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Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recom-
binant protein expression. Numerous highly active CFPS platforms are now available and
have recently been used for synthetic biology applications. In this review, we focus on the
ability of CFPS to expand our understanding of biological systems and its applications in the
synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative
and complementary methods for expressing proteins from different organisms, compared
with in vivo approaches. Next, we review the types of proteins, protein complexes, and
protein modifications that have been achieved using CFPS systems. Finally, we introduce
recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid
prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise
to be a powerful tool for synthetic biologyaswell as a protein production technology in years
to come.

C
ell-free protein synthesis (CFPS) technolo-
gy was first used more than 50 years ago by

Nirenberg andMatthaei to decipher the genetic

code (Nirenberg andMatthaei 1961). In the late
1960s and early 1970s, CFPS was used to help

elucidate the regulatory mechanisms of the

Escherichia coli lactose (Chambers and Zubay
1969) and tryptophan (Zalkin et al. 1974) op-

erons. Now, in the last two decades, cell-free

protein expression platforms have experienced
a surge in development to meet the increasing

demand for inexpensive and rapid recombinant

protein expression technologies, which has re-

sulted in the development of numerous highly
active CFPS platforms (Carlson et al. 2012).

This renewed interest in CFPS technology

was motivated by the advantages offered by
this methodology for the production of recom-

binant proteins. In particular, the open reaction

environment allows for the addition or removal
of substrates for protein synthesis, as well as

precise, online reaction monitoring. Further-

more, the CFPS reaction environment can be
wholly directed toward and optimized for the

production of the protein product of interest.

In this way, CFPS platforms separate catalyst
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synthesis (cell growth) from catalyst usage (pro-

tein synthesis), representing a significant de-
parture from cell-based processes that rely on

microscopic cellular “reactors.” CFPS effectively

decouples the cell’s objectives (growth and
reproduction) from the engineer’s objectives

(protein overexpression and simple product

purification). Overall, the nature of CFPS tech-
nology allows for shortened protein synthesis

timelines and increased flexibility for the addi-

tion or removal of natural or synthetic compo-
nents compared with in vivo approaches. The

versatility of CFPS makes it especially attractive

for fundamental discovery and high-through-
put screening applications.

The ability to prioritize the engineer’s ob-

jectives in CFPS has further motivated recent
applications of CFPS technology to the exciting

and ever-growing field of synthetic biology. For

instance, cell-free synthetic biology approaches
have enabled development of an in vitro proto-

typing environment for characterization of syn-

thetic parts or genetic networks (Siegal-Gaskins
et al. 2014; Takahashi et al. 2014; Chappell et al.

2015). The open environment and reduced

complexity of cell-free systems has also made
it possible to develop quantitative models de-

scribing cell-free genetic network performance

and perform machine learning optimization of
CFPS (Caschera et al. 2011; Siegal-Gaskins et al.

2014). Additionally, the absence of cell viability

constraints has made CFPS an attractive tech-
nology for expanding the possible applications

of synthetic biology. Recent advances in cell-

free synthetic biology include the incorpora-
tion of nonnatural chemistries into biological

polymers (Goerke and Swartz 2009; Bundy

and Swartz 2010; Albayrak and Swartz 2013a;
Hong et al. 2014a, 2015), in vitro assembly of

complex biological machines and devices

(Matthies et al. 2011), and the development of
minimal cells (Shin and Noireaux 2012; Stano

and Luisi 2013; Caschera and Noireaux 2014a).

Excitingly, cell-free technology has also transi-
tioned beyond the laboratory bench, both to the

industrial scale for therapeutic production (Za-

wada et al. 2011; Yin et al. 2012) and to a low-
cost, user-friendly format for diagnostic appli-

cations (Pardee et al. 2014).

In this review, we focus on the application

of CFPS technology to synthetic biology. More
detailed reviews on the development of CFPS

technology and the types of proteins produced

in cell-free systems have been published recently
(Katzen et al. 2005; Carlson et al. 2012; Chong

2014; Harbers 2014; Hong et al. 2014a; Lian

et al. 2014; Zemella et al. 2015). Here, we begin
by introducing the various CFPS platforms and

discuss their technological capabilities. We then

outline the types of proteins, protein complex-
es, and protein modifications that have been

achieved using CFPS technologies. Finally, we

discuss cutting-edge cell-free synthetic biology
applications.

MULTIPLE CELL-FREE PROTEIN SYNTHESIS
TECHNOLOGIES ENABLE PRODUCTION
OF DIVERSE PROTEINS

The recent technological renaissance has result-

ed in a variety of highly active CFPS platforms

for expression of proteins from diverse organ-
isms. Although E. coli and wheat germ extracts

have been predominantly used in a high-

throughput format, all CFPS platforms have
the potential to be used for high-throughput

screening of DNA libraries and gene products

from diverse organisms for biological discovery
and synthetic biology applications.

CFPS systems carry out protein synthesis

by harnessing the biological catalysts for trans-
lation, protein folding, and energy generation

from prokaryotic or eukaryotic cells. When

combined with a DNA template, amino acids,
an RNA polymerase, an adenosine triphosphate

(ATP)-regeneration system, salts, and other

buffers or environmental stabilizers (e.g.,
HEPES), these complex biological catalytic en-

sembles carry out sustained protein synthesis in

vitro (Fig. 1) (Jewett et al. 2008).
There are two categories of CFPS platforms,

which represent bottom-up and top-down ap-

proaches to in vitro protein synthesis. Protein
synthesis using purified recombinant elements

(PURE) systems build the protein synthesis

ensemble from the bottom up. The PURE ap-
proach involves purifying the molecular com-

ponents required for protein synthesis and sub-
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sequently adding them to CFPS reactions (Shi-

mizu et al. 2014). Crude extract systems repre-
sent the alternative, top-down approach. Crude

cell extract is generated by clarifying whole-

cell lysate via centrifugation to remove genomic
DNA, insoluble biological elements, and un-

lysed cells. In some platforms, additional mea-

sures are taken to degrade endogenous messen-
ger RNAs (mRNAs) (Pratt 1984). Importantly,

the crude extract contains all of the biological

components required for translation, protein
folding, and energy regeneration (e.g., ribo-

somes, tRNAs, chaperones, metabolic enzymes,

elongation factor-Tu [EF-Tu], translation initi-
ation factors, etc.). Crude lysate CFPS platforms

have been developed using cells from a number

of organisms. Each crude extract CFPS platform
has advantages anddisadvantages dependingon

the desired application (Table 1) (Zemella et al.

2015).

PURE Systems

PURE technology was pioneered by Ueda and

colleagues (Shimizu et al. 2001). The PURE ap-

proach reconstitutes the transcriptional, trans-
lational, and energy-generation machinery

from E. coli by purifying recombinantly ex-

pressed histidine (His)-tagged components
and adding them to the CFPS reaction mixture.

E. coli ribosomes are purified using sucrose-

density gradient centrifugation (Shimizu et al.
2014).

PURECFPS systems are commercially avail-

able and widely used for both fundamental dis-
covery and synthetic biology applications. Pro-

tein synthesis yields from the PURE system have

been optimized recently (Jackson et al. 2014a)
and specialized PURE systems have been devel-

oped for continuous substrate replenishment

(Jackson et al. 2014b, 2015), and to produce
membrane proteins (Niwa et al. 2015), as well

as disulfide bond- and nonstandard amino acid

(nsAA)-containing proteins (Shimizu et al.
2005; Murakami et al. 2006). PURE technology

has proven particularly useful for the isolated

study of recombinant proteins and protein
complexes (Kuruma et al. 2010, 2012; Matsu-

bayashi et al. 2014) because of the simplicity of

the system. Furthermore, PURE technology has

played a pivotal role in the development of min-
imal cells (Nishimura et al. 2012, 2014; Stano

and Luisi 2013; Caschera and Noireaux 2014a;

Matsubayashi and Ueda 2014). However, the
expense and cross-reactivity of the His-tag-

based component purification process limits

its utility in some cases.

