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Abstract

For a broad definition of balanced data from mixed models it is shown
that the BLUE (best linear unbiased estimator) of an estimable function of
the fixed effects 1is the same as the ordinary least squares estimator; in
particular, estimates of cell means in a cell means formulation (for the
fixed effects) of a mixed model therefore provide the BLUEs. Application
to unbalanced data is shown for randomized complete blocks with not
necessarily the same number of observations in each treatgent—by—block

combination; and for a special case of this, balanced incomplete blocks.

1. INTRODUCTION

a. Fixed effects models

Analysis of variance models have traditionally been formulated in
terms of additive main effects and additive interaction effects that
usually result in there being more parameters in the model than there are
means to estimate them from. For example, suppose yijk is the k'th
observation on treatment i of variety j in a two-factor experiment con-
cerned with fertilizer treatments and plant varieties. Then a traditional

analysis of variance model is of the form

yijk = u o+ ai + Bj + 71j + eijk (1)
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where p is a general mean, a is the effect on the response variable due to

the i'th treatment, B, is the effect due to the j'th variety, is the

3 713

interaction effect between trestment i and variety j, and eijk is the

residual error term defined as eijk = yijk - E(yijk) for

E(yijk) = u + oy + Bj + 71_‘]

where E denotes expectation over repeated sampling. For an experiment of

a treatments and b varieties and n observations per cell, the number of
n

observed cell means y = Ly
0 pm

But the model equation (1) has more parameters than this, namely 1 + a + b

ijk/n (for n observations per cell) is ab.
+ ab. Thus (1) exemplifies what is known as an over-parameterized model.

In contrast to (1) there has in recent years been a growing interest
in modeling yijk solely in terms of itrs underlying population mean, 1i.e.,
in taking

E(yyq) =Wy and o Vi T My ey (2

where the yijk for k = 1, -+«-, n are deemed to be a random sample of n
observations from a population having mean pij' This formulation is known
as the cell means model. It has been promoted extensively by Speed and
Hocking and co~workers [e.g., Speed (1969), Hocking and Speed (1975),
Speed and Hocking (1976), and Speed, Hocking and Hackney (1978)] and its
feature of having exactly the same number of parameters to estimate as
there are observed cell means has proven to be particularly useful,
especially for unbalanced data, namely those having unequal numbers of
observations in the subclasses. Compared to (10), we find that with (2)
estimation is easier, estimable functions are simpler, and b'a variety of

hypotheses commonly considered are more easily described and understood.
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Urquhart and Weeks (1978) exemplify these advantages in an analysis of
weight gains in beef cattle.

The use of (2) as an alternative to (1) tacitly implies incorporation
of interactions as part of the model. When wanting to use a no-interaction
form of the cell means model it is necessary to use (2) together with

reastrictions of the form

pi] - ui.j - uijr + pinjn =0 , (3)

which specify absence of interaction.

Analysis of variance models like (1), where estimation of (and testing
of hypotheses about) parameters are the features of interest, are known as
fixed effects models, and in such modéls the customary assumptions about
variances and covariances are that each observation has the same variance
and that every pair of observations has zero covariance. The dispersion

matrix V of the vector of observations y then, has the form

V= o1 |, (4)

I being an identity matrix and 02 being the variance of every observation.
An assumption about V more general than (4) ia that it 1is simply a
symmetric, positive semi~definite matrix; and in many cases that it be not
just positive semi-definite but positive definite, and hence non-singular.
b. Mixed models

Variations of (1) are models where some or all of the @, Bj and 6ij
terms are assumed not to be parameters to be estimated, but are modeled as
being random variables with zero means and some assumed variance-covariance
structure. FPFor example, suppose in the no-interaction form of (1), with n

= 1, namely
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that the B, for j = 1, <--, b, are modeled as random variables with zero

3

) =0V j. The Bj are then called random effects and, along with

, usually have the following variance-covariance

mean E(B8

3

the random error terms e

1]

structure attributed to them:

var(Bi) = aé vi o, ch(Bj,Bj.) =0V j¥j°' (6)
var(eij) = oé v i,3, cov(eij,ei,j,) = 0 except for i=i' and j=§'
and
cov(Bj,eij.) =0Vi, 1,4’
Then with p and the a, in (5) being fixed effects and the Bj being random
effects, (5) is known as a mixed model. And the variances oé and 6; of
(6) are the variance components. The structure of (6) then leads to V¥

having elements that are either zero, o% + ci, or o%; in general to
elements that are either zero, or one of the variance components or a sum

of them.

Example 1 In the case of 2 treatments and 3 blocks, where an element

of a matrix that is zero is shown as a dot,

vi1]  [ogrer - ' 9 ' ]

Y12 . c§+o: . . ua .
VPR L] N B R

Y1 ua . . oé+a: . .

Yoq oa o§+o~ .

