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Cell invasion involves a population of cells which are motile and proliferative. Traditional

discrete models of proliferation involve agents depositing daughter agents on nearest-

neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and an-

alyze two new discrete proliferation models in the context of an exclusion process with an

undirected motility mechanism. These discrete models are related to a family of reaction–

diffusion equations and can be used to make predictions over a range of scales appropri-

ate for interpreting experimental data. The new proliferation mechanisms are biologically

relevant and mathematically convenient as the continuum–discrete relationship is more

robust for the new proliferation mechanisms relative to traditional approaches.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cell invasion involves combined cell proliferation and cell motility, and is essential to development [1–4], wound heal-
ing [5,6] andmalignant progression [7,8]. Several types of experimental observation can bemade to describe cell invasion [9].
Global properties, such as the speed of invasion fronts [3,4], as well as individual properties like the details of individual
motility and proliferation events [1,2,4,10], are both described and quantified experimentally.

Continuum models of cell invasion typically combine a random motility mechanism and carrying capacity limited
proliferation represented by logistic growth, giving reaction–diffusion equations, many of which are related to Fisher’s
model [11]. These models have been successfully used to obtain global properties in a variety of applications such as wound
healing [5,6], malignant invasion [8], developmental morphogenesis [3] and gene propagation [12].

Modern microscopy techniques provide high quality imaging data giving us additional information about invasive sys-
tems. These observations unearth new opportunities to develop models based on observations at the level of an individual
cell rather than a collective population-level description. Averaging these discrete models can lead to a continuum de-
scription of the system giving us a tool that is capable of representing both global and individual-level properties [13,14],
compatible with experimental data [9].

Traditional lattice-based discretemodels of cell proliferation involve a proliferative agent depositing a daughter agent on
a nearest-neighbor site [15–17]. It iswell-known that this discretemodel is related to logistic proliferation in the appropriate
continuum limit [5]. Time-lapse data shown here motivate us to consider two models—one with a new proliferation rule
and the other with a generalization of the traditional discrete proliferation rule. Averaging each of the new discrete invasion
models gives a partial differential equation (PDE), that is a generalization of Fisher’s equation. Additional tools are developed
allowing us to predict the average trajectory of a tagged cell within the invasive population [2,14]. We show that the
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new proliferation mechanisms are both biologically relevant and mathematically convenient as the continuum–discrete
relationship is more robust for the new proliferation mechanisms relative to the traditional proliferation mechanism.

2. Individual-level cell invasion model

A lattice-based simple exclusion process [18], with at most one agent per site, is used to model cell invasion. We use
a two-dimensional square lattice with spacing ∆. Each site is indexed (i, j) where i, j ∈ Z, and each site has position
(x, y) = (i∆, j∆). The lattice spacing may be thought of as being the size of a cell diameter. Our model and analysis can
be easily implemented for a range of other lattices.

In any one realization of the model the occupancy of site (i, j) is Ci,j, with Ci,j = 1 for an occupied site, and Ci,j = 0 for a
vacant site. If there are N agents on the lattice, during the next time step of duration τ , N agents are selected independently
at random, one at a time. When chosen, an agent attempts to move with probability Pm ∈ [0, 1] [19]. We interpret Pm
as the probability that an agent will attempt to move a distance ∆ in the time interval τ . Once the N motility events are
attempted, another N agents are selected independently at random, one at a time, and these agents attempt to proliferate
with probability Pp ∈ [0, 1]. In general N increases during each time step for Pp > 0 and we interpret Pp as the probability
that an agent will attempt to proliferate in the time interval τ . This approach is appropriate for small values of Pp where the
increase in N per time step is small. We always work with dimensionless simulations by setting ∆ = τ = 1. The results can
be rescaled using appropriate length and time scales for any particular application.

Time-lapse images showing cell invasion associated with the development of the enteric nervous system (ENS) motivate
our discretemodel. ENS development involves neural crest cells (NCCs) invading the developing gut tissues. NCCs aremotile
and proliferate to a maximum density [3]. The population of NCCs invades the gut tissue as a constant speed invasion wave
and differentiates into neurons and glia to form the ENS [1,2,4].

Time-lapse data examining the movement of a few isolated NCCs in the absence of proliferation showed that the cells
followed unpredictable random trajectories [4]. To mimic this, the motility mechanism in our discrete model is an unbiased
simple exclusion process where a motile agent at (x, y) attempts to move to either (x ± ∆, y) or (x, y ± ∆), each with
equal probability 1/4 [19]. Since biological cells cannot occupy the same position in space [13,14], our discrete model is
an exclusion process and motility events that would place an agent on an occupied site are aborted. An illustration of the
potential outcomes of a motility event is given in Fig. 1(b).

The focus of this work is to investigate several new biologically plausible proliferation mechanisms. The key difference
between the mechanisms is how the daughter agents are arranged spatially relative to the location of the original agent.
Previous studies have considered themodelwhere a proliferative agent at (x, y)deposits a daughter agent in one of (x±∆, y)
or (x, y±∆) with equal probability 1/4 [5,15–17]. These models have a separation distance n = 1 between the original cell
and the daughter cell.