Microbial Crude Extract Systems

E. coli and Saccharomyces cerevisiae are attrac-

tive hosts for CFPS and cell-free synthetic biol-

ogy because (1) they are easily fermentable, and
(2) they are model organisms. As model organ-

isms, there exists a wealth of experimental tools

and genetic information for both E. coli and
S. cerevisiae to aid synthetic biology efforts.

The prokaryotic E. coli crude extract (ECE)

system is one of the most widely adopted plat-
forms for CFPS. This technology is commer-

cially available and is used at the industrial scale

(Zawada et al. 2011; Yin et al. 2012; Groff et al.
2014). ECE has been widely adopted for two

main reasons: its high batch yields, with up to

2.3 g/L of green fluorescent protein (GFP) re-
ported (Caschera andNoireaux 2014b), and the

fast, scalable, and cost-effective extract prepara-

tion process (Swartz 2006). In addition, simple
and rapid methods for extract preparation have

been developed (Shrestha et al. 2012; Kwon and

Jewett 2015). Furthermore, ECE reactions can
use nucleoside monophosphates and inexpen-

sive energy substrates, such as glucose or starch

to regenerate ATP (Calhoun and Swartz
2005a,b; Lian et al. 2014). ECE has been used

to synthesize recombinant bacterial and eukary-

otic proteins containing posttranslational mod-
ifications (PTMs) (Guarino and DeLisa 2012)

and nsAAs (Goerke and Swartz 2009; Bundy

and Swartz 2010; Ozawa et al. 2012; Albayrak
and Swartz 2013a,b; Hong et al. 2014b, 2015).

Furthermore, ECE has been adapted to a high-

throughput format for production of antibody
variants for drug development and screening

studies (Stafford et al. 2014), demonstrating

its use for screening or functional genomic
studies. Finally, ECE has been shown to scale

linearly over a 106 L range in reaction volumes

J.G. Perez et al.
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Table 1. Advantages and disadvantages of existing CFPS technologies

Platform Advantages Disadvantages

Representative

yields (mg/mL) Applications

PURE 1. No nucleases or

proteases remaining

after component

purification

2. Flexible andmodular

3. Commercially

available

1. Expensive

2. Cannot activate

endogenous

metabolism

3. His purification

GFP: 380a

b-galactosidase:

4400b (Kazuta

et al. 2014)

Minimal cells

(Matsubayashi and

Ueda 2014)

Complex proteins

(Kuruma et al. 2012)

nsAAs (Murakami et al.

2006)

Escherichia coli

extract (ECE)

1. High-batch yields

2. Low-cost extract

preparation and

reagents

3. Commercially

available

4. Genetic tools

available for strain

modifications or

synthetic biology

5. CFPS scales linearly

.106 L (Zawada

et al. 2011)

1. Limited PTMs GFP: 2300a

(Caschera and

Noireaux 2014b)

GM-CSF: 700a

(Zawada et al.

2011)

VLP: 356a (Bundy

et al. 2008)

High-throughput format

(Stafford et al. 2014)

Antibodies (Groff et al.

2014)

Vaccines (Ng et al. 2012)

Diagnostics (Pardee et al.

2014)

nsAAs (Goerke and

Swartz 2009; Ozawa

et al. 2012)

Genetic circuits

(Noireaux et al. 2003;

Chappell et al. 2013)

Saccharomyces

cerevisiae

extract (SCE)

1. Simple, low-cost

extract preparation

2. Cotranslational

folding mechanisms

present

3. Genetic tools

available for strain

modifications or

synthetic biology

1. No PTMs shown

2. Low batch yields

Luc: 8.9a

(Choudhury

et al. 2014)

GFP: 17b

(Schoborg et al.

2014)

HPV L1 protein:

60a (Wang et al.

2008)

Complex proteins

(unpubl.)

Wheat germ

extract

(WGE)

1. High yields

2. Proven for synthesis

of many types of

eukaryotic proteins,

including

membrane proteins

3. Continuous

exchange reactions

last �60 hours

1. Extract

preparation is

long and labor-

intensive

2. Difficult

technology

transfer

GFP: 1600a

(Harbers 2014),

9700b (Endo and

Sawasaki 2006)

High-throughput format

(Goshima et al. 2008)

Vaccines (Tsuboi et al.

2008)

Expressed proteomes

(Nozawa and Tozawa

2014)

Structural

characterization

(Bernhard and Tozawa

2013)

Tobacco BY-2

cell extract

(BYE)

1. Greatly simplified

extract preparation

compared with

WGE

2. Continuous

exchange reactions

last �18 hours

1. Lower yields

than WGE

2. No PTMs

shown

Luc: 270a (Buntru

et al. 2014b)

YFP: 400b

Human mAb: 150a

Hb-EGF: 25a

(Buntru et al.

2014a)

Complex proteins

(Buntru et al. 2014a)

Continued
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(Zawada et al. 2011), which helpedmotivate the
adoption of this technology for large-scale pro-

tein synthesis (Yin et al. 2012; Groff et al. 2014;

Zimmerman et al. 2014). Although bacterial
CFPS systems are able to produce proteins that

would be difficult or impossible in cells, further

reductions in cost would enable wider adoption
for industrial biomanufacturing.

A second microbial CFPS system uses ex-

tract from S. cerevisiae (baker’s yeast) to catalyze
protein synthesis. S. cerevisiae cells contain eu-

karyotic folding machinery that can be benefi-

cial for recombinant production of complex eu-
karyotic proteins. The first S. cerevisiae extract

(SCE) system was pioneered by Iizuka et al.

(1994) more than 20 years ago. Recently, the
Jewett laboratory developed and optimized a

scalable, low-cost SCE preparation method

(Hodgman and Jewett 2013; Choudhury et al.
2014). Many efforts have been made to improve

the efficiency and reduce the cost of SCE CFPS

(Gan and Jewett 2014; Hodgman and Jewett
2014; Schoborg et al. 2014; Anderson et al.

2015). Together, these advances have resulted

in a relatively low-cost eukaryotic CFPS tech-
nology with protein yields comparable to other

eukaryotic platforms (Table 1). However, fur-

ther improvements in protein synthesis yields
will be necessary to encourage adoption of yeast

CFPS for synthetic biology applications.

Plant, Animal, and Insect Crude Extract
Systems

Crude extract CFPS technologies derived from

higher eukaryotes offer advantages for complex

Table 1. Continued

Platform Advantages Disadvantages

Representative

yields (mg/mL) Applications

Insect cell

extract (ICE)

1. PTMs possible,

including

glycosylation

2. Proven for synthesis

of membrane

proteins

3. Commercially

available

1. Low batch yields

2. Requires more

extract (50%

CFPS reaction

volume vs. 25%

for ECE)

YFP: 10a (Katzen

and Kudlicki

2006), 50b (Stech

et al. 2014)

Complex proteins

(Katzen and Kudlicki

2006; Suzuki et al.

2007; Orth et al. 2011;

Stech et al. 2012; Ezure

et al. 2014; Fenz et al.

2014)

CHO,K562, and

HeLa extracts

1. PTMs possible,

including

glycosylation

2. Proven for synthesis

of membrane

proteins

3. Mammalian cells are

preferred expression

platform for human

proteins

1. Low batch yields

2. Requires more

extract (50%

CFPS reaction

volume vs. 25%

for ECE)

Luc: 50a (CHO),

20a (K562)

(Brodel et al.

