due to the fact that xr

is derived using (25). In (25), both n and g are fixed when

searching the maximum value of Vn,u,g for varying u. Accord-

ing to (24), we can find that only Ra(Pn,g, wn,u,g) in Vn,u,g
is related to u. These two facts indicate that the operation in

(25) can actually find the largest value of Ra(Pn,g, wn,u,g),
or in other words, the value of Da(P,T,w,x) is maximized.

Then, after (18) is solved, we have Pr as the optimal

solution, and wr can be calculated using (15), which satisfies

Da(P
r,Tr−1,wr,xr) ≥ Da(P

r−1,Tr−1,wr−1,xr). (41)

Finally, the optimal hovering time Tr is acquired by solving

(19), which satisfies

Da(P
r,Tr,wr,xr) ≥ Da(P

r,Tr−1,wr−1,xr). (42)

Both (41) and (42) are guaranteed because Da(P,T,w,x) is

maximized in (18) and (19). Thus, we can conclude that

Da(P
r,Tr,wr,xr) ≥ Da(P

r−1,Tr−1,wr−1,xr−1) (43)

which shows that the objective function of (16) keeps increas-

ing at every step of the iteration, and it is upper bounded by

the given resources. As a result, the convergence of Algorithm

3 is guaranteed, and at least a suboptimal solution is derived

using this algorithm.

Remark 1: The subchannel allocation method in Section III.C

implies that the UUs in better channel environment have more

chance to be served by UAVs. Although the overall data

transmission efficiency performance can be optimized by this

strategy, the coverage ability of UAVs is hard to be guaranteed.

More specifically, if a UU always stays in a bad channel

environment for a long time, it can hardly be covered by

UAVs. Such phenomenon inspires us to redesign the objective

function of the original optimization problem.

IV. PROCESS-ORIENTED MINIMUM DATA TRANSMISSION

EFFICIENCY OPTIMIZATION

According to Remark 1, although the overall data transmis-

sion efficiency has been maximized in Section III, the coverage

ability of the UAV swarm is hard to be guaranteed. In this

section, we reformulate the original objective function to a

max-min one, and then propose an algorithm to solve the

coverage problem.

Algorithm 3 Proposed data transmission efficiency maximiza-

tion algorithm

Input: ǫp, {Ek, k = 1 ∼ K}, Ttotal, pmax, Tmax.

1: Initialization: ǫ0 = 1 × 10−2, r = 1, T0 = (Ttotal/N)1,

P0 = 0;

2: Solve (17), denoting the solution as x∗, set x1 = x∗;

3: Solve (18), denoting the solution as P∗, set P1 = P∗;

4: Solve (19), denoting the solution as T∗, set T1 = T∗;

5: while |1− Da(P
r−1,Tr−1,wr−1,xr−1)
Da(Pr,Tr,wr,xr) | > ǫ0 do

6: r = r + 1;

7: Solve (17), denoting the solution as x∗, set xr = x∗;

8: Solve (18), denoting the solution as P∗, set Pr = P∗;

9: Solve (19), denoting the solution as T∗, set Tr = T∗;

Output: xr, Pr, Tr.

A. Problem Formulation and Decomposition

To improve the worst performance of all UUs, we can

convert the original data transmission efficiency maximization

problem (12) to a max-min optimization problem, where the

minimum data transmission efficiency of UUs is maximized to

guarantee the coverage ability. Further by using the transfor-

mation technique in Section III.A, the max-min optimization

problem is reformulated as

max
P,T,x

min
n,u

G
∑

g=1

xn,u,gTnRa(Pn,g, wn,u,g) (44a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xn,u,gyn,i,gl
2
n,i,k,gpn,k,g ≤ ǫp ∀n, i (44b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xn,u,gpn,k,gTn ≤ Ek ∀k (44c)

Un
∑

u=1

G
∑

g=1

xn,u,gpn,k,g ≤ pmax ∀n, k (44d)

Un
∑

u=1

xn,u,g ≤ 1 ∀n, g (44e)

N
∑

n=1

Tn ≤ Ttotal (44f)

Tn ≤ Tmax ∀n (44g)

wn,u,g

= 1 +

K
∑

k=1

l2n,u,k,gpn,k,g

σ2 +Ml2n,u,k,gpn,k,gw
−1
n,u,g

∀n, u, g

(44h)

xn,u,g ∈ {0, 1} pn,k,g ≥ 0 Tn ≥ 0 ∀n, u, k, g. (44i)

The objective function of (44) is the minimum data transmis-

sion efficiency of all UUs, and the practical constraints are

derived in (44b)–(44i). As (44) is not convex and hard to be

solved directly, we can decompose it into three subproblems.

