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Abstract 

The cell means model is applied to the 2-way crossed 

classification mixed model using generalized least squares. The 

general case of unequal-subclass-numbers data is considered, 

including the possibility of having some empty cells; and 

application to split plots and to balanced incomplete blocks is 

shown. 

1. Introduction 

The cell means model has for several years received notable attention 

in the literature (e.g., Speed, Hocking and Hackney, 1978, and Urquhart and 

Weeks, 1978) as a useful way of handling linear models. This is particu-

larly so in situations of unequal-subclass-numbers data (unbalanced data) 

and where interactions are to be part of the model, especially if some 

cells of the data are empty- i.e., contain no data. Recently, however, 

Steinhorst (1982) has cast doubt on the adaptability of the cell means 

model to mixed models. In connection with a randomized complete blocks 

Paper No. BU-832-M in the Biometrics Unit Series. 



- 2 -

situation he writes that he is"··· at a loss to see how 'ij carries the 

right meaning if blocks are random • • ·". And regarding the "split-plot 

design or a random or mixed model" he continues "The cell-means model is 

not of much help in such cases. The classic split-plot model··· cannot be 

replaced by a variation of yijk = 'ijk + eijk"" It is the purpose of this 

paper to show that this negative attitude to the cell means model is not 

correct. All of the cases (and more) referred to can be shown to fit 

perfectly into the cell-means-model framework. Furthermore, for the 

randomized complete blocks model with random blocks (as is usual), ex-

tension to unbalanced data is quite feasible. An explicit (matrix-vector) 

expression is developed for estimating the treatment means. 

a. Data description 

We consider the 2-way cross-classification in terms of a rows-by-

columns layout, having a rows and b columns. The number of observations in 

the cell defined by row i and column j is denoted by nij fori= 1,···,a 

and j = 1,·· ·,b. Balanced data means data in which nij = n for all i and 

j, the simplest case of which is n a 1. Unbalanced data means data in 

which the nij are not all the same and indeed some of them may be zero, 

i.e., nij ~ 0. When the cell defined by row i and column j contains data 

its k'th observation is denoted by yijk fork • 1,~,···,nij" Any cell 

having no data is said to be empty, and nij ... 0. 

and 

We use the customary notation for totals and means, viz. 

y ij. = 

b 

y i .. = t y ij. 
j=1 

a 

Y ••• = t Yi·· 
i=l 

with 

with Y = y /n ' i·. i·. i· 

with Y ••• • Y ••• ln .. , 
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b a 
where ni· = I n .. and n = I n ; and y. j. ' y·j· and n are defined 

j=1 l.J i=1 i· ·j 

similarly. The observations are deemed to be arrayed in a column vector l: 

in lexicon order; it is represented as 

showing that subscript k changes fastest, then j and then i. 

Exaaple 1: For data in the form of Grid 1 

Grid 1 

the row vector form of X is 

b. Sueming vectors and J-aatrices 

Considerable use is made of summing vectors, e.g., 1 is a vector of r 
-r 

unities; and of corresponding matrices, J = 1 1', a square matrix of order 
-r -r"'r 

r having every element unity; and J • 1 1', a matrix of order r x s with 
-r,s -r-s 

every element unity. The result 

(ai + bJ )-1 
"'n -n 

for a ~ 0 and a ¢ bn 

is also used. 

c. Direct products and suas of aatrices 

The direct product of two matrices 6 and ~ is defined as ~ €) J! = 

{ai.B}. It is a useful operation in many cases of balanced data (e.g., 
J-

Searle and Henderson, 1979), two of which are dealt with here. Properties 



of the operator are 

(~(8) ~)I 

<~0~)-1 

=A' (8)B' - ... 
-10 -1 =A X B - -
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<~0~><~0!> ... ~0~! 

~- 1 <~01') = (~- 1 01)<~01') "'!01' 
(1) 

where conformability for the results is assumed to hold. We also use the 

direct sum: 

especially in its more general form 

t 

'+'~i=A +A+··· +A= 
~- -1 -2 -t 
i•1 

~1 

0 ... 

