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Abstract

Despite rapid developments in single cell sequencing, sample-specific batch effects, detection of cell multiplets, and

experimental costs remain outstanding challenges. Here, we introduce Cell Hashing, where oligo-tagged antibodies

against ubiquitously expressed surface proteins uniquely label cells from distinct samples, which can be subsequently

pooled. By sequencing these tags alongside the cellular transcriptome, we can assign each cell to its original sample,

robustly identify cross-sample multiplets, and “super-load” commercial droplet-based systems for significant

cost reduction. We validate our approach using a complementary genetic approach and demonstrate how

hashing can generalize the benefits of single cell multiplexing to diverse samples and experimental designs.

Introduction

Single cell genomics offers enormous promise to trans-

form our understanding of heterogeneous processes

and to reconstruct unsupervised taxonomies of cell

types [1, 2]. As studies have progressed to profiling

complex human tissues [3, 4] and even entire organ-

isms [5, 6], there is a growing appreciation of the need

for massively parallel technologies and datasets to un-

cover rare and subtle cell states [7–9]. While the

per-cell cost of library prep has dropped, routine profil-

ing of tens to hundreds of thousands of cells remains

costly both for individual labs and for consortia such as

the Human Cell Atlas [10].

Broadly related challenges also remain, including the

robust identification of artifactual signals arising from

cell multiplets or technology-dependent batch effects

[11]. In particular, reliably identifying expression profiles

corresponding to more than one cell remains an un-

solved challenge in single-cell RNA-seq (scRNA-seq)

analysis, and a robust solution would simultaneously im-

prove data quality and enable increased experimental

throughput. While multiplets are expected to generate

higher complexity libraries compared to singlets, the

strength of this signal is not sufficient for unambiguous

identification [11]. Similarly, technical and “batch” ef-

fects have been demonstrated to mask biological signal

in the integrated analysis of scRNA-seq experiments

[12], necessitating experimental solutions to mitigate

these challenges.

Recent developments have poignantly demonstrated

how sample multiplexing can simultaneously overcome

multiple challenges [13, 14]. For example, the demuxlet

[13] algorithm enables the pooling of samples with dis-

tinct genotypes together into a single scRNA-seq experi-

ment. Here, the sample-specific genetic polymorphisms

serve as a fingerprint for the sample of origin and there-

fore can be used to assign each cell to an individual after

sequencing. This workflow also enables the detection of

multiplets originating from two individuals, reducing

non-identifiable multiplets at a rate that is directly pro-

portional to the number of multiplexed samples. While

this elegant approach requires pooled samples to origin-

ate from previously genotyped individuals, in principle,

any approach assigning sample fingerprints that can be

measured alongside scRNA-seq would enable a similar

strategy. For instance, sample multiplexing is frequently

utilized in flow and mass cytometry by labeling distinct
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samples with antibodies to the same ubiquitously

expressed surface protein but conjugated to different

fluorophores or isotopes, respectively [15–17].

We recently introduced CITE-seq [18], where

oligonucleotide-tagged antibodies are used to convert

the detection of cell surface proteins into a sequenceable

readout alongside scRNA-seq. We reasoned that a de-

fined set of oligo-tagged antibodies against ubiquitous

surface proteins could uniquely label different experi-

mental samples. This enables us to pool these together

and use the barcoded antibody signal as a fingerprint for

reliable demultiplexing. We refer to this approach as

Cell Hashing, based on the concept of hash functions in

computer science to index datasets with specific fea-

tures; our set of oligo-derived hashtags equally define a

“lookup table” to assign each multiplexed cell to its ori-

ginal sample. We demonstrate this approach by labeling

and pooling eight human PBMC samples and running

them simultaneously in a single droplet-based scRNA-

seq run. Cell hashtags allow for robust sample multiplexing,

confident multiplet identification, and discrimination of

low-quality cells from ambient RNA. In addition to enab-

ling “super-loading” of commercial scRNA-seq platforms to

substantially reduce costs, this strategy represents a

generalizable approach for multiplet identification and mul-

tiplexing that can be tailored to any biological sample or ex-

perimental design.

Results

Hashtag-enabled demultiplexing based on ubiquitous

surface protein expression

We sought to extend antibody-based multiplexing strat-

egies [16, 17] to scRNA-seq using a modification of our

CITE-seq method [18]. We initially chose a set of

monoclonal antibodies directed against ubiquitously

and highly expressed immune surface markers (CD45,

CD98, CD44, and CD11a), combined these antibodies

into eight identical pools (pool A through H), and sub-

sequently conjugated each pool to a distinct Hashtag

oligonucleotide (henceforth referred to as HTO, Fig. 1a;

“Methods” section). The HTOs contain a unique 12-bp

barcode that can be sequenced alongside the cellular

transcriptome, with only minor modifications to stand-

ard scRNA-seq protocols. We utilized an improved and

simplified conjugation chemistry compared to our pre-

vious approach [18], by using iEDDA click chemistry to

covalently attach oligonucleotides to antibodies [19]

(“Methods” section).