Denoting the iteration index as r, we can first formulate the
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max-min subchannel allocation subproblem as

max
xr

min
n,u

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r−1
n,g , w

r−1
n,u,g) (45a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r−1
n,k,g ≤ ǫp ∀n, i (45b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r−1
n,k,gT

r−1
n ≤ Ek ∀k (45c)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r−1
n,k,g ≤ pmax ∀n, k (45d)

Un
∑

u=1

xrn,u,g ≤ 1 ∀n, g (45e)

xrn,u,g ∈ {0, 1} ∀n, u, g. (45f)

Then, we can derive the max-min power allocation subproblem

as

max
Pr

min
n,u

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r
n,g, w

r
n,u,g) (46a)

s.t.

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r
n,k,g ≤ ǫp ∀n, i (46b)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,gT

r−1
n ≤ Ek ∀k (46c)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,g ≤ pmax ∀n, k (46d)

wr
n,u,g

= 1 +

K
∑

k=1

l2n,u,k,gp
r
n,k,g

σ2 +Ml2n,u,k,gp
r
n,k,g(w

r
n,u,g)

−1
∀n, u, g

(46e)

prn,k,g ≥ 0 ∀n, k, g (46f)

and we can derive the max-min hovering time scheduling

subproblem as

max
Tr

min
n,u

G
∑

g=1

xrn,u,gT
r
nRa(P

r
n,g, w

r
n,u,g) (47a)

s.t.
N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,gT

r
n ≤ Ek ∀k (47b)

N
∑

n=1

T r
n ≤ Ttotal (47c)

0 ≤ T r
n ≤ Tmax ∀n. (47d)

Observing the formulations of three subproblems, we can find

that (47) is a linear max-min optimization problem, which can

be directly solved using conventional max-min optimization

tools [36]. Hence, we focus on giving the solutions to (45)

and (46).

B. Max-min Subchannel Allocation

To solve (45), we define a slack variable τ , which satisfies

τ = min
n,u

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r−1
n,g , w

r−1
n,u,g). (48)

Using (48), (45) can be equivalently transformed to

max
xr,τ

τ (49a)

s.t.

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r−1
n,g , w

r−1
n,u,g) ≥ τ ∀n, u (49b)

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r−1
n,k,g ≤ ǫp ∀n, i (49c)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r−1
n,k,gT

r−1
n ≤ Ek ∀k (49d)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r−1
n,k,g ≤ pmax ∀n, k (49e)

Un
∑

u=1

xrn,u,g ≤ 1 ∀n, g (49f)

xrn,u,g ∈ {0, 1} ∀n, u, g. (49g)

We can observe that (49) is an ILP problem and hard to be

solved directly. Actually, (49) can be simplified according to

the following theorem.

Theorem 2: Relaxing the constraints in (49c)–(49e) will not

change the optimal solution to (49).

Proof: See Appendix A. �

Theorem 2 indicates that the constraint of the minimum data

transmission efficiency has the highest priority compared with

other practical constraints, due to the fact that it is a trans-

formed form of the objective function. According to Theorem

2, we can equivalently derive a simplified formulation of (49)

as

max
xr,τ

τ (50a)

s.t.