Time-lapse images of ENS development [1], illustrated in Fig. 2, show the physical details of a NCC proliferation event. The
NCC division is composed of three distinct phases: (i) the cell ceases random motion and rounds up (Fig. 2(a)); (ii) the cell
divides into two daughter cells (Fig. 2(b)); (iii) the daughter cells separate ballistically in opposing directions and are placed
approximately six cell diameters equidistant apart from the location of the original cell (Fig. 2(c)). It is only on completion
of the third phase that the daughter cells commence random motility. The proliferation event shown in Fig. 2 is typical
(H. Young, personal communication, 2009) and has been observed in other time-lapse images of NCC invasion [4]. To
represent these details in our discrete model we will concatenate the three phases of proliferation into a single event.

The time-lapse images in Fig. 2 demonstrate that the proliferation event is not to nearest-neighbor sites for this biological
system and the separation distance is much larger than n = 1. Therefore, an alternative to the traditional discrete prolif-
eration mechanism is needed to model NCC invasion. We propose and analyze two proliferation models that are shown
schematically in Fig. 1(c)–(d).

Model 1 is a generalization of the traditional proliferation mechanism. A proliferative agent at (x, y) deposits a daughter
agent at one of (x ± n∆, y) or (x, y ± n∆) with equal probability 1/4. Here n is a positive integer representing the number
of cell diameters that the daughter agent is placed relative to the original agent. We call n the separation distance and note
that the traditional proliferation model corresponds to Model 1 with n = 1.

Model 2 is a new model where a proliferative agent at (x, y) produces two daughter agents which either reside in
(x + n∆/2, y) and (x − n∆/2, y) or (x, y + n∆/2) and (x, y − n∆/2), each with equal probability 1/2. Here n is a positive
even integer representing the separation distance between the daughter agent and the original agent. Model 2 describes the
proliferation event in Fig. 2 with n = 6.

Given we are dealing with an exclusion process, proliferation events that would place a daughter agent on an occupied
site are aborted. Now that we have introduced the biologically motivated mechanism of placing a daughter agent at a site
which is not necessarily a nearest neighbor of site (x, y), we must also check that each site between the original site and the
target site is unoccupied, otherwise the proliferation event will be aborted. For example, when implementing Model 1 with
n = 2, a proliferative agent at (x, y) attempting to place a daughter agent at (x + 2∆, y) would only succeed in doing so if
sites (x + ∆, y) and (x + 2∆, y) were both vacant.

One of the differences between the two proliferation models proposed here is that the originally occupied site (x, y)
remains occupied after the proliferation event in Model 1, whereas site (x, y) becomes vacant after the proliferation event



Author's personal copy

M.J. Simpson et al. / Physica A 389 (2010) 3779–3790 3781

a b

c

d

Fig. 1. Discrete motility and proliferation outcomes. (a) Consider an initially occupied site at location (x, y). (b) Motility events occur with probability Pm
and a motile agent at (x, y) steps to either (x ± ∆, y) or (x, y ± ∆) with equal probability 1/4. Proliferation events occur with probability Pp . (c) In Model

1 a proliferative agent at (x, y) deposits a daughter agent at either (x ± n∆, y) or (x, y ± n∆) with equal probability 1/4 provided that all sites between

(x, y) and the target site are vacant. For Model 1, n is a positive integer. (d) In Model 2 a proliferative agent at (x, y) divides into two daughter agents that

are placed at either (x+ n∆/2, y) and (x− n∆/2, y), or (x, y+ n∆/2) and (x, y− n∆/2), with equal probability 1/2, provided that all sites between (x, y)

and the target sites are vacant. For Model 2, n is a positive and even integer.

a b c

Fig. 2. Time-lapse images of a cell invasion assay showing NCCs that are both motile and proliferative [1]. The population of NCCs invades the developing

intestine in a mouse model. The invasive cells are labeled white. The spatial organization of a single proliferation event is highlighted. In each snapshot the

direction of invasion is shown with the red arrow. (a) A cell (red circle) prior to division. (b) The same cell (red circle) as it divides into two daughter cells.

(c) The two resulting daughter cells are located approximately six cell diameters apart.

Source: Results reproduced with permission from Elsevier.

in Model 2. Neither of these proliferation models allow for agent removal from the system. This is appropriate for ENS
development since NCC death is not observed experimentally [4].

To demonstrate visually the influence of implementing these different proliferation models a suite of simulation results
is shown in Fig. 3. In each problemwe consider a lattice of size 400×20. All siteswhere 180 ≤ x ≤ 220 are initially occupied.
Periodic boundary conditionswere imposed on the horizontal boundaries and reflecting boundary conditionswere imposed
on the vertical boundaries. Six simulations over 3000 time steps with Pm = 1 and Pp = 0.001 were performed. This choice
of parameter values is discussed in Section 3. Results for (i) Model 1 with n = 1, 2, 3, and (ii) Model 2 with n = 2, 4, 6 are
given. In all cases the number of agents increased significantly and the population invaded the unoccupied regions of the
lattice in both directions away from the initial location of the agents.
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Fig. 3. (a) Simulations start with all sites occupied where 180 ≤ x ≤ 220. (b)–(g) Simulations with Pm = 1 and Pp = 0.001 are performed for 3000 time

steps for proliferation Model 1 with n = 1, 2, 3 and proliferation Model 2 with n = 2, 4, 6. All simulations start with N(0) = 820 agents; the number of

agents after 3000 time steps N(3000) is shown.