2015)

Glutathione-S-

transferase: 50b

(HeLa) (Mikami

et al. 2006)

Complex proteins

(Mikami et al. 2006;

Stech et al. 2013;

Brodel et al. 2015)

Leishmania

tarentolae

extract (LTE)

1. Showed advantages

for expressing

parasitic proteins

2. Background

translation mostly

repressed

1. No PTMs shown

2. Limited number

and types of

protein

synthesized

GFP: 300a (Mureev

et al. 2009)

Complex proteins

(Mureev et al. 2009)

Expressed proteomes

(Kovtun et al. 2010)

Hb-EGF, Heparin-binding EGF-like growth factor; EPO, erythropoietin; GFP, green fluorescent protein; Luc, luciferase;

mAb, monoclonal antibody; YFP, yellow fluorescent protein; PTM, posttranslational modification; nsAAs, nonstandard

amino acids; CFPS, cell-free protein synthesis.
aBatch reaction.
bContinuous exchange reaction.
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protein production. Importantly, these extracts

enable complex cotranslational folding mecha-
nisms and the addition of PTMs not currently

possible using microbial platforms. However,

batch yields from these systems are typically at
least an order of magnitude lower, whereas the

system cost is much higher, compared with ECE

(Table 1). Additionally, applications of these
technologies to synthetic biology are currently

limited. One challenge preventing high-yield-

ing eukaryotic CFPS is the difficulty of enabling
endogenous translation initiation mechanisms

(e.g., 50 capping) in vitro.

Two main plant-based crude extract CFPS
systems have been developed to date are wheat

germ extract (WGE) and tobacco BY-2 cell ex-

tract (BYE). The WGE platform, which is de-
rived from wheat-seed embryos (Madin et al.

2000), has achieved both high yields (Endo

and Sawasaki 2006) and high-throughput ex-
pression (Sawasaki et al. 2002) of recombinant

proteins. Typically, this system is used with con-

tinuous substrate replenishment (continuous
exchange) (Jackson et al. 2014b, 2015). For ex-

ample, Goshima et al. (2008) usedWGE to syn-

thesize ≏13,000 human proteins in a single
study. WGE was also used to synthesize bioac-

tive proteins of diverse species origin, including

Arabidopsis (Nozawa et al. 2009) and the malar-
ia parasite genus Plasmodium (Tsuboi et al.

2008), without codon optimization in most

cases. WGE is the highest-yielding eukaryotic
CFPS platform, with yields of up to 1.6 mg/
mL GFP in batch (Harbers 2014) and 9.7 mg/
mL GFP with continuous exchange reported
(Endo and Sawasaki 2006). Notably, the active

lifetime ofWGE is remarkably long—up to 60 h

in continuous exchange reactions that replenish
substrates (Endo and Sawasaki 2006)—because

most nucleases and proteases are removed dur-

ing extract preparation. However, the primary
drawback of WGE is the extensive extract prep-

aration process, which takes 4–5 days (Madin

et al. 2000).
The BYE CFPS system was recently devel-

oped as an alternative plant-based CFPS plat-

form. Preparation of BYE is greatly simplified
compared with WGE and can be completed in

just 4–5 h. Like WGE, BYE has also been used

to synthesize proteins from diverse organisms,

including a transmembrane growth factor, a
glycosylated Apergillus niger enzyme, and a bio-

active human antibody (Buntru et al. 2014b).

However, unlikeWGE, mg/mLyields from BYE
have not yet been achieved (Table 1).

The insect cell extract (ICE) CFPS platform

was developed using extract from Spodoptera

frugiperda (fall army worm) cells and is com-

mercially available. The first ICE system was

developed by Ezure et al. (2006). A second
ICE system, developed by Katzen and Kudlicki

(2006), produced extracts containing endoplas-

mic reticulum (ER) vesicles that retained glyco-
sylation and signal sequence processing activity.

ICE has since been used to produce glyco-

proteins and membrane proteins (Katzen and
Kudlicki 2006; Kubick et al. 2009; Sachse et al.

2014; Stech et al. 2014).

More recently, CFPS platforms were devel-
oped from mammalian cell lines. Mammalian

cells are currently the preferred platform for

large-scale in vivo production of human pro-
teins bearing PTMs. The Kubick laboratory

has described CFPS technologies using extracts

from Chinese hamster ovary (CHO) cells and
human K562 cells, a myelogenous leukemia cell

line (Brodel et al. 2015). In addition, Mikami

et al. (2006) developed a CFPS platform using
lysate fromHeLa cells, a cervical cancer cell line.

Mammalian crude extract CPFS platforms pro-

vide a potentially attractive alternative for the
synthesis and high-throughput screening of re-

combinant human proteins.

Parasitic Organism Crude Extract Systems

The Leishmania tarentolae extract (LTE) plat-
form, developed by Mureev and colleagues, is

the only platform that uses extracts from a par-

asitic organism. Parasites are attractive candi-
dates for functional proteomic studies because,

in some organisms, .50% of proteins have no

identifiable homology or predictable function.
However, in vivo expression of genes from par-

asitic or infectious organisms can be challeng-

ing because of differences in codon usage and
protein synthesis machinery (Mureev et al.

2009). Parasitic organism crude extract systems
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are potentially advantageous for generating ex-

pressed parasite proteomes. In one instance, a
parasitic crude extract CFPS system outper-

formed ECE in bioactive yields of proteins

from Plasmodium falciparum, amalaria parasite
(Kovtun et al. 2010).

L. tarentolae, a single-celled lizard parasite,

was chosen for CFPS technology development
for twomain reasons: (1) it is easily fermentable,

and (2) all endogenous mRNAs share the same

leader sequence. The latter feature enables com-
plete repression of background translation via

inclusion of an antileader oligonucleotide

(Mureev et al. 2009). LTE offers a rapid and scal-
able extract preparation process (Kovtun et al.

2011; Johnston and Alexandrov 2014), and is

one of the highest yielding eukaryotic systems
in batch; yields of up to 300 mg/mL GFP have

been reported (Mureevet al. 2009). Importantly,

Mureev and colleagues also developed species-
independent translation sequences (SITS) to

bypass translational regulation in LTE. The in-

clusion of SITS allowed cell-free synthesis of
GFP in prokaryotic and eukaryotic extracts, in-

cluding LTE, ECE, WGE, SCE, and ICE, using

the same DNA template (Mureev et al. 2009;
Kovtun et al. 2011; Johnston and Alexandrov

2014). LTEhas been used to synthesizemamma-

lian, L. tarentolae, and P. falciparum proteins.
Despite recent technological advances, there

remain challenges facing CFPS technology that

need to be addressed. Yields of bioactive human
proteins from CFPS are sometimes lower than

those achievable in vivo. In particular, no eu-

karyotic CFPS platform is currently capable of
producing mg/mL quantities of protein in a

batch. Increasing eukaryotic CFPS batch yields

to 0.5 mg/mL or greater is an important chal-
lenge for two reasons: (1) These platforms have

the potential to achieve higher soluble, bioactive

yields of recombinant human proteins than
bacterial platforms, and (2) eukaryotic CFPS

systems could be useful as prototyping tools

for genetic circuit characterization or produc-
tion of recombinant proteins in eukaryotic cells.

Furthermore, most crude extract CFPS plat-

forms are derived from model organisms, and
only the L. tarentolae platform is derived from a

parasitic organism. Crude extract platforms

from nonmodel organisms could have usage

for functional genomics studies. Finally, devel-
opment and optimization of species-indepen-

dent translation initiation strategies, such as

SITS, or novel cap-independent translation ini-
tiation sequences (Gan and Jewett 2016) could

further increase protein yields and enable ex-

pression of proteins from diverse organisms.
Addressing these challenges will be important

to encourage broad adoption of CFPS technol-

ogy for fundamental discovery and synthetic
biology applications.

COMPLEX PROTEINS AND PROTEIN
ASSEMBLIES

Cell-Free Production of Complex Proteins

Most CFPS platforms have been applied to the

production of complex proteins. CFPS systems

offer distinct advantages over in vivo protein
production for applications that require more

precise control over the protein synthesis reac-

tion conditions. Such applications include bi-
specific antibodies, antibody–drug conjugates

(ADCs), vaccines, and membrane proteins.