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r−1
n,g , w

r−1
n,u,g) ≥ τ ∀n, u (50b)

Un
∑

u=1

xrn,u,g ≤ 1 ∀n, g (50c)

xrn,u,g ∈ {0, 1} ∀n, u, g. (50d)

To solve (50), we have a property which can give the condition

that the solution to (50) must satisfy, which is

Property 1: Suppose that xr∗ is a non-trivial solution to (50),

xr∗ must satisfy

G
∑

g=1

xrn,u,g ≥ 1 ∀n, u. (51)

Otherwise, if (51) is not satisfied, (50) only has a trivial

solution, which means the maximum value of τ is 0.
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Algorithm 4 Max-min subchannel allocation algorithm

Input: Tr−1, Pr−1, wr−1;

1: Initialization: ǫ0 = 1× 10−3, j = 1, τ0 = 0;

2: Initialize x1 according to [37];

3: Define V j
n,u =

∑G

g=1 x
j
n,u,gT

r−1
n Ra(P

r−1
n,g , w

r−1
n,u,g);

4: Set τ j = minn,u V
j
n,u;

5: while |1− τj−1

τj | > ǫ0 do

6: for n = 1:N do

7: Find the minimum value of V j
n,u, denoting the

index as u∗;

8: Find the maximum value of V j
n,u that satisfies the

condition
∑G

g=1 x
j
n,u,g > 1, denoting the index as u∗∗;

9: Define the index set as I = {g|xjn,u∗∗,g = 1};

10: Find g∗ = argming∈I T
r−1
n Ra(P

r−1
n,g , w

r−1
n,u∗∗,g);

11: if V j
n,u∗ + T r−1

n Ra(P
r−1
n,g∗ , wr−1

n,u∗,g∗) ≤ V j
n,u∗∗ −

T r−1
n Ra(P

r−1
n,g∗ , wr−1

n,u∗∗,g∗) then

12: Set xjn,u∗,g∗ = 1;

13: Set xjn,u∗∗,g∗ = 0;

14: j = j + 1;

15: Set τ j = minn,u V
j
n,u;

Output: xj .

Proof: If (51) is not satisfied, as the components in xr

are discrete variables, there exists n∗ ∈ {1, ..., N} and

u∗ ∈ {1, ..., U∗
n} which satisfy

G
∑

g=1

xrn∗,u∗,g = 0 (52)

which means xrn∗,u∗,g is 0 for all g ∈ {1, ..., G}. Substituting

xrn∗,u∗,g into (50), we can find that the maximum value of τ
is 0. Hence, the conclusion of Property 1 is given. �

Using Property 1 and Theorem 2, a solution to (45) can be de-

rived based on (50) in a greedy manner, which is summarized

in Algorithm 4. At every step of Algorithm 4, the minimum

data transmission efficiency is improved by allocating the

subchannel to the user in worst condition. Hence, Algorithm

4 can converge to the suboptimal solution to (45).

Remark 2: It is worth noting that we have used two different

methods to solve the subchannel allocation subproblem in

Section III.C and the max-min subchannel allocation subprob-

lem in Section IV.B. The reason is that the algorithms are

designed to accommodate the objective functions of different

problems, in order to achieve better performance. The variable

recovery algorithm in Section III.C can optimize the overall

data transmission efficiency, while the method in Section IV.B

can improve the minimum data transmission efficiency.

C. Max-min Power Allocation

In this section, we propose an algorithm to solve (46).

Similar with (49), we introduce the slack variable τ and

reformulate (46) as

max
Pr,τ

τ (53a)

s.t.
G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r
n,g, w

r
n,u,g) ≥ τ ∀n, u (53b)

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

r
n,k,g ≤ ǫp ∀n, i (53c)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,gT

r−1
n ≤ Ek ∀k (53d)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
r
n,k,g ≤ pmax ∀n, k (53e)

wr
n,u,g

= 1 +
K
∑

k=1

l2n,u,k,gp
r
n,k,g

σ2 +Ml2n,u,k,gp
r
n,k,g(w

r
n,u,g)

−1
∀n, u, g

(53f)

prn,u,k,g ≥ 0 ∀n, u, k, g. (53g)

Note that (53) is not convex, due to the coupling between P

and w in (53b) and (53f). To cope with this challenge, we

can transform (53b) and relax (53f) based on the following

theorem.

Theorem 3: The constraints (53b) and (53f) can be equiva-

lently transformed to

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r
n,g, v

r
n,u,g) ≥ τ ∀n, u

vrn,u,g ≥ 0 ∀n, u, g (54)

where Ra(P
r
n,g, v

r
n,u,g) has been defined in (36).