0 0 ... -

Q ~t 

This is a diagonal matrix when the Ai's are scalars; e.g., 

3 

@a • 
i=1 i 

d. Generalized least squares 

An important distinction between fixed and mixed models is that for 

the former the variance-covariance matrix of the vector of observations is 

a 2 I whereas for mixed models it has a form different from o2 I. This 
e- e-

arises from covariances that are deemed to be part of the model; e.g., in 

the randomized complete blocks situation a covariance between observations 

in the same block. As a result, we denote the variance-covariance matrix 

of ~ quite generally by ~ and deal with a linear model 
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and var<x> = y (2) 

where E(x) is the expected value of l over repeated sampling, ~ is 

the vector of parameters to be estimated (in our case cell means that have 

to be specified in each case) and ~ is the known incidence matrix of 

zeros and unities corresponding to the occurrence of the elements of ~ in 

Models where columns of X are covariables can also be accommo-.., 

dated but shall not be considered here. 

y is assumed to be non-singular. (Singular y can be accommodated 

but it, too, is not dealt with here.) Then the well-known generalized 

least squares (GLS) equations for estimating ~· sometimes also called the 

Aitken equations, are 

( 3) 

2. Randomized Complete Blocks 

Procedures for applying the cell means model to the 2-way classifi-

cation mixed model are introduced by considering the easy case of random-

ized complete blocks. Thinking of columns as being the blocks, with one 

observation on every treatment (row) in each block, we have k • 1 for every 

cell and represent yijl as yij' Then 

and representation in terms of a cell means model is 

i.e., ~i fori= l,···,a are the row means that are to be estimated. 



- 6 -

Exaaple 2: For a = 2 and b = 3 

Yu 1 

y12 1 

[::] . ~ .. y13 and E(~) = 1 

y21 1 

y22 1 

Y23 1 

In general, for~= [~ 1 ~ 2 ••• ~i ••• ~a]' 

so that X of (2) is ... 

To use the GLS equations of (3) we need V. This requires defining ,.. 

the variance and covariance structure of the elements of X· Since in 

randomized blocks analysis block effects are taken to be random variables, 

we specify that in addition to a2 being common to the variance of each 
e 

observation, any pair of observations in the same block has a covariance 

a~. Thus the variance of y .. is 
I> 1J 

( 5) 

and 

fori' '¢ i . 

and ( 6) 

for j IIi j' • 
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Notation: For simplicity write 

e E a2 and 8 i! a2 
e B 

Exaaple 2 (continued): 

e+8 8 1 1 

e+B B 1 1 

e+B a 1 1 

var(;y) = = ei + B ,., 
a e+B 1 1 

B e+B 1 1 

B e+8 1 1 

Generalization to a treatments and b blocks yields 

V = ei b + B(J '><'Ib) = (ei + BJ ) '><'Ib • ~ Na ~a~~ ~a ~a ~N 
(7) 

-1 
The first expression needed for the GLS equations is y and, applying 

(1) to (7) this is 

V- 1 = (ei + BJ )-1 1)(\r =~I I! J )~xI 
~ b e + a 0 -·a ~--b • "' "'a -a "' e "'a P -- -

(8) 

Hence, with X of (4) and using (1) again .., 

Also, 

= (I /)(\ 1 I >[11 I - 8 J ) IX\ I l. 
-a~-b e\-a e + aB -a ~-bjt 

= 11 I _ a 3 )I)(\ 1 I l. 
e\"'a e + a8 -a ~-bjt • 
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Hence from (3) 

Then, on observing for the example that (9) is 

1 1 

1 1 

yll 

yl2 

:] ::: . [~::] 

it is easily seen that in the general case (9) is 

{ ~ }i•a = {- }i•a • 
Q = lli y i. ' 

i=l i=l 

i.e.' 

iii - y. • 1• 
(10) 

This is not unexpected: that in randomized complete blocks with blocks 

random, the GLS estimator of the i 1 th treatment (row) mean lli is the sample 

n yi· for that row. 

Sampling variances follow directly from applying (5) and (6) to (10): 

v(~.) = v(y ) = (a 2 + a!)/b 
1 i· e ., 

and 

cov(~i'li 1 . 1) .. covG. ,y. 1 ) = a~/b for i ~ i 1 • 
1• 1 • p 
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The preceding results for balanced data are familiar. We now extend 

them to unbalanced data 

3. Unbalanced Data 

a. The dispersion .atrix V 

In having more than 1 observation per cell the covariance structure of 

(5) and (6) is now 

v(y. 'k) ... a2 + (18· l.J e 

cov(yijk'yijk') .. a2 
a fork'#k', 

(11) 

