
CELL MEANS FORMULATION OF MIXED MODELS 

IN THE ANALYSIS OF VARIANCE 

S. R. Searle 

Biometrics Unit, Cornell University, Ithaca, New York 14853 

BU-862-M October 1984 

Abstract 

For a broad definition of balanced data from mixed models it is shown 

that the BLUE (best linear unbiased estimator) of an estimable function of 

the fixed effects is the same as the ordinary least squares estimator; in 

particular, estimates of cell means in a cell means formulation (for the 

fixed effects) of a mixed model therefore provide the BLUEs. Application 

to unbalanced data is shown for randomized complete blocks with not 

necessarily the same number of observations in each treatment-by-block 

combination; and for a special case of this, balanced incomplete blocks. 

1. INTRODUCTION 

a. Fixed effects .adela 

Analysis of variance models have traditionally been formulated in 

terms of additive main effects and additive interaction effects that 

usually result in there being more parameters in the model than there are 

means to estimate them from. For example, suppose yijk is the k'th 

observation on treatment i of variety j in a two-factor experiment con­

cerned with fertilizer treatments and plant varieties. Then a traditional 

analysis of variance model is of the form 

(1) 
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where ~ is a general mean, ai is the effect on the response variable due to 

the i'th treatment, aj is the effect due to the J'th variety, yij is the 

interaction effect between treatment i and variety j, and eijk is the 

residual error term defined as eijk • yijk - E(yijk) for 

where E denotes expectation over repeated sampling. For an experiment of 

a treatments and b varieties and n observations per cell, the number of 

n 

observed cell means yij· • t yijk/n (for n observations per cell) is ab. 
k•1 

But the model equation (1) has more parameters than this, namely 1 + a + b 

+ ab. Thus (1) exemplifies what is known as an over-parameterized model. 

In contrast to (1) there has in recent years been a growing interest 

in modeling yijk solely in terms of its underlying population mean, i.e., 

in taking 

and (2) 

where the yijk fork • 1, n are deemed to be a random sample of n 

observations from a population having mean ~ij" This formulation is known 

as the cell means model. It has been promoted extensively by Speed and 

Hocking and co-workers [e.g., Speed (1969), Hocking and Speed (1975), 

Speed and Hocking (1976), and Speed, Hocking and Hackney (1978)] and its 

feature of having exactly the same number of parameters to estimate as 

there are observed cell means has proven to be particularly useful, 

especially for unbalanced data, namely those having unequal numbers of 

observations in the subclasses. Compared to (10), we find that with (2) 

estimation is easier, estimable functions are simpler, and a variety of 

hypotheses commonly considered are more easily described and understood. 
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Urquhart and Weeks (1978) exemplify these advantages in an analysis of 

weight gains in beef cattle. 

The use of (2) as an alternative to (1) tacitly implies incorporation 

of interactions as part of the model. When wanting to use a no-interaction 

form of the cell means model it is necessary to use (2) together with 

restrictions of the form 

~ij - ~i'j - ~ij' + ~i'j' • 0 (3) 

which specify absence of interaction. 

Analysis of variance models like (1), where estimation of (and testing 

of hypotheses about) parameters are the features of interest, are known as 

fixed effects models, and in such models the customary assumptions about 

variances and covariances are that each observation has the same variance 

and that every pair of observations has zero covariance. The dispersion 

~ matrix V of the vector of observations ~ then, has the form 

V • a2 I ... ... ( 4) 

f being an identity matrix and a 2 being the variance of every observation. 

An assumption about y more general than (4) is that it is simply a 

symmetric, positive semi-definite matrix; and in many cases that it be not 

just positive semi-definite but positive definite, and hence non-singular. 

b. Mixed .adele 

Variations of (1) are models where some or all of the a,, a, and &J~ 
~ J .LJ 

terms are assumed not to be parameters to be estimated, but are modeled as 

being random variables with zero means and some assumed variance-covariance 

structure. For example, suppose in the no-interaction form of (1), with n 

• 1, namely 

( 5) 
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that the aj for j • 1, ···, b, are modeled as random variables with zero 

mean E(aj) • 0 V j. The aj are then called random effects and, along with 

the random error terms eij' usually have the following variance-covariance 

structure attributed to them: 

( 6) 

and 

Then with ~ and the ai in (5) being fixed effects and the aj being random 

effects, (5) is known as a mixed model. And the variances aB and a! of 

(6) are the variance components. The structure of (6) then leads to y 

having elements that are either zero, or aa; in general to 

elements that are either zero, or one of the variance components or a sum 

of them. 

Exaaple 1 In the case of 2 treatments and 3 blocks, where an element 

of a matrix that is zero is shown as a dot, 

Yu az +oz a e 
a2 
a 

yl2 az +az 
a e 

a2 
a 

yl3 o2+oz az 

v a e a 
• var • ... 