Proof: See Appendix B. �

Theorem 3 indicates that (53b) and (53f) can be replaced by

(54), which means Pr and vr are decoupled. Consequently,

(53) can be solved using conventional successive convex

optimization method, but the computational overhead is too

large for UAVs to serve massive users [38]. Hence, we propose

an iterative algorithm to reduce the complexity, after (53) is

reformulated as

max
Pj ,τj

τ j (55a)

s.t.

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

j
n,g, v

j−1
n,u,g) ≥ τ j ∀n, u (55b)

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

j
n,k,g ≤ ǫp ∀n, i (55c)

N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
j
n,k,gT

r−1
n ≤ Ek ∀k (55d)

Un
∑

u=1

G
∑

g=1

xrn,u,gp
j
n,k,g ≤ pmax ∀n, k (55e)

pjn,u,k,g ≥ 0 ∀n, u, k, g. (55f)
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Algorithm 5 Algorithm to solve (53)

Input: ǫp, {Ek, k = 1 ∼ K}, pmax.

1: Initialization: ǫ0 = 1 × 10−3, j = 1, P0 = 0, v0 = 0,

τ0 = 0;

2: Solve (55), denoting the optimal solution as (P∗, τ∗), set

P1 = P∗, τ1 = τ∗;

3: while |1− τj−1

τj | > ǫ0 do

4: j = j + 1;

5: Update vj−1 using (56);

6: Solve (55), denoting the optimal solution as (P∗, τ∗),
set Pj = P∗, τ j = τ∗;

Output: Pj , τ j .

where the iteration index is j. In (55), vj−1 is regarded as a

constant at the j-th step of iteration, and it is updated at the

(j − 1)-th step by solving the following equation

ev
j−1

n,u,g = 1 +

K
∑

k=1

l2n,u,k,gp
j−1
n,k,g

σ2
m +Ml2n,u,k,gp

j−1
n,k,ge

−v
j−1

n,u,g

. (56)

It is worth noting that (55) is convex, so that it can be

readily solved using conventional convex optimization tools.

The proposed iterative algorithm is summarized in Algorithm

5. To prove the convergence of Algorithm 5, we can derive

the Lagrangian function of (55) as

L(Pj ,vj−1, τ j ,ψ,ν, ξ,θ) = τ j

+
N
∑

n=1

Un
∑

u=1

ψn,u(
G
∑

g=1

xrn,u,gT
r−1
n Ra(P

j
n,g, v

j−1
n,u,g)− τ j)

+

N
∑

n=1

Ns
∑

i=1

νn,i(ǫp −
Un
∑

u=1

K
∑

k=1

G
∑

g=1

xrn,u,gyn,i,gl
2
n,i,k,gp

j
n,k,g)

+

K
∑

k=1

ξk(Ek −
N
∑

n=1

Un
∑

u=1

G
∑

g=1

xrn,u,gp
j
n,k,gT

r−1
n )

+
N
∑

n=1

K
∑

k=1

θn,k(pmax −
Un
∑

u=1

G
∑

g=1

xrn,u,gp
j
n,k,g) (57)

Actually, the purpose of Algorithm 5 is to find the unique

saddle point of (57), due to the fact that (57) is concave with

respect to Pj and convex with respect to vj−1. According to

Theorem 1, Algorithm 5 is guaranteed to converge.

In summary, (44) can be iteratively solved based on the

solutions to (45)–(47). We record the steps of this method in

Algorithm 6. Similar with Algorithm 3, the convergence of

Algorithm 6 is naturally guaranteed, and at least a suboptimal

solution is derived.

Remark 3: Observing the methods proposed in Section III and

IV, we can find some similarities and differences. One one

hand, both optimization problems are solved in an iterative

way, because both of them focus on jointly allocating the sub-

channel, transmit power and hovering time. On the other hand,

the max-min subchannel allocation subproblem in IV.B can

not be solved based on the time-sharing relaxation, because

the worst performance of all users will be affected by the

relaxation technique. Besides, a series of transformation steps

Algorithm 6 Proposed minimum data transmission efficiency

optimization algorithm

Input: ǫp, {Ek, k = 1 ∼ K}, Ttotal, pmax, Tmax.