cov(yijk'yi 'jk') • a2 for i '# i', k • 1 , · • • , n .. and k' = 1,···,ni'j a l.J 

and 

cov(yijk'yi'j'k') ... 0 for j ~ •I J • 

Exaaple 1 (continued): Using (11) the variance-covariance matrix of 

the data vector X shown following Grid 1 is 

y • var<x> 

J J 
"'nll "'nllxn21 

J J 
-n12 -nl2xn22 

J J 

"' el + a ""nl3 "'nl3xn23 (12) 
"""'D • • 

J J 
""n21 xnll ""n21 

J J 
"'n22xn12 ""n22 

J J 
""n23xnl3 -n23 

where each dot is a null sub-matrix of y of appropriate order. 
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The form of y merits observation: the diagonal sub-matrices are 

square l-matrices having orders n11 ,n12 ,··· ,n1b,••• ···,na1 ,···,nab' 

respectively. And the off-diagonal sub-matrices are rectangular l- matri-

ces of order nij x ni'j fori¢ i'. In the example, i has only two values, 

1 and 2, and so above (and below) the diagonal (of sub-matrices J ) 
-nij 

there is only one band of off-diagonal sub-matrices J . In general 
-nijxni'j 

there are a - 1 such bands. 

b. 
-1 

Developaent of V 

The vector of observations l has been defined as containing the yijk 

values in lexicon order, i.e., ordered by k, within j within i. Let P be .... 

a permutation matrix such that fl contains the yijk values ordered by k 

within i within j; i.e., 

(13) 

Then observe that if the matrix which 8 multiplies in y of (12) is pre-
3 

multiplied by P and post-multiplied by P' the product has the form ~J • 
~ N ~~n 

j•1 • j 
permutation Hence, in general, because p is orthogonal (as are all .... 

matrices) 

b 
v. e! + Sf'( ®ln .) • .... ..., 

j•1 . J 

(14) 

Define 

(15) 

for scalars ej for j- 1, ···,b. We derive values for the ej such that 

~ = y-1 . Consider the product YE= by direct multiplication of (14) and 

(15) it is 



Hence VW • I if -- -

b 

YH • ! + f'[ (t) (eej 
j•1 

8 .. -ate 
j e+n.j@ 
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for j • 1,···,b. (16) 

-1 
Thus (16) is the condition for ~ to be y , and so substituting (16) into 

(15) gives 

(17) 

for 

(18) 

c. Solving the GLS equations 

The cell means model is based on 

just as in Section 2. There, in (4), we have 

But now, for unbalanced data, ~ is a generalization of this second form, 

namely 

a 

X • - ~1 • 
~-n 
i•1 i· 

(19) 

Therefore for (3), using (17) and (19) 

~·y- 1 ~ = (@ !~ )ote>[! - l!f'(@ >.j:!n ) J tD !n ) 
i•1 i· j•l ·j i•1 i· 

• (1/e)[ tDni·- ag'( ®>-jln ~] (20) 
i•l j•1 •j 
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for 

Hence, by the definition of ~ given earlier, 

b 

g .. {g } 
j j•1 

a 

for gj • (!)! . 
i•l nij 

(21) 

(22) 

To establish the form of the product that involves g in (20) we first 

consider the example 

Exaaple (continued): Part of (20) is 

• 

• [ ~1nl1 + ~2nl2 + ~3nl3 
~1n11n21 + ~2nl2°22 + ~3nl3n23 

"-3J -n 
·3 

"-I 0 lln21 + ~2nl2°22 + ~3nl3°23] 
~1°21 + ~2n22 + ~3°23 

(23) 

(24) 

(23) 
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(24) comes from (23) by direct multiplication: each element of (24) is a 

quadratic (or bilinear) form involving + ~.J And (25) comes from (24) 
r·n . 

by observation. 

Generalization of (25) is clear: define 

•J 

n . ] ' • 
aJ 

(26) 

the column vector of the numbers of observations in the j'th column of the 

data. Then 

Therefore in (20) 

Similarly, 

Hence, from the nature of gin (22), exemplified in (23), 

-1 
2'Y l • 

Thus the solution to the normal equations is 

(27) 

(28) 
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where 

i=a 

£j • {nij} ' 
i=l 

and s • "8 . 

Unfortunately, the matrix inverse required in (29) seems to have no 

explicit form. It does for special cases as shown in Section 4. 