Y23 - . 02 . agm2

Despite merits of the cell means formulation of fixed effects models,
such as (2) as an alternative to (1), minimal formulation has been made to

mixed models such as (5) and (6). Indeed, Steinhorst (1982), for the
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"

randomized complete blocks design, writes that he is "--- at a loss to see
how pij carries the right meaning if blocks are random ---." And regarding
the split-plot design he continues "The cell-means model is not of much
help in such cases. The classic split-plot model -+ cannot be replaced by

143

a vafiation of yijk = uijk + eijk' In contrast to such remarks, we ;how
in this paper that all of the cases (and more) that Steinhorst refers to
can be formulated as cell means models. We also show that for a broad
class of balanced data situations the BLUE (best linear unbiased estimator)
of a cell mean in a mixed model is always the OLS (ordinary least squares)
estimator. And for the randomized complete blocks model with random blocks
(as 1is usual), we show extension to unbalanced data: an explicit (matrix-
vector) expression is developed for estimating the treatment means.
c. A general mixed model

The elements of ‘the mixed model (5) are of two kinds: yu and oy that
are fixed effects, and Bi and e that are random variables. Generalizing

13

this dichotomy for a vector of observations y we write
y = Xg + 2u (7
where 8 is a vector of fixed effects and u is a vector of random

effects, including error terms. The matrices and vectors of (7) are

partitioned thus:

X = {X X D ¢ - X | Zm= [Z Z -es Z e Z ]

1 2 d £ and 1 2 q r (8)
g = [El 92 PN Ed s Ef] u = [21 gy e Eq N Er]
Each Ed for d =1, 2, +-+, f has as its element the hd effects correspond-

ing to the hd levels of the d'th fixed effect (main effect or interaction)

factor, and X, is the incidence matrix corresponding to Ed' Similarly,

d

gq (of pq elements) and gq for q =1, 2, ---, r~1 are defined for the
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random effect (main effect or interaction) factors analogously to Ed and

zd for fixed effect factors. For q = r, we define u = e, the vector

of error terms, and accordingly gr = lN where N is the total number of

observations, and P, " N.

Example 2 Using (5) and (6) as the model for a randomized complete

blocks experiment fof a treatments in b blocks, u and [al‘--aa]' would be

51 and EZ of (8), respectively, and B1 ‘e 82 and the eij-terms of (5)
would be Yy and 4, of (8), respectively.

The variance and covariance properties of (6) generalized to u are

var(u ) = 2] for g=1, 2, +vo, 1
~q q Pq .
and (9
cov{u , ! = for ' = 1, 2, ---
(gqr8g) PPy 1%a4 » ¥

Hence from (7) the variance-covariance matrix of y is

r
V = var( = (Zu) = I o272 2' . 10
y y) = var(Zu) R (10)

Thus (7) through (10) constitute a description of a general mixed model.
d. Estimation in the general mixed model

The ordinary least squares (OLS) estimator of an estimable function
A'X8 of the parameters in B in the model (7) will be denoted by

~

(OLS)A'XB and is, as is well-known,

OLS(L'XB) = A'X(X'X) X'y (11)

~ ~

where (5'5)- is a generalized inverse of g'g-, i.e., (5'5)- is any matrix
satisfying :
XKD KK = XX

Similarly the best linear unbiased estimator (BLUE) of that same estimable

A'XB, to be denoted BLUE(A'XB), is



BLUE(A'XB) = A'X(X'V 07XV 1y (12)

~ ~

where V is assumed to be positive definite.
| In fixed effects models, V = 021, as in (4), whereupon (12) very
simply reduces to (11), as 1is well known. An extension to
V = [(1-p)I + p{]cz is given by McElroy (1967) and, in complete
generality, Zyskind (1967) has shown that these two estimators are equal,
if and only if
VX = XQ for some Q . (13)
Graybill (1976), p. 209) also has this result, restricted to X of full
column rank. We use (13) to show for a broad definition of balanced data
that for mixed models of the form (7) through (10) the BLUE of an estimable
function of the fixed effects parameters is the same as the OLS estimator;
and for randomized complete blocks with unbalanced data we obtain an
explicit expression for the BLUE of estimable functions of treatment
effects.
2. BALANCED DATA

a. A general mixed wmodel

We deal with data categorized by a number of factors, each of which is
either a méin effects factor (including the possibility of nested main
.effects factors), or an interaction factor representing the interaction of
two or more main effects factors. Suppose there are m main effects
factors, with the t'th one having Nt levels, for t = 1, 2, ++-+, m. Then
the k'th observation in the "cell” defined by the it'th level (for
1 = 1, «--, Nt) of the t'th main effect for t = 1; «++, m, where there

such observations, is Vi onn for k = 1, 2,

17277 7T P AR
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. On defining i = [i1 im], a typical observa-

* n - o8
Lydyeeedy 2
tion can then be denoted as Yik for k = 1, 2, «++, n

-
m

T Furthermore,

the total number of observations is

i=N’

N= P, = £ n

'. LI . s e
i for N [N, N, N, NI

[

8

(l; is a row vector of m unities.)

A tight, rigorous, formal and complete definition of balanced data is
elusive. Development of such a definition would, as Cornfield and Tukey
(1956) write, involve ":.. systematic algebra [which] can take us deep into
the forest of notation. But the detailed manipulation will, sooner or
1ater,‘blot out any understanding we may have started with." Nevertheless,
one formulation of a model that yields a wide class of balanced data
situations is as follows. It is similar to that used by Smith and Hocking
(1978), Searle and Henderson (1979), Seifert (1979), Khuri (1981) and
Anderson er al. (1984).

The balanced data models we consider are those that have
ni = n VY i. They also have each §d and each %q of (8) being a
Kronecker product (KP, for brevity) of m + 1 matrices, each of which is

either an I-matrix or a l-vector; i.e.,

each Ed and each Zq is a KP of m+l matrices that are each Iorl . (14)

The occurrence of the L—matrices and L-vectors in these KPs is as
follows. First, corresponding to the scalar parameter p in the model is

X, which is lN’ and so every matrix in its KP is a 1:

- - * K e Kk * ... % )
Bpmdy =iy *ly Ly v *i, o
1 2 t m

where * represents the operation of Kronecker multiplication. Second,

corresponding to u = e is gr which 1is ZN and so each of the m + 1 matrices



in its KP 1is an l—matrix:

- - %* ® ... R ® ... % *
Z. = Ly LIy T iy, In v L
t m

Finally, in the KP for each X 6 and %q (other than X, and gr), the

d

t'th matrix corresponds to the t'th main effects factor and is EN when
t

that factor is part of the definition of the factor corresponding to Kd

or %q; otherwise it is lN . This ia for t = 1, -+, m. And for
t

all X, and %q, other than Er’ the (m+l1)'th matrix in the KP is

d
1 .

