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Abstract

The cell means model is applied to the 2-way crossed
classification mixed model using generalized least squares. The
general case of unequal-subclass-numbers data is considered,
including the possibility of having some empty cells; and
application to split plots and to balanced incomplete blocks is

shown.

1. Introduction

The cell means model has for several years received notable attention
in the literature (e.g., Speed, Hocking and Hackney, 1978, and Urquhart and
Weeks, 1978) as a useful way of handling linear models. This is particu-
larly so in situations of unequal-subclass-numbers data (unbalanced data)
and where interactions are to be part of the model, especially if some
cells of the data are empty — 1.e., contain no data. Recently, however,
Steinhorst (1982) has cast doubt on the adaptability of the cell means

model to mixed models. In connection with a randomized complete blocks
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situation he writes that he is "--- at a loss to see how uij carries the

right meaning if blocks are random --- And regarding the "split-plot

design or a random or mixed model” he continues "The cell-means model is

not of much help in such cases. The classic split-plot model --- cannot be

"

replaced by a variation of yijk It is the purpose of this

" Figk T o%ijk
paper to show that this negative attitude to the cell means model is not

correct. All of the cases (and more) referred to can be shown to fit
perfectly into the cell-means-model framework. Furthermore, for the
randomized complete blocks model with random blocks (as is usual), ex-
tension to unbalanced data is quite feasible. An explicit (matrix-vector)
expression is developed for estimating the treatment means.
a. Data description

We consider the 2-way cross-classification in terms of a rows-by-
columns layout, having a rows and b columns. The number of observations in

the cell defined by row i and column j is denoted by n,. for i = 1,++-,a

ij

and j = 1,-++,b. Balanced data means data in which nij = n for all i and

j, the simplest case of which is n = 1. Unbalanced data means data in
which the nij are not all the same and indeed some of them may be zero,

i.e., nij 2 0. When the cell defined by row 1 and column j contains data

its k'th observation is denoted by yijk for k = 1,2,--+,n Any cell

13"

having no data is said to be empty, and nij = 0.

We use the customary notation for totals and means, viz.

yij. = kilyijk’ with Yij. = yij'/nij ’
b —
yi.. = jilyij’ With yi.. = yi.'/ni- b4

and
a -~
y,..= Ly, with y =y /o,
i=1



b a
where n, = bX D44 and n = iElni_; and Yog.0 Yo5. and n, 4 are defined

j=1
similarly. The observations are deemed to be arrayed in a column vector Yy

in lexicon order; it is represented as

z . {{{y }k’nij}jgb}igﬂ
1iklpay Jya1tie
showing that subscript k changes fastest, then j and then i.

Example 1: For data in the form of Grdid 1

Grid 1
n, = 1 ny, = 2 n,, = 3
Ny = 3 n,, = 4 ny,y = 1

the row vector form of y is

'=
2'=0¥111 Y121 Y122 Y131 Y132 Y133 Y211 Y212 Y213 Y221 Y222 Y223 Y224 Y2311

b. Summing vectors and J-matrices
Considerable use is made of summing vectors, e.g., lr is a vector of r

unities; and of corresponding matrices, gr = 1 1', a square matrix of order

~rer

r having every element unity; and gr s = lrl;. a matrix of order r x s with

’

every element unity. The result

-1 1 b
(aln + bgn) a(zn ey gn) for a # 0 and a # bn

is also used.

¢. Direct products and sums of matrices
The direct product of two matrices A and B is defined as A () B =
{aijg}. It is a wuseful operation in many cases of balanced data (e.g.,

Searle and Henderson, 1979), two of which are dealt with here. Properties



of the operator are

A@BR' =A" Q@B APBDXOY = AXQBY
- - (1)
aER =2"Er  2'ee) - aT eV = 1O
where conformability for the results is assumed to hold. We also use the

direct sum:

A0
AQ@B =
9 B
especially in its more general form
A, Q0 --- O]
t 1 .
C>éi =44 éz toee f ét =19 29 i
i=} : .
2 T A

This is a diagonal matrix when the A,'s are scalars; e.g.,

i
3 ay 0 0
C)ai = 10 a, 0
i=1 0 0 a
3

d. Generalized least squares

An important distinction between fixed and mixed models is that for
the former the variance-covariance matrix of the vector of observations is
o:l whereas for mixed models it has a form different from oél. This
arises from covariances that are deemed to be part of the model; e.g., in
the randomized complete blocks situation a covariance between observations
in the same block. As a result, we denote the variance~covariance matrix

of y quite generally by V and deal with a linear model
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E(y) = Xp and var(y) =YV (2)

where E(y) is the expected value of y over repeated sampling, y is
the vector of parameters to be estimated (in our case cell means that have
to be specified in each case) and X 1s the known incidence matrix of
zeros and unities corresponding to the occurrence of the elements of p in
E(y). Models where columns of X are covariables can also be accommo-
dated but shall not be considered here.

