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Abstract

Alginate dialdehyde–gelatin (ADA–GEL) hydrogels have been reported to be suitable matrices for cell encapsulation. In general,
application of ADA–GEL as bioink has been limited to planar structures due to its low viscosity. In this work, ring shaped
constructs of ADA–GEL hydrogel were fabricated by casting the hydrogel into sacrificial molds which were 3D printed from 9%
methylcellulose and 5% gelatin. Dissolution of the supporting structure was observed during the 1st week of sample incubation.
In addition, the effect of different crosslinkers (Ba2+ and Ca2+) on the physicochemical properties of ADA–GEL and on the
behavior of encapsulated MG-63 cells was investigated. It was found that Ba2+ crosslinked network had more than twice higher
storage modulus, and mass decrease to 70% during incubation compared to 42% in case of hydrogels crosslinked with Ca2+. In
addition, faster increase in cell viability during incubation and earlier cell network formation were observed after Ba2+

crosslinking. No negative effects on cell activity due to the use of sacrificial materials were observed. The approach presented
here could be further developed for cell-laden ADA–GEL bioink printing into complex 3D structures.
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1 Introduction

Biofabrication encompasses processing techniques that
allow to create 3D structures of cell-laden hydrogels for
tissue engineering applications [1]. Different strategies have
been used in order to provide mechanical support to 3D
printed constructs like depositing bioinks into a liquid bath
[2, 3] or the co-printing of hard [4] and soft [5] supporting
materials. Methylcellulose (MC) hydrogels have also been
tested as a sacrificial material for 3D printing [6].

Alginate dialdehyde–gelatin (ADA–GEL) hydrogel has
been used for cell encapsulation and it has been shown to
exhibit good cell adhesion, proliferation and migration prop-
erties [7–9]. The benefit of using such hydrogel is that two
advantages—mild ADA crosslinking with divalent ions and
cell adhesion to GEL—can be combined as the two compo-
nents (ADA and GEL) form a covalent bond via Schiff’s base
reaction [9, 10]. In this work, 3D printed sacrificial MC based
structures were used for casting cell-laden ADA–GEL
hydrogel matrices. The possibility to use Ba2+ ions for ADA
crosslinking instead of Ca2+ in order to improve the
mechanical stability of the constructs was proposed, following
recent previous results on similar alginate based hydrogels
[5]. In vitro cell studies were performed in order to pre-
liminary assess the potential of the presented biofabrication
approach for tissue engineering applications.

2 Materials and methods

2.1 ADA–GEL hydrogel

2.1.1 Hydrogel preparation

ADA was synthesized from sodium alginate (MW
100,000–200,000 g/mol, Sigma-Aldrich, USA) following the
process reported by Zehnder et al. [8]. According to previous
work of our group, this process results in a degree of oxidation
of ADA of approx. 30% [10]. To prepare ADA–GEL, equal
volumes of filtered 5% (w/v) ADA and 5% (w/v) GEL Type A
(300 Bloom, Sigma, USA) solutions were stirred together for
10min. The mixture was then casted, crosslinked by covering
with 0.1M CaCl2 (VWR, Belgium) or 0.1M BaCl2 (Merck
KGaA, Germany) for 15min, and washed three times with
Hank’s balanced salt solution (HBSS, Sigma-Aldrich, USA).

2.1.2 Physicochemical properties

Mechanical properties of ADA–GEL were determined by
using disc-shaped samples (n= 3, 16 mm of diameter and
thickness of approximately 1 mm) subjected to a frequency
sweep in compressive deformation mode to determine sto-
rage (E′) and loss (E″) moduli at room temperature by

DMTA. A suitable pre-load (40 g) and strain amplitude
(0.1%) were determined by previous amplitude sweeps.