We designed our strategy to enable CITE-seq and Cell

Hashing to be performed simultaneously, but to generate

separate sequencing libraries. Specifically, the HTOs

contain a different amplification handle than our stand-

ard CITE-seq antibody-derived tags (ADT) (“Methods”

section). This allows HTOs, ADTs, and scRNA-seq

libraries to be independently amplified and pooled at de-

sired quantities. Notably, we have previously observed

robust recovery of antibody signals from highly

expressed epitopes due to their extremely high copy

number. This is in contrast to the extensive “dropout”

levels observed for scRNA-seq data and suggests that we

can faithfully recover HTOs from each single cell, enab-

ling assignment to sample of origin with high fidelity.

To benchmark our strategy and demonstrate its utility,

we obtained peripheral blood mononuclear cells

(PBMCs) from eight separate human donors (referred to

as donors A through H) and independently stained each

sample with one of our HTO-conjugated antibody pools,

while simultaneously performing a titration experiment

with a pool of seven immunophenotypic markers

(“Methods” section) for CITE-seq. We subsequently

pooled all cells together in equal proportion, alongside

an equal number of unstained HEK293T cells (and 3%

mouse NIH-3T3 cells) as negative controls, and ran the

pool in a single lane on the 10x Genomics Chromium

Single Cell 3′ v2 system. Following the approach in

Kang et al. [13], we “super-loaded” the 10x Genomics in-

strument, loading cells at a significantly higher concen-

tration with an expected yield of 20,000 single cells and

5000 multiplets. Based on Poisson statistics, 4365 multi-

plets should represent cell combinations from distinct

samples and can potentially be discarded, leading to an

unresolved multiplet rate of 3.1%. Notably, achieving a

similar multiplet rate without multiplexing would yield

~ 4000 singlets. As the cost of commercial droplet-based

systems is fixed per run for sample preparation, multi-

plexing therefore allows for the profiling of ~ 400% more

cells for the same cost.

We performed partitioning and reverse transcription

according to the standard protocols, utilizing only a

slightly modified downstream amplification strategy

(“Methods” section) to generate transcriptome, HTO,

and ADT libraries. We pooled and sequenced these on

an Illumina HiSeq2500 (two rapid run flowcells), aim-

ing for a 90%:5%:5% contribution of the three libraries

in the sequencing data. Additionally, we performed

genotyping of all eight PBMC samples and HEK293T

cells with the Illumina Infinium CoreExome array,

allowing us to utilize both HTOs and sample genotypes

(assessed by demuxlet [13]) as independent demulti-

plexing approaches.

When examining pairwise expression of two HTO

counts, we observed relationships akin to “species-mix-

ing” plots (Fig. 1b), suggesting mutual exclusivity of

HTO signal between singlets. Extending beyond pairwise

analysis, we developed a statistical model to classify each

barcode as “positive” or “negative” for each HTO

(“Methods” section). Briefly, we modeled the “back-

ground” signal for each HTO independently as a
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Fig. 1 Sample multiplexing using DNA-barcoded antibodies. a Schematic overview of sample multiplexing by Cell Hashing. Cells from different

samples are incubated with DNA-barcoded antibodies recognizing ubiquitous cell surface proteins. Distinct barcodes (referred to as hashtag-oligos,

HTO) on the antibodies allow pooling of multiple samples into one scRNA-seq experiment. After sequencing, cells can be assigned to their sample of

origin based on HTO levels (“Methods” section). b Representative scatter plot showing raw counts for HTO A and HTO B across all cell barcodes. Both

axes are clipped at 99.9% quantiles to exclude visual outliers. c Heatmap of scaled (z-scores) normalized HTO values based on our classifications.

Multiplets express more than one HTO. Negative populations contain HEK293T and mouse NIH-3T3 cells that were spiked into the experiments as

negative controls. d tSNE embedding of the HTO dataset. Cells are colored and labeled based on our classifications. Eight singlet clusters and all 28

cross-sample doublet clusters are clearly present. e Distribution of RNA UMIs per cell barcode in cells that were characterized as singlets (red),

multiplets (violet) or negatives (grey). f Transcriptome-based clustering of single-cell expression profiles reveals distinct immune cell populations

interspersed across donors. B, B cells; T, T cells; NK, natural killer cells; mono, monocytes; DC, dendritic cells. Cells are colored based on their HTO

classification (donor ID), as in d
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negative binomial distribution, estimating background

cells based on the results of an initial k-medoids cluster-

ing of all HTO reads (“Methods” section). Barcodes with

HTO signals above the 99% quantile for this distribution

were labeled as “positive,” and barcodes that were “posi-

tive” for more than one HTO were labeled as multiplets.