Some simple but instructive observations can be made from Fig. 3. First, regardless of the proliferation mechanism, the
horizontal length over which the population spreads is comparable for each proliferation mechanism. This is surprising.
Given that we have introduced proliferation mechanisms that deposit daughter agents at variable distances away from the
site of proliferation, wemight have expected the spatial spread of the population would increase with n. Second, differences
in the density of agents are observed. The agents are densely packed in the central region of the lattice for Model 1 with
n = 1 whereas agents are less densely packed in the central region of the lattice for Model 2 with n = 6. Third, the number
of agents after 3000 steps decreases with n for both models. This is reasonable as successful proliferation events require an
increasing number of vacant sites as n increases. During the early part of the simulation, vacant sites near the central part of
the lattice are unavailable and proliferation events are more likely to be aborted for larger values of n. In Section 3 we will
analyze the discrete models and gain further insight into these observations.

3. Averaging the discrete mechanism

To connect the discretemechanismwith a continuummodelwe average the occupancy of site (i, j) overmany statistically
identical realizations to obtain 〈Ci,j〉 ∈ [0, 1] [13,14]. After averaging, we form a discrete conservation statement describing
δ〈Ci,j〉, which is the change in average occupancy of site (i, j) during the time interval from t to t + τ . The details of the
conservation equations depend on the proliferation model. For Model 1 we obtain:

δ〈Ci,j〉 =
Pm

4
(1 − 〈Ci,j〉)

∑

〈Ci,j〉 −
Pm

4
〈Ci,j〉

(

4 −
∑

〈Ci,j〉
)

+
Pp

4
〈Ci−n,j〉

n−1
∏

s=0

(1 − 〈Ci−s,j〉)

+
Pp

4
〈Ci+n,j〉

n−1
∏

s=0

(1 − 〈Ci+s,j〉) +
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4
〈Ci,j−n〉

n−1
∏

s=0

(1 − 〈Ci,j−s〉) +
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4
〈Ci,j+n〉

n−1
∏

s=0

(1 − 〈Ci,j+s〉), (1)

where, for brevity we define
∑

〈Ci,j〉 = 〈Ci−1,j〉 + 〈Ci+1,j〉 + 〈Ci,j+1〉 + 〈Ci,j−1〉. (2)

The positive terms on the right of Eq. (1) represent events that place an agent at site (i, j)while the negative terms represent
events that remove agents from site (i, j). ForModel 1, all proliferation events increase the occupancy of site (i, j) sinceModel
1 does not involve removing any agents from any site. All terms in the discrete conservation statement involve factors like
〈Ci,j〉 and (1 − 〈Ci,j〉), which are interpreted as probabilities of occupancy and vacancy respectively. Furthermore, products
of these factors are interpreted as transition probabilities. Therefore we make the standard assumption that the occupancy
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of lattice sites is independent. This assumption is inappropriate for any single realization of the discrete model, but proves
to be an extremely good approximation when considering averaged simulation data [13,14].

The discrete conservation statement for Model 2 is

δ〈Ci,j〉 =
Pm

4
(1 − 〈Ci,j〉)

∑

〈Ci,j〉 −
Pm

4
〈Ci,j〉

(

4 −
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〈Ci,j〉
)

+
Pp

2
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n
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s=0
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2
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n
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+
Pp

2
〈Ci,j−n/2〉

n
∏

s=0
s6=n/2
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Pp

2
〈Ci,j+n/2〉

n
∏

s=0
s6=n/2

(1 − 〈Ci,j+s〉)

−
Pp

2
〈Ci,j〉

n/2
∏

s=−n/2
s6=0

(1 − 〈Ci+s,j〉) −
Pp

2
〈Ci,j〉

n/2
∏

s=−n/2
s6=0

(1 − 〈Ci,j+s〉). (3)

Unlike proliferation Model 1, we now have both positive and negative terms in the discrete conservation statement
associated with proliferation events, since Model 2 involves both the removal and deposition of agents at certain sites.
The product terms in Eqs. (1) and (3) arise because successful proliferation events require that all sites between the original
agent and the target site be vacant.

For both proliferationmodels, the discrete conservation statements are related to a PDE in the appropriate limit as∆ → 0
and τ → 0 and the discrete values of 〈Ci,j〉 arewritten in terms of a continuous variable C . To see this relationship, all terms in

Eqs. (1) and (3) are expanded in a Taylor series about site (i, j), keeping terms up toO(∆2). Dividing the resulting expression
by τ , we then take limits as ∆ → 0 and τ → 0 jointly, with the ratio ∆2/τ held constant [20,21]. In the continuum limit,
for both proliferation models, we obtain a PDE which can be written as

∂C

∂t
= D∇2C + λC(1 − C)n. (4)

This is a key result implying that the continuum description of the discrete models is independent of the details of the
proliferation mechanism and depends only on the separation distance. Therefore we expect that agent density profiles
obtained from Model 1 will be identical to agent density profiles from Model 2 provided that the same separation distance
is used for eachmodel. This is surprising given that the proliferation mechanisms in Model 1 andModel 2 are very different.
It is reassuring that the main differences in the continuum models are governed by the separation distance n. The value of
n can be easily identified from time-lapse images.