~n

The phrase "part of the definition” demands explanation. It is
exemplified in the 2-factor model (1), wherein the two main effects factors
are each part of the definition of the interaction factor. Similarly, if
nested within an o~factor there is a B-factor then the a-factor is part of
the definition of that B-factor. (See also, comments B and C which follow
the examples.)

Each hd and pq (number of levels in the d'th fixed factor and the q'th
random factor, respectively) in the balanced data we have defined is the
product of the numbers of columns in the I and l terms in the KP (14)

that is X  and %q' Hence h, is the product of the Nt values for the

d d
main effects factors that are part of the definition of the d'th fixed
effect factor; pq is a similar product for the q'th random effects

factor.

Examples We give four examples that are each in terms of those of the
following vectors that are appropriate: a = [al,~--,aa]ﬂ

B = [Bl"'.’sb]' or Q+ = [811.'.Blb 321...32b...381...38b]', =

[711---71b 721---72b---731---78b]', and e, the vector of error terms,
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the same order as y. Determination of which KPs are X-matrices and
which are Z-matrices ias governed by which factors are defined as fixed
effects and which are random. This is illustrated for only example (iii).

(1) One-way classification: = u +a, +e with i=l1,.-. a and

Yij i ij

j-]_’-..,n.

- * * *
x= QA *Llow+ (I *1)a+ (I *I)e . (15)

(1i) Two-way crossed classification, no interaction, and one observation

per cell: =pta + Bj + e, for i=1l,.--.,a and j=l,---,b.

Yi4 ij

- * *% * *
Y= *1ow+ (I *1loa+ (1 *¥THp+ (I *I)e . (16)

(11i) Two-way crossed classification, with interaction and n observations

= nu+a, +B8, +7v,, +e with i=1,<-- a, jml ,--- b and

per cell: i j 1j 13k

Yijk
km]l,+--,n.

= * * * * * *
y= (L %L *1)p+ (I %] 10a + (1 %I % )8

17

* 1. % *
+ (I * Ly * 1oy v (I * I

Suppose in (17) that elements of B and y were taken to be random

effects. Then the terms of (8) for the general mixed model would have the

following values:

m=3, f£=2 with h =N =1 and X =1 *1 %1  forg =u ,
and h2 - Nz = a and 52 ] la * lb * ln for 22 =a

r=3 with p, = N, = b and 2, = 1 % I * 1 for v, = 8 ,

Py, * N2N3 = ab  and Z, = I * I * in for Y * 1

and Py = N2N3n » abn and Zy =1 * I * Zn for uy = e .

(iv) Two-way nested classification: Yig = M + @ + Bij + eijk for

i=],---,a, j=1,++-,b and k=1,---,n.



(18)

Comments Several comments are in order. (A) In every case 51 for p
is 1, a KP of l-vectors; and %r for e is I, a KP of I-matrices.
(B) In every case the KP that is the coefficient of a has only one
I-matrix in it, namely la' This is so because, obviously, the definition
of a involves only a. The same 1is8 true of the coefficient of
B in (16) and (17). (C) In contrast, the KP that is the coefficient of

§+ in (18) has two I-matrices, la and I This is because §+ has

b*
elements that represent the nesting of the B-factor within the a-factor.
Thus the a-factor is involved in the definition of g+ and so the coeffi-

b’ Thus the coefficient of §+ in (18)

clent of §+ contains La and 1
is the same as that of y, the interaction term, in (17). Judged solely
by their coefficients, §+ and y would therefore appear to be the same.
What makes y an interaction term is that both main effect factors that go
into defining it are also present on their own in (17), but with §+, only
one factor that goes into defining it is present on its own in (18), and so
g+ represents nesting. 1In other words, a factor that looks like an
interaction factor is such when all of its associated main effects factors
are present in the model; otherwise it is a nested factor. (D) Equation

(16) is a special case of (17) with 7y omitted and n=1 and hence, for

example, la * lb 1 =1 % lb ¥ 1 =1 % lb'

~n ~a ~a
r

A final observation concerns V = L Oégqgé of (10). It is based on
q=1

the general result that (é * g)(z * Q) = AP * BQ, given the necessary con-
formability requirements. Thus, for lnl; = gn being a square matrix of
order n with every element unity, we have from (14) that every ngé is a KP

of I and J matrices. Thus we rewrite (10) as
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r
V= L o2 (the KP of I and J matrices that is 2 . (19)

zZ")
=1 q~q

b. Estimation

It is well known for many cases of balanced data that BLUEs of
estimated functions of parameters in fixed.effects models are simple
functions of observed means. For example, in the fixed effects form of the

2-factor model (1), the BLUE of @, - a,, is BLUE(ai -ai,) -

- ;1,.. for 1 4 1'. The question of interest is "Is the BLUE of

Yy

..

a also ;i-- - ;i'-- in a mixed model form of (1) where the 8, and

J
s are treated as random effects?" The answer is 'yes'; moreover, in all

i3
cases of balanced data (as defined in the preceding section) the BLUE in a

i "%

mixed model is the same as the estimator yielded by using OLS. This we now
prove, by showing that (13) is satisfied for V of (19) and X = {ﬁd},

d=1,-+-,f of (14) with X 6 being a KP of I-matrices and l-vectofs.