V is assumed to be non~singular. (Singular Y can be accommodated
but it, too, is not dealt with here,) Then the well-known generalized
least squares (GLS) equations for estimating u, sometimes also called the

Aitken eguations, are
Xi= X'V "y - (3)

2. Randomized Complete Blocks

Procedures for applying the cell means model to the 2-way classifi-
cation mixed model are introduced by considering the easy case of random-
ized complete blocks. Thinking of columns as being the blocks, with one
observation on every treatment (row) in each block, we have k = 1 for every

cell and represent yijl as yij' Then
'a » s n av e * s 0 LY ’ e w o v 0
y' o= lyyy Y1b Y1 Yij Yib Yai Yab)
and representation in terms of a cell means model is
E(yij) =Wy s

i.e., ui for i = 1,++,a are the row means that are to be estimated.
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Example 2: For a =2 and b = 3

Y11 1o
Y12 1
]
Y= Y3 and E(y) = |1 - .
*2
-YZ3- h. ld
In general, for p = [ul My teomy e ua]'
E(y) = (I, ®L
so that X of (2) is

To use the GLS equations of (3) we need V. This requires defining
the variance and covariance structure of the elements of y. Since in
randomized blocks analysis block effects are taken to be random variables,
we specify that in addition to ai being common to the variance of each
observation, any pair of observations in the same block has a covariance

g2, Thus the variance of ¥ij is

B
= g 2
v(yij) oL + of (5)
and
cov(yij, yi'j) = ua for i' # i .,
and (6)

cov(yij, yi'j') = ( for j # ji' .
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Notation: For simplicity write

e 2 ¢ and B = ¢2 .
e 8

Example 2 (continued):

re+B . . B . - ] r1 . . 1 - » ]
e+B - . B . . 1 - » 1
. . e+8 . . B . . 1 . . 1
var(y) = =el +8
B . . e+8 . . 1 . . l . .
. 8 . . e+8 « . 1 . . 1
| . B . . e+B_ | - . 1 . . 1-

= el + 8(52 ®.].:.3) .

Generalization to a treatments and b blocks yields

v e':gab + B(£a®£b) = (ela + BQa) ®£b . (7

The first expression needed for the GLS equations is z_l and, applying

(1) to (7) this is

-1 -1 Y 8
v er, ¢ 007 0L, = Y1, - 75 1)@, - (®)

Hence, with X of (4) and using (1) again

vyl = N - B

8
= (b/e)(za T e + aB ga) *

Also,

wol, o N B - B
x77y = G@ 1[Nz - 7w 1)@ L,k

- 4 B __ .
g(la e + ap ga)® lb}z '



Hence from (3)

g= Y0 XYy
-1
i1 8 1 8 '
= E[;(l:a T e + aB)] [;(za T e + aB)®3'bh
=41 @L) (9)
b ~a & xp’¥

Then, on observing for the example that (9) is

it is easily seen that in the general case (9) is

i=a _ yi=a
AR SRR 7
e 1) 4=1

ﬁi =y, . (10)

This is not unexpected: that in randomized complete blocks with blocks
random, the GLS estimator of the i'th treatment (row) mean By is the szample
n §i- for that row.

Sampling variances follow directly from applying (5) and (6) to (10):

v(@,) = V(;i~) = (a2 + 02}/
and

cov(fiy,fi; ) = covly, ,y,. ) = of/b  for i # 1
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The preceding results for balanced data are familiar. We now extend

them to unbalanced data

3. Unbalanced Data

a. The dispersion matrix V
In having more than 1 observation per cell the covariance structure of

(5) and (6) is now

= g2 2
v(yijk) o + UB’
= g2 !
Cov(yijk’yijk!) UB for k # k »
(11)
2 ' = LI 3 ¢ = LI ]
cov(yijk’yi'jk') L for 1 #1', k=1, ,nij and k 1, ’ni'j

and

cov(yijk’yi!jlkl) = 0 for j # j"