The diffusivity and proliferation rate are given by

D =
Pm

4
lim

∆,τ→0

(

∆2

τ

)

, λ = lim
τ→0

(

Pp

τ

)

. (5)

These conditions imply that Pp = O(τ ). We emphasize that the continuummodel is valid as∆ → 0 and τ → 0 jointly with

the ratio ∆2/τ held constant and Pp = O(τ ). Since discrete simulations must be performed for finite ∆ and τ , we expect
that the continuum model will match the discrete model only for small values of Pp [5].

Eq. (5) connects the parameters in the continuum model (D, λ) to the parameters in the discrete model (Pm, Pp, ∆, τ ).
An important parameter for biological applications is Pp/Pm, which compares the relative frequency of proliferation and
motility events for isolated agents. Biological observables from which this ratio may be estimated are the mitotic rate λ
(related to the doubling time td, by λ = loge 2/td), the cell diffusivity D and the cell diameter ∆, used as our lattice spacing.
Eq. (5) gives

Pp

Pm
=

∆2λ

4D
. (6)

Note that the choice of τ affects the values of Pp and Pm individually, but not their ratio. A typical diffusivity is D =
1 × 10−6 mm2/s [10,22]. For NCCs, a typical cell diameter and doubling time are ∆ ≈ 20 µm and td = 18 h [3]. This
gives Pp/Pm ≈ 0.001, meaning that NCC proliferation events occur far less often than motility events, as seen in time-lapse
movies of NCC invasion [2,4]. Using estimates of D and ∆ here, with each non-dimensional time step representing 100 s,
we can simulate NCC invasion by setting Pm = 1 and Pp = 0.001, corresponding to the parameter values in Fig. 3. Since
Pp ≪ 1 simulations must be performed for a sufficiently large number of time steps to see the number of agents increase
significantly. For example, for an individual simulation shown in Fig. 3(a)–(b), it took 3000 non-dimensional time steps, or
3.47 days, for the population to increase from 820 to 2500 agents for Model 1 with n = 1.

In addition to developing a PDE to predict the distribution of agent density, we also develop a continuum model to
describe the evolution of the average position of a tagged agent within the invasive population. For both models, if site (i, j)
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is occupied, then the expected displacement of that agent during the next time step is

δpx = ∆
Pm

4
(1 − 〈Ci+1,j〉) − ∆

Pm

4
(1 − 〈Ci−1,j〉) (7)

δpy = ∆
Pm

4
(1 − 〈Ci,j+1〉) − ∆

Pm

4
(1 − 〈Ci,j−1〉). (8)

We note that δpx and δpy are independent of the proliferation mechanism and the value of Pp. This occurs because Model 1
does not involve any change in position of a proliferative agent during a proliferation event. For Model 2, a proliferative
tagged agent at (x, y) produces two daughter agents placed at either (x + n∆/2, y) and (x − n∆/2, y) or (x, y + n∆/2) and
(x, y − n∆/2) and we chose to track one of the daughter agents with equal probability 1/2. This means that the changes in
position of the two daughter agents in Model 2 are equal in length and opposite in direction, ensuring that their symmetric
contributions to δpx and δpy in Eqs. (7) and (8) cancel.

Following the same procedure to obtain Eq. (4), we divide Eqs. (7) and (8) by τ and expand all terms about (i, j) in a Taylor
series up to O(∆2). Keeping ∆2/τ constant, we let ∆ → 0 and τ → 0 jointly giving

dpx

dt
= −2D

∂C

∂x
, (9)

dpy

dt
= −2D

∂C

∂y
. (10)

The solution of these differential equations gives px(t) and py(t), which are the coordinates of the average trajectory of a
tagged agent initially at position (px(0), py(0)). These trajectories are called pathlines because of the analogy with potential
flow [14].

Although the pathline models are independent of Pp, proliferation still influences the pathline models since proliferation
affects the solution of Eq. (4) which, in turn, influences the pathlines through the appearance of ∂C/∂x and ∂C/∂y in
Eqs. (9) and (10).

Where possible the continuummodels developedherewill be simplified and solved analytically.When this is not possible
we solve the continuummodels numerically. The solution of Eq. (4) is approximated with a finite difference method using a
constant grid spacing δx and implicit Euler steppingwith constant time steps δt . Picard iterationwith convergence tolerance
ǫ, is used to solve the resulting nonlinear equations [13]. Eqs. (9) and (10) are also solved numerically using a technique
described by Simpson et al. [14].