Y21 
aZ 
a 

oz +az a e 

l 

a' 
. - . 

ly22j 
a~Ta~ 

.. ~ .. J 
a a e 

Y23 
a2 
a a e 

Despite merits of the cell means formulation of fixed effects models, 

such as (2) as an alternative to (1), minimal formulation has been made to 

mixed models such as (5) and (6). Indeed, Steinhorst (1982), for the 
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randomized complete blocks design, writes that he is "··· at a loss to see 

how 'J.lij carries the right meaning if. blocks are random···." And regarding 

the split-plot design he continues "The cell-means model is not of much 

help in such cases. The classic split-plot model ·•• cannot be replaced by 

a variation of yijk • 'J.lijk + eijk'" In contrast to such remarks, we show 

in this paper that all of the cases (and ~ore) that Steinhorst refers to 

can be formulated as cell means models. We also show that for a broad 

class of balanced data situations the BLUE (best linear unbiased estimator) 

of a cell mean in a mixed model is always the OLS (ordinary least squares) 

estimator. And for the randomized complete blocks model with random blocks 

(as is usual), we show extension to unbalanced data: an explicit (matrix-

vector) expression is developed for estimating the treatment means. 

c. A general aixed .adel 

The elements of ~the mixed model (5) are of two kinds: 'J.l and ai that 

are fixed effects, and ai and eij that are random variables. Generalizing 

this dichotomy for a vector of observations l we write 

(7) 

where ! is a vector of fixed effects and ~ is a vector of random 

effects, including error terms. The matrices and vectors of (7) are 

partitioned thus: 

?S • {?51 ?52 

!! - l!!i !!i 

and 
u • [u' u' 
- .... 1 -2 

z ... q 

u' 
... q 

z ] 
... r 

U I] I 
-r 

( 8) 

Each !!d ford • 1, 2, f has as its element the hd effects correspond-

ing to the hd levels of the d'th fixed effect (main effect or interaction) 

factor, and ~d is the incidence matrix corresponding to !!d· Similarly, 

u (of p elements) and Z for q • 1, 2, ... , r-1 are defined for the 
""Q q -q 
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random effect (main effect or interaction) factors analogously to !d and 

2d for fixed effect factors. For q • r, we define u • e, the vector 
-r -

of error terms, and accordingly Z • IN where N is the total number of 
-r ... 

observations, and p • N. 
r 

Exaaple 2 Using (5) and (6) as the model for a randomized complete 

blocks experiment for a treatments in b blocks,~ and [a1···aaJ' would be 

!1 and !z of (8), respectively, and a1 ... a2 and the eij-terms of (5) 

would be 21 and 2z of (8), respectively. 

The variance and covariance properties of (6) generalized to ~ are 

var(u ) • a 2 I for q- 1, 
-q q Pq 

and 

cov( u ,u') • 0 for q + q' -1 ' -q -q -pqxpq' 

H~nce from (7) the variance-covariance matrix of I is 

r 

V • var(I) • var(~~) • r a2 Z Z' 
... q•l q-q-q 

2, • r 

( 9) 

2. r 

(10) 

Thus (7) through (10) constitute a description of a general mixed model. 

d. Estiaation in the general aixed aodel 

The ordinary least squares (OLS) estimator of an estimable function 

~'!! of the parameters in ! in the model (7) will be denoted by 

(OLS)~'~! and is, as is well-known, 

(11) 

where (X'X) -- is a generalized inverse of~~~-, i.e., (X'X) ... - is any matrix 

satisfying 
X'X(X'X)-X'X • X'X 
~ ~ ~ ~ ~ ~ ~ ~ 

Similarly the best linear unbiased estimator (BLUE) of that same estimable 

~·~!· to be denoted BLUE(~'~!), is 
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(12) 

where V is assumed to be positive definite. -
In fixed effects models, y • a 2 !, as in (4), whereupon (12) very 

simply reduces to (11), as is well known. An extension to 

V • [(1-p)I + pJ]a 2 is given by McElroy (1967) and, in complete 
~ .. """' 

generality, Zyskind (1967) has shown that these two estimators are equal, 

if and only if 

for some g (13) 

Graybill (1976), p. 209) also has this result, restricted to X of full ... 
column rank. We use (13) .to show for a broad definition of balanced data 

that for mixed models of the form (7) through (10) the BLUE of an estimable 

function of the fixed effects parameters is the same as the OLS estimator; 

and for randomized complete blocks with unbalanced data we obtain an 

explicit expression for the BLUE of estimable functions of treatment 

effects. 

2. BALANCED DATA 

a. A general fixed aodel 

We deal with data categorized by a number of factors, each of which is 

either a main effects factor (including the possibility of nested main 

effects factors), or an interaction factor representing the interaction of 

two or more main effects factors. Suppose there are m main effects 

factors, with the t'th one having Nt levels, fort • 1, 2, m. Then 

the k'th observation in the "cell" defined by the it'th level (for 

it • 1, ···, Nt) of the t'th main effect fort • 1, ···, m, where there 

are ni i ••. i ••• i such observations, is y for k • 1, 2, 
i i . ··i ···i k 

12 t m 12 t m 
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, ni i ···i ···i • On defining! • [i1 i 2 
1 2 t 1ll 

tion can then be denoted as yik fork • 1, 2, 

-
the total number of observations is 

i ], a typical observa­
m 

, ni. Furthermore, 

-

for !' • [N1 N2 • • • N • • • N ] t 1ll 

(1' is a row vector of m unities.) 
-m 

A tight, rigorous, formal and complete definition of balanced data is 

elusive. Development of such a definition would, as Cornfield and Tukey 

(1956) write, involve"··· systematic algebra [which] can take us deep into 

the forest of notation. But the detailed manipulation will, sooner or 

later, blot out any understanding we may have started with." Nevertheless, 

one formulation of a model that yields a wide class of balanced data 

situations is as follows. It is similar to that used by Smith and Hocking 

(1978), Searle and Henderson (1979), Seifert (1979), Khuri (1981) and 

Anderson e~ al. (1984). 