We classified all barcodes where we detected at least

200 RNA UMI, regardless of HTO signal.

Our classifications (visualized as a heatmap in Fig. 1c)

suggested a clear identification of 8 singlet populations,

as well as multiplet groups. We also identified barcodes

with negligible background signal for any of the HTOs

(labeled as “negatives”), consisting primarily (86.5%) of

HEK293T and mouse cells. We removed all HEK293T

and mouse cells from downstream analyses (“Methods”

section), with the remaining barcodes representing

14,002 singlets and 2974 identifiable multiplets, in line

with expectations. Our classifications were also fully

concordant with a tSNE embedding, calculated using

only the 8 HTO signals, which enabled the clear

visualization not only of the 8 groups of singlets (donors

A through H) but also the 28 small groups representing

all possible doublet combinations (Fig. 1d). Moreover,

we observed a clear positive shift in the distribution of

RNA UMI per barcode for multiplets, as expected

(Fig. 1e), while the remaining negative barcodes

expressed fewer UMIs and may represent failed reac-

tions or “empty” droplets containing only ambient RNA.

These results strongly suggest that HTOs successfully

assigned each barcode into its original sample and en-

abled robust detection of cross-sample multiplets. The

large dynamic range of RNA UMI per cell barcode in

multiplets (Fig. 1e) illustrates the difficulty of unambigu-

ous multiplet assignment based on higher UMI counts. ,

and we observe the same challenges with total HTO sig-

nal (Additional file 1: Figure S1A). Performing transcrip-

tomic clustering of the classified singlets enabled clear

detection of seven hematopoietic subpopulations, which

were interspersed across all 8 donors (Fig. 1f ).

Genotype-based demultiplexing validates Cell Hashing

We next compared our HTO-based classifications to

those obtained by demuxlet [13]. Overall, we ob-

served a strong concordance between the techniques,

even when considering the precise sample mixture in

called doublets (Fig. 2a). Exploring the areas of dis-

agreement, we identified 871 barcodes that were

classified based on HTO levels as singlets but were

identified as “ambiguous” by demuxlet. Notably, the

strength of HTO classification for these discordant

barcodes (represented by the number of reads

assigned to the most highly expressed HTO) was

identical to the barcodes that were classified as sin-

glets by both approaches (Fig. 2b). However,

discordant barcodes did have reduced RNA UMI

counts (Fig. 2c). We conclude that these barcodes

likely could not be genetically classified at our rela-

tively shallow sequencing depth (~ 24,115 reads per

cell), which is below the recommended depth for

using demuxlet, but likely represent true single cells

based on our HTO classifications.

In addition, we also observed 2528 barcodes that re-

ceived discordant singlet/doublet classifications be-

tween the two techniques (Fig. 2d). We note that this

does reflect a minority of barcodes (compared to

13,421 concordant classifications) and that in these dis-

cordant cases, it is difficult to be certain which of these

methods is correct. However, when we examined the

UMI distributions of each classification group, we ob-

served that only barcodes classified as doublets by both

techniques exhibited a positive shift in transcriptomic

complexity (Fig. 2d). This suggests that these discord-

ant calls are largely made up of true singlets and repre-

sent conservative false positives from both methods,

perhaps due to ambient RNA or HTO signal. Consist-

ent with this interpretation, when we restricted our

analysis to cases where demuxlet called barcodes as

doublets with > 95% probability, we observed a 75%

drop in the number of discordant calls (Fig. 2e).

Demuxlet requires sufficient numbers of reads and

SNPs to unequivocally classify a cell to a donor, and as

expected, discordantly classified cells had lower num-

bers of sequencing reads and SNPs (Additional file 1:

Figure S2A-D).

Finally, we also observed a rare number of cases where

both Cell Hashing and demuxlet classified cells as sin-

glets but with discordant (216/11,464; 1.9%) donor clas-

sifications. To investigate further, we took advantage of

the fact that all donors (A–G) except one (H) were also

stained with CITE-seq antibodies, and therefore, donor

H cells should not contain ADT reads. However, in 40

instances where demuxlet, but not Cell Hashing, classi-

fied cells as donor H, we observed robust (> 1000) ADT

counts in 37 cases, suggesting that these discordant calls

are misclassification errors from demuxlet (Add-

itional file 1: Figure S2E), in line with demuxlet’s esti-

mated error rate of 1–2% [13].

To further ensure that background binding levels

did not lead to incorrectly demultiplexed samples, we

performed a separate experiment where we mixed

four cell lines (HEK293T, THP1, K562, and KG1) to-

gether, each independently labeled with three distinct

Cell Hashing oligos. After demultiplexing, to assign

each barcode to a cell line of origin, we clustered

cells on the basis of their RNA expression levels,

obtaining four transcriptomic clusters (as expected).

Comparing our transcriptomic clusters with the

demultiplexing results, we observed nearly perfect
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concordance (99.7%), demonstrating a low rate of

misassignment for this experiment (Additional file 1:

Figure S3A, B).

Finally, we attempted to estimate the false-negative

rates for Cell Hashing, representing true single cells

that do not receive sufficient Cell Hashing signal to

be classified as singlets. To do this, we examined all

HTO-classified “singlet” and “negative” barcodes

from the PBMC experiment and performed cluster-

ing based on transcriptome data. As expected, we

found that “negative” cells predominantly formed a

distinct cluster from singlets. However, we did ob-

serve 117 barcodes originally classified as negatives,

but whose transcriptomic profiles clustered across

PBMC singlet subtypes. These barcodes likely repre-

sent single cells that were incorrectly classified from

Cell Hashing, representing a false-negative rate of

0.9% (Additional file 1: Figure S4), but have negli-

gible effects on cell type proportion estimates. Taken

together, our results validate that Cell Hashing en-

ables robust and accurate sample classification across

diverse systems.