d
Writing W for 2 Z' of (19) we have
~q ~q~q

m+l
W =2 72' s (W .XW_ % «c0%y % ...%¥y - %W , 20
Ny = 2qZq = 1™ ¥go ~qt Bq,m1’ L (20)
and, similarly, for
m+1
- o e “ae - %
X [Kl 32 Ed §f] with Kd zdt » (21)
t=]
where each zdt is either th or th. Then from (19)
r d=f
VX = { L o2z 2'X }
—~— 3 q~q~q~d .
q=1 7 d=1

where, by the curly braces notation, we mean that VX is partitioned into a

row of f sub-matrices. Thus

r d=f
VX = { L oW X } (22)
g=1 T 40
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{ o m+l d=f
= ! L g2 *WwW X } . (23)
q=1 9 a1 95798 4ay

Now, from (19) and (20), eq is either I or J and X is either I

dt

or 1, all of order !t' Therefore the four posaible values of the

product eqét' together with the definition of a matrix Eth such

that eqg in each case, are as follows:

at = Zaclqae

eq 5dt eqgdt = 5dtﬁth qut
I 1 I=11 1
I 1 1= 1 1
d 1 J = IJ J
3 1 N1 = 1N, N,
Therefore from (23)
r m+l d=f
= {qflv‘21 tflzdtﬁth}d-l ’ N
T d=f
) {qf1°;5dqu}d.l ’ (2%)
for
E-(qv.‘l - Eqdl * Eqd2 Foeee ¥ yth Hoaee ¥ gq,d,m+1 ’ (26)

Derivation both of (23) from (22) and of (25) from (24) is based both on -
gd and Eq each being a KP, and on the product rule for KP quoted
earlier.

The conformability requirements of the regular products in (24) might
seem to be lacking because, from the preceding table, two forms of Eth
are scalars. However, both regular and Kronecker products of matrices do

exist when one or more of the matrices 1s a scalar; e.g., for scalar 8,

both A8 and (A * g)(e * L) = A6 * BL exist. Therefore (25)
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exists. Hence, on writing T d=f
Q= diag{ L oM } ,
q=1 9 40y
) r
the block diagonal matrix of matrices L UZE q’ we get from (25)
) q=1 q~q )
r
E oM
q=1 97!
' 0
r
= S “ee 2
VX = DX e Xy e Xl s (27)
Q ) T
T oM
] q=1 ¢ qfd

= XQ
Thus Zyskind's condition of (13) is satisfied. Hence, with balanced data

as here defined, the BLUE of an estimable function of the fixed effects in

any mixed model is the same as the estimator obtained using ordinary least

squares.
r
A final note: each sum [ ozqu in (27) does exist because, as a re-
q=1
sult of (26), the order of qu is the product of the orders of Eth for

t =1, «-«, m+l; and (from the Table) each Eq N is square of order either

d

N or 1.

‘ Furthermore, that order 1is Nt only when X

de = l; and this is

so only when the t'th main effects factor is involved in defining the d'th

fixed effects factor. Hence the order of qu is the product of such Nt

r
. 2
values, and this is hd’ thus qu has order hd for all g and so qflongd

exlsts.

Example Suppose in (1) and (17) that the Bs and ys are random

effects. Then
- * * * *
Z [la lb ln 3:*a lb ln}
and
= g? * * 2 * * 2 *® *
! 0B(ga Ib gn) + 07<£a lb gn) + de('I-'a Ib Sn) *
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Hence in VX the first sub-matrix is

% * - g2 T %
V(L % 1 * 1) = a2(al %1

* 2 * * 2 * ] *
~'~g ~b ~n nln) + uy(la lb nln) + oe(la lb 1)

b

- (la * lb * ln){ué(a * 1 % n) +'o;(1 * 1 % n) + a;(l * 1 % 1)] . (28)

Similarly, the second sub-matrix of VX is

* * = g2 *
V(I * Ly * 1) = oh(3, * 1

%* 2 * £ 2 * *
v 1 nln) + 07(}‘a lb nln) + oe(za 1 1)

b ~b  ~n

- * * 2 * % 2 * * 2 * 1 %
(I, %Ly * 1D00e3(I, % 1% n) + o2(I % 1 % n) + o2(I_ * 1% 1)] . (29)

Hence
M 0 ¥ 0
X = [la * lb * ln Ea * lb * ln] =X
9 M 9 M
for El and 52 being the matrices in square braces in (28) and (29),

respectively, namely

M. .=» ang? + no? + g2 and M, » no2J + no?l + o?1 .
~1" 8 Y e ~2 B~a y~a e~a

3. CELL MEANS MODELS

a. A general formulation
The cell means model (2) for yijk in the 2-factor case extends very

naturally to Yik for any number of factors:

yik - Pi +'e‘:!;k with E(yik) - Pi
for i = L;, c--, N' and k = 1, 2, ..., n, . For y, p and

e being the vectors, respectively, of the V' Wy and e’ arranged

in lexicon order in each case, we write
y=Xg+e . (30)

Then X is a direct sum of vectors 1 |



X= ()1 . (31)

where (+) représents the direct sum operation; and X has full column rank.