The balanced data models we consider are those that have 

n! • n V ! . They also have each ?fd and each ~q of ( 8) being a 

Kronecker product (KP, for brevity) of m + 1 matrices, each of which is 

either an !-matrix or a !-vector; i.e., 

each ~d and each ~q is a KP of m+1 matrices that are each ! or ! . (14) 

The occurrence of the r-matrices and t-vectors in these KPs is as 

follows. First, corresponding to the scalar parameter~ in the model is 

~ 1 which is !N' and so every matrix in its KP is a != 

* ... * 1 -n 

where * represents the operation of Kronecker multiplication. Second, 

corresponding to u • e is Z which is _IN and so each of the m + 1 matrices 
"""'r """' """r 
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in its KP is an !-matrix: 

Z • I • IN *IN * ••• * !N *···*I *I 
-r -N - 1 - 2 t -N. -n 

Finally, in the KP for each X_d and Z (other than X1 and Z ), the 
-q - -r 

t'th matrix corresponds to the t'th main effects factor and is !N when 
t 

that factor is part of the definition of the factor corresponding to ~d 

or ~q; otherwise it is lN 
t 

This is for t • 1, ···, •· And for 

all ~d and ~q' 

1 • 

other than Z , 
-r 

the (m+1)'th matrix in the KP is 

-n 

The phrase "part of the definition" demands explanation. It is 

exemplified in the 2-factor model (1), wherein the two main effects factors 

are each part of the definition of the interaction factor. Similarly, if 

nested within an a-factor there is a a-factor then the a-factor is part of 

the definition of that a-factor. (See also, comments B and C which follow 

the examples.) 

Each hd and pq (number of levels in the d'th fixed factor and the q'th 

random factor, respectively) in the balanced data we have defined is the 

product of the numbers of columns in the I and 1 terms in the KP (14) - -
that is ~d and ~q· Hence hd is the product of the Nt values for the 

main effects factors that are part of the definition of the d'th fixed 

effect factor; p is a similar product for the q'th random effects 
q 

factor. 

Exaaplea We give four examples that are each in terms of those of the 

following vectors that are appropriate: 

! - [al,···.ab]' or!+ - [a11···alb a2l···a2b···aal···aab 1'·!­

[Y 11 ···ylb Y21 ···r 2b···yal ···yah)', and !• the vector of error terms, 
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the same order as t· Determination of which KPs are X-aatrices and -
which are Z-matrices is governed by which factors are defined as fixed -
effects and which are random. This is illustrated for only example (iii). 

(i) One-way classification: yij • ~ + ui + eij with i•l,···,a and 

j•l,··•,n. 

v • (1 * 1 )~ + (I * 1 )a + (I * I )e 
4 -a -n -a -n -a -n 

(15) 

(ii) Two-way crossed classification, no interaction, and one observation 

per cell: yij. ~ + ai + aj + eij for i•l,···,a and j•l,···,b. 

(16) 

(iii) Two-way crossed classification, with interaction and n observations 

per cell: yijk- ~ + ai + aj + yij + eijk with i•l,···,a, j•l,··· ,band 

k•1, • • · , n. 

l • (1 * lb * 1 )~ + (I * !b * !n>~ + <!a * I *1 >a 
-a -n -a -b .... n ... 

(17) 

+ (I * I * 1 >z + (I * I * I )e 
-a ... b -n -a -b -n -

Suppose in (17) that elements of ~ and l were taken to be random 

effects. Then the terms of (8) for the general mixed model would have the 

following values: 

m•3, f•2 with h1 • N • 1 and ?51 - 1 * !b * 1 for !1 - 11 1 -a -n 

and h2 • N2 • a and X • I * !.b * 1 for !2 • a ... 2 -a -n -
r•3 with p1 • N • b and ~1 -1 * .!b * 1 for 

~1 • ! 
3 -a -n 

p2 • N2N3 • ab and z • I * .!b * 1 for 
~2 - l -2 -a ... n 

and p3 -N2N3n • abn and z • I * .!b * I for 
~3 -e 

-3 -a "'n ... 

(iv) Two-way nested classification: yij • ~ + ai + aij + eijk for 

i•l,···,a, j•l,···,b and k•1,···,n. 
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(18) 

co .. enta Several comments are in order. (A) In every case ~l for ~ 

is 1_, a KP of !-vectors; and Z fore is I, a KP of !-matrices. 
~r ~ - -

(B) In every case the KP that is the coefficient of ~ has only one 

-
!-matrix in it, namely I . This is so because, obviously, the definition 

-a 

of ~ involves only a. The same is true of the coefficient of 

! in (16) and (17). (C) In contrast, the KP that is the coefficient of 

A in (18) has two !-matrices, I and ... Ib. This is because a has 
1::.+ ... -a -+ 

elements that represent the nesting of the a-factor within the a-factor. 

Thus the a-factor is involved in the definition of a and so the coeffi­
-+ 

cient of !+ contains la and lb· Thus the coefficient of!+ in (18) 

is the same as that of r· the interaction term, in (17). Judged solely 

by their coefficients, !+ and z would therefore appear to be the same. 