Cell Hashing enables the efficient optimization of CITE-seq

antibody panels

Our multiplexing strategy not only enables pooling

across donors but also the simultaneous profiling of

multiple experimental conditions. This is widely applic-

able to the simultaneous profiling of diverse environ-

mental and genetic perturbations, but we reasoned that

we could also efficiently optimize experimental work-

flows, such as the titration of antibody concentrations

for CITE-seq experiments. In flow cytometry, antibodies

are typically run individually over a large dilution series

to assess signal-to-noise ratios and identify optimal con-

centrations [20]. While such experiments would be ex-

tremely cost prohibitive if run as individual 10x

Genomics lanes, we reasoned that we could multiplex

these experiments together using Cell Hashing.

We therefore incubated the PBMCs from different do-

nors with a dilution series of antibody concentrations

ranging over three orders of magnitude (“Methods” sec-

tion). Concentrations of CITE-seq antibodies were stag-

gered between the different samples to keep the total

amount of antibody and oligo consistent in each sample.

A B

D E

C

Fig. 2 Validation of Cell Hashing using demuxlet. a Row-normalized “confusion matrix” comparing demuxlet and HTO classifications. Each value

on the diagonal represents the fraction of barcodes for a given HTO classification that received an identical classification from demuxlet. b Count

distribution of the most highly expressed HTO for groups of concordant and discordant singlets. Both groups have identical classification strength

based on Cell Hashing. c Discordant singlets have lower UMI counts, suggesting that a lack of sequencing depth contributed to “ambiguous” calls

from demuxlet. d RNA UMI distributions for discordant and concordant multiplets. Only concordant multiplets exhibit increased molecular complexity,

suggesting that both methods are conservatively overcalling multiplets in discordant cases. e In support of this, demuxlet assigns lower multiplets

posterior probabilities to discordant calls
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After sample demultiplexing, we examined ADT distri-

butions across all concentrations for each antibody (ex-

amples in Fig. 3a–c) and assessed signal-to-noise ratio

by calculating a staining index similar to commonly used

metrics for flow cytometry optimization (Fig. 3d)

(“Methods” section).

All antibodies exhibited only background signal in

the negative control conditions and very weak

signal-to-noise at 0.06 μg/test. We observed that the

signal-to-noise ratio for most antibodies began to

saturate within the concentration range of 0.5 to

1 μg/test, comparable to the recommended concen-

trations for flow cytometry (Fig. 3d). This experi-

ment was meant as a proof of concept; an ideal

titration experiment would use cells from the same

donor for all conditions and a larger range of

concentrations but clearly demonstrates how Cell

Hashing can be used to rapidly and efficiently optimize

experimental workflows.

Cell Hashtags enable the discrimination of low-quality

cells from ambient RNA

Our cell hashtags can discriminate single cells from

doublets based on the clear expression of a single

HTO, and we next asked whether this feature could

also distinguish low-quality cells from ambient RNA.

If so, this would enable us to reduce our UMI “cut-

off” (previously set at 200) and would allow for the

possibility that certain barcodes representing ambient

RNA may express more UMI than some true single

cells. Most workflows set stringent UMI cutoffs to ex-

clude all ambient RNA, biasing scRNA-seq results

against cells with low RNA content and likely skewing

proportional estimates of cell type.

A

D E F

B C

Fig. 3 Cell Hashing enables efficient experimental optimization and identification of low-quality cells. a–c We performed a titration series to

assess optimal staining concentrations for a panel of CITE-seq immunophenotyping antibodies. Normalized ADT counts for CD8 (a), CD45RA (b),

and CD4 (c) are depicted for the different concentrations used per test. d Titration curve depicting the staining index (SI; “Methods” section) for

these three antibodies across the titration series. The signal/noise ratio for these antibodies begins to saturate at levels similar to manufacturer

recommended staining concentrations typical for flow cytometry antibodies. e Cells with low UMI counts can be distinguished from ambient

RNA using HTO classifications. Classified singlets group into canonical hematopoietic populations. f Barcodes classified as “negative” do not group

into clusters and likely represent “empty” droplets containing only ambient RNA

Stoeckius et al. Genome Biology          (2018) 19:224 Page 6 of 12



Indeed, when considering 4344 barcodes containing

50–200 UMI, we recovered 1110 additional singlets

based on HTO classifications, with 3108 barcodes char-

acterized as negatives. We classified each barcode as one

of our previously determined 7 hematopoietic popula-

tions (“Methods” section; Fig. 1F) and visualized the re-

sults on a transcriptomic tSNE embedding, calculated

independently for both “singlet” and “negative” groups.