Degradation of ADA–GEL was evaluated by incubating
ADA–GEL disks in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco, Germany) supplemented with 10% (v/v)
fetal bovine serum and 1% (v/v) penicillin-streptomycin
(both Sigma-Aldrich, Germany) (the same DMEM was
used for cell growth) under cell culture conditions (37 °C,
95% relative humidity, 5% CO2). Mass change was calcu-
lated at defined time points. In parallel, the chemical com-
position of samples which were incubated for 7, 14, 21,
28 days was investigated by using attenuated total reflection
Fourier-transform infrared spectroscopy (ATR FTIR)
(IRAffinity-1S, Shimadzu, Japan). The medium was chan-
ged three times a week following the same procedure used
for cell culture studies.

2.2 Cell encapsulation in ADA–GEL ring structures

2.2.1 Sample preparation

Sacrificial gel containing 9% (w/v) MC (Sigma, USA) and 5%
(w/v) GEL was used. This particular composition of the
sacrificial gel was obtained from the printing tests of different
gel formulations consisting of various concentrations of MC
and GEL (data not shown here). Sacrificial gel was transferred
into an autoclaved cartridge with a conical nozzle (G22,
Nordson EFD, Germany). The cartridge was then placed in a
3D printer (BioScaffolder GeSiM 2.1, GeSiM, Germany). The
sacrificial gel was printed as two concentric rings with dia-
meters of 4.4 and 10mm. The formed well between them was
then filled with 70 μl ADA–GEL containing osteosarcoma
cells MG-63 (Sigma-Aldrich, Germany) at the concentration
of 1 × 106 cells/ml. The samples were crosslinked by covering
with CaCl2 or BaCl2 and washed three times with HBSS. The
ring-shaped constructs were afterwards incubated in DMEM
for 21 days under cell culture conditions.

2.2.2 Cell activity monitoring

Cell viability was monitored by using the WST-8 assay kit
(Sigma-Aldrich, Germany) which was applied according to
the manufacturer’s protocol. SYTOX™ green nucleic acid
stain and rhodamine phalloidin (both Invitrogen™, Mole-
cular Probes® by Life Technologies™, USA) were used for
staining cell nuclei and actin filaments, respectively, for
fluorescence microscopy (Axio Observer Scope D1, Carl
Zeiss AG, Germany).

2.3 Statistical analysis

Statistical analyses were performed by one-way analysis of
variance (ANOVA) with Bonferroni means comparison.
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3 Results and discussion

3.1 ADA–GEL hydrogel properties

DMTA measurements showed higher mechanical prop-
erties of BaCl2 crosslinked samples in comparison to
CaCl2 crosslinked samples (Fig. 1a). Moreover, storage
modulus (E′) was found to be greater than the loss mod-
ulus (E″) for both sample groups showing dominating
elastic behavior. The E′ increased with frequency indi-
cating the viscoelastic behavior of the materials [9]. Small
standard deviation between the measurements (5–6%)
suggests that the sample crosslinking reached saturation
and was reproducible.

Sample degradation (mass loss) is shown in Fig. 1b. In
the case of BaCl2 crosslinking, the sample mass rapidly
decreased to 85 ± 1% during the first 3 days and then
decreased further until a final value of 69 ± 4% at 28 days of
incubation. In case of CaCl2 crosslinking, a higher weight
loss was detected. In the first 3 days the sample mass
already decreased to 74 ± 9% and was further reduced to a
final value of 42 ± 3% at day 28. The main difference
between the two samples is given by the contribution of
ADA dissolution to the overall degradation. CaCl2 cross-
linked samples tend to loosen due to weaker bonds and
higher exchange of ions with Na+ from the medium [11]

that can result in the loss of the crosslinks that form the
ADA network. Therefore, ADA molecules may be released
together with GEL. The degradation of BaCl2 crosslinked
samples is then mainly related to the release of uncros-
slinked GEL.