1: Initialization:ǫ0 = 1 × 10−2, r = 1, T0 = (Ttotal/N)1,

P0 = 0;

2: Solve (45), denoting the solution as x∗, set x1 = x∗;

3: Solve (46), denoting the solution as P∗, set P1 = P∗;

4: Solve (47), denoting the solution as T∗, set T1 = T∗;

5: while |1 −
minn,u

∑G
g=1

xr−1

n,u,gT
r−1

n Ra(P
r−1

n,u,g,w
r−1

n,u,g)

minn,u

∑
G
g=1

xr
n,u,gT

r
nRa(Pr

n,u,g,w
r
n,u,g)

| > ǫ0

do

6: r = r + 1;

7: Solve (45), denoting the solution as x∗, set xr = x∗;

8: Solve (46), denoting the solution as P∗, set Pr = P∗;

9: Solve (47), denoting the solution as T∗, set Tr = T∗;

Output: xr, Pr, Tr.

is required to solve the max-min power allocation subproblem

in IV.C, due to the fact that the new objective function is more

complicated than the original one.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results to evaluate the

proposed algorithms. Specifically, we fix the number of UAVs

in a swarm at K = 6, the number of user group at N = 20,

and the number of SU at Ns = 10. In each user group, we

assume the number of UU is Un = 10 for ∀n, so that the total

number of UU is NU = 200, and each UU is equipped with

M = 6 antennas. Besides, we consider a broadband system

which works at 5.8 GHz with G = 16 subchannels.1 For the

UAV channel, we generate the large-scale CSI based on the

realistic channel environment [25], [26] using a simulation

software named as Visualyze 7. The locations of UAVs, UUs

and SUs, as well as the subchannel usage of SUs, are sample

data generated by this software, and the noise power is set at

σ2 = −107 dBm. We set the interference power threshold at

−77 dBm and the power limit of a UAV at pmax = 300 mW.

The total hovering time of UAVs is set at Ttotal = 100 s, and

the maximum hovering time of the UAV swarm at each UU

is set at Tmax = 15 s for more flexible time scheduling. For

simplicity, we assume that each UAV has the same Ek for ∀k,

and the sum of Ek is denoted as Etotal.

Firstly, we analyze the complexity of the proposed al-

gorithms through simulations. Specifically, we focus on the

convergence performance of the proposed algorithms. In Fig.

2, the iteration times of 10 trials with different user locations

are evaluated, where Etotal = 30 J. For Algorithm 3, it only

needs 2 iterations to converge. The reason for this phenomenon

is that the best subchannel is selected by this algorithm at the

first iteration, and the problem is almost convex with respect

to the transmit power and hovering time when the subchannel

usage is determined. For Algorithm 6, the number of iterations

1In practice, more users can be served by using the proposed scheme,
because there are actually more available subchannels. For example, if the
bandwidth is 20 MHz and the subcarrier spacing is 15 kHz, there are at least
1200 available subchannels. In this case, over 15000 users can be served.
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Fig. 2. Convergence performance of the proposed algorithms.
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Fig. 3. Comparison of different algorithms considering the total data trans-
mission efficiency.

is no more than 6, and the average number of it is 4 over 10
trials. These results demonstrate that the convergence speed of

the proposed algorithms is fast, which also indicates that the

algorithms have good potential in being applied to CSUNs in

practice.

Then, we compare the performances of the proposed algo-

rithms with other algorithms. For other algorithms, the sub-

channel allocation strategy, the power allocation strategy and

the hovering time scheduling method are separately optimized.

More specifically, the proposed algorithms are compared with

the following baselines:

• Baseline 1: Allocating the subchannels based on path loss

using the technique in [37] under conventional cellular

architecture, then using the power allocation algorithm

and hovering time scheduling algorithm in [21].

• Baseline 2: Allocating the subchannels based on path loss

using the technique in [37] under conventional cellular

architecture, then using the power allocation algorithm

and hovering time scheduling algorithm in [23].