Since var(I) = y, it is clear that 

known. Hence, from (28) 

Sa.e cells empty 

-1 -1 
var(~) = (X'V X) , -- "" 

as is well 

(30) 

The general result (29) has been developed on the implicit assumption 

that all cells are filled, i.e., that all nij > 0. But, in fact, this 

assumption has not been used and is not necessary: the crucial feature of 

the development of (29) is (14), which holds true even for some nij being 

zero. Thus (29) does not depend on nij > 0, and so is applicable both for 

all-cells-filled data and for some-cells-empty data. 

4. Three Special Cases 

We show details of three special cases of the 2-way crossed classifi-

cation: randomized complete blocks, split plots and balanced incomplete 

blocks, the first two of which are commented on by Steinhorst (1982). 
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a. Jlandoaized Ca.plete Blocks (RCB) 

As presented in Section 2, data from an RCB experiment are the special 

case of unbalanced data with all nij • 1. This reduces (29) to 

Bb 1 1 I )-1{ 
+ aa -a-a yi· 

B }
i=a 

aB y •• 
i•l 

e + 

i=a 
= (1/b){yi· + (8/e)y •. - [B/(e + aB)](l + aB/e)y •• } 

i•1 

= {- }i:aa 
y. • 
l.. i•l 

(31) 

i.e., jii = yi·, precisely as in (10). And, from (30) and its occurrence 

in ( 31), 

var(~) 

-1 
!baa J) • (e/b)(I + BJ /e) 

-a -a -a 

so giving 

and 

b. Split plots in randoaized co.plete blocks 

A traditional (over-parameterized) model for a split-plot experiment 

in a randomized complete blocks design is to define 

( 32) 
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A cell means representation of this is the 2-way crossed classification 

( 33) 

with b observations in each (i,k) cell, and with the following variance-

covariance structure: 

v(yijk) = a2 + a2 + a2 
B aB e 

cov(yijk'yijk') .. a2 
B 

+ a2 
aB 

for k ~ k' 

cov(yijk'Yi'jk') = a2 
B 

for i ,. i' and k 

for j !R j' • 

On arraying the observations in lexicon order as 

the variance-covariance matrix of ~ can be written as 

using the notation 

e = a2 
e' 

and • a a~B • 

.,. k' 

(34) 

Then it will be found, similar to the methods of Searle and Henderson 

(1979), that for V of (35) ... 

where 

t = (e )( ) + c. e + acB + c• -B 
and u = -cp 

e(e + c•) • 

Further, with the yijk's arrayed in~ in lexicon order of (34) 

i=a k=c 

E(~) • (!a0!b0!c>{{l1ij}i .. 1}k•l 

( 36) 

( 37) 
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so that 

X= (I "X'lb'i<'I). 
~ ~a~~ ~~c 

Hence, pre-multiplying each term of (36) by~· and post-multiplying by ~ 

gives 

'"'b[(l/e)(I 'X'I ) + t(J IX'J ) + u(I tX'J )] • 
-a~-c -a~-c -a~-c 

(38) 

And then it will be found that 

Similarly 

Observe that 

(I 'X'lb' "X'I) =(I 1)(\}'X\I )(I 1)(\}b' 'X'!) .. (I "X'I )(I 1)(\}b' 'X'I ). 
-a~- ~-c -a~ ~-c -a~- ~-c -a~-c -a~- ~-c 

Applying this principle to each term in (40) gives 

and on comparison with (38) this can be written as 

Hence 

giving 

(41) 
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And this is, of course, precisely the estimator of p + ai + rk + (ar)ik ob­

tained in the overparameterized model - as one would anticipate. 

From (39), using var(~) = (~'y- 1 ~)- 1 , we then get anticipated results 

for sampling variances: 

= 

wd 

fori~ i' • 

c. Balanced incoBPlete blocks (BIB) 

Data from a balanced incomplete blocks experiment can be arrayed in 

the grid of a 2-way crossed classification with values of nij being 0 and 1 

in a patterned manner determined by the nature of the experiment. 

Exaaple 3: Consider the case of 4 treatments (a = 4) used in a BIB 

experiment of 6 blocks (b • 6) with 2 treatments in each block. The 

pattern of nij-values can be arrayed as in Grid 2, where a dash represents 

no observation. 