Therapeutics and Vaccines

ECE has been used extensively for production of
bioactive recombinant therapeutic proteins, in-

cluding granulocytemacrophage colony-stimu-

lating factor (GM-CSF), onconase, antibodies,
bispecific antibodies, and antibody–drug con-

jugates (Zawada et al. 2011; Yin et al. 2012; Groff

et al. 2014; Stafford et al. 2014; Xu et al. 2014;
Zimmerman et al. 2014; Cai et al. 2015; Salehi

et al. 2016). Recently, a method for in vitro dis-

play of antibody fragments was developed in
ECE, providing an exciting new technology

for high-throughput production and screening

of antibody candidates (Stafford et al. 2014; Cai
et al. 2015). Excitingly, recent work has resulted

in the development of microfluidic systems to

enable CFPS reactions to be performed at the
point-of-care (Sullivan et al. 2016; Timm et al.

2016). These systems would enable rapid pro-

duction of medicines on demand and opens the
door to bedside synthesis of personalized pro-

tein therapeutics.
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The eukaryotic WGE, ICE, CHO extract,

and K562 extract systems have also been used
to produce therapeutic proteins. WGE and ICE

have been used to synthesize bioactive antibody

fragments, and ICE has been used to produce
bioactive tissue-type plasminogen activator

(Kawasaki et al. 2003; Stech et al. 2012, 2014).

Furthermore, ICE, CHO extract, and K562 ex-
tract have been used to synthesize glycosylated

erythropoietin (Stech et al. 2013; Brodel et al.

2015).
An especially promising application for

CFPS systems is the high-throughput screening

and in vitro production of vaccine antigens and
virus-like particle (VLP) antigens. The WGE

platform was applied to the synthesis of 124

P. falciparum genes of potential interest as vac-
cine antigens, and 75% were successfully syn-

thesized without codon optimization (Tsuboi

et al. 2008). ECE has also been used to synthe-
size vaccines and VLPs, including a B-cell lym-

phoma vaccine (Ng et al. 2012), anti-influenza

VLPs (Lu et al. 2014), and anti-hepatitis B VLPs
(Bundy et al. 2008), as well as a virus-like nano-

particle vaccine scaffold (Lu et al. 2015). Nota-

bly, the VLPs were produced at significantly
higher yields than those possible in vivo, with

yields improved up to 15-fold (Bundy et al.

2008). These studies show the potential of
CFPS systems as novel vaccine discovery tools

and platforms for large-scale vaccine produc-

tion. Looking forward, because CFPS systems
are abiotic, they are potentially well suited for

portable and on-demand production of vac-

cines in resource-poor areas. This is an exciting
future application area for CFPS technology.

Membrane Proteins

CFPS systems offer advantages for the produc-

tion of membrane proteins. Newly synthesized
membrane proteins can be stabilized in vitro by

including membrane mimics (e.g., surfactants,

liposomes, nanodiscs) to the cell-free reaction
either posttranslationally, to solubilize proteins,

or cotranslationally, to prevent aggregation

(Junge et al. 2011; Sachse et al. 2014; Zieleniecki
et al. 2016). A recent study even showed that

supplying an oil–water interface by encapsulat-

ing CFPS reactions in emulsions was sufficient

to synthesize functional single-span membrane
proteins (Yunker et al. 2016). The ECE, WGE,

ICE, CHO extract, and K562 extract systems as

well as the PURE system have all been used to
synthesize membrane proteins including ATP

synthase (Matthies et al. 2011), G-protein-cou-

pled receptors (Kaiser et al. 2008; Wang et al.
2011), membrane proteins from hepatitis C

virus (Fogeron et al. 2015), and epidermal

growth factor receptor (Stech et al. 2013). The
synthesis of membrane proteins is an excellent

application for CFPS technology, and has been

useful for the structural biology community
(Bernhard and Tozawa 2013). Overall, en-

hanced control over the protein synthesis reac-

tion in vitro enables significantly higher yields
of soluble, active protein compared with in vivo

expression.

Taken together, these studies show the abil-
ity of CFPS technology to produce a variety of

recombinant proteins with diverse complexity.

ECE and WGE in particular show the potential
of CFPS technologies for high-throughput pro-

duction of many different kinds of proteins

of interest for therapeutic development, funda-
mental discovery, or use as synthetic biological

parts.

Macromolecule Production and Assembly
in Cell-Free Systems

Much progress has been made toward in vivo

synthesis of protein assemblies (Selkrig et al.

2014; Du et al. 2015); however, cellular viability
constrains the complexity of the assemblies that

can be overproduced. Moreover, cellular com-

plexity may obscure fundamental properties of
intricate assembly processes. Recently, CFPS

systems have been extended for the production

of complex protein assemblies. This advance
offers interesting opportunities for studying

macromolecule self-assembly and developing

synthetic biological devices. CFPS platforms
circumvent in vivo macromolecule production

and assembly limitations in three key ways.

First, the cell-free environment accelerates pro-
tein engineering efforts by enabling high-

throughput experimentation and simplifying
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the purification of individual subunits. Second,

CFPS platforms are flexible, ranging from
crude extract to fully purified transcription–

translation systems making it possible to study

assembly processes in a controlled reaction en-
vironment. Third, CFPS platforms provide an

additional level of complexity by coupling en-

coded protein expression to assembly of protein
ensembles, which may elucidate the role of ge-

netic regulation on subunit stoichiometries and

assembly mechanisms (Fig. 2A).

Synthesis and Assembly of Naturally
Occurring Macromolecules

Early demonstrations of protein assembly in

CFPS systems produced macromolecules such

as a five-subunit E. coli RNA polymerase (Asa-

Selective expression

r-proteins

Luciferase

Luciferase

mRNA

5S rRNA

23S rRNA

16S rRNA

TP30 TP50

B

A

Purified native/mature ribosomal components

In vitro synthesized ribosomal components

“i” - ribosomal subunit built using the ISAT method

TP30 - total proteins of the 30S subunit

TP50 - total proteins of the 50S subunit

I B E F H A G D C ATP synthase operon

Expression activation

RNAP

Figure 2. Assembly of macromolecules in cell-free protein synthesis (CFPS) reactions. (A) Complete in vitro
assembly of adenosine triphosphate (ATP) ATP synthase with hypothesized genetic regulation. The ATPoperon is
added to a crude Escherichia coli extract and transcribed into a single messenger RNA (mRNA). Proteins are ex-
pressed at various levels determined by operon regulation. Matthies et al. (2011) suggest synthesis of correctly
assembled ATP synthase complexes is dependent on specific expression levels of the subunits, correlated to the
subunit stoichiometry in the complex. It is hypothesized that intermediate assembliesmay also activate the expres-
sion of other subunits in the operon, allowing for sequential assembly processes (Kucharczyk et al. 2009). Thus,
combined expression and assembly in CFPS systems allows for an additional level of assembly complexity for
analysis. (B) In vitro integrated synthesis, assembly, and translation (iSAT) method of constructing ribosomes
enables synthesis of active firefly luciferase in a one-pot reaction. iSATenables one-step coactivation of ribosomal
RNA (rRNA) transcription, assembly of ribosomal subunits, and synthesis of active protein by these ribosomes in
same compartment. This process begins with T7 RNAP polymerase transcribing rRNA and luciferase mRNA.
Ribosomal subunits are reconstituted frommature rRNA and ribosomal components previously purified or syn-
thesized in vitro. Newly assembled ribosomes translate mRNA encoding the reporter protein luciferase to assess
its activity.
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hara and Chong 2010) and a two subunit hep-

atitis B core antigen virus-like particle (Bundy
et al. 2008). Even these simple assemblies have

many applications. For instance, VLPs have

been produced in cell-free systems at higher
yields than those possible in vivo. This advance

can be further applied to the discovery of novel

vaccines, and provides straightforward produc-
tion scale-up processes (Bundy et al. 2008).