• Baseline 3: Allocating the subchannels based on path loss

using the technique in [37] under conventional cellular
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Fig. 4. Comparison of different algorithms regarding the minimum data
transmission efficiency.

architecture, then equally allocating the transmit power

and hovering time.

Besides, for the algorithms without interference constraints,

the transmit power is divided by a large constant, so that the

interference power constraints can be satisfied.

In Fig. 3, we evaluate the performances of different al-

gorithms in terms of the data transmission efficiency for

different interference power thresholds, where Etotal = 30
J. We can observe that the proposed Algorithm 3 has the best

performance when the interference power threshold is low.

When the interference power threshold increases, Baseline 1

approaches Algorithm 3. The reason is that the interference

constraint was not considered by the algorithm in [21], but

such constraint will be negligible when the interference power

threshold is high. Moreover, we can find that Baseline 2,

where the algorithm in [23] ignored the effect of large-scale

CSI, performs worse than the equal power allocation strategy

with low interference power threshold. This indicates that the

inaccurate estimation of the interference can seriously affect

the performance of CSUNs.

We further discuss the minimum data transmission effi-

ciency of different algorithms in Fig. 4. From the curves, we

can observe that the minimum data transmission efficiency

cannot be guaranteed by conventional algorithms, because the

subchannels would not be allocated to UUs in severe channel

environment. Such strategy can effectively maximize the total

data transmission efficiency of all UUs. This figure also

demonstrates that the proposed Algorithm 6 can effectively

improve the minimum data transmission efficiency. Besides,

as shown in Fig. 3 and Fig. 4, the total data transmission effi-

ciency is actually to some extent guaranteed by the proposed

Algorithm 6 when the minimum data transmission efficiency

is optimized.

In Fig. 5, we demonstrate how the coverage ability of CSUN

is optimized by Algorithm 6. To make the figure clearer, we

discuss a simplified CSUN model, where 4 UUs are covered

at one time slot, the interference power threshold is set at −92
dBm, and Etotal = 30 J. When the user can receive the signal

whose power is larger than −92 dBm, we regard this user

as a successfully covered one. Following this, we can acquire
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Fig. 5. Diagram of CSUN under non-cellular architecture, where the coverage areas at one time slot are plotted.
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Fig. 6. The relationship between the total data transmission efficiency and
the number of UAVs, where the proposed Algorithm 3 is used.

the coverage areas when different subchannels are used. As

shown in Fig. 5, the users in plotted regions are actually

covered. We can observe that the shapes of the coverage

areas are irregular, indicating that the broadband CSUN is

designed under non-cellular architecture. The result shows

that Algorithm 6 can effectively mitigate the interference

while guaranteeing the coverage ability of CSUN, which also

implies the superiority of the non-cellular architecture over

conventional cellular architectures.

Moreover, we concentrate on analyzing the relationship

between the size of UAV swarm and the performances of

proposed algorithms in Fig. 6 and Fig. 7. As shown by

the curves, both the total data transmission efficiency and

the minimum data transmission efficiency can be improved

by increasing the number of UAVs. One reason is that a

higher diversity gain can be obtained with more UAVs in a

swarm. Moreover, the coordination among multiple UAVs is
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Fig. 7. The relationship between the minimum data transmission efficiency
and the number of UAVs, where the proposed Algorithm 6 is used.

more flexible when the size of UAV swarm is larger. We can

also observe that a better performance is achieved by both

algorithms with higher transmit energy. These results imply

that the limited on-board energy of the UAV swarm is a

bottleneck of CSUNs.

In Fig. 8 and Fig. 9, the relationship between the number

of subchannels and the performances of the proposed algo-

rithms is evaluated. We can observe that better performance

is achieved when more subchannels are adopted for both

algorithms. Note that the curves in Fig. 9 demonstrate that

the performance gain when improving the communication

energy is not stable for different number of subchannels. This

phenomenon emerges because a suboptimal solution is derived

by using Algorithm 6, which implies that the number of

subchannels should be appropriately selected for more efficient

use of resources in broadband CSUNs.
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Fig. 8. The relationship between the total data transmission efficiency and
the number of subchannels, where the proposed Algorithm 3 is used.
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VI. CONCLUSION

In this paper, we have investigated the design of broadband

CSUNs under non-cellular architecture, to serve massive IoT

devices in wide areas. We have proposed a process-oriented

optimization framework, where the flight process of UAVs was

optimized based on slowly-varying CSI in a large time scale.