What makes z an interaction term is that both main effect factors that go 

into defining it are also present on their own in (17), but with a ' only 
-+ 

one factor that goes into defining it is present on its own in (18), and so 

!+ represents nesting. In other words, a factor that looks like an 

interaction factor is such when all of its associated main effects factors 

are present in the model; otherwise it is a nested factor. (D) Equation 

(16) is a special case of (17) with r omitted and n•l and hence, for 

example, 1 * 1 * 1 • 1 * 1 * 1 • 1 * 1 . 
-a -b -n -a -b -a -b 

r 

A final observation concerns V • t a 2 Z Z' of (10). It is based on 
q•l q-q-q 

the general result that (A* B)(P * - - ... g) • ~£ * ~g, given the necessary con-

formability requirements. Thus, for 1 1' • J being a square matrix of 
-n-n -n 

order n with every element unity, we have from (14) that every Z Z' is a KP 
-q-q 

of I and J matrices. Thus we rewrite (10) as -
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r 

v-- I ~ 2 (the KP of I and J ... mat~ices that is Z Z') 
q•l q - -q-q 

(19) 

b. Eatbaation 

It is well known for many cases of balanced data that BLUEs of 

estimated functions of parameters in fixed effects models are simple 

functions of observed means. For example, in the fixed effects form of the 

2-factor model (1). the BLUE of is BLUE(ai • 

y - y for i 'f i'. The question of interest is "Is the BLUE of 
i. . i' .. 

ai -ai' also y - y in a mixed model form of ( 1) where the aj and i. . i' .. 

4ij are treated as random effects?" The answer is 'yes'; moreover, in all 

cases of balanced data (as defined in the preceding section) the BLUE in a 

mixed model is the same as the estimator yielded by using OLS. This we now 

prove, by showing that (13) is satisfied for~ of (19) and~ • {~d}, 

d • 1,···,f of (14) with ~d being a KP of !-matrices and !-vectors. 

Writing W for Z Z' of (19) we have 
-q -q-q 

w • Z Z' - (W * W * ... * w * * w ) • 
-q -q-q -ql -q2 -qt -q,m+l 

and, similarly, for 

m+1 

X • [~1 ~2 ~d 
. .. ~f) with X • *X - -d -dt 

t•1 

whe~e each ~dt is either !N or lN • Then from (19) 
t t 

r d•f 
VX • t I a2 Z Z'X } 
-- ~ n~n~n~~ 

\q•l -. -. -. -'d•l 

m+1 

*W 
t·l-qt 

(20) 

(21) 

where, by the curly braces notation, we mean that ~ is partitioned into a 

row of f sub-matrices. Thus 

(22) 
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( 23) 

Now, from (19) and (20), W is either I or J and Xd is either I 
-qt - - - t -

or l• all of order ~t' Therefore the four possible values of the 

product W X , together with the definition of a matrix M d such 
-qtd.t -q t 

that ~tX-dt • X M in each case, are as follows: 
':l -dt-qdt 

w 
-gt 

X 
-dt 

W X 
-gt-dt 

• X M 
-dt-gdt 

M 
-gdt 

I I I • II I .... - --
.! 1 1 • 11 1 - .... ... 
J I J • IJ J --
J l N l • lN N - .... t- - t t 

Therefore from ( 2 3) 

r m+l }daf 
~ • { r 112 * ~dt~ dt 

q•l q t•l q d•l 
(24) 

( 25) 

for 

M •M *M *···*M *· .. *M 
-qd -qdl -qd2 -qdt -q,d,m+l 

(26) 

Derivation both of (23) from (22) and of (25) from (24) is based both on 

Xd and M each being a KP, and on the product rule for KP quoted 
... -q 

earlier. 

The conformability requirements of the regular products in (24) might 

seem to be lacking because, from the preceding table, two forms of M d 
-q t 

are scalars. However, both regular and Kronecker products of matrices do 

exist when one or more of the matrices is a scalar; e.g., for scalar 9, 

both A9 and (~ * ~)(9 * b) • ~9 * ~b exist. Therefore (25) 
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r d•f 

g • diag{ t a 2 ~ d} 
q•l q q d•l 

r 
the block diagonal matrix of matrices E aZM we get from (25) 

q-qd' 
q•1 

0 -

0 -

(27) 

Thus Zyskind's condition of (13) is satisfied. Hence, with balanced data 

as here defined, the BLUE of an estimable function of the fixed effects in 

any mixed model is the same as the estimator obtained using ordinary least 

squares. 
r 

A final note: each sum I a 2 M in (27) does exist because, as a re­
q•l q-qd 

sult of (26), the order of M d is the product of the orders of M d for 
-q -q t 

t • 1, ···, m+1; and (from the Table} each M is square of order either 
-qdt 

Nt or 1. Furthermore, that order is Nt only when ~dt • !; and this is 

so only when the t'th main effects factor is involved in defining the d'th 

fixed effects factor. Hence the order of M is the product of such Nt 
-qd 

r 

values, and this is hd; thus M has order hd for all q and so I a 2M 
-qd q•1 q-qd 

exists. 

Exa.ple Suppose in (1) and (17} that the as and ys are random 

effects. Then 

X • [1 * 1 * 1 ... -a -b -n I * 1 * 1 ] -a -b -n 

and 

V • a2(J *I * J) + a2(I *I * J ) + a2(I *I *I ) - a -a -b -n y -a -b -n e -a -b -n 
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Hence in ~ the first sub-matrix is 

V(l * _lb * 1 ) • a 2 (al· * 1 * nl ) + a 2 (1 * 1 * nl ) + a 2 (1 * 1 * 1 ) 
- -a -n a -a -b -n y -a -b -n e -a -b -n 

• (1 * 1 * 1 )(a2 (a * 1 * n) + a 2 (1 * 1 * n) + a2(1 * 1 * 1)] (28) 
-a -b -n a y e 

Similarly, the second sub-matrix of ~ is 

V(I * 1 * 1 ) • a 2 (J * 1 * h1 ) + a2 (I * 1 * n1 ) + a 2 (I * _1b * 1 ) 
- -a -b -n a -a -b -n y -a -b -n e -a -n 