As protein production capacity and reaction

lifetime increased in CFPS systems, more pro-
teins could be synthesized at once (Zemella et

al. 2015). This allowed for the construction

of complex structures, such as the pioneering
work of Matthies et al. (2011) that performed

the synthesis and assembly of Caldalkalibacillus

thermarumATP synthase, a 542-kDamembrane
protein consisting of 25 individual proteins ar-

ranged into eight subunits. Cell-free production

and assembly of ATP synthase was made possi-
ble by supplementing detergents to crude E. coli

extract (Fig. 2A). This demonstration opens the

way for the construction of novel energy gener-
ating biodevices that can be rapidly prototyped

in vitro. Multistep coordination of protein en-

sembles has also been successfully shown in vi-
tro. For instance, Fujiwara et al. (2013) simulat-

ed chromosomal DNA replication in a cell-free

system by expressing 13 essential genes. In an-
other study, Shin et al. (2012) showed complete

in vitro DNA replication, synthesis, and assem-

bly of bacteriophage T7 particles from expres-
sion of 60 genes. This is remarkable considering

only 35 of the ≏60 proteins encoded by the T7

genome have known function (Chan et al.
2005). Full synthesis and assembly of other

phages andVLPs have since been shown at high-

er yields (Garamella et al. 2016) and showcase
the use of CFPS in screening efforts (Lu et al.

2015). Overall, this work reaffirms the value of

CFPS platforms for interrogating native self-as-
sembly processes and synthesizing self-replicat-

ing biological machines in vitro.

Beyond protein machines, the ability to as-
semble macromolecules with RNA and protein

has also significantly advanced. For instance,

the E. coli ribosome, a large protein/RNA as-
sembly, has been assembled in vitro using a pro-

karyotic CFPS system (Fig. 2B) (Jewett et al.

2013). By adding DNA encoding the ribosomal

RNA (rRNA) and purified ribosomal proteins
to an E. coli extract lacking native ribosomes, in

vitro assembled ribosomes are capable of trans-

lation under physiological conditions. Tuning
transcription (Fritz and Jewett 2014) and using

a continuous-exchange platform to replenish

substrates and remove toxic byproducts (Liu
et al. 2014) has resulted in superfolder GFP

(sfGFP) yields of up to 7.5 mmol/L. This new
ribosome construction platform, termed iSAT
for integrated synthesis, assembly, and transla-

tion of ribosomes, makes possible new ways to

probe, dissect, and understand ribosome bio-
genesis. In addition, it contributes meaning-

fully toward efforts to build minimal cells and

construct engineered ribosomes with novel and
useful properties.

Assembly and Evolution of Biological
Devices (Biodevices)

To enable in vitro engineering of protein assem-
blies to create biodevices, cell-free systems can

be combined with detection hardware. This is

crucial because high molecular structure reso-
lution is needed to follow assembly processes at

the nanometer length scale. Interestingly, Hey-

man and colleagues developed a device that
simultaneously synthesizes, assembles, and im-

ages nanotubes. This is achieved by patterning

anti-hemagglutinin (HA) antibodies onto a
TEM grid, trapping CFPS-synthesized nano-

tube precursor proteins tagged with HA (Hey-

man et al. 2012). This showed that coupling
synthesis to assembly in the presence of an an-

choring site could enable on-chip visualization

of protein assembly. Microfluidic affinity assays
have also been paired with CFPS platforms,

enabling 14,792 simultaneous, on-chip experi-

ments to exhaustively measure protein–protein
interactions of 43 Streptococcus pneumoniae

proteins in quadruplicate (Gerber et al. 2009).

This study found several physical interactions
between proteins that had been previously un-

reported. In sum, cell-free systems provide a

flexible environment for expanding under-
standing of native assembly processes and the

repertoire of synthetic protein assemblies.
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SYNTHETIC PATHWAYS IN CFPS SYSTEMS
ENABLE SITE-SPECIFIC MODIFICATIONS
OF PROTEINS FOR NOVEL
FUNCTIONALITIES

The development of highly active CFPS plat-
forms has enabled the adaptation of CFPS tech-

nology toward synthesizing proteins with syn-

thetic modifications and novel functionalities.
Synthetic pathways have been added to confer

the ability of cotranslational and posttransla-

tional modification of recombinant proteins.
The ability to site-specifically modify proteins

could have many uses in fundamental and ap-

plied science. For example, the cotranslational
incorporation of acetyllysine (AcK) in vivo has

produced recombinant histone proteins that re-

vealed new understanding of epigenetic regula-
tion (Neumann et al. 2009). Site-specific mod-

ificationwill also have usage in the development

of therapeutics bearing (a)biological modifi-
cations (i.e., phosphorylation, glycosylation,

PEGylation, drug conjugates).

Cell-free production of modified proteins
complements in vivo efforts and offers many

advantages. In particular, modulation of sub-

strate concentrations permits direct monitoring
of their effects on protein modifications. This is

especially important because synthetic protein

modification pathways involve multiple pro-
teins that can show cross talk with the native

system. Additionally, an open and abiotic envi-

ronment allows for the addition of substrates
and production of byproducts that cannot be

used in vivo because of cell-membrane perme-

ability or cellular toxicity limitations. CFPS
platforms offer greater control over the modifi-

cation process and expand the types of chemis-

tries that can be added to proteins.

Cotranslational Incorporation
of Nonstandard Amino Acids

The cotranslational incorporation of nsAAs

into proteins expands the chemistry of life.
Such an expansion has enabled the incorpora-

tion of (a)biological groups into proteins such

as biophysical probes (Cornish et al. 1994)
(spin-labeled, fluorescent molecules, and pho-

toactivatable cross linkers), redox active groups

(Alfonta et al. 2003), and natural PTMs (Neu-

mann et al. 2009; Nguyen et al. 2009; Virdee
et al. 2011; Oza et al. 2015). To date, more

than 100 nsAAs have been cotranslationally in-

corporated into proteins (O’Donoghue et al.
2013). This has been possiblewith the introduc-

tion of an orthogonal translation system (OTS),

which is capable of genetically encoding nsAAs.
Traditionally, OTSs consist of an engineered,

orthogonal tRNA/aminoacyl tRNA synthetase

(o-tRNA/o-aaRS) pair derived from a phyloge-
netically distant organism, oftenMethanocaldo-

coccus jannaschii. The o-tRNA has a modified

anticodon specific to the UAG stop codon
(Fig. 3), whereas the o-aaRS is evolved to bind

and aminoacylate the nsAA of interest to the

o-tRNA. This process, which was initially pio-
neered by Schultz and colleagues (Wang et al.

2006), is called amber suppression as it allows

the nsAA to be encoded at the UAG (amber)
stop codon. An additional, engineered EF-Tu

may be required when the nsAA of interest is

too bulky to fit into the native EF-Tu amino acid
binding pocket or its charge causes inefficient

binding (Park et al. 2011). Although it is worth

noting that both theWGE (Kiga et al. 2002) and
the ICE (Ezure et al. 2014) systems have been

used to incorporate nsAAs, for the purposes of

this review, we will focus on the extensive work
that has been performed in the ECE CFPS plat-

form.