4. Comparing continuum and discrete cell invasion models

We now compare the solution of Eq. (4) with simulations shown previously in Fig. 3. These simulations are equivalent
to a one-dimensional problem since the initial condition and the boundary conditions impose no asymmetry in the vertical
direction. We compare column averaged occupancy data from the discrete simulations with the numerical solution of a
one-dimensional version of Eq. (4) [13,14]. Column averaged density data from the discrete simulations are further averaged
over 40 identically prepared realizations. Results in Fig. 4 demonstrate an excellent correspondence between the discrete
simulation data and the solution of Eq. (4) for Model 1 with n = 1, 2, 3 and Model 2 with n = 2, 4, 6. In all cases the initial
local density near x = 200 decreases during the early part of the simulation as the agents spread making more room on the
lattice near x = 200. At later times the local density around x = 200 increases as proliferation events take place. Comparing
the simulation profiles for the different proliferation mechanisms we see different evolution behavior. For example, with
Model 1 and n = 1, the density near x = 200 increases quickly after t = 1000, while for Model 2 with n = 6, we are yet
to see the density near x = 200 increase during the time interval considered. This difference makes sense physically as we
expect there to be more aborted proliferation events for Model 2 with larger n compared with Model 1 and small n for the
initially close-packed group of agents.

Results in Fig. 4 confirm that the details of the proliferationmechanismdo not affect the density profiles provided that the
separation distance is the same. For example the discrete density profiles in Fig. 4(b) and (d) for n = 2 are indistinguishable
even though the proliferation mechanism is different in each case. Further simulations (not shown) confirm that this is also
true for other separation distances, such as n = 4. Given that the details of the proliferation mechanism are unimportant at
the continuum-level for the same value of n and that ENS development corresponds with Model 2, we will focus onModel 2
from this point onward.

5. Divergence between the continuum and discrete models

The ability of the continuum models developed in Section 3 to replicate averaged discrete data depends on several
assumptions, namely: (i) that the occupancies of lattice sites are independent, (ii) that Pp = O(τ ) as τ → 0, and (iii) the
truncated Taylor series accurately relate the occupancies of sites on the lattice. The failure of any of these assumptions could
mean that the continuum model is invalid. For example we expect that as Pp increases the continuum and discrete models
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Fig. 4. Averaged agent density data for Pm = 1 and Pp = 0.001. All sites with 180 ≤ x ≤ 220 are initially occupied. The column density of agents, averaged

over 40 identically prepared simulations, are shown at t = 0, 1000, 2000, 3000 (solid blue) and comparedwith the solution of Eq. (4) (dotted red) with the

arrows showing the direction of increasing time. Six sets of results are shown: results for proliferation Model 1 with n = 1, 2, 3 given in (a)–(c) and results

for proliferation Model 2 with n = 2, 4, 6 are given in (d)–(f). The solution of Eq. (4) is obtained numerically with δx = 0.25, δt = 0.1 and ǫ = 1 × 10−6 .

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

will diverge [5]. Unfortunately, our limiting analysis does not give any insight into the details of this transition. To examine
this transition in detail we performed a range of simplified simulations on a lattice with periodic boundary conditions on
all boundaries. The lattice was initially occupied with a spatially uniform distribution of agents meaning that, on average,
there were no spatial gradients in the system.

The advantage of working with the uniform density problem is that the governing PDE (Eq. (4)) collapses to an ordinary
differential equation, namely

dC

dt
= λC(1 − C)n. (11)

To solve Eq. (11) we make use of the result

1

C(1 − C)n
=

1

C
+

n
∑

k=1

1

(1 − C)k
. (12)

Using Eq. (12) with C(0) = C0 the solution of Eq. (11) can be written as

T = tλ =



















loge

[

C(1 − C0)

C0(1 − C)

]

, n = 1,

loge

[

C(1 − C0)

C0(1 − C)

]

+
n−1
∑

k=1

[

1

k(1 − C)k
−

1

k(1 − C0)k

]

, n ≥ 2.

(13)

Since we are interested in comparing the solution of Eq. (11) with simulation data for different values of Pp, the solution
(Eq. (13)) is written in terms of non-dimensional time T = λt . This allows us to take simulation data for different values of
Pp and collapse the solution profiles onto a universal curve independent of Pp.

For the uniform density problem we performed a range of simulations on a lattice of size I × J. Each site was initially
occupied with probability C0 ∈ [0, 1] and simulations were performed with Pm = 1 and different values of Pp. Since there
were no spatial gradients in the system, the average lattice site occupancy could be evaluated using

〈C〉 =
1

IJ

I
∑

i=1

J
∑

j=1

Ci,j. (14)

To compare continuum and discrete models, averaged values of 〈C〉 over several identically prepared realizations were
compared with the solution to Eq. (11), given by Eq. (13).
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a

b

Fig. 5. Uniform density results for Model 2 are obtained by randomly populating a lattice of size 100 × 100 so that 5% of sites are initially occupied and

performing simulations with Pm = 1 and different values of Pp . Snapshots of a simulation are shown in row (a) with n = 4, and the distribution of agents

is shown at T = 0, 1, 5 with Pp = 0.001. Simulation data averaged over 40 identically prepared realizations are given in row (b). The analytical solution of

the continuummodel (Eq. (13)) (black) is superimposed on simulation data for Pp = 0.001 (red) and Pp = 0.5 (green). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

Row (a) of Fig. 5 shows three snapshots of a single realization with proliferation Model 2 for n = 4 confirming the
absence of spatial gradients in the system during the period of the simulation. Although the motility parameter does not
appear in the simplified model (Eq. (11)), it is critical that motility is included and Pm > 0. Indeed, if we simulate this
problem with Pm = 0, we observe clusters of agents that grow in size and eventually coalesce [17,23]. Agent clustering
occurs when the ratio Pp/Pm is sufficiently large [17]. When clusters of agents are present, the independence assumption
leading to Eqs. (1) and (3) is violated. Clustering of agents also means that averaging the occupancy across the lattice using
Eq. (14) is inappropriate.