• (I * 1 * 1 )[a2(J * 1 * n) + a 2 (I * 1 * n) + a 2 (I * 1 * 1)] • (29) 
-a -b -n a -a y -a e -a 

Hence 

vx • [1 * 1 * 1 
- -a -b . -n 

Q] - ~[~1 
~2 Q :. ] 

for~~ and ~ 2 being the matrices in square braces in (28) and (29), 

respectively, namely 

~1 · .• ana a + na~ + a~ and 

3. CELL MEANS MODELS 

a. A general for.ulation 

The cell means model (2) for yijk in the 2-factor case extends very 

naturally to yik for any number of factors: 

for i - 1' ,.., """m' 

-

""'' ' .. ... 

with E(yik) • 11i 

and k • 1, 2, 

... -
n_, • 

]. - For ~· ~ and 

~ being the vectors, respectively, of the yik' 11i and eik' arranged 

in lexicon order in each case, we write 

Then ~ is a direct sum of vectors 1 , 
-ni 

- - -

( 30) 
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X • ... (31) 

where (+) represents the direct sum operation; and ~ has full column rank. 

hatlple 

X • ,.. 

For m • 2 and N1 • 2 and N2 • 3 

i• [ 2 3] 
(+) 1 • 

i•[l 1]-n! 

1 
-nll 

The OLS estimator of ~ in (31) is 

~ • OLS(~) • (~'~)- 1 ~·~ • ~ (32) 

with, from the nature of~ in (31), ~·~being D{ni}, the diagonal matrix of 

the ni, and~·~ being the vector of cell totals yi·· Hence ~ • D{l/n1 }{yi·} 

- - -
• {yi•} • l• the vector of observed cell means, as in (32) . 

.... 

Adapting the cell means model to models where the dispersion matrix of 

lis other than az!~ i.e., for a mixed model, involves using the cell 

means formulation for only the sub-most cells as defined by the fixed 

effects. For example, in a randomized complete blocks where blocks are 

random the cell mean model is 

where, in terms of an overparameterized model yij • p + ai + aj + £ij' the 

pi is pi • p + ai for the fixed effects part of the model and eij • 
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aj + Eij' The difference is, though, that we do not formally identify eij 

as aj + Eij' but merely attribute some form to the dispersion matrix of the 

eij' namely 

( 33) 

in this case 

(34) 

In general we use I. • ~~+!and V • var(!) of (30) and (33), respec-

tively, and then the BLUE of~~~~ is 

( 35) 

where~ is estimable because in the cell means model~ of (31) has full 

column rank. And the sampling variances of these estimators are 

tors are 

d ( -> <!'Y-1~>-1 an var .!! • (36) 

We can note in passing, due to the non-singularity of X'X and X'V- 1 ~ that 

it is not difficult to show that 

when Y! • !9 for some g (37) 

i.e., when the Zyskind condition is satisfied; whereupon, of course, the 

sampling variances in (36) are also equal. 

b. So~ interactions zero 

The formulation Xu in (30) for the fixed effects part of a mixed model ...... 

implicitly includes interactions; e.g., for two fixed effects factors, ~ij 

in terms of the overparameterized model implicitly includes interaction be-

tween the two factors. To use a cell means formulation for the no-interaction 

model requires defining an absence of interactions among the ~ij' This is 

done by using an appropriate number of equations of the form 

~ij- ~i'j - ~ij' - ~i'j' - 0 (38) 
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fori+ i' and j + j'. This is tantamount to imposing restrictions on 

the elements of ~. which in general we will represent as 

!!~ - Q (39) 

!! is of full row rank and, although every element of any ~ is estimable, be-

cause e is estimable (since! has full column rank), we can also invoke the 

principles of estimability to note that 

H • 1! for some 1 (40) 

Then, following Searle (1971, p. 206), for example, the OLS estimator of! 

for the restricted model E(r) • !e and !!! • Q is 

(41) 

after using (32). Similarly the BLUE is 

On invoking the Zyskind condition this reduces to 

(42) 

Then, in association with VX • !9 for some g, the question now is under what 

... 
condition is the BLUE the same as the OLS estimator, i.e., when does Q • ~? 

r r 

Since Y! • !9 implies (!'Y-1!>-1 • 9(!'!)-1 • (!'!>-1g•, the latter equality 

arising from symmetry, and because !! • 1! for some 1• we find from (41) and 

... 
(42) that Qr 

- .J.S: --..l __ ,..., ..f~ 

• ~r .1.1. auu uu~.1 ..1-.L. 

i.e., if and only if, in using~ • !9 and the full row rank property of !!• 

X'VL'[H(X'X)-lX'VL' ]-1 • X'L'[H(X'X)-lX'L' )-1 

- ~- - - - - -- - ~ - ~ - - - ( 43) 

A necessary and sufficient condition for this equality to hold is X'VL' • 
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X'L'K' for some non-singular K, where, in the necessity condition 
1/W lfiW ... --

K' • [H(X'X)-lX'L']-1H(X'X)-lX'VL'. A simpler sufficient condition is 
~ ~ ~ ~ ~ ~ - lfiW ~ ~ ~~ 

VL' • L'P' for so~ non-singular P· i.e., 
~ ,..., All .,, 

for some non-singular E (44) 