The Swartz laboratory has made many con-
tributions to the development of CFPS plat-

forms for nsAA incorporation, especially in

the area of substrate optimization (Goerke
and Swartz 2009; Bundy and Swartz 2010). Al-

bayrak and Swartz produced ≏1.5 mg/mL of

sfGFP protein containing p-azido-phenylalnine
(pAzF; azide, “click” chemistry, photocross-

linker) (Chin et al. 2002) and p-acetylphenyl-

alanine ( pAcF; keto, orthogonal reactivity)
(Lemke 2011) with a 50%–88% amber sup-

pression efficiency (Albayrak and Swartz

2013a). This success was possible by optimizing
the concentration of o-tRNA, which was iden-

tified as a limiting factor of nsAA incorporation

in CFPS reactions (Albayrak and Swartz 2013b).
To develop a practical, cost-effective method for

supplying more o-tRNA to the reaction, the
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o-tRNA was coexpressed in the CFPS reaction

with the modified protein. The same method
was validated byHong et al. (2014b) and proved

to reduce cost and setup time of nsAA CFPS

reactions. It has also been found that increasing
o-aaRS concentrations can improve the produc-

tion of nsAA-containing proteins in CFPS reac-

tions. This not surprising considering that en-
gineered o-aaRS have 500- to 7000-fold lower

catalytic efficiencies, as compared with their na-

tive counterparts (O’Donoghue et al. 2013).
High concentrations of o-aaRS is only possible

in vitro as o-aaRSs are known to be toxic in vivo

at medium to high concentrations (Hong et
al. 2014a). Despite this, Chemla and colleagues

have shown that endogenously expressed pyrro-

lysyl OTS can allow for maximal suppression

efficiency for CFPS nsAA incorporation
(Chemla et al. 2015).

The efficiency of nsAA incorporation is

greatly limited by nsAA aminoacylation effi-
ciency (O’Donoghue et al. 2013). Further evo-

lution of o-aaRS/o-tRNA pairs could increase

catalytic efficiencies. Using in vitro compart-
mentalized directed evolution strategies (Ni-

shikawa et al. 2012), CFPS systems can, in prin-

ciple, assay larger libraries sizes compared with
in vivo evolution methods, which are limited

by transformation efficiencies. Additionally,

o-aaRS evolved in vitro have the potential to
reach lower Km values by limiting the concen-

tration of nsAA. By comparison, intracellular
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Figure 3. Schematic representation of cotranslational incorporation of a nonstandard amino acid (nsAA) using
an orthogonal translation system and amber suppression. The orthogonal aminoacyl-tRNA synthetase (o-aaRS)
first binds its cognate nsAA and cognate o-tRNA. The o-aaRS then catalyzes the aminoacylation of the o-tRNA.
The aminoacyl-tRNA (aa-tRNA) is then released from the o-aaRS and transported to the ribosome by the
elongation factor-Tu (EF-Tu). The aa-tRNA associates with the A-site of the ribosome and its anticodon binds
the complementary triplet codon of the messenger RNA (mRNA). The ribosome then ligates the nsAA to the
growing peptide chain. When release factor 1 (RF-1) outcompetes the aa-tRNA for binding at the UAG amber
stop codon, the protein is truncated, which results in a decrease of nsAA incorporation efficiency. This problem
has been overcome by recoding all TAG codons to the synonymous TAA codon, permitting the deletion of RF-1
(Johnson et al. 2011; Loscha et al. 2012b; Ohtake et al. 2012; Lajoie et al. 2013).
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concentrations of nsAAs are often high because

of limited nsAA export and catabolism mecha-
nisms, limiting the Km values attainable via in

vivo evolution strategies.

Major advances have also removed a signifi-
cant obstacle of amber suppression: nsAA-o-

tRNA competition with release factor 1 (RF-1)

(Johnson et al. 2011; Loscha et al. 2012b; Oh-
take et al. 2012; Lajoie et al. 2013). Endogenous

RF-1 recognizes amber codons and subse-

quently activates hydrolysis of peptidyl-tRNA
to release the peptide chain. During nsAA in-

corporation using amber suppression technol-

ogy, RF-1 competes with the nsAA-o-tRNA,
resulting in a significant amount of truncated

product and reduced nsAA incorporation effi-

ciencies. By recoding TAG codons from seven
essential genes to the synonymous TAA ochre

codons, the RF-1 gene was deleted without dra-

matically effecting cellular growth. The RF-1
deletion strain increased O-phosphoserine in-

corporation by 120-fold in vivo (Heinemann

et al. 2012). A strain with RF-1 knocked out
and 13 essential gene TAG codons recoded to

TAA was recently developed as a chassis for

CFPS. As a result, a 250% improvement was
observed compared with the parent stain with

RF-1 present (Hong et al. 2014b). More recent-

ly, researchers developed an RF-1 deletion strain
in which all 321 amber codons were recoded to

TAA, completely freeing the amber codon to

encode nsAAs (Lajoie et al. 2013). Although
successful insertion of multiple nsAAs is possi-

ble without these modifications (Loscha et al.

2012a; Ozawa et al. 2012), a total recoded CFPS
chassis has allowed for the incorporation of five

pAcF residues into sfGFP (Hong et al. 2015)

without additional extract processing. Further
development of this chassis can potentially al-

low tens of nsAAs to be incorporated into a

single protein.
Despite the many advances of nsAA incor-

poration technology, there is room for improve-

ment and development for novel applications.
At present, it is not possible to incorporatemore

than one kind of nsAA into a single protein in

vitro without significant extract processing (Oh
et al. 2014). Enabling incorporation of multiple

types of nsAAs at multiple locations in recom-

binant proteins are important technological

challenges for cell-free systems that need to be
tackled in the near future. The development of

further evolved OTSs for improved nsAA incor-

poration is another important research direc-
tion that could be performed in vitro, in which

the design space is not constrained by cell via-

bility. In addition, genome-engineering efforts
to remove negative effectors of in vitro protein

synthesis (e.g., nucleases, proteases) will in-

crease yields of nsAA-containing proteins in re-
coded chassis strains (Hong et al. 2015). Beyond

extract-based systems, it should be noted that

purified approaches offer much more freedom
of design and control of the translation appara-

tus for genetic reprogramming (Forster et al.

2003; Murakami et al. 2006; Goto et al. 2011;
Passioura and Suga 2013).

Posttranslational Incorporation of Glycans
and Metal Centers

PTMs can be performed in CFPS systems by
coactivating enzyme pathways and protein syn-

thesis in the cell lysate. The synthetic pathways

can be synthesized in vivo in the chassis strain
before extract preparation, in vitro via CFPS, or

purified and added to the CFPS reaction. These

efforts have enabled the in vitro production of
proteins bearing glycans (sugars) and accesso-

rized with metal centers.

Glycosylation is particularly important for
the production of recombinant protein thera-

peutics, as improper glycosylation can adversely

affect the therapeutic activityor circulation half-
life of a therapeutic (Li and d’Anjou 2009). Gly-

cans are synthesized by enzymes called glycosyl-

transferases (GTs) and attached to proteins
by oligosaccharyltransferases (OSTs), which to-

gether comprise the glycosylation machinery of

the cell (Fig. 4).
Glycosylation is possible in some eukaryotic

CFPS systems, including ICE, CHO extract, and

K562 extract (Kubick et al. 2009; Stech et al.
2013, 2014; Brodel et al. 2015). However, these

platforms harness the endogeneous machinery

to carry out glycosylation. As a result, this ap-
proach restricts the possible glycan structures to

those naturally synthesized by the host cells,
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which may not precisely resemble those found

on the recombinant protein of interest. In
addition, one would need to learn how to reca-

pitulate protein trafficking to achieve some

glycosylation patterns. Recent in vivo glycoen-
gineering efforts have shown that cellular gly-

cosylation machinery can be engineered to

synthesize desired glycan structures (Hamilton
et al. 2006; Fisher et al. 2011; Valderrama-Rin-

con et al. 2012; Meuris et al. 2014). More recent

efforts are exploiting the open cell-free reaction
environment for glycoengineering to enable

synthetic glycosylation pathways. In a pioneer-

ing study, Guarino and DeLisa (2012) showed
that glycosylated proteins can be synthesized in

vitro by adding purified bacterial lipid-linked

oligosaccharides and the PglB OST to a CPFS
reaction. Yields of between 50–100 mg/mL of

AcrA, aCampylobacter jejuni glycoprotein, were

achieved. This result provides a potential path
for the incorporation of synthetic, human gly-

cosylation in cell-free systems through the trans-

fer of synthetic enzyme pathways to bacterial

cell-free systems. However, significant develop-
ment of this technology is still needed.