Grid 2 

Treatment 
Block 

1 2 3 4 5 6 ni• • r 

I 1 1 1 3 

II 1 1 1 3 

III 1 1 1 3 

IV 1 1 1 3 

n.j = k 2 2 2 2 2 2 12 • n = ar • kb 



- 19 -

The general description of a BIB experiment customarily involves the 

following characteristics: 

b = number of blocks 

k = number of different treatments used in each block 

a • t • number of treatments 

r = number of blocks that contain each particular treatment 

X = number of times each treatment pair occurs in the same block. 

Although t is the traditional symbol for the number of treatments, we use a 

here for consistency with our general description of the 2-way classifi-

cation. In terms of that description we can also note the following re-

lationships for both the general case and the example. 

a • 4 ni• • r = 3 X • 1 

b • 6 n.j • k = 2 

n = ar • bk • 6. .. 

Furthermore, there is the usual equality for BIB experiments, that 

X(a - 1) = r(k - 1) • (42) 

To simplify (29) first note that any cell containing data has only one 

observation (BIB designs with more than one can be considered, but are not 

dealt with here), and so we denote it by yij' Then for (29) we have 

i=a b -1 

{¥i} = [r!a- e ! k8 I Ej£j] {yi· 
i=l j•l 

8 b }i•a 
- I n Y . (43) 

e + k8 j•l ij ·j i•l 

This requires simplifying two summation terms. The first is done with 

assistance of the example. 

Exaaple 3 (continued): Using the columns of unities and zeros in Grid 

2 as the columns £j' 
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[11· "] [1 ·1 "] [1 . ·1] [" .. "] [ ... "] [ .... ] 11·· .... .... ·11· ·1·1 ... . 
= + + + + + .... 1·1· . ... ·11· .... ··11 

.. .. .... 1··1 ... . ·1·1 ··11 

3 1 1 1 

1 3 1 1 

= 1 1 3 1 • ( 3 - 1)!4 + ~4 • 

1 1 1 3 

Generalization is that 

The second summation for (43) is 

b b 

! nijy·j • ! nijkY.· = 
j=1 j•1 J 

where 

b 

yi(j) = ! nijy•j•/r =mean of block means y·j· for the 

jsl blocks that contain treatment i. 

Substituting (44) and (45) into (43) gives 

i•a 
Bkr - } 

e + kB yi(j) i=1 

(44) 

(45) 

( )-l{ krB .. }i=a 
• (e + kB) [re + (rk - r + 1)B]!a - B1~a Yi· - e + kB Yi(j) · 

i•l 

But (42) gives rk - r + 1 = 1a. Therefore 
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i•a 
k:r8 - } 

e + k8 Yi(j) i•1 

Hence 

e + kB [ + ~ 
~i = re + laB yi• re Y 

krB _ lB krB ~ - ] 
e + kB yi(j) re e + k8 k Yi(j) • 

i=l 

But from (45) 

Therefore 

e + kB [ krB M ( 
~i = re + laB Yi· - e + kB Yi(j) + re 1 -

= r(e + kB) [- _ k8 - laB 
re + laB yi· e + k8 yi(j) + r(e + kB) y ] . .. ( 46) 

As shown in the appendix, this result is consistent with results given in 

Scheffe (1959). 

Furthermore, from (30), using intermediate steps in the derivation of 

~i' 

so that 

and 

var( }l) • rl - B( r - l) I - ---'~-{ Bl J ]-1 

~a e + kB ~a e + k8 -a 

• e(e + k8) (r + XB J ) 
re + Xa8 -a re -a 

(e + k@)(re + A@) 
v(~i) • r(re + Xa8) 

( A A ) X8(e + k8) fori ~ i' . 
cov lli'lli' • r(re + laB) 

( 47) 
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These results are sometimes written in terms of 

= (1 + ke)(l + ~p/r) 02 

1 + a~e/r e 

and 

( ~ A ) • (~p/r)(l + kp) 0 2 

cov ~i~i' 1 + a~e/r e for i r. i' . 

Finally, it can be noted in passing that when ~ K r = b and k • a, a 

BIB becomes an RCB whereupon (46) reduces to 

b(e + aa) [­
pi = b(e + aa) yi· 

as is to be expected. 