We have formulated a data transmission efficiency maximiza-

tion problem and a minimum data transmission efficiency op-

timization problem based on the process-oriented model. After

the optimization problems have been solved using the time-

sharing relaxation and feasible region relaxation techniques,

the subchannel usage, transmit power and hovering time of

the broadband CSUN are jointly optimized in an iterative way.

Simulation results have demonstrated that it is beneficial to use

the proposed algorithms when designing CSUNs for massive

IoT devices under non-cellular architecture.

APPENDIX A

PROOF OF THEOREM 2

To prove Theorem 2, we need to prove that for any x

that satisfies (49b), (49f) and (49g), (49c)–(49e) are also

satisfied. Assuming that we have obtained the optimal Pr−1

and xr−1 at the (r− 1)-th step. If x is an all-zero vector, the

constraints are naturally satisfied. Otherwise, for any non-zero

x which satisfies (49b), (49f) and (49g), and for any given

n∗ ∈ {1, ..., N}, g∗ ∈ {1, ..., G} and k∗ ∈ {1, ...,K}, we

have

Un∗

∑

u=1

xn∗,u,g∗pr−1
n∗,k∗,g∗ =

Un∗

∑

u=1

xr−1
n∗,u,g∗pr−1

n∗,k∗,g∗ (A.1)

because only one of xr−1
n∗,u,g∗ for u ∈ {1, ..., Un∗} equals to

1, which is also correct for x, according to (49f) and (49g).

Hence, based on (A.1), we have

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xn,u,gp
r−1
n,k,gyn,i,gl

2
n,i,k,g

=

Un
∑

u=1

K
∑

k=1

G
∑

g=1

xr−1
n,u,gp

r−1
n,k,gyn,i,gl

2
n,i,k,g

≤ ǫp ∀n, i (A.2)

Un
∑

u=1

N
∑

n=1

G
∑

g=1

xn,u,gp
r−1
n,k,gT

r−1
n

=

Un
∑

u=1

N
∑

n=1

G
∑

g=1

xr−1
n,u,gp

r−1
n,k,gT

r−1
n ≤ Ek ∀k (A.3)

Un
∑

u=1

G
∑

g=1

xn,u,gp
r−1
n,k,g

=

Un
∑

u=1

G
∑

g=1

xr−1
n,u,gp

r−1
n,k,g ≤ pmax ∀n, k. (A.4)

As a result, we can conclude that for any x that satisfies (49b),

(49f) and (49g), (49c)–(49e) are also satisfied, which gives the

conclusion of Theorem 2.

APPENDIX B

PROOF OF THEOREM 3

We firstly define vrn,u,g = log(wr
n,u,g) and substitute vr into

(53b) and (53f), then we have

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r
n,g, v

r
n,u,g) ≥ τ (B.1)

ev
r
n,u,g = 1 +

K
∑

k=1

l2n,u,k,gp
r
n,k,g

σ2 +Ml2n,u,k,gp
r
n,k,ge

−vr
n,u,g

∀n, u, g.

(B.2)

According to [21], if vr∗ satisfies (B.2), we have

Ra(P
r
n,g, v

r
n,u,g) ≥ Ra(P

r
n,g, v

r∗
n,u,g) ∀vrn,u,g ≥ 0 (B.3)

due to the fact that the minimum value of Ra(P
r
n,g, v

r
n,u,g) is

achieved by Ra(P
r
n,g, v

r∗
n,u,g). Hence, we have

G
∑

g=1

xrn,u,gT
r−1
n Ra(P

r
n,g, v

r
n,u,g) ≥ τ ∀vrn,u,g ≥ 0. (B.4)
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On the contrary, if (B.4) is satisfied, we can also have (B.1)

and (B.2), because (B.4) is a more general condition, which

is also correct for the vr∗ in special cases. Hence, (B.1) and

(B.2) can be replaced by (B.4), which gives the conclusion of

Theorem 3.
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