Example 1 (continued): Using (11) the variance-covariance matrix of

the data vector y shown following Grid 1 is

V= var(z)
g1'1 ’ g'n X '
11 117%21
"My2 "My2%M9
. - g,n . . g'n x
= el + B 13 13°%23 (12)
Nn L'} . J .
“M1*M1 "My
X ) d
M2"P12 a2
. J . .
I P23 13 P23 |

where each dot is a null sub-matrix of V of appropriate order.
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The form of V merits observation: the diagonal sub-matrices are

square J-matrices having orders Ny1aMygs  slyys LIRS

respectively. And the off-diagonal sub-matrices are rectangular J- matri-

ces of order nij X ni'j for i # 1'., In the example, i has only two values,
1 and 2, and so above (and below) the diagonal (of sub-matrices gni.)

there is only one band of off~diagonal sub-matrices gnijxni". In genergl

there are a - 1 such bands. ’

b. Development of V_1

The vector of observations y has been defined as containing the yijk
values in lexicon order, i.e., ordered by k, within j within i. Let P be
a permutation matrix such that Py contains the yijk values ordered by k

within i within j; i.e.,

nij i=a, j=b
- {2
13k a1 a1) gm1
Then observe that if the matrix which B multiplies in V of (12) is pre-
3
multiplied by P and post-multiplied by P' the product has the form C)gn .
=175
Hence, in general, because P is orthogonal (as are all permutation
matrices)
b
V=el+ BP'(@J )p . (14)
~ »~ ~ Nn R i~
=1 "]
Define
b
W= (1/e)I + P'(®e J )P , (15)
~ ~ ~ jgl j~n.j I~

for scalars 0, for =1, -+, b, We derive values for the Oj such that

3
W= g‘l. Consider the product VW: by direct multiplication of (14) and

~

(15) it is
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+ Bfe + Bn ,6,)J

+ g'[ C:)-)(eej

j]l‘)'

~vne j=1 -j j ~n.
Hence VW = I if
6, = —Bl8  gor § = 1,.00,b (16)
i e+ n.jB ’ i
Thus (16) is the condition for W to be !-1, and so substituting (16) into
(15) gives
v (1/e)[; - BP (@xj~n )g] (17)
i=1 |
for
1
Xj =3 i (18)

c. Solving the GLS equations

The cell means model is based on

just as in Section 2. There, in (4), we have

X = (L, @1)-@1 .
i=1
But now, for unbalanced data, X is a

namely

generalization of this

second form,

X= @1 . (19)
i=1""4.
Therefore for (3), using (17) and (19)
1
X'V X @1 (lle)[,{ - BP' @x I I
(1=1 ) )P i=1""4.
= (1/e)[®n - Bg'(@k J )g] (20)
i=1 4=1 370y
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for

C)~n ) ) (21)

"Ni=1""4.
Hence, by the definition of P given earlier,
b a
Q= {QJ} for Qj = ®ln . (22)
j=1 i=1 "ij
To establish the form of the product that involves Q in (20) we first

consider the example

Example (continued): Part of (20) is

(j"l i~n Jk
1
1
b ~n
Fx ] 21
lmn_1
1 L, o 1 L
11 12 13 L ' 12
. 2, (23)
L 1 L i
21 22 23 g 22
3~n_3
b P ‘]:'
N3
- ln
i 23]
Anjp * Apnj, + Agni, MnpaPgg * Agnpangy + Agngan,, (2)
2
Aynyymgp + Agnypnyy + Agn;ansg Angy * Agnhy + Agnd,
n nl n
=N [ny; npyl + 2y [nj; myyl + 24y {ny3 ny4l . (23)

)| "2 N23
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(24) comes from (23) by direct multiplication: each element of (24) is a

guadratic (or bilinear) form involving + ljgn . And (25) comes from (24)
3
by observation.

Generalization of (25) is clear: define

n n.l', (26)

= [n 2j e s 8J

13
the column vector of the numbers of observations in the j'th column of the

data. Then

b
~ = 2 A S S'. . (27)
Therefore in (20)
vyl 2 : L
X'V X = (1/9)[f;§ni- - szl e +n B Ejsj] ) e
Similarly,
e = (O, Jorofs - (@2, el

i=a n 1=a)j=b
= (lle)[{yi..}i=1 (j;%l d . ){{{yijk}kii}ial}jﬂl]

. (1/e)[{yi,,}i:: - 39'{*jy-j-ln.j}j:?] '