For predicted singlets, barcodes projected to B, NK, T,

and myeloid populations which were consistently sepa-

rated on tSNE, suggesting that these barcodes represent

true single cells (Fig. 3e). In contrast, “negative” barcodes

did not separate based on their forced classification,

consistent with these barcodes reflecting ambient RNA

mixtures that may blend multiple subpopulations. We

therefore conclude that by providing a readout of sample

identity that is independent of the transcriptome, Cell

Hashing can help recover low-quality cells and/or cells

with very low RNA content that can otherwise be diffi-

cult to distinguish from ambient RNA (Fig. 3f ).

Towards a universal Cell Hashing antibody reagent

For our proof of principle experiments, we used a pool

of antibodies directed against highly expressed immune

surface markers (CD45, CD98, CD44, and CD11a). To

enable multiplexing of any cell type and sample, we

decided to redesign our panel to target more ubiqui-

tously expressed surface markers. MHC class I complex

(beta-2-microglobulin) and the sodium-potassium

ATPase-subunit (CD298) are among the most broadly

expressed surface proteins in human tissues [21]. Using

a pool of antibodies directed against both proteins would

allow us to multiplex virtually any cell type in one ex-

periment. While this manuscript was under revision, the

same antibody combination was demonstrated by Hart-

mann and colleagues to be a universal multiplexing re-

agent for CyTOF [22]. The extremely high expression

levels of both markers should enable robust HTO

demultiplexing, but in principle could label cells with an

overwhelming number of single-stranded polyA oligos

that might compete with polyadenylated cellular

mRNAs, resulting in lower gene and/or UMI counts per

cell. To investigate this potential competition, we stained

Jurkat cells with a dilution series of Cell Hashing anti-

bodies, ran a lane of 10x Chromium single cell 3′ v2

alongside a lane with non-hashed cells, and sequenced

the resulting transcriptome libraries. Transcriptomic

complexity levels, as indicated by the relationship be-

tween sequencing reads and UMI counts per cell, were

indistinguishable from non-hashed cells over all

tested concentrations of Cell Hashing antibodies, il-

lustrating no disadvantages when multiplexing sam-

ples (Additional file 1: Figure S5). Taken together,

these results demonstrate how Cell Hashing can be

easily applied to virtually any human sample with

readily available commercial reagents and without a

loss of transcriptomic complexity.

Discussion

Here, we introduce a new method for scRNA-seq multi-

plexing, where cells are labeled with sample-specific

“hashtags” for downstream demultiplexing and multiplet

detection. Our approach is complementary to pioneering

genetic multiplexing strategies, with each having unique

advantages. Genetic multiplexing does not utilize ex-

ogenous barcodes and therefore does not require alter-

ations to existing workflows prior to or after sample

pooling. In contrast, Cell Hashing requires incubation

with antibodies against ubiquitously expressed surface

proteins but can multiplex samples with the same geno-

type. Both methods do slightly increase downstream se-

quencing costs, due to the increased depth or read

length needed to identify SNPs (genetic approaches) or

sequencing of HTO libraries (Cell Hashing; approxi-

mately 2–5% of transcriptome sequencing costs). We be-

lieve that researchers will benefit from both approaches,

enabling multiplexing for a broad range of experimental

designs. In particular, we envision that our method will

be most useful when processing genetically identical

samples subjected to diverse perturbations (or experi-

mental conditions/optimizations, as in our titration ex-

periment) or to reduce the doublet rate when running

cells from a single sample.

By enabling the robust identification of cell multiplets,

both Cell Hashing and genetic multiplexing allow the

“super-loading” of scRNA-seq platforms. We demon-

strate this in the context of the 10x Genomics Chro-

mium system, but this benefit applies to any single cell

technology that relies on Poisson loading for cell isola-

tion. The per-cell cost savings for library preparation can

therefore be significant, approaching an order of magni-

tude as the number of multiplexed samples increases.

Notably, Cell Hashing enables even a single sample to

be highly multiplexed, as cells can be split into an arbi-

trary number of pools. As clearly discussed in Kang

et al. [13], savings in library prep are partially offset by

reads originating from multiplets, which must be se-

quenced and discarded. Still, as sequencing costs con-

tinue to drop, and experimental designs seek to

minimize technology-driven batch effects, multiplexing

should facilitate the generation of large scRNA-seq and

CITE-seq datasets. Informatic detection of multiplets

based on transcriptomic data also remains an important

challenge for the field, for example, to identify doublets

originating from two cells within the same sample.

While we used a pool of antibodies directed against

highly and ubiquitously expressed lymphocyte surface

proteins as the vehicle for our HTOs in our
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proof-of-principle experiments, we also introduced a more

universal pool of antibodies directed against two ubiqui-

tously expressed markers (B2M and CD298) to be used as

a Cell Hashing reagent for studies beyond the

hematopoietic system. Using a pool of antibodies mitigates

the possibility that stochastic or cell type variation in the

expression of any one marker would introduce bias in

HTO recovery. We however caution that there can be in-

stances when a cell type of interest does not express these

virtually ubiquitous surface proteins, which would result

in failure to successfully label and demultiplex these cells.