Comparing the discrete data and Eq. (13) in row (b) of Fig. 5 reveals certain trends that cannot be deduced from the
limiting analysis. Simulation data with Pp = 0.001 matches the continuum model reasonably well for all values of n
considered, whereas the simulation data with Pp = 0.5 does not always match the continuum result. The quality of the
continuum–discrete comparison depends on the discrete mechanism as Pp increases and the comparison improves as n

increases. This is best illustrated with the green curves for Pp = 0.5 where the continuum–discrete comparison is very poor
when n = 2, and the comparison improves as n increases. Further simulation data at intermediate values of Pp (not shown)
follow the same trends.

The computational data in Fig. 5 gives more information than the limiting analysis which simply tells us that provided
that we consider simulation data with ∆ → 0, τ → 0, Pp = O(τ ) and Pm > 0 we expect to see good correspondence
between the discrete and continuum models. The analysis does not give any insight into how or why the discrete and
continuum models diverge as these limiting conditions are not satisfied as Pp increases sufficiently. Further research to
analyze this transition is required. However, for practical purposes in terms of modelling ENS development, this limitation
is of no consequence as the relevant parameters are Pm = 1 and Pp = 0.001 and the simulation datamatches the continuum
models very well.

The results in Fig. 5 illustrate the complicated relationship between the discrete and continuum models. Without com-
paring the discrete and continuum models in this way, we might have incorrectly anticipated that the continuum–discrete
comparison would have been most favorable for low n since the truncation error in the truncated Taylor series increases
with n. Alternatively, wemay have anticipated that the continuum–discrete comparisonwould bemost favorable for higher
values of n as the process of depositing agents on remote lattice sites could reduce agent clustering. As we have shown in
Fig. 5, the relationship between the continuumanddiscretemodels is sufficiently complex that these intuitive arguments are
unable to explain the observed trends. Instead we rely on comparing the continuum and discrete models using simulation
data to obtain a deeper understanding of the relationship between these models.

Fig. 5 shows that care must be taken when analyzing cell proliferation experiments. A standard experiment to estimate
the proliferation rate is tomeasure how the density of a uniformly distributed population of cells growswith time, as shown
in row (a) of Fig. 5 [10]. In the absence of any information about the relevant proliferation mechanism, it is possible to take
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Fig. 6. Averaged agent density data for Model 2 with Pm = 1 and different values of Pp are comparedwith the solution of Eq. (4) for simulations performed

over a large enough time for traveling waves to develop. Each site with 1 ≤ x ≤ 10 is initially occupied. Column averaged simulation data, averaged over

40 identically prepared realizations are shifted so that C(0, t) = 0.5. Simulations were performed until the stopping time criteria described in the text was

reached. Simulation profiles (solid blue) are compared with the solution of Eq. (4) (dotted red). Results in subfigures (a) and (b), are for Pp = 0.001 and

Pp = 0.01 respectively. The arrows indicate the direction of increasing n. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

any of the growth curves in row (b) of Fig. 5 and fit the observed data to a logistic curve (Eq. (13) with n = 1) to estimate λ.
Comparing the shape of the different growth curves in Fig. 5 shows that the population grows differently for different values
of n. Therefore, simply fitting a logistic curve without any detailed knowledge of the particular proliferationmechanism can
be meaningless.

6. Comparing continuum and discrete traveling waves

A key feature of cell invasion systems is the existence of constant speed invasion fronts, the speed of which can be
characterized experimentally. For example, Maini et al. [22] measured the rate at which a population of cells closed a scrape
wound in vitro, while Druckenbrod and Epstein [1] and Young et al. [4] measured the speed of advance of a population of
NCCs.

A one-dimensional version of Eq. (4) is

∂C

∂t
= D

∂2C

∂x2
+ λC(1 − C)n, (15)

which is a generalization of Fisher’s equation (n = 1) that supports traveling wave solutions [11]. We expect that traveling
wave solutions will exist for other values of n. A phase plane analysis of Eq. (15) shows that traveling wave solutions

evolving from initial data with compact support move with speed s = 2
√
Dλ [24,25]. The wave speed is independent of

the parameter n since it is determined by the stability about C = 0 and the (1 − C)n factor is not involved. Therefore the
speed of the traveling wave is independent of the details of the proliferation mechanism. Although the simulations in Fig. 3
had not fully developed into traveling waves, the fact that the wave speed is independent of the proliferation mechanism
is consistent with our observation that the distance the invasive fronts moved in Fig. 3 was indistinguishable regardless of
the proliferation mechanism.

We now compare continuum and discrete traveling wave solutions for a range of separation distances. Previous compar-
isons of continuum and discrete traveling wave solutions have focused on measuring either the wave speed alone [26], or
approximating the width of the wavefront for the traditional proliferation model (Model 1 with n = 1) [5]. Here we focus
on comparing the exact details of the shape of the invasive front for a range of separation distances n.