5. Estimating Cell Means 

a. Without within-cell covariance 

Suppose, despite the within-column covariance represented by aB in the 

preceding development, that there was interest in estimating cell means ~ij 

with 

Then 

X = ... a ( b ) (t} @I · 
i•l j•l"'nij 

(48) 

Using (48) and (17) we therefore have, similar to (20), 

~~~-l~ .. 0( 0 !~ )o/e)[! - ar'( 0 ~ ·:!n ~]®( 0 !n ) 
i=l j=l ij j•l J • j r i=l j·l ij 

(49) 
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for 

where E is the permutation matrix defined in (13). P has order n .., We 

now define another permutation matrix, !• of order ab such that 

Then 

g • £2!'! where, for 2 of (48), 

Hence in (49) 

a b b 

2'Y-l~ = (l/e)[0 (±)ni.- B!'(E~!'>'(<Dx}~n )<E~!'>!] (50) 
i=l j=l J j•l • j 

= 0/e)(<D 0.~ nij - B!' 0[(® 1.' )>- ~ ( ®1. )lr) 
i•l J•l j=l f=l nij j n. j i•l nij r 

(51) 

Exa.ple 1 (continued): The central portion of the second term in (50) 

is 



• 

0 ... 

1 I 
""ll22 

0 ... 

X1ni1 Xlnlln21 

Xln2lnll X1ni2 

• 0 ... 

0 ... 
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XlJ ... n 
·1 

0 ... 

0 ... X2J -n 

0 -
X2nh X2n12n22 

X2n22n12 X2nh 

0 ,., 

0 -

·2 
0 -

Q 

3 
0 • (t)Xj£j£J. - j•l 

X3ni3 X3nl3n23 

X3n23nl3 X3n~3 

We seek the inverse of (51). First, as a special, well-known case of 

(17) of Searle (1982, p. 261), note that 

(52) 

Then with 
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an application of (52) gives 

a -1 

( G) ni. - PA. £. £j') 
i•l J J J 

a 8A 11 1' _ ... a .... a 

a 1 8J • ® - + _____ .... ...;a:;.._ ___ _ 

i•1 nij ( 8n.j ) 
(e + n.jB) 1 

e + n.j8 

a 1 8 
·'P-+-J. 

'\;V n e ""a 
i•l ij 

Hence the inverse of (51) is 

b( a 1 · ~ • ! ' <t) e G) - + 8:l ... . 
j•l i•l nij a 

(53) 

Similarly 

(54) 

Therefore, on using (53) and (54), 

b a { i•a j•b 
• !' G>(e® _!_ + 8:l \:ole)!'{ yi .• - 8n .A y } } 

j•l i•1 nij a)~ J iJ j ·j· i•1 j•l 

and so 
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... y.. 0 

l.J 0 
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n .8 ] 

e(e ~ n .8) 
OJ 

(55) 

Hence in the 2-way cross-classification mixed model, with unbalanced data, 

the estimator of the cell mean ~ij is the sample cell yij 

expected result. 

b. Including a within-cell covariance 

- a not un-

Suppose that the variance-covariance structure of (11) also includes 

the within-cell covariance 

cov(yijkyijk') .. a2 • Y 
y 

fork~ k', Vi and j o 

Denote the resulting var(v) as V o "" .... ., Then for V of (14) .... 

a b 
v • v + .,G) 0~n .... ., - i•1 j•l ij 

a b X a 
b 

.. v + 0 0!n 0 (±)1' ) ... 
r(i=l j=l ij i•l j·(·nij 

• v + .,:xx' .... ....,.,. 

for X of (48)o Using (17) of Searle (1982), po 261 again, ... 

for 

(56) 
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Denoting by~ the solution in (55), we know that 

(57) 

-1 
And letting the solution using y1 be ~ + ! we need to solve 

for!· Using (56), this equation is 

With (57), we find that (58) reduces to 

i.e., 

(59) 

Since the matrix in (59) is X'V-1X and is presumed to be non-singular, the - ........ 

solution to (59) is!= Q· Hence~ of (55), where there is no within-

cell covariance a2 , is also the solution vector when there is a within-cell 
r 

covariance. Thus in both cases ~ij = yij· is the estimator of ~ij as 

might well be expected. 