With the increasing interest in single nucleus sequencing

[23, 24], an additional set of hashing reagents directed

against nuclear proteins would further generalize this ap-

proach. Beyond antibody/epitope interactions, cell or nu-

cleus hashing could also be performed using alternative

means of attaching an oligo to a cell or nucleus, including

aptamers [25] or direct chemical conjugation of oligos to

cells or nuclei. Indeed, recently described approaches ac-

complish similar goals through transient transfection of

oligos [26], direct oligo to cell conjugation based on NHS

chemistry [27], lipid membrane intercalating oligos [28],

and viral integration-based genomic barcoding [30]. These

improvements will further enable multiplexing strategies

to generalize to diverse experiments regardless of species,

tissue, or technology.

Methods
PBMC genotyping

Peripheral blood mononuclear cells were obtained from

AllCells (USA). Genomic DNA was purified using the

AllPrep kit (Qiagen, USA) and genotyped using the Infi-

nium CoreExome 24 array (Illumina, USA) according to

the manufacturer’s instructions.

Cell culture

HEK293T (human) and NIH-3T3 (mouse) cells were

maintained according to the standard procedures in Dul-

becco’s modified Eagle’s medium (Thermo Fisher, USA)

supplemented with 10% fetal bovine serum (Thermo

Fisher, USA) at 37 °C with 5% CO2.

Antibody-oligo conjugates

Antibody-oligo conjugates directed against CD8 [clone:

RPA-T8], CD45RA [clone: HI100], CD4 [clone: RPA-

T4], HLA-DR [clone: L243], CD3 [clone: UCHT1],

CCR7 [clone: G043H7], and PD-1 [clone: EH12.2H7]

were provided by BioLegend (USA) containing 1–2 con-

jugated oligos per antibody on average.

First generation Cell Hashing antibodies were conju-

gated in-house. Antibodies were obtained as purified,

unconjugated reagents from BioLegend (CD45 [clone:

HI30], CD98 [clone: MEM-108], CD44 [clone: BJ18],

and CD11a [clone: HI111]) and were covalently and

irreversibly conjugated to HTOs by iEDDA click chem-

istry as previously described [19]. In short, antibodies

were washed into 1X borate buffered saline (50 mM

borate, 150 mM NaCl, pH 8.5) and concentrated to 1

mg/ml using an Amicon Ultra 0.5 ml 30 kDa MWCO

centrifugal filter (Millipore). Methyltetrazine-PEG4-

NHS ester (Click Chemistry Tools, USA) was dissolved

in dry DMSO and added at a 30-fold excess to the anti-

body and allowed to react for 30 min at room

temperature. Residual NHS groups were quenched by

the addition of glycine and the unreacted label was re-

moved via centrifugal filtration. 5′-Amine HTOs were

ordered from Integrated DNA Technologies (USA) and

reacted with a 20-fold excess of trans-cyclooctene-

PEG4-NHS (Click Chemistry Tools, USA) in 1X borate

buffered saline supplemented with 20% DMSO for 30

min. Residual NHS groups were quenched by the

addition of glycine, and residual label was removed by

desalting (Bio-Rad Micro Bio-Spin P6). Antibody-oligo

conjugates were formed by mixing the appropriate la-

beled antibody and HTO and incubating at room

temperature for at least 1 h. Residual methyltetrazine

groups on the antibody were quenched by the addition

of trans-cyclooctene-PEG4-acid, and unreacted oligo

was removed by centrifugal filtration using an Amicon

Ultra 0.5 ml 50 kDa MWCO filter (Millipore, USA). A

detailed and regularly updated point-by-point protocol

for antibody-oligo conjugation can be found at

www.cite-seq.com

Second generation Cell Hashing antibodies consisting

of a pool of antibodies directed against B2M [clone: 2

M2] and CD298 [clone: LNH-94] were purchased from

BioLegend (USA).

Antibody titration series

To test optimal concentration of antibody-oligo conju-

gates provided by BioLegend (USA) per CITE-seq ex-

periment, we tested 5 μg, 3 μg, 1 μg, 0.5 μg, 0.25 μg,

0.06 μg, and 0 μg for each conjugate. Titrations were

staggered over the different batches to keep the total

concentration of antibodies and oligos consistent be-

tween conditions (Additional file 2: Table S1).

Sample pooling

PBMCs from different donors were independently

stained with one of our HTO-conjugated antibody pools

and a pool of seven immunophenotypic markers for

CITE-seq at different amounts (see above). All eight

PBMC samples were pooled at equal concentration,

alongside unlabeled HEK293T and mouse NIH-3T3 as

negative controls (see table below) and loaded into the

10x Chromium instrument (Additional file 3: Table S2).
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CITE-seq on 10x Genomics instrument

Cells were “stained” with Cell Hashing antibodies and

CITE-seq antibodies as described for CITE-seq [18].