Thus (44) is a condition for mixed models E(l) • ~~with var(l) • y, 

and restrictions ~ • Q for tl • ~· under which the BLUE of ~ is the same 

as the estimator obtained from OLS. Two situations when (44) is trivially 

true are as follows: (i) models that include all interactions among their 

fixed, main effects factors, because then in terms of (40) 1 is null and so 

(44) is obviously satisfied; and (ii) models in which y • a 2!, for then 

with P • V (44) is also satisfied. It remains for us to consider mixed - -
models, with y having some form other than a 2 ! and in which some interactions 

among the fixed, main effects factors are assumed to be non-existent. We do 

so for balanced data only. 

c. Balanced data, aixed .xlels, SOW! fixed effects interactions aiasing 

We begin with the example of a four-way crossed classifi-

cation, with one factor random and with the third order and one set of second 

order interactions among fixed effects being zero. Thus the overparameterized 

model could be 

for a, b, c, and d levels of the four main effects factors, respectively, 

and n observations per cell. For the "i' Bj and yk effects taken as fixed, 

and the 4~ effects as random, the cell means formulation would be 

(45) 

with restrictions of the form 

~i·k- ~i'·k- ~i·k' + ~i'·k' • 0 (46) 
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fori+ i' and j + j'; and 

fori pi', j p j' and k p k'. In writing (45) as 

with elements of l• )! and e in lexicon order, we have -
X • I * I * I * 1 * 1 ... -a -b -c -d -n 

(48) 

and 

v • (J * J * J * I * J )a2 + I a 2 . ... -a -b -c -d -n &5 -abcdn e 
(49) 

Then, on defining T as the (a-1) x a matrix 
-a 

-I ] 
-a-1 

with T J • 0 
-a ..... a 

(50) 

the absence of the (ay) and (apy) interactions can be written as 

for (51) 

and 

H • [T * 1' * T ] -1 -a -b -c 
and 

-H2 • [T * T * T ] -a ... b ""C 
(52) 

Thus on comparing~~ and ~ 2 with~ of (48), it can be seen that 

(53) 

Then, on using T J • 0 of (50), it is evident from (49) and (53) that 
'""'a#lwa ., 

(54) 

and so (44) is satisfied. Hence in this example of balanced data, from a 

mixed model with some of the interactions between fixed main effects assumed 

as being zero, the Zyskind condition is upheld and so in the restricted cell 

• 
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means model the BLUE of ~ is the same as the OLS estimator. 

The result just obtained for the example is true in general. ~. 

like (48), is always a KP of !-matrices corresponding to the main effects 

that define the fixed effects, of L-vectors corresponding to the main 

effects that define the random effects, and of 1 for n observations per 
-n 

cell. y, like ( 19) and ( 49) is always a~.!,N plus a weighted sum 

(using variance components as weights) of KP's of m+l ! and~ matrices, 

with the matrices corresponding to the main effects that define fixed 

effects being l-matrices - with two exceptions that shall be considered 

shortly. ~ can always, as in (51) and (52), be partitioned into subsets 

of rows, each subset being a K~ of !sand (l')s, and b is then the KP 

of H and a KP of vectors lN' /N and l' /n, as in (53). Hence in 
"" - t -n 

t 

the product bY every term except La 2 I has a product .. TJ_ in it, ,.. e-

which by (SO) is null; and so LV • (a 2 I)L, which satisfies (44). 
,..~"><~ e- ,..., 

The two exceptions are for nested random factors, and for random 

factors that are interactions between fixed and random factors. Each of 

these affect y by changing some of the ~s corresponding to main effects 

that define fixed effects to be !s. The only occasion that this affects 

a term in bY is if, for every I in~ (and~), the corresponding 

l in a term in y becomes .!. on the occurrence of either of these 

exceptions, then the resulting term in ~Y that was null will become a 

multiple of L. Hence kY • ~k is still upheld, for f being a 

scalar matrix, although different from a 2 I of (54). 
e-

Exaaple (continued) Suppose in the preceding example that the 

covariance structure includes the assumption that all observations in the 

same i,j,k cell of the three fixed effects factors have a common variance. 

Then, instead of y of (49) the variance-covariance matrix of X will be 
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v_1 • V + (I * I * I * J * J )a2 
- -a -b -c -d -n aay 

Then, for 1 of (53), using (54), 

LV • LV 
--1 ...._ + {[~(!a* !b *!c)} * (1'/d)J * (1'/n)J }a2 

-d -d -n -n aay 

• a 2 L + 
e-

{H(I * I * I ) * 
- -a -b -c 

1' * 1'}a2 
-d -n aay 

• a 2 L + dna 2 (H * (1'/d) * (1'/n)] 
e- aay - -d -n 

• (a2 + dna2 a )L 
e a Y -

Thus we conclude for balanced data in general, from mixed models with 

some (or all) of the interactions among fixed effects being assumed 

non-existent, that the BLUE of ~ is the same as the OLS estimator. 

Moreover, this result holds for all cases of balanced data from mixed 

models be some, all or none of the interactions be assumed zero. This 

would seem to satisfactorily refute the suggestion made by Steinhorst 

(1982), quoted near the end of Section 1(b) of this paper, that the cell 

means model is inapplicable to mixed models - at least for balanced data as 

have been defined in Section 2. We now turn to a particular example of 

unbalanced data, and a special case thereof, the balanced incomplete blocks 

design. 

4. RANDOMIZED BLOCKS WITH UNBALANCED DATA 

We consider the case of testing a treatments in b blocks with nij 

observation9 on treatment i in block j fori • 1, ···,a and j • 1, ···,b. 