Example For m = 2 and Nl = 2 and N, = 3

2
(1 . . . . o]
M1
]_ - . - .
My,
i-[z 3) . . ln . - -
E - (+) 1 - 13
i={1 117" . . . 1 . .
. . 1 .
0y,
. . . . 1
LLPE

The OLS estimator of p in (31) is

£ OLs() = (XM X'y Y - (32)

with, from the nature of X in (31), X'X being D{ni}, the diagonal matrix of
the ni, and X'y being the vector of cell totals y;.. Hence E - D{l/ni}{yi°}
- {;i-} =- i, the vector of observed cell means, as in (32).

~Adapting the cell means model to models where the dispersion matrix of
Y is other than azl; i.e., for a mixed model, involves using the cell
means formulation for only the sub-most cells as defined by the fixed
effects. For example, in a randomized complete blocks where blocks are
random the cell mean model is

Yi3 T Moty

+ B, + ¢ the

where, in terms of an overparameterized model yij =pto j ij’

By is By =B + oo, for the fixed effects part of the model and eij =
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ﬁj + eij' The difference is, though, that we do not formally identify eij
as Bj + eij’ but merely attribute some form to the dispersion matrix of the
eij’ namely
V= var(x) = var(e) (33)
in this case ‘
ERHOR SRRSO (34)

In general we use y = Xy + e and V = var(e) of (30) and (33), respec-
tively, and then the BLUE of A'Xp is

BLUE(A'Xp) = A'X§  for § = BLUE(p = (X'V 'x)7'x'v 'y (35)

where p is estimable because in the cell means model X of (31) has full
column rank. And the sampling variances of these estimators are

tors are

1 1 1

and var(i) = (X'V'0 . (36)

var(p) = (X' X VXXX X

We can note in passing, due to the non-singularity of X'X and 5'2—15 that
it is not difficult to show that

E - E = 2 when VX = XQ for some Q , (37)
i.e., when the Zyskind condition is satisfied; whereupon, of course, the

sampling variances in (36) are also equal.

b. Some interactions zero

-

he formulation Xp in (30) for the fixed effects part of a mixed model
implicitly includes interactions; e.g., for two fixed effects factors, pij
in terms of the overparameterized model implicitly includes interaction be-

tween the two factors. To use a cell means formulation for the no-interaction

model requires defining an absence of interactions among the pij' This is

done by using an appropriate number of equations of the form

pij- ]“liij —pijl —uiIJI -O (38)



-18-

for 1 # 1" and § # j'. This is tantamount to imposing restrictions on

the elements of p, which in general we will represent as
Hu = 0 . ' (39)

H is of full row rank and, although every element of any Hp is estimable, be-~
cause p is estimable (since X has full column rank), we can also invoke the
principles of estimability to note that

H = LX for some L . (40)

Then, following Searle (1971, p. 206), for example, the OLS estimator of 0

for the restricted model E(x) = Xy and Hp = 0 1is

B R TXy - TR B TE T ERD TRy
o ' T 1 -1 ' ;1 b
=y - (X'X) H'[H(X'X) "H'] 'Hy , (41)
after using (32). Similarly the BLUE is
g, -y oy - gy T ey e T T By e Ty
On invoking the Zyskind condition this reduces to
o= %- QYRR B R TE Y (42)

Then, in association with VX = XQ for some Q, the question now is under what

~.

condition is the BLUE the same as the OLS estimator, i.e., when does Er = Er?

Since VX = XQ implies (g'y’lx)'l = g(§‘5)-1 - (5'5)-12', the latter equality

~

arising from symmetry, and because H = LX for some L, we find from (41) and

-1 -1

Lv] g - (§v§) Klgl[ﬁ(zrg)_l ' -1

X'L'17H

~

i.e., if and only if, in using VX = XQ and the full row rank property of H,

1 1 - Z,L'[H(X’X)—IK'L']-I

~ e ~

X'VL'[H(X"X)™ (43)

~ rer

X'VL'}

A necessary and sufficient condition for this equality to hold is X'VL' =
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X'L'K' for some non-singular K, where, in the necessity condition
K' = [E(g'g)—lg'k']-lg(g'g)-lg’XE'. A simpler sufficient condition is
VL' = L'P' for some non-singular P; i.e.,

LY = PL for some non-singular P . (44)

Thus (44) is a condition for mixed models E(x) = Xp with var(x) -V,
and restrictions Hpy = Q for H = 25, under which the BLUE of B is the same
as the estimator obtained from OLS. Two situations when (44) is trivially
true are as follows: (i) models that include all interactions among their
fixed, main effects factors, because then in terms of (40) L is null and so
(44) 1s obviously satisfied; and (ii) models in which V = ¢2I, for then
with P = V (44) 1is also satisfied. It remains for us to consider mixed
models, with V having some form other than 0?1 and in which some interactions
among the fixed, main effects factors are assumed to be non-existent. We do
so for balanced data only.

c. Balanced data, mixed models, no-e.fixed effects interactions missing
E;a-ple We begin with the example of a four-way crossed classifi-
cation, with one factor random and with the third order and one set of second
order interactions among fixed effects being zero. Thus the overparameterized

model could be

E(yijk}.v) = pu + ay + Bj + T + (aB)ij + (BY)jk + 6,' + eijk}.v

for a, b, c, and d levels of the four main effects factors, respectively,

and n observations per cell. For the ai, B, and Yk effects taken as fixed,

3

and the §, effects as random, the cell means formulation would be

)3

Yijkav = Pige * figk (45)

with restrictions of the form

Pl TP T Fpae R T 0 (46)