“Stained” and washed cells were loaded into 10x Gen-

omics Single Cell 3′ v2 workflow and processed accord-

ing to the manufacturer’s instructions up until the

cDNA amplification step (10x Genomics, USA). Two pi-

comoles of HTO and ADT additive oligonucleotides

were spiked into the cDNA amplification PCR, and

cDNA was amplified according to the 10x Single Cell 3′

v2 protocol (10x Genomics, USA). Following PCR, 0.6X

SPRI was used to separate the large cDNA fraction de-

rived from cellular mRNAs (retained on beads) from the

ADT- and Cell Hashtag (HTO)-containing fraction (in

supernatant). The cDNA fraction was processed accord-

ing to the 10x Genomics Single Cell 3′ v2 protocol to

generate the transcriptome library. An additional 1.4X

reaction volume of SPRI beads was added to the ADT/

HTO fraction to bring the ratio up to 2.0X. The beads

were washed with 80% ethanol, eluted in water, and an

additional round of 2.0X SPRI performed to remove ex-

cess single-stranded oligonucleotides from cDNA ampli-

fication. After final elution, separate PCRs were set up to

generate the CITE-seq ADT library (SI-PCR and RPI-x

primers) and the HTO library (SI-PCR and D7xx_s). A

detailed and regularly updated point-by-point protocol

for CITE-seq, Cell Hashing, and future updates can be

found at www.cite-seq.com

Oligonucleotide sequences

The following are the oligonucleotide sequences:

Hashtag oligo: GTGACTGGAGTTCAGACGTGTGCT

CTTCCGATCTxxxxxxxxxxxxBAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA*A*A

HTO additive: GTGACTGGAGTTCAGACGTGTGCTC

ADT additive: CCTTGGCACCCGAGAATTCC

SI-PCR: AATGATACGGCGACCACCGAGATCTACAC

TCTTTCCCTACACGACGC*T*C

RPI-x: CAAGCAGAAGACGGCATACGAGATxxxxxx

xxGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

D7xx_s: CAAGCAGAAGACGGCATACGAGATxxxxx

xxxGTGACTGGAGTTCAGACGTGTGC

x: Barcode or index sequence

B: T,G,C, not A

*: Phosphorothioate bond

Cell Hashing dilution and competition experiment

Jurkat cells were “stained” with decreasing concentra-

tions (1:100, 1:500, 1:1000) of Cell Hashing antibodies

(BioLegend, USA; B2M, CD298 pool) as described above

and passed through a 10x Genomics Single Cell work-

flow to yield ~ 2000 cells. As a control, non-hashed cells

were passed through a separate 10x Genomics Single

Cell lane. Cells from both experiments were subsampled

to the same numbers of cells and reads per cell to com-

pare UMI and gene counts.

Computational methods
Single-cell data processing

Fastq files from the 10x Genomics libraries with four dis-

tinct barcodes were pooled together and processed using

the standard Drop-seq pipeline (Drop-seq tools v1.0,

McCarroll Lab). Reads were aligned to the hg19-mm10

concatenated reference, and we included the top 50,000 cell

barcodes in the raw digital expression matrix as output

from Drop-seq tools. For ADT and HTO quantification, we

implemented our previously developed tag quantification

pipeline [18] as a python script, available at https://github.

com/Hoohm/CITE-seq-Count, and run with default pa-

rameters (maximum hamming distance of 1).

Demultiplexing with genotyping data using demuxlet

We first generated a VCF file that contained the indi-

vidual genotype (GT) from the Infinium CoreExome

24 array output, using the PLINK command line tools

(version 1.07). This VCF file (which contained geno-

type information for the 8 PBMC donors as well as

HEK293T cells) and the tagged bam file from

Drop-seq pipeline were used as inputs for demuxlet

[13], with default parameters.

Single-cell RNA data processing

Normalization and downstream analysis of RNA data

were performed using the Seurat R package (version 3.0,

Satija Lab [29]) which enables the integrated processing

of multi-modal (RNA, ADT, HTO) single cell datasets

[31, 32]. We collapsed the joint-species RNA expression

matrix to only include the top 100 most highly

expressed mouse genes (along with all human genes)

using the CollapseSpeciesExpressionMatrix function.

We first considered a set of 20,854 barcodes where

we detected at least 200 UMI in the transcriptome data.

Since the HEK293T and NIH-3T3 cells were not la-

beled with HTOs, we identified these cells based on

their transcriptomes. We performed a low-resolution

pre-clustering by performing PCA on the 500 most

highly expressed genes, followed by k-medoid clustering

on a distance matrix based on the first 2 principal com-

ponents [33–35]. Based on this clustering, we identified

160 NIH-3T3 cells and 2233 HEK293T cells, with the

remainder representing PBMCs.

As a separate test of HEK293T identity, we examined

the demuxlet genotype for possible HEK293T cells. We

observed 225 barcodes classified as HEK by the demux-

let algorithm but whose transcriptomes clustered with

PBMCs. These cells expressed tenfold fewer UMI com-

pared to transcriptomically classified HEK293T cells and

did not express HEK293T-specific transcripts (i.e.,
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NGFRAP1), both consistent with a PBMC identity. We

therefore excluded these barcodes from all further

analysis.

Classification of barcodes based on HTO levels

HTO raw counts were normalized using centered log ra-

tio (CLR) transformation, where counts were divided by

the geometric mean of an HTO across cells and

log-transformed:

xi
0 ¼ log

xi
Qn

i¼1xi
� �1

n

Here, xi denotes the count for a specified HTO in cell

i, n is the total cell number, and log denotes the natural

log. Pairwise analysis of either normalized or raw HTO

counts (Fig. 1B) revealed mutually exclusive relation-

ships, though determining the exact cutoffs for positive

and negative signals required further analysis. We rea-

soned that if we could determine a background distribu-

tion for each HTO based on “negative” cells, outliers

from this distribution would represent positive signals.