The cell means formulation for the k'th observation (k • 1, 2, _ ···, nij) 

on treatment i in block j is 

(55) 
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We assume that all observations in the same block have a common covariance, 

aa say, and more specifically that the variance-covariance structure 

among the observations is 

- aa fork+ k'- 1, 2, ···, nij (56) 

cov(yijk'yi'jk') - aa fori+ i', k. l,···,nij and k'. l,···,ni'j 

and 

for j + j' 

The consequence of this is that for 

~1 

~2 b 

z - with z • (+)1 
"' -i j•l-nij 

(57) 

z 
-a 

(58) 

Furthermore, from (55) 

(59) 

Applying to (58) the general result 

from, for example, Searle (1982, p. 261) gives, after a little simp1ifi-

cation 

-1 v -
b a2 

• [ I - .j ( + ) a \'7 ' ] I a z 
- ~ a 2 +n a2 ~ e j•1 e . j a 

Then ~·y- 1 utilizes X'Z which from (57) and (59) is 

(60) 
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~'! • {nij} fori • l,···,a and j • l,··•,b 

• {c } 
-j 

Thus we find that 

(61) 

(62) 

This is a general result for estimating treatment effects in a randomized 

blocks when the treatments have different numbers of observations within a 

block, and also from block to block. And, of course 

( 63) . 

Two minor features of these results are worth commenting on. One is 

that estimates of a~ and aa are required for calculating an estimate 

from g; and second, for balanced data, i.e., nij • n for all i and j, 

g of (62) simplifies to being Vi • yi··' as one would expect. An 

extension would be to include in the variance-covariance structure of (56) 

a covariance among observations in the same cell so that v(yijk) • 

a~+ aa of (56) would become a~+ a~+ a~; and cov(yijk'yijk')- a~ 

for k rl- k' • l, · · ·, nij would become cra + a~. The other terms in 

(56) would remain unaltered. 
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5. BALANCED INCOMPLETE BLOCKS (BIB) 

Data from a balanced incomplete blocks experiment can be arrayed as a 

2-way crossed classification with values of nij being 0 and 1 in a 

patterned manner determined by the nature of the experiment. The estima-

tion of treatment effects in a BIB experiment is therefore a special case 

of ( 62). 

baaple Consider four treatments (a•4) used in a BIB experiment of 

six blocks (b•6) with two treatments in each block. The pattern of nij­

values can be arrayed as in Table 1, where a dash represents no 

observation. 

Table 1 

Block 

Treatment 1 2 3 4 5 6 ni· • r 

I 1 1 1 3 

II l l 1 3 

III l l l 3 

IV l 1 l 3 

n. j • k 2 2 2 2 2 2 12 - n • ar • kb 

Characteristics of a BIB experiment, with values for the example, 

are as follows: 

Number of blocks: b • 6. 

Number of different treatments used in each block: 

Number of treatments: a • t • 4. 

Number of blocks containing each particular treatment: r • n • 3. 
i· 

Number of times each treatment pair occurs in the same block: A • l. 
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Total number of observations: n • ar • bk • 12. 

Total number of treatment pairs in the same block that contain a 
particular treatment: ~(a-1) • r(k-1) • 3. 

To simplify (62) first note that any cell containing data has only 

one observation (BIB designs with more than one can be considered, but are 

not dealt with here), and so we denote it by yij' Then (62) is 

i•a b -1 

{ ~ } • [rr - 8 t c c'] {Y ri -a e + k8 -j-j i· 
i•1 j•1 

e + kB 
(64) 

where, for notational convenience we write 

8 for aa and e for a~ (65) 

Simplifying (64) involves two summation terms. For the first we get assist-

ance from the example. 

Exa.ple (continued) Using the columns of unities and zeros in 

Table 1 as the columns £j' 

b 

t c c' • 
j•1""j""j 

-

[
11· .J [1·1·J [1. ·1J [ ..•• J r· ... J r· ... J 11·. •••• . .•• ·11· ·1·1 •••• 

+ + + + + .. .• 1·1· . ... ·11· •. • . ··11 
. • .. ..•• 1··1 . •. • ·1·1 ··11 

3 1 1 1 

1 3 1 1 

1 1 3 1 

1 1 3 

Generalization for any BIB is that 

The second summation for (64) is 

(66) 

(67) 
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where 
b 

yi(j) • E n1jy·j·/r • Mean of block means y·j· for the 
j•l 

blocks that contain treatment i. 

Substituting (66) and (67) into (64) gives 

{n }i•a • (rr - B(r - X) I 
ri i•l · -a e + kB -a 

(68) 

( ) - 1{ krB }i•a 
• (e + kB) [re + (rk- r + X)B]!a- BXla Yi· - e + kB Yi(j) i•l • 

But X(a- 1) • r(k- 1), so that 

i•a 
krB - } 

e + kB yi(j) 1• 1 

• e + kB (r + XB J \J krB - }i•a 
re + XaB -a ;; -aJlyi• - e + kB yi(j) i•1 

Hence 

But from (67) 

Therefore 

ji • e + kB [ krB XB ( 1 _ kB \. ] 
i re + XaB yi·- e + kB yi(j) + re e + kB/~ •• 

• r(e + kB) f:: 
re + ~a a l .Y i · 

kB Xa8 - ] 
e + k8 yi(j) + r(e + kB) Y .. 

(69) 

(70) 

As shown in the appendix, this result is consistent with results given in 

Scheffe (1959}. 