FTIR spectra of each gel component were examined
(Fig. 1c). Two peaks at 1628 and 1522 cm−1 of the GEL
spectrum indicate amide I and amide II peaks [10]. For
ADA, typical peaks of asymmetric (at 1597 cm−1) and
symmetric (at 1406 cm−1) COO− vibration, C–O stretching
at 947 cm−1, C–C stretching at 1123 cm−1 and C–O–C
stretching at 1024 cm−1 were found [12, 13]. Samples after
mixing and crosslinking exhibited specific peaks. In case of
BaCl2 crosslinking, a broad peak in the range
1630–1530 cm−1 was formed with distinguishable high
peak at 1593 cm−1 and shoulder on the right side
(1560–1543 cm−1). In case of CaCl2 crosslinking, a broad
double peak at 1618 and 1558 cm−1 was found for the
sample before incubation. With both crosslinkers, this peak
was the result of overlapping peaks of amide I and the ones
that correspond to the formation of Schiff’s base bond due
to crosslinking between ADA and GEL [9]. The peak
remained for the first 14 days of incubation and became
narrower on day 21 and shifted to 1603 cm−1 for BaCl2 and
to 1609 cm−1 for CaCl2. This indicates that gelatin was
being released during the incubation.

Fig. 1 Properties of 2.5% ADA+ 2.5% GEL samples crosslinked with
BaCl2 and CaCl2: a DMTA measurements showing storage and loss
moduli; b Degradation in DMEM over a time period of 28 days;

c FTIR spectra obtained at different time points of incubation in
DMEM (the relevant peaks are discussed in the text)
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3.2 Hydrogel casting with sacrificial structure

Samples containing two sacrificial rings and cell-laden
hydrogel were successfully prepared (Fig. 2a). Full dis-
solution of the sacrificial gel was observed upon 7 days
without additional swelling or disruption of the ADA–GEL
ring structure. After measuring the development of cell
viability (Fig. 2b), it was noticed that during the first
2 weeks of incubation the values significantly increased for
both types of samples. In addition, samples crosslinked with
BaCl2 had significantly higher values of cell viability than
the samples crosslinked with CaCl2. After the 3rd week
only in the case of CaCl2 crosslinked sample cell viability
significantly increased further and reached a comparable
value to the one of BaCl2 crosslinked samples. This result
was also noticed when analyzing fluorescence images (Fig.
2c). Cells in BaCl2 crosslinked samples started to spread
and formed an extended network already after 2 weeks,
while cells in CaCl2 crosslinked samples grew in more
globular structures which connected with each other during
the second half of the incubation period. Such growth pat-
tern in case of CaCl2 crosslinking has been previously
reported by Zehnder et al. [8]. It has been shown in litera-
ture that alginate scaffolds crosslinked with sufficient
amount of BaCl2 for 2 min, in addition to CaCl2

crosslinking, exhibited cell viability of over 88% 11 days
post-printing [2]. The authors attributed such result to the
possibility of maintaining the mechanical properties of the
gel rather than to the type of ions used. The anchoring
density that may be higher in BaCl2 crosslinked samples
might also influence cell attachment [14]. The increase of
cell viability with time in case of CaCl2 crosslinking could
be due to the ECM forming molecules secreted in the gel by
the cells themselves [15]. The present results thus show that
the combination of sacrificial structures and a suitable cross-
linking process of the ADA–GEL bioink represents a sui-
table approach for the biofabrication of 3D structures,
namely ring forms (Fig. 2a) as well as grid structures
depicted in Fig. S1 (Supplementary information).

4 Conclusions

The formation of alginate dialdehyde–gelatin cell-laden
hydrogels into ring-shaped structures by using 3D printed
methylcellulose based sacrificial materials was successfully
achieved in this work. Slower increase in cell viability was
identified in samples crosslinked with CaCl2 in comparison to
those crosslinked with BaCl2. This result could be attributed
to differences in gel stiffness as samples crosslinked with

Fig. 2 ADA–GEL ring samples formed with sacrificial hydrogel: a Light microscopy images; b Change in cell viability during the incubation
period; c Fluorescence microscopy images
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BaCl2 exhibited higher elastic moduli and lower weight loss
during the incubation period. Further studies considering
different alginate dialdehyde–gelatin crosslinking methods
could help to understand the factors defining the different cell
growth patterns observed in this study. Moreover, the use of a
3D printed sacrificial gel as introduced in this work could be
transferred to other materials like collagen that gels at 37 °C
in longer periods of time.
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