To assist in the unsupervised identification of “nega-

tive” cells, we performed an initial k-medoids clustering

for all cells based on the normalized HTO data. We set

k = 9 and observed (as expected) that eight of the clus-

ters were highly enriched for expression of a particular

HTO, while the ninth cluster was highly enriched for

cells with low expression of all HTO. This represents an

initial solution to the demultiplexing problem that sug-

gests likely populations of “positive” and “negative” cells

for statistical analysis.

Following clustering, we performed the following pro-

cedure independently for each of the eight HTOs. We

identified the k-medoids cluster with the highest average

HTO expression and excluded these cells. We next fit a

negative binomial distribution to the remaining HTO

values, after further excluding the highest 0.5% values as

potential outliers. We calculated the q = 0.99 quantile of

the fitted distribution and thresholded each cell in the

dataset based on this HTO-specific value.

We used this procedure to determine an “HTO classi-

fication” for each barcode. Barcodes that were positive

for only one HTO were classified as singlets. Barcodes

that were positive for two or more HTOs were classified

as multiplets and assigned sample IDs based on their

two most highly expressed HTO. Barcodes that were

negative for all eight HTOs were classified as “negative.”

We expect that barcodes classified as “singlets” repre-

sent single cells, as we detect only a single HTO. How-

ever, they could also represent doublets of a PBMC with

a HEK293T or NIH-3T3 cell, as the latter two popula-

tions were unlabeled and represent negative controls.

Indeed, when we analyzed the “HTO classification” of

cells that were transcriptomically annotated as HEK293T

or NIH-3T3 cells, we found that 60.1% were annotated

as “negative,” while 32.1% were annotated as singlets, in

agreement with our expected ratios in our “super-

loaded” 10x Genomics experiment. These cells appear in

the heatmap in Fig. 1C, but all HEK293T and NIH-3T3

cells were excluded from further analysis.

For 2D visualization of HTO levels (Fig. 1D), we used

Euclidean distances calculated from the normalized

HTO data as inputs for tSNE. Cells are colored based on

their HTO classification as previously described. For

visualization and clustering based on transcriptomic data

(Fig. 1F), we first performed PCA on the 1000 most

highly variable genes (as determined by variance/mean

ratio) and used the distance matrix defined by the first

10 principal components as input to tSNE and

graph-based clustering in Seurat (Fig. 1E). We annotated

the seven clusters based on canonical markers for

known hematopoietic populations.

Comparison with demuxlet

Demuxlet classifications were labeled as singlets (SNG),

doublets (DBL), or ambiguous (AMB) according to the

BEST column in the *.best output file. In Fig. 2e, we plot

the posterior probability of a doublet assignment from

the PRB.DBL column in the same file.

Calculation of staining index for antibody titrations

To assess the optimal staining efficiency for CITE-seq

experiments, we considered ADT levels for cells across

a range of antibody concentrations as multiplexed in a

titration series. ADT levels were normalized using a

CLR transformation of raw counts using an identical

approach to the normalization of HTO levels as previ-

ously described.

After normalization, we computed a staining index

based on standard approaches in flow cytometry, which

examine the difference between positive and negative

peak medians, divided by the spread (i.e., twice the mean

absolute deviation) of the negative peak.

SI ¼
Pos0:5−Neg0:5

2�mad Negð Þ

In order to avoid manual classification of positive and

negative peaks, we implemented an automated proced-

ure that can scale to multiple antibodies and concentra-

tions. To approximate the negative peak, we leveraged

unstained control cells (donor H). To approximate the

positive peak, we clustered the ADT data in each titra-

tion experiment (donor A through donor G). To per-

form clustering, we computed a Euclidean distance
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matrix across cells based on normalized ADT levels and

used this as input to the FindClusters function in Seurat

with default parameters. We examined the results to

identify the cluster with the maximally enriched ADT

signal and referred to the distribution of ADT levels

within this cluster as the positive peak.

Discriminating low-quality cells from ambient RNA

We performed HTO classification of low-quality bar-

codes (expressing between 50 and 200 UMI), using the

previously determined HTO thresholds. For each bar-

code, we classified its expression as 1 of our previously

determined 7 hematopoietic populations using random

forests, as implemented in the ranger package in R [36].

We first trained a classifier on the 13,954 PBMCs, using

the 1000 most variable genes as input and their cluster-

ing identities as training labels. We then applied this

classifier to each of the low-quality barcodes. We note

that this classifier is guaranteed to return a result for

each barcode.

Additional files

Additional file 1: Distribution of HTO UMIs per cell barcode. (PDF 6203 kb)

Additional file 2: Micrograms of antibody used per condition. (XLSX 9 kb)

Additional file 3: Sample composition of experiment referred to by

Figures 1-3. (XLSX 9 kb)
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