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APPENDIX: Analysis of BIB Data 

a. Reconciliation of ¥i with Scheffe. 

One of the few places where the randomness of the blocks in a BIB 

design has been taken into account in estimating treatment effects is in 

Scheffe (1959) at pages 165-178. We show that the result given there, for 

estimation using recovery of interblock information, is consistent with ~i 

of (46). We begin with laying out equivalent notation. 

p. 161: 

p. 162: 
(line 3 up) 

p. 164: 
(lines 8-9) 

(after 5.2.9): 

(5.2.10): 

p. 166: 
(5.2.17) 

Scheffe 

# of treatments 

II of blocks 

II of replications 

block size 

# of occurrences of 
treatment i in block j 

i'th treatment total 

j 'th block total 

i'th adjusted treat-
ment total 

sum of block totals 
in which treatment i 
occurs 

Ti • I:jnijhj 

efficiency factor 

8 .. 
rk - r + A. 

rk 

This paper 

I a = t 
J b 

r r 

k k 

Kij = 0 or 1 nij 

gi yi· 

h. y. j 
J 

~i 

yi· - I:jnijy·j· 

• yi· - ryi(j) 

Ti 

kryi(j) 

8 

(k - 1)I A. a (k - 1)a 
= -. 

k(I - 1) rk k(a - 1) 



p. 165: 
(last line) 

p. 172: 
(5.2.33) 

( 5. 2. 32b): 

(line 5 up): 

p. 174: 
(5.2.41) 

p. 175: 
(5.2.42) 

re&i = Gi 

&i ""' G/d 

&' .. 
i 

w • r8/a 2 
e 
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w' • (r - A.)la£ 

* • w~ + w'ill' 
1jl w + w' 

y i· - ry i(j) 

r6 

kryi(j) - rtjy·j/b 

r - A. 

• kryiU2 - ry •• /b 

r - A. 

kr<Y i(j) 
- ) - y .• - r - A. 

k(e + ka) 

A.a/ke 

(r - A.)/k(e + ka) 

til* is described by Scheffe as being unbiased and having minimum 

variance. It therefore corresponds to our ~· Since $ is a contrast of 

ai's it is also a contrast of (~ + ai) terms. The consistency of w* with g 

will therefore be shown by adapting w* to be 

w(~ + &i) + w'(~' +iii) 

~i • w + w' 

and showing that ~i • ~i' 
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Scheffe gives &1 on page 165 - as shown above. Nowhere there does he 

show the corresponding ~· But in the last line of page 164 he mentions 

the "correction term for the grand mean". From that we infer that 

The expression for af is given at (5.2.34) on page 172. From (5.2.33) we 

get the corresponding 

Thus, using~=~' • Y .• and w, w', a, a' as above we have, from 

Scheffe's methodology, 

Xa kr (- - ) r- A kr(yi(j) - Y •• > 

~ke~A~a~~Y~i~·----Y~i~(~j·)~_+_.k~(~e_+~k~B~>----~r~-~x __ ___ 
tli•Y •• +-,.. Aa r - A 

ke + k(~ + kB) 

"' y •• + 
r[(Y1 . - Yi(j))/e + (yi(j)- Y .• )/(e + kB)] 

[Aa(e + kB) + (r - A)e]/ke(e + kB) 

= Y .. + r~(e + ka)(yi· - yi(j)) + e(Yi(j)- Y .• )] 

AakB + rke 

because Aa + r - A • rk 

r(e + kB) [- kB e - ] 
= Y •• + r; + aAB yi· - e +-kB yi(j) - e + kB Y .• 

• r(e + kB) [­
re + aU yi· 

which is (46). 

kB aAB - ] 
e + kB yi(j) + r(e + kB) Y.. ' 



b. The variance of iii 

From (46) 

v(A ) = v{r(e + kB) [-
~i re + Aa@ Yi· 
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kB + laB 
e + kB yi(j) r(e + k@) y .• ]} 

+ ~r -kB r(e + kB) 
1_e + kB rrk 

lka82 kr(e + k@) + laBr(e + k@)]} 
r(e + k@) 2 krar r(e + kB)rar 

• (e + kB) {re2 + p2(rk+rk+l2a/r-2rk+2lk-2kA) + 8e(r+rk-2r+2l)} 
(re + Aa8) 2 

• (e + kB) 
(re + Aa@) 2 

[ l2a ] re 2 + -;- 82 + Be(rk - r + 2A) 

• (~:: ~!~) 2 [r2e2 + rA(a + l)Be + l 2 a@ 2 )/r, because rk-r+2A • l(a + 1) 

(e + kB) 
• r(re + laB) 2 (re + Aa@)(re + A@) 

• (e + kB){re +A@) , which is (47). 
r(re + laB) 