To investigate the traveling wave profiles we performed a suite of simulations on a lattice of size 2000 × 20. Periodic
boundary conditions were imposed on the horizontal boundaries and reflecting boundary conditions were imposed on
the vertical boundaries. Each lattice site with 1 ≤ x ≤ 10 was initially occupied and simulations were performed for a
sufficiently long period of time that a constant speed traveling wave formed. All simulations correspond to Pm = 1 and
different values of Pp. In each case the column-averaged density profile was obtained by averaging over many identically
prepared realizations. To compare results for different proliferation models, the position of each traveling wave was shifted
so the profile was centered at x = 0 where C = 0.5. Results in Fig. 6 compare discrete profiles with a numerical solution of
Eq. (15).

The numerical solution of Eq. (15) was obtained using the same initial condition and domain as the discrete simulations.
As the numerical solutionwas generated the speed of the invasion fronts was approximated [27] and the numerical solution

was stopped when the speed of invasion was approximately s = 2
√
Dλ. For Pp = 0.001 it took until t = 30,000 for the

invasion waves to form. When Pp = 0.01 it took until t = 5000 for the invasion waves to form.
Although the speed of the invasion waves in Fig. 6 is independent of the proliferation mechanism, the width of the

wavefront varies dramatically depending on the details of the proliferation mechanism. There are several different ways to
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a b

Fig. 7. (a) Experimental pathline results obtained by Druckenbrod and Epstein [2]. The direction of invasion of the NCC population is shown with the red

arrow. Individual pathlines of cells within the population are give by the red and green trajectories. Polar diagrams are given in the inset, showing the

length and direction of particular trajectories along the invasion wave that has been divided into four sections, I–IV. See Druckenbrod and Epstein [2] for a

complete description of the experimental results. (b) Experimental pathlines from Cai et al. [10]. The direction of invasion for a scrape assay is shown with

the red arrow. Pathlines of cells are shown, and in both cases the pathlines at the leading edge are biased to move in the same direction as the net invasion

direction whereas tagged cells well behind the leading edge do not move as far. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Source: (a) Reproduced with permission from Wylie. (b) Reproduced with permission from Elsevier.

quantify the width of the invasion front [24]. Here we define the width as the distance between two contours at C = Cmax

and C = Cmin. Choosing Cmax = 0.5, Cmin = 0.1 and Pp = 0.001, the width is 90 for Model 2 with n = 2 while the width is
520 for Model 2 with n = 6.

7. Trajectory data

Time-lapse data provides cell-level details within an invading population [2]. Representative experimental results in
Fig. 7(a) show that the movement of tagged NCCs at the leading edge of the invasion wave was biased to move in the same
direction as the invasion front while the tagged cells behind the leading edge moved a smaller distance relative to their
leading edge counterparts. These observations gave rise to the hypothesis that the behavior of NCC varies with respect to
the position of the wavefront [2]. The same observations weremade in an in vitro analysis of wound healing by Cai et al. [10]
shown in Fig. 7(b).

To demonstrate howwe can use the discrete invasionmodel and Eqs. (9) and (10) to recreate and interpret experimental
trajectory data, we performed a range of simulations shown in Fig. 8. In each simulation we considered a lattice of size
400 × 20, with periodic boundary conditions along the horizontal boundaries and reflecting boundary conditions on the
vertical boundaries. Initially all sites with 1 ≤ x ≤ 200 were occupied, and a single tagged agent was placed at (199, 10).
The trajectory of this tagged agent was recorded during each simulation. The tagged agent was identical to all other agents
in the system. Simulation results in Fig. 8 show that the net movement of the tagged agent at t = 1000 has drifted in the
positive x direction in all cases. The time scale of these simulations is not long enough for a traveling wave to form.

To generate pathline data from the discrete model we consideredM identically prepared realizations of the simulations
in Fig. 8 and averaged the horizontal coordinate of themth tagged pathline denoted xm, giving

〈x(t)〉 =
1

M

M
∑

m=1

xm(t). (16)

The averaged pathline data are compared with a numerical solution of Eq. (9) in Fig. 9 showing that the continuum and
discrete pathline data match reasonably well for all separation distances considered. Consistent with experimental obser-
vations [2,10], all models predict that tagged agents at the leading edge moves in the positive x direction. Furthermore we
see that differences in the pathline data between the different proliferation models are small for this problem.

Pathlines for tagged agents well behind the leading edge were very short regardless of the proliferation mechanism (not
shown). This occurs because ∂C/∂x = 0 in this region, and according to Eq. (9), the average position does not change with
time. This is also consistent with experimental data [2,10].

In general, the difference between the pathlines of tagged agents at the leading edge compared to the pathlines of tagged
agents well behind the leading edge is a universal result relevant to a range of initial distributions and densities of agents.
Although results in Figs. 8 and 9 correspond to a Heaviside initial distribution, further simulations confirm that the same
trends are observed for other initial distributions provided that ∂C/∂x < 0 at the leading edge, and ∂C/∂x = 0 behind the
leading edge. This is true regardless of the density of agents behind the leading edge.