Hence, from the nature of Q in (22), exemplified in (23),

-1 (1/e) i=a 3 i=a
ety il 7 -t )
* SAAS P j=1 13700y

Thus the solution to the normal equations is
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=[én - ng —L c']—I{y - 8% AR I }iga (29)
i o jB ~3~3 i-» j=1 e + n_jB i=1
where
i=a
gy = {nij}i=l, e = oi and B = u; .
Unfortunately, the matrix inverse required in (29) seems to have no
explicit form. It does for special cases as shown in Section 4.
Since var(y) = V, it is clear that var(ji) = (5'2-1§)-1, as is well

known. Hence, from (28)
a b 1 -1
var(f) = e[;olni. -85 o as] (30)
= j=1
SOme‘cells empty
The general result (29) has been developed on the implicit assumption
that all cells are filled, i.e., that all njj > 0. But, in fact, this
assumption has not been used and is not necessary: the crucial feature of
the development of (29) is (14), which holds true even for some nij being
zero. Thus (29) does not depend on njy > 0, and so is applicable both for

all-cells-filled data and for some-cells-empty data.

4, Three Special Cases

We show details of three special cases of the 2-way crossed classifi-
cation: randomized complete blocks, split plots and balanced incomplete

blocks, the first two of which are commented on by Steinhorst (1982).
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a. Randomized Complete Blocks (RCB)
As presented in Section 2, data from an RCB experiment are the special

case of unbalanced data with all nij = 1. This reduces (29) to

{ a gb -1 By, ,i=a
a.} (b; - 1 ;') {y._ - } (31)
i i=1 a e + ap ~a~a i e + aB =1

-1 By, ,i=a
(1/b)(;a - Ly {yi, - }

e + aB ~a e + aBf,
B BY =1

8 i=a
= (1/p)[T + (B/e)ga]{yi, = o + 3B y_,}i’I
i=a
. (1/b>{yi, + (Ble)y. - [B/(e + aB)}(1 + aB/e)Y..}
i=1

{_ i=a
G
1) i=1

i.e., =y, precisely as in (10). And, from (30) and its occurrence

in (31),
. gb -1
var(@ = ofb1, - s B 5 ) = o)z, + 8y /0
so giving
V(i) = vy, ) = (e/b)(1 + B/e) = (] + a?)/b
and

cov(fiy,fiy.) = cov(§i_,§i.,) = (e/b)Ble = of/b ,

b. Split plots in randomized complete blocks
A traditional (over-parameterized) model for a split-plot experiment

in a randomized complete blocks design is to define

E(yijk) = u o+ o, + T + (ay)ik + Bj + (uB)ij . (32)
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A cell means representation of this is the 2-way crossed classification
E(yijk) = Wik (33)

with b observations in each (i,k) cell, and with the following variance-

covariance structure:!
v(y, . =02 + 0% + o2
vy 51 g7 %8 T %

= g2 2 t
COV(Yijk-Yijk.) 0'8 + OQB for k # k

= 2 1 ]
Cov(yijk’yi'jk') o for 4 # 1' and k # k

COV(yijk,Yi-j.k.) =0 for j # 3
On arraying the observations in lexicon order as

{{{ i=a jzb k=C
T -
* )0 YRS FIR o)

the variance~-covariance matrix of Y can be written as

var(y) = Y= el + B @I OI) + 9L OL®I) - (35)
using the notation

2 = 2 2
e =¢ =g and E ¢
e’ B ¢ oB

Then it will be found, similar to the methods of Searle and Henderson

(1979), that for V of (35)

~1
e L, ¢ 05,01 +uE,0L,01) (9
where
-B -
t = (e + co)(e + acB + co) and (37

u = e(e + co) °

Further, with the yijk's arrayed in y in lexicon order of (34)

i=a, k=c
2 - 4, 0L,05){{u,f |

1=1"k=1
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so that
X = (£a®lb®£c) .

Hence, pre-multiplying each term of (36) by X' and post-multiplying by X

gives

1]

X'V x (1/7e)(I, ®@PEI) + t(J OrE®I) + u(I @b I)

= b e I <:> | + t(J <:’ ] 4+ u(l J ( 38
And then it will be found that

-1

T = amler, ®1) + 81, ®1) + 6L QI - (39

Similarly
X'V’ x =1/, @L L) + t( I, OL 1) + v O @Iy - 40
Observe that
(L,OLOI) = 1,OI101)I. QLI = 0101 ®LEI).
Applying this principle to each term in (40) gives
[ -1 '
X'V oy = (/eI @I) +tJ ®J) +uv(@ @I OL Iy
and on comparison with (38) this can be written as

X'V s Ry @ Oy

~

Hence

e
LA
<

giving
=Y (41)
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And this is, of course, precisely the estimator of u + Qi + 7k + (ay)ik ob-
tained in the overparameterized model — as one would anticipate.
From (39), using var(fi) = (g'z'lx)'l, we then get anticipated results

~

for sampling variances:

i = v = 2 2 2
i i = v v = 2 2 t
cov(pi_k,ui_k,) cov(yi.k,yi_k,) (08 + 0¢)/b, for k' # k
and
A~ A~ = - bt = 2 1
cov(fly qoflyv o) = covly, 1hy e ) og/b  for i # i’ .

c. Balanced incomplete blocks (BIB)
Data from a balanced incomplete blocks experiment can be arrayed in
the grid of a 2-way crossed classification with values of njj being O and 1

in a patterned manner determined by the nature of the experiment.