for 1 $# i' and j % 3'; and

pijk - “i'jk = llijvk + Pi:j-k" (Pijk:‘vi'Jk-’Pij'k-"'ui.j'k.) =0 , (47
for i #1', 3 4 j' and k # k', In writing (45) as
Yy =Xpt+te ,
with elements of y, p and e in lexicon order, we have
- * *®* * *®
X =L %L %I %1 %1 (48)
and
- % * * * 2 2
X (ga gb gc ld gn)ds + labcdnoe ) (49)
Then, on defining Ia as the (a-1) x a matrix
Za - [la—l -la—ll with Iaga =0, (50)
the absence of the (ay) and (aBy) interactions can be written as
3
Hp = 0 for H = (51)
L7
and
» * v % - * *
H [Ia 1 IC] and H, [I_a I, EC] . (52)
Thus on comparing 51 and 52 with X of (48), it can be seen that
H=LX for L =H¥*(1li/d) * (L'/n) . (53)
Then, on using zaga = 0 of (50), it is evident from (49) and (53) that
LV = LIo? = (¢2I)L (54)

and so (44) 1s satisfied. Hence in this example of balanced data, from a
mixed model with some of the interactions between fixed main effects assumed

as being zero, the Zyskind condition is upheld and so in the restricted cell



-21-

means model the BLUE of p is the same as the OLS estimator.

The result just obtained for the example is true in general. X,
like (48), is always a KP of I-matrices corresponding to the main effects
that define the fixed effects, of l-vectors corresponding to the main
effects that define the random effects, and of ln for n observations per
cell. V, like (19) and (49) is always UzelN plus a weighted sum
(using variance components as weights) of KP's of m+l I and J matrices,
with the matrices corresponding to the main effects that define fixed
effects being J-matrices — with two exceptions that shall be considered
shortly. H can always, as in (51) and (52), be partitioned into subsets
of rows, each subset being a KP of Ts and (1')s, and L is then the KP
of H and a KP of vectors L;Jt/Nt and L;/n, as in (53). Hence in
the product LV every term except EOZE has a product TJ in it,
which by (50) is null; and so LV = (ozel)g, which satisfies (44).

The two exceptions are for nested random factors, and for random
factors that are interactions between fixed and random factors. Each of
these affect V by changing some of the Js corresponding to main effects
that define fixed effects to be Is. The only occasion that this affects
a term in LV is if, for every T in H (and L), the corresponding
J in a term in V becomes I on the occurrence of either of these
exceptions, then the resulting term in LV that was null will become a
multiple of L. Hence LV = PL 1is still upheld, for P being a

scalar matrix, although different from 0212, of (54).

Example (continued) Suppose in the preceding example that the
covariance structure includes the assumption that all observations in the
same 1,3,k cell of the three fixed effects factors have a common variance.

Then, instead of V of (49) the variance-covariance matrix of y will be
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v with

™ * * * %* 2
!1 v+ (la lb Zc gd gn)UGBY '

Then, for L of (53), using (54),

* %* * ' * ' 2
LYy = LY+ {LHGL > Iy % LT ¥ (1g/d)dy * (L /)T boge,

2 * * ® 1' % 1'}qg2
aek + {Q(Ea Zb Zc) ld ln}oaBy

2 2 * v o '
62L + dnal [H * (11/d) * (1'/n)]

2 2
(ce + dnGaBy)L .

Thus we conclude for balanced data in general, from mixed models with
some (or all) of the interactions among fixed effects being assumed
non-existent, that the BLUE of p is the same as the OLS estimator.
Moreover, this result holds for all cases of balanced data from mixed
models be some, all or none of the interactions be assumed zero. This
would seem to satisfactorily refute the suggestion made by Steinhorst
(1982), quoted near the end of Section 1(b) of this paper, that the cell
means model is inapplicable to mixed models — at least for balanced data as
have been defined in Section 2. We now turn to a particular example of
unbalanced data, and a special case thereof, the balanced incomplete blocks

design.

4. RANDOMIZED BLOCKS WITH UNBALANCED DATA
We consider the case of testing a3 treatments in b blocks with nij
observations on treatment i1 in block j for i = 1, -«-, aand j =1, ---, b.

The cell means formulation for the k'th observation (k. = 1, 2, ---, nij)

on treatment i in block j is

E(yijk) =By - (55)
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We assume that all observations in the same block have a common covariance,
02 say, and more specifically that the variance-covariance structure

B

among the observations is

- a2 2
v(yijk) oe + GB .

= g2 ' = P
cov(yijk’yijk') o for k ¥ k 1, 2, P Mgy o (56)}
- 2 ' - .- e ' = L Y
cov(yijk’yi'jk') oB for 1 #4i', k 1, ,nij and k 1, ’ni'j .
and
- 1
COV(yijk’yi'j'k') 0 for j * j .
The consequence of this is that for
by
2,
Z, b
Z=|. with Z, = ($)1 (57)
: I=1 i)
Z
-a<
- 277" 2
v oagg + aelN . (58)
Furthermore, from (55)
a
X = (+)ln . (59)
i=} 4.