Metalloproteins are important catalysts in

biology (Kunamneni et al. 2008). Typically, in
vivo production of metalloproteins involves

apoprotein production and purification, fol-

lowed by in vitro metal loading (Lawton and
Rosenzweig 2011). CFPS systems potentially of-

fer one-pot synthesis of metal-loaded metallo-

proteins by addition of free metal atoms and
protein chaperones to in vitro reaction mixture.

The first example of this approach was the in

vitro synthesis of the FeFe hydrogenase metal-
loprotein (Boyer et al. 2006; Kuchenreuther

et al. 2014). Three FeS cluster-containing pro-

teins, HydE, HydF, and HydG, are required to
assemble the FeFe hydrogenase. This enzyme

pathway was reconstituted in vitro using E. coli

lysates containing HydE, HydF, and HydG.
When the purified apo-form of the FeFe hy-

drogenase was added to the reaction, the active

Purified PgIB

Purified lipid-linked

oligosaccharides

CytoplasmPgIK

PgIJ

PgIH
PgIIPgIAPgIC

PeriplasmUndecaprenyl pyrophosphate

Bacillosamine

N-acetylgalactosamine

Glucose

Glycosyltransferase

Flippase

Lipid-linked

oilgosaccharide

Oligosaccharyl transferase

Cell-free transcription, translation, and glycosylation

AcrA AcrA AcrA

In vitro

In vivo

(2)(1)

(1)

PgIB

(3)

(2)

Figure 4.Glycoprotein production in cell-free systems. TheCampylobacter jejuniN-glycan biosynthesis pathway,
which contains glycosyltransferases and aflippase, is expressed invivo inEscherichiacoli. These enzymes assemble
sugar monomers (bacillosamine, N-acetylglucosamine, glucose) onto a lipid anchor (undecaprenyl pyrophos-
phate) in themembrane to form lipid-linked oligosaccharides (LLOs) (top). Similarly, theC. jejuni oligosacchar-
yltransferase (OST), PglB, is expressed in vivo in E. coli (bottom). LLOs and PglB are purified and added to the in
vitro glycoprotein synthesis reaction.Additionof purifiedLLOsandPglB to the cell-free protein synthesis (CFPS)
reaction results in the synthesis of fully glycosylated AcrA, a C. jejuni glycoprotein (Guarino and DeLisa 2012).
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hydrogenase was synthesized at yields of 100–

200 mg/mL (Kuchenreuther et al. 2014). This
study provided evidence that enzymatic path-

ways can be reconstituted in vitro, but the inte-

gration of in vitro protein synthesis into this
system was not shown. More recently, Li and

colleagues showed that two bacterial and two

archaeal multicopper oxidase (MCO) enzymes
could be synthesized in vitro, with three of

the four enzymes produced at yields of greater

than 1 mg/mL. They further showed that active
MCO could be synthesized in a one-pot in vitro

reaction containing 100 mMCuSO4, or by post-

translational addition of CuSO4 to the reaction
without the need for purification. MCO syn-

thesis was also scaled from 15 mL to 100 mL

without impacting productivity or protein sol-
ubility (Li et al. 2016). This study shows the

potential of CFPS as a novel method for pro-

duction of metalloproteins at high titers.
Synthetic PTM mechanisms and enzymatic

pathways in cell-free systems have great poten-

tial for expanding the types of controllable pro-
tein modifications that are possible. Further

work in this area will expand opportunities for

producing modified proteins with a variety of
(a)biological modifications in vitro.

BUILDING UP TO GENETIC NETWORKS
IN CELL-FREE SYSTEMS

In addition to using cell-free synthetic biology
for the production of individual proteins or as-

sembly of macromolecules, CFPS systems are

now used for the construction of sophisticated
genetic networks, often referred to as genetic

circuits (Brophy and Voigt 2014). Initial efforts

to design and implement synthetic genetic net-
works dominated early in vivo synthetic biology

efforts (Gardner et al. 2000), serving as a for-

ward engineering approach for studying natural
gene regulation and controlling cellular behav-

ior. Much progress has been made toward de-

veloping foundational genetic network mod-
ules, such as genetic switches (Bayer and

Smolke 2005; Ham et al. 2006, 2008), logic gates

(Rackham and Chin 2005; Anderson et al. 2007;
Win and Smolke 2008), and memory modules

(Friedland et al. 2009), as well as engineering

cells with practical applications in the areas of

bioremediation (Gilbert et al. 2003), biosensing
(Rajendran and Ellington 2008), biofuel pro-

duction (Inokuma et al. 2010), and therapeutic

applications (Ro et al. 2006). Despite the afore-
mentioned progress, translational in vivo syn-

thetic biology is often limited by cellular viabil-

ity for three key reasons. First, in vivo genetic
networks are constrained to relatively small net-

works owing to restrictions on cellularmetabol-

ic load and a limited number of genetic parts.
Second, limited high-throughput methods for

optimizing regulatory networks slow in vivo

genetic network design cycles. Third, interfer-
ence between host regulation and synthetic net-

works (cross talk) results in poor computational

modeling, reducing prediction capabilities as
the network grows in size. Fortunately, many

of these challenges can be addressed by imple-

menting genetic networks in vitro using CFPS
platforms.

For instance, synthetic gene networks can be

studied in isolation as all of the endogenous
DNA and mRNA are removed during lysate

preparation. This eliminates the issue of cross

talk between endogenous regulation and the
synthetic network. In addition, the open nature

of cell-free systems allows integration with

hardware for high-throughput assays and on-
board reaction monitoring. Consequently, au-

tomation will reduce current design–build–

test cycle time, and will provide new biological
modules for in vivo characterization. Further-

more, compartmentalizing CFPS reactions

within synthetic vesicles provides an opportu-
nity to study artificial cells (Caschera and Noi-

reaux 2016) and the fundamental properties of

gene regulation in confined environments.

Implementing Genetic Networks In Vitro

Simple regulatory elements, such as inducible

promoters (Noireaux et al. 2003), transcrip-

tional switches (Kim et al. 2006), andmultistage
cascades (Noireaux et al. 2003), were the first

modules to be implemented in vitro. However,

because current CFPS systems are optimized for
mRNA stability and protein overproduction, in

vitro genetic networks are inadequate when
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constructing oscillatory circuits (Elowitz and

Leibler 2000) or larger networks. Complex ge-
netic circuitry requires resources to be efficient-

ly directed toward downstream networks, as

well as component half-lives to mimic those
found in cells. This is made clear when consid-

ering that in vivo global mRNA half-life is

≏6.8 min (Selinger et al. 2003), whereas, in vi-
tro mRNA half-life is ≏13 min (Shin and Noi-

reaux 2010). This discrepancy causes overall

limitations of translational machinery for
CFPS reactions as mRNA is accumulated in

the reaction (Selinger et al. 2003). To overcome

these issues, larger genetic circuits have been
implemented in vitro by using purified MazF,

a sequence-specific endoribonuclease, which

has been shown to incrementally inactivate
mRNA (Shin andNoireaux 2010). In particular,

AND gates and negative feedback loops were

developed in an E. coli cell-free expression sys-
tem using this method (Shin and Noireaux

2012). Karig and colleagues also showed neg-

ative feedback loops but without mRNA acti-
vation mechanisms, and consequently saw un-

wanted accumulation of mRNA that ultimately

affected the dynamics of the network (Karig
et al. 2012). CFPS protein half-life has also

been found to be much longer than in in vivo

systems because of the reduced proteolytic ac-
tivity of the CFPS system. This last aspect is

important for constructing oscillatory circuits

and needs to be further investigated.
Additionally, characterization and optimi-

zation of regulatory elements for cell-free sys-

tems have been explored (Shin and Noireaux
2012; Garamella et al. 2016). This provides

more transcriptional handles to design higher-

order genetic networks.Moreover, T7 promoter
variants have also been developed in a cell-

free context for expanding regulation options

and improved switch-like activity (Karig et al.
2012; Iyer et al. 2013). To limit the number of

synthesized proteins required for a genetic net-

work, alternative transcriptional control mech-
anisms, such as ligand-sensitive transcriptional

controls, have also been shown (Iyer and Dok-

tycz 2014). Finally, RNA-based genetic circuits
represent another solution to limit energy loss

from protein production and provide the ben-

efit of quicker response times (Takahashi et al.