Author's personal copy

M.J. Simpson et al. / Physica A 389 (2010) 3779–3790 3789

a

b

c

d

Fig. 8. (a) All simulations on a 400 × 20 lattice start with sites occupied (red) where 1 ≤ x ≤ 200 and a tagged agent (enlarged green) is placed at

(199, 10). (b)–(d) Three simulations for Model 2 with n = 2, 4, 6. Each simulation corresponds to Pm = 1 and Pp = 0.001. In each case the net movement

of each tagged agent is in the positive x direction during the 1000 time steps of the simulation. A vertical dashed line is placed at x = 119 to emphasize

the movements of the tagged agents. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

a b c

Fig. 9. Pathline data associated with the simulations in Fig. 8 are given for proliferation Model 2 with n = 2, 4, 6. Averaged simulation data, 〈x(t)〉 (solid
blue), are compared with px(t) (dotted red). All simulation data corresponds to the same domain, boundary conditions and initial conditions shown in

Fig. 8 with Pm = 1 and Pp = 0.001. Averages are constructed using M = 40 identically prepared realizations. The numerical solutions of Eqs. (4) and (9)

are obtained with δx = 0.25, δt = 0.1 and ǫ = 1 × 10−6 . (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

In summary, we find that pathline data in the invasive populations shown in Fig. 9 are relatively insensitive to the details
of the proliferation mechanism. These results are relevant to short-term simulations where the traveling wave profile is yet
to form. This result is surprising given that proliferation is essential for the formation and maintenance of invasion waves
[3,22]. Proliferation plays an indirect role as the key factor governing the pathline data is the geometry of the invasion wave
as tagged agents at the leading edge move in the same direction as the invasion wave, while the net displacement of tagged
agents behind the leading edge is far less than their leading edge counterparts [2,10]. All discrete pathline data shown here
compare well with the solution of the corresponding continuum models since we only presented results for sufficiently
small Pp. Of course, the continuum–discrete comparison deteriorates as Pp increases.

8. Discussion and conclusions

In this work we have presented and analyzed two models of cell invasion. The models can describe population-level
information in terms of spatial cell density profiles that are compatible with experimental data [1,22]. The models also
capture individual-level information allowing us to visualize individual motility and proliferation events as well as pathline
data, which are also observed experimentally [2,10].

Using time-lapse data to develop a discrete model enables us to replicate realistic proliferation events. Traditional
proliferation models in an exclusion process involve proliferative agents depositing daughter agents on nearest-neighbor
lattice sites [5,15–17]. We have proposed and analyzed two alternative models motivated by particular experimental
observations. The discrete models are related to a family of reaction–diffusion equations. The continuum models do not
depend on the exact details of the proliferationmechanisms considered here provided that the separation distance between
the placement of agents during a proliferation event is the same.

The invasion models give us new insight into the utility of different kinds of experimental data. Since proliferation is
essential for the formation and maintenance of invasion waves [3], we might have anticipated that differences in the pro-
liferation mechanism would have a significant impact on pathline data. Our modeling indicates that this is not always the
case. Instead, pathline data is governed by the geometry of the invasion wave. From this we conclude that an experiment
aimed at investigating the details of the proliferation mechanism in an invasive system ought not to focus on pathline data.
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Instead the experiment ought to focus onmeasuringwave speed data, wavefrontwidth data, or collecting time-lapse images
showing the details of proliferation events.

The averaging arguments presented here show that the discrete mechanisms are related to a suite of continuummodels
for the agent density (Eq. (4)) and pathlines (Eqs. (9) and (10)). These models are valid in the limit as ∆ → 0, τ → 0 and
Pp = O(τ ) with the ratio ∆2/τ held constant and Pm > 0. Since we must always perform discrete simulations with finite ∆

and τ , we expect to see a transition where the continuum–discrete comparison is good for some parameter values and poor
for others. We found that all continuum–discrete comparisons were good for sufficiently small Pp. However as Pp increased,
the value of Pp at which the continuum–discrete comparison became poor increased as the separation distance n increased.
Thismeans that the newproliferationmodel developed here for ENS developmentwith a relatively large separation distance
n = 6 is both biologically relevant and mathematically convenient compared to traditional models (Model 1 with n = 1) as
the continuum–discrete comparison ismore robust over awider range of parameters.Wealso emphasize that the continuum
models developed here are only valid if we have a sufficient amount of motility in the system and Pm > 0. With little or
no motility, agent proliferation leads to local clustering [17,23] which violates the independence assumptions underlying
Eqs. (1) and (3).

All analysis and simulation data presented here correspond to undirected motility. We focused on undirected motility
for two reasons. First, this is the simplest possible motility mechanism [13,14,18]. Second, our modeling has been inspired
by NCC invasion and time-lapse data describing the movement of isolated NCCs in the absence of proliferation shows that
theymove along random and unbiased trajectories [4].We repeated the analysis and simulations presented here using other
motilitymechanisms including biasedmotility [14] and adhesivemotility [28]. These alternatives lead to different flux terms
in the continuummodels giving a different advection-diffusion-reaction PDE with the same requirement that Pp = O(τ ) as
τ → 0. Equivalent continuum–discrete comparisons for these alternative motility mechanisms were made and the exact
same trends were observed: the continuum–discrete comparison is good provided that Pp is sufficiently small and that the
continuum–discrete comparison becomes poor as Pp increases.
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