Applying to (58) the general result

1y plea - s loy !

o~ ~ A

(p-ca'mt =D

from, for example, Searle (1982, p. 261) gives, after a little simplifi-

cation
2
yl- [; - 2 (3)02—;;%-2—);,'] /ot . (60)
3=1%"" 1% |

Then X'Vl utilizes X'Z which from (57) and (59) is
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zlg-{nij} fori.l’c-.,a andj-l’---’b

= [n 1"« (61)

- {c

=3

} for j = 1,---,b on defining ¢ -

3 i3 "23° 7 "aj

Thus we find that

b ag 1 b Gé
- [t o e ] [ - ey o ot ]

i=l e 3B i=l e -3 B
a b 02 -1 b n  aly .
- { roy - L mﬁ_o? ~j~j] [{yi-- -t ﬁ%”i'}] : (62)
i=1 =1 ‘18 j=1 is

Thia is a general result for estimating treatment effects in a randomized
blocks when the treatments have different numbers of observations within a

block, and also from block to block. And, of course

-1 -1 a b oé -1
var(f) = (X'Y 'X) © = ol ($)n, - I ;7:;——;; ~323] (63) -
i=1 i=1 ‘38

Two minor features of these results are worth commenting on. One is

that estimates of Ué and 02 are required for calculating an estimate

B

from E; and second, for balanced data, i.e., n = n for all i and j,

ij
i of (62) simplifies to being ﬁi = ;i'-’ as one would expect. An

extension would be to include in the variance-covariance structure of (56)
a covariance among observations in the same cell so that v(yijk) =

2 2 2 2 2. - g?
of + o8 of (56) would become o, + % + 03 and cov(yijk’yijk') oa

for k ¥ k' = 1, +«:, n would become oé + oi. The other terms in

1]

(56) would remain unaltered.
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5. BALANCED INCOMPLETE BLOCKS (BIB)

Data from a balanced incomplete blocks experiment can be arrayed as a

2-way crossed classification with values of n being O and 1 in a

ij
patterned manner determined by the nature of the experiment. The estima-

tion of treatment effects in a BIB experiment is therefore a special case

of (62).

Example Consider four treatments (a=4) used in a BIB experiment of

six blocks (b=6) with two treatments in each block. The pattern of nij_

values can be arrayed as in Table 1, where a dash represents no

observation.
Table 1
Block
Treatment 1 2 3 4 5 6 n, = r
I 1 1 1 - - - 3
11 1 - - 1 1 - 3
111 - 1 - 1 - 1 3
v - - 1 - 1 1 3
n‘j = k 2 2 2 2 2 2 12 = n _=ar = kb

Characteristics of a BIB experiment, with values for the example,

are as follows:
Number of blocks: b = 6.

Number of different treatments used in each block: k = n = 2,

-3

Number of treatments: a = t = 4,

Number of blocks containing each particular treatment: r = n,,” 3.

Number of times each treatment pair occurs in the same block: A = 1.
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Total number of observations: n_=ar = bk = 12.

Total number of treatment pairs in the same block that contain a
particular treatment: A(a-1l) = r(k-1) = 3,

To simplify (62) first note that any cell containing data has only
one observation (BIB designs with more than one can be considered, but are

not dealt with here), and so we denote it by yij' Then (62) is

{ i=a 8 b -1 8 b i=a
ﬁ.} -[r,I_ -—-———Egg'] {y.--—'—*—- In y,} . (64)
3 Y a e + k8 =1 i~3 i e + kp jel ij7 -4 1=1
where, for notational convenience we write
2 2
8 for OB and e for ol - (65)

Simplifying (64) involves two summation terms. For the first we get assist-

ance from the example.

Example (continued) Using the columns of unities and zeros in
Table 1 as the columns Ej’
. [11. . 1-1- 1--1 cees cees .o
, 11-- P cee .11- ‘1.1
Elﬁjgj AP B A PPS DA I SR R IFE S B R s 11
3 ] 1--1 1.1 11
(3111
_{1311 3 - 11, + 4,
1131
[ 113

Generalization for any BIB is that

b

Lec,e! = (=21 +AJ . 66
j-1~j~j ( ~a ~a ' (66)

The second summation for (64) ia

b b b
g7 Ty T jfl“ijy-J)"’ BRRETER (67
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where b

;i(j) - jflnij;'j'/r = Mean of block means ;-j~ for the

blocks that contain treatment 1.

Substituting (66) and (67) into (64) gives

i=a -1 i=g
- 8(r - X) _ _BX _ _Bkr =
{ui} -'[rza e + kB .-+ kB ga] {yi- e + kB yi(j)} (68)
im] ‘ im}
-1 kep - img
= (e + kB)([re + (rk - r + MBIL_ - BXga) {yi. PR yi(j)}i-l .
But A(a - 1) = r(k - 1), so that
i=a i=a
-~ - _ -1 - k.rB -
{pi} (e + kB)[(re + XaB)Za Bxga] {yi~ e + kg yi(j)}
i=] i=]
e + kB A8 krB - i=a
-_re + XaB (18 + ; ga){yi. - e + kB yi(j)}i-l . (69)
Hence
. . e+ kB Ry _ krp - _AB kip -
P1 " re v haB |71 Tre Vs Te v kB Yi(9) Tre e+ kB Y1)
But from (67)
a _ a b _ b _
Ly = L En, .y fr= Ln .y J/r=y /r .
i=1 i(3) 1=l j=l 1373 j=1 b MR
Therefore
. . etk [ kB - M( _ _kB
By re + AaB Yy, e + kB yi(j) re e + kg )W .-
L(e+k8) - _ _k8 = xa__ - ] (70)

re + haB |Ji- e + kB Yi(3) T T(e + kB) V.- |

As shown in the appendix, this result is consistent with results given in
Scheffé (1959).