Furthermore, from (63) and (68), 
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• Jfrl - @(r- ~~I - B~ J ]-1 
var(~) jl Na e + k@ Na e + kB Na 

and from (69) this is 

var(u) • e(e + kB) (I + l8 J ) 
~ re + ~aB -a re -a 

Hence 
(e + kS)(re + l8~ 

v(pi) • r(re + laS) ( 71) 

and 

for i + i' • (72) 

Thus the estimated difference between treatments h and i by this method 

is, from (70), 

~-Pi • ~~e++l~:) {;h· - Yi· - e : 8ke [;h(j) - Yi(j)]} 

with, from (71) and (72) 

e + kB 
v(~ - pi) • r(re + laS) [2(re + l8) + 2l8] 

• 2(e + k8)(re + 2l8) 
r(re + laS) 

where, as in (65), 8 • a~ and e • a!· 
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APPENDIX: Analysis of BIB Data 

a. Reconciliation of ¥i with Scheffe. 

One of the few places where the randomness of the blocks in a BIB 

design has been taken into account in estimating treatment effects is in 

Scheffe (1959) at pages 165-178. We show that the result given there, for 

estimation using recovery of interblock information, is consistent with ~i 

of (70). We begin with laying out equivalent notation. 

p. 161: 

p. 162: 
(line 3 up) 

p. 164: 

(lines 8-9) 

(after 5.2.9): 

(5.2.10): 

p. 166: 
(5.2.17) 

Scheffe 

I of treatments 

* of blocks 

IJ of replications 

block size 

D of occurrences of 

treatment i in block j 

i'th treatment total 

j'th block total 

i'th adjusted treat-

ment total 

sum of block totals 
in which treatment i 
occurs 

Ti • Ejnijhj 

efficiency factor 

6 -
rk - r + :\. 

rk 

This paper 

I a • t 

J b 

r r 

k k 

Kij • 0 or 1 nij 

gi y i. 

hj y. j 

i 

yi· - Ejnijy·j· 

• y i . - ry i( j ) 

Ti 

kryi(j) 

6 

(k - 1)I :\a (k - l)a - --k(I - 1) rk k(a - 1) 



p. 165: 
(last line) 

p. 172: 
(5.2.33) 

(5.2.32b): 

(line 5 up): 

p. 174: 
(5.2.41) 

p. 175: 
(5.2.42) 

a • 
i 

a• • 
i 

a2 
f 

1jl 

$• 

w 

w' 
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• k2a2 + ka 2 
B e 

• Eiciai 

• Eici&i_ 

• r6/a 2 
e 

-(r - A)/a 2 
f 

Ill* • 
w~ + w'$' 

w + w' 

kry i(j) - rEjy·/b 

r - \ 

kry i(j) - ry /b 

- r - A 

kr<Y i( j) 
- ) - y .• - r - A 

k(e + kB) 

Eici • 0 

"Aa/ke 

(r - \)/k(e + kB) 

ljl* is described by Scheffe as being unbiased and having minimum 

variance. It therefore corresponds to an element in our ~· Since ~ is 

a contrast of ai terms it is also a contrast of (~ + ai) terms. The 

consistency of ~j~* with g will therefore be shown by adapting the i;th 

element ljl* to be 

and showing that ~t • ~i. 
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Scheffe gives &i on page 165 - as shown above. Nowhere there does he 

show the corresponding ji. But in the last tine of page 164 he mentions 

the "correction term for the grand mean". From that we infer that 

ji - y.. • 

The expression for &i is given at (5.2.34) on page 172. From (5.2.33) we 

get the corresponding 

Thus, using ji • ji' • Y .. and w, w', &, &' as above we have, from 

Scheffe's methodology, 

}lt • y •• + 

- ) r- l kr(yi(j)- Y •• > 
yi(j) + k(e + kB) r - l 

la r - l 
- + 
ke k(e + kB) 

_ Y .. + :[(r1 • - ri<J>)'e + (r1<J> - Y .. )l<e + kB>] 
[la(e + kB) + (r - l)e]/ke(e + kB) 

• r(e + kB) r­
re + aAB _ y i• 

• iii of (10). 

because la + r - l • rk 

kB alB - ] 
e + kB yi(j) + r(e + kB) Y •• • 



b. The variance of il1 

From (70) 
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~ ~B - ]} 
e + kB yi(j) + r(e + kB) Y •• 

r 2 (e + kS) 2 

{v<Yi) + 
. kz az 

v(yi(j)) + 
X 2 8 2 ~2 

v<Y • ( re + XaS) 2 (e + kB) 2 r 2(e + kB) 2 

kB kB X aS 
+ z[- e + kB cov(yi·'yi(j))- e + kS r(e + kB) 

+ 
XaB 

cov<Y i. , y. ) ]} r(e + kS) 

• 
r2~e + k~lz {r~e + B) + k 2 S 2 rk~e + kS) 

+ 
X2 a 2 B2 ar(e + kSl 

(re + XaS) 2 r2 (e + kB)2r2k2 r 2 (e + kS) 2 a 2 r 2 

+ 2[ -kB r(e + kBl - XkaB 2 kr(e + kB) 
e + kS rrk r( e + kB) 2 krar 

• (e + kS) [rez + xzra S2 + Se(rk - r + 2A)] 
( re + XaS) 2 

+ 

) 

cov(yi(j) .Y. _) 

XaBr~e + kB)]} 
r(e + kB)rar 

• (e + kB) [r2e2 + rX(a + l)Be + X2 aB 2 ]/r, because rk-r+2X • X(a + 1) 
(re + XaB) 2 

• (e + kB) (re + XaS)(re + XS) 
r(re + hB) 2 

• (e + kS)(re + XS) , which is (71). 
r(re + XaS) 