2014; Chappell et al. 2015).
The open nature of CFPS also allows for in

situ monitoring of genetic networks (Norred

et al. 2015). In particular, binary FRET probes
have been used to monitor real-time mRNA

dynamics (Niederholtmeyer et al. 2013). Fluo-

rescent RNA aptamers have also been used as
an alternative simple strategy for monitoring

RNA in real-time (Chizzolini et al. 2014).

High-throughput analysis of biomolecular in-
teractions can also be performed by encapsu-

lating CFPS reactions into nanoliter droplets

and examining interactions via an immuno-
assay (Rendl et al. 2013). Additionally, HPLC

analyses for monitoring metabolite concentra-

tions are straightforward to use because CFPS
reactions can be run directly on anHLPCorMS

machine.

Collectively, recent efforts hold promise for
using more complex circuitry and real-world

applications (Pardee et al. 2014). Because of

the open environment of cell-free systems and
short implementation times, CFPS systems can

also be used as a complementary route to pro-

totyping genetic networks in an in vitro envi-
ronment before in vivo implementation.

Opportunities in Prototyping

In vivo synthetic biology applies molecular bi-

ology tools to forward-engineer cellular behav-
ior. This is performed first through in silico

design of genetic networks, construction of

those networks, followed by testing in vivo (Lit-
cofsky et al. 2012; Sleight and Sauro 2013).

However, in vivo engineering cycles require a

significant amount of time and financial re-
sources (Ro et al. 2006). In contrast, in vitro

biomolecular prototyping promises to improve

the overall efficiency of the design–build–test
cycle (Fig. 5A) (Sun et al. 2014). There are sev-

eral demonstrations of prototyping circuits

in vitro for in vivo implementation, such
as negative feedback loops (Karig et al. 2012),

multi-input regulated T7 promoters (Iyer et al.

2013), riboswitches (Martini and Mansy 2014),
and oscillators (Niederholtmeyer et al. 2015).

However, it is difficult to predict correlations
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between parameters (e.g., promoters/RBS
strengths) found in vitro and predicted values

in vivo. For instance, it was found that char-

acterizing promoter strength in vitro must be
performed with circularized DNA for there is

a correlation to in vivo promoter strengths

(Chappell et al. 2013); however, this is limited
to low to medium strength promoters. Addi-

tional work is needed to find unknown param-

eters involved with the transition from in vitro
to in vivo implementation.

Despite these issues, in vitro prototyping
techniques are compelling and provide a poten-

tially rapid alternative to in vivo systems for

circuit design and testing (Niederholtmeyer
et al. 2015; de Los Santos et al. 2016). For in-

stance, in vitro prototyping can be accelerated

through microscale reactions in micro-well
plates and microfluidic systems. Indeed, these

methodologies decrease prototyping time with

real-time simultaneous or sequential screening
of many system parameters (Lee et al. 2007).

Modeling

In vitro design–build–test cycle

In vivo
implementation

A

B

?

x n

Devices SystemsParts

RBS Terminator

RiboregulatorPromoter

1. Transcription and translational
    elements

2. Concentration of purified
    components

1. Functionality
2. Response time
3. Dynamic range

Input Output
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2. Feedback speed
3. Redundancy
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Figure 5. In vitro prototyping of genetic networks. (A) Overview of in vitro prototyping for speeding up in vivo
design–build–test cycles. In vitro prototyping allows for a genetic part or network to be quickly screened for
specific characteristics in vitro before implementation in vivo. First, in the “Design” stage, the genetic parts or
networks are designed, informed by computational models or literature. Next, in the “Build” stage, several
designs are built. In the “Test” phase, built designs are assayed in vitro. If the Test stage does not yield the desired
behavior, one reinitiates the cyclennumberof times until the desired characteristic is achieved. The Test stage can
also inform the modeling and allow for better models for the Design stage. Once the desired characteristics are
found, top candidates that behave as expected can be implemented in vivo, with an increased likeliness of being
functional. (B) Variables for characterization and optimization. In vitro prototyping can occur by characterizing
or optimizing various levels on the genetic network “abstraction hierarchy.” At the most basic level, transcrip-
tional and translational parts or purified components of a network can be analyzed for functionality. In vitro
prototyping can also be applied at the device level to assess input–output relationships. Finally, an in vitro
systems level analysis allows for an isolated study of how multiple genetic devices feed into each other and a
preview of the overall network behavior.
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Additionally, complementary, predictive com-

putational models are being developed to better
understand CFPS’ limitations in prototyping

(Karzbrun et al. 2011). This work has confirmed

experimental results (Noireaux et al. 2003) that,
in CFPS, potential design limitations arise from

improperly balanced energy usage. Using a con-

tinuous exchange set-up can partially address
this issue, and has been proven to be a reliable

solution for prototyping (Noireaux et al. 2003).

Prototyping efforts have even moved beyond a
laboratory environment with development of a

CFPS system that is both portable and stable

because of its ability to react on paper (Pardee
et al. 2014). This allows for a low-cost prototyp-

ing environment and provides opportunities in

using CFPS for portable, inexpensive diagnostic
applications.

Improvements in CFPS systems have

opened newopportunities for cell-free synthetic
biology, including studying genetic networks in

isolation, characterizing new regulatory ele-

ments and speeding up design–build–test cy-
cles for in vivo synthetic biology. The size of

genetic networks achievable in CFPS systems

will only increase as CFPS systems are further
developed to meet the specific needs of in vitro

genetic networks (e.g., downstream resourcing

and matching in vivo component half-lives).
Additionally, computational modeling of cell-

free reactions will further improve in silico de-

sign of in vitro networks and assist in under-
standing the genetic regulation in isolation. In

sum, the development of in vitro genetic net-

works holds much potential for the synthetic
biology field as it complements many in vivo

efforts.

CONCLUSIONS AND FUTURE OUTLOOK

Overall, the renewed scientific interest in CFPS
in the past two decades has resulted in drasti-

cally increased batch yields, active reaction du-

rations, and reaction volumes (Carlson et al.
2012). The variety of different CFPS technology

platforms has further enabled the in vitro pro-

duction of proteins with diverse complexity and
species origin. CFPS technology will be invalu-

able in the near future as an “organism protein

factory.” In this way, CFPS technology will aid

efforts to determine the gene products for the
many organisms whose genomes have been se-

quenced or will be sequenced in the near future,

owing to the rapidly decreasing cost of DNA
sequencing technology. For example, the Sar-

gasso Seas expedition identified .1.2 million

genes, many of which have unknown function
and unknown potential as synthetic parts (Ven-

ter et al. 2004).

CFPS technology will also have an increas-
ing role in complementing in vivo synthetic

biology efforts. Because of its flexibility and

high-throughput potential, cell-free systems
are perfectly suited to synthesize and assay large

libraries, not only for genetic networks as sur-

veyed herein, but also for evolutionary or pro-
teomics studies (Takemori et al. 2015). This will

provide in vivo efforts with enriched mutant

libraries and accelerated methods for preparing
large-scale protein libraries. In sum, CFPS holds

tremendous potential to transform our ability

to rapidly synthesize and engineer recombinant
proteins and its applications in the synthetic

biology field will only grow in the future.
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