Furthermore, from (63) and (68),
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var(g) e + kB ~a e + kB ga

-1
.e[rla_g.gﬁ_—._xll _____@_X___ ]

and from (69) this is

- e(e + kB) (. A8
var(f) re + daf \~a * e ga)
Hence
- - (e + kB)(re 4+ AB)
v(pi) r(re + laB) 71
and |
PO - AB(e + kB) '
cov(pi,pi,) T(te + Aap) for 1 # 41" . (72)

Thus the estimated difference between treatments h and i by this method

is, from (70),

o L Ife + kB) - - __M!__[- _ = ]
{yh- Yh(3) yiu)}‘

Bh T ¥y T re + rap Yi- T ¢ + kB
with, from (71) and (72)

v(f, - @) = r—(i-*—;—k—i-a-ﬁ [2(re + AB) + 28]
. 2(e + kB)(re + 2)B)
r(re + laB)

b

where, as in (65), B ® oé and e ® u:.
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APPENDIX: Analysis of BIB Data

a. Reconciliation of ﬁi with Scheffé.

One of the few places where the randomness of the blocks in a BIB
design has been taken into account in estimating treatment effects is in
. Scheffé (1959) at pages 165-178. We show that the result given there, for
estimation using recovery of interblock information, 18 consistent with ﬁi

of (70). VWe begin with laying out equivalent notation.

Scheffé This paper
p. 161: # of treatments I a=t
¢# of blocks J b
# of replications r r
block size k
p. 162: # of occurrences of Kij = 0 or 1 n,
(line 3 up) treatment i in block j 1
p. 164: i'th treatment total g vy,
(lines 8-9)
j'th block total hj y_j
i'th adjusted treat- i
ment total
-1 -
(after 5.2.9): i "8y k ZjKijhj Yi. T zjnijy-j-
RS TR ETE)
sum of block totals Ti
in which treatment i
occurs
.2.10): T, = L h y
(5.2.10) i jnij j kryi(j)
‘p. 166: efficiency factor é
(5.2.17)
5 = rk ~r + X (k - I Aa _ (k - 1)a
rk k(I - 1) rk  k(a - 1)
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p. 165: rés, = G, )
(last line) : y, = ry
o - G /rs i. i(j)
i i ré
-1 -
T, = rJ L,h k L
172: SO Sl SRTE D Mt L% L
(595 33) i r -\ r - A
) kryi(i) ry /b
r -2
. kr(yig) -y )
r- A
(5.2.32b): . 6% = kzo% + ko; k(e + k8)
(line 5 up): yp = Eicici
X Zici = 0
[} - ~
Vo= Lyeydy
p. 174: w o= rs/a; Aa/ke
(5.2.41)
w' = (r - k)/a% (r = M) /k(e + kB)
P+ W'y’
p. 175: Pk - E -
(5.2.42) vt

y*% is described by Scheffé as being unbiased and having minimum
variance. It therefore corresponds to an element in our E. Since ¥ is

a contrast of oy terms it is also a contrast of (u + ai) terms. The

consistency of V¥ with g will therefore be shown by adapting the i'th
element V¥ to be

wifl + &i) + w' (i o+ )

[}
%y

x* =
Lo w+ w'

and showing that uf = ﬁi.
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Scheffé gives &, on page 165 — as shown above. Nowhere there does he

i
show the corresponding fi. But in the last line of page 164 he mentions

the "correction term for the grand mean”. From that we infer that
=y, .

The expression for &i is given at (5.2.34) on page 172. From (5.2.33) we

get the corresponding

' o= kEh /K2 = Iy,

1" fka = y..

3

Thus, using i = fi' = ;-_ and w, w', &, @' as above we have, from
Scheffé's methodology,
Aa EE,(; -5 ) R S0 krlysjpp - v,
wr =7 4 ke Aa \71i- i) k(e + kB) r - A

i .- Aa + r -~ A
ke k(e + kB)

G T e Gugy -5 e kB)]

=yt [a(e + kB) + (r - Mel/ke(e + kB)
-, ‘k[(e W CTURE AT R (AT y--)]
y.. AakB + rke ’
because la + r - A = rk
- : r(e + k8) - _ kB - _ e -
Y. Y Te+arg {Ti- T e+ kB Vi(§) " e+ k8 7--
r(e + k) [— __k8 - + a\s -
re + aip i e + kB 7i(j) T r(e + kB) Y--}°

iy of (70).
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b. The variance of ﬁi

From (70)

v(fi) = v r(e + kB) [- _ k8 - + Aag -
By re + AaB | i+ e + kB Y1(3) T t(e + kB) Y--

‘kZBZ xzaz 2

r?(e + kB)? - - 8 -
(te + XaB)? {V(yi-) te s V0L TG s ez YO

kB - = _ _k8 AaB - -
* 2[' e+ k8 “VUiYi4)) T TV R tGe + w8 COV(Yy4)y0Y..)

AaB - -
Y T(e + kB) C°"(’1-’y--)]}

r?(e + kB)? {r(e + B) + k2B82rk(e + kB8) A2a?B2ar(e + kB)

(re + AaB)? r? " (e + kB)2rik? r’(e + kB)2alZr?
+ 2 -kB_ r(e + kB) _ _ \kap? kr(e + kB) . AaBr(e + kB)
e + k8 rrk r(e + kB)2 krar r(e + kB)rar

e + kB

Tre + AaB)? {r(e+8)(e+k8) + rkB? + A%aB?/r + 2[(-rB+AB)(e+kB) - kkBZ]}

- z%f-{-%%%;; {rez + 82 (rk+rk+A2a/r-2rk+2hk-2k0) + Be(r+rk—2r+2k)}

2
- ?%E—E_%%%T? [r92 + l;é B2 + Be(rk -~ r + ZX)]

(e + kB)

(re + 1aB)? [r?e? 4+ rX(a + 1)Be + A%aB?]l/r, because rk-r+2\ = \(a + 1)

(e + kp)
r(re + \aB)?

(re + AaB)(re + AB)

- (e :(tg)gfia;)xa) . which 1s (71).