Example 3: Consider the case of 4 treatments (a = 4) used in a BIB
experiment of 6 blocks (b = 6) with 2 treatments in each block. The
pattern of nij—values can be arrayed as in Grid 2, where a dash represents

no observation.

Grid 2
Treatment Block
1 2 3 4 5 6 n,,=r
I 11 1 = - - 3
II 1 - -1 1 = 3
111 -1 - 1 =1 3
Iv - =1 = 1 3
n,=k 2 2 2 2 2 2 12=pn =ar = kb
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The general description of a BIB experiment customarily involves the
following characteristics:

b = number of blocks

k = number of different treatments used in each block

a = t = number of treatments
r = number of blocks that contain each particular treatment

= number of times each treatment pair occurs in the same block.
Although t is the traditional symbol for the number of treatments, we use a
here for consistency with our general description of the 2-way classifi-~
cation. In terms of that description we can also note the following re-

lationships for both the general case and the example.

a =4 n, = r=3 A =1
b=6 n,* k=2

n = ar = bk = 6,
Furthermore, there is the usual equality for BIB experiments, that
AMa-1)=rk~-1) . (42)

To simplify (29) first note that any cell containing data has only one
observation (BIB designs with more than one can be considered, but are not
dealt with here), and so we denote it by yij' Then for (29) we have

i=g b -1 b i=a
N = 8 ' B
fi } = [rg - 2 c.c! Y. - = Lo,y . (43)
{ i i=1 a e + kB j=1 3~] i e + k8 j=1 137 ] 4=1

This requires simplifying two summation terms. The first is done with

assistance of the example.

Example 3 (continued): Using the columns of unities and zeros in Grid

2 as the columns ¢

j’
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b 11 1-1- 1--1 .o -
.o (11 e v 11- 1-1
jglsjsj el Yl NS B DT B DU B PR E
T feae 1.1 e ‘1.1 .11
(3111
1311
=131 =G -DL -
1113
Generalization is that
b
jglgjgj =(r - VI +A . (44)
The second summation for (43) is
b
PRt J§1n ) z R RS (42)
where
- b - -
yi(j) = jElnijy_j./r = mean of block means y.j. for the

blocks that contain treatment i.

Substituting (44) and (45) into (43) gives

i i=a = rl - Qg_r_-_)xl _E__. & - Bkr - i=a
¥y i=1 ~a e + kB ~a e + kB ~a Yi. e + kB yi(j)
-1

kg - i=a
= (e + kB)([re + (rk - ¢ + X)B]Ea - Blga) {Yi. YT yi(j)}

But (42) gives rk - r + A = la. Therefore
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i=a -1 keB - i=a
i = + I - B\ - =B .
{"1}1-1 (e + KB)lxe + Aab)l, - O] {yi- e + kB yi(J)}1=1
i=a
e + kB 1 AB krB =
= + =3 Ry, -~ 0=y
re + Aap \~a re ~aJ}’i- e + kB 7i(3) i=1
Hence
s o .& % kB + A8 _ kB - _ AB _krB E =
Wy re + \aB Yi. e V.- e + k8 yi(j) Te e + k8 inlyi(j) )
But from (45)
a _ a b - b _
2Y¥;0ay® 2 20,y Jr= Yo .y /r=y [r.
Therefore
o .etkB [ _ kst - AB(, _ _kB _
Wi " Te + raB | Vi " e + kB Yi(3) T re e+ KBV -
L e + kg) F- kB =~ Aaf -
re + hag |Yi- " e+ kB Yi(j) T e+ V.- ] (46)

As shown in the appendix, this result is consistent with results given in
Scheffé (1959).

Furthermore, from (30), using intermediate steps in the derivation of

-~

P'i'
-1
- _ Bz -\ - BA
var(y) e[rza e+ kB ~a e + k8 ga
- ele + kB) (. AB
re + \aB ~a re ~a
so that
-y o (e + kB)(re + AB)
V(ui) r(re + AaB) (47)
and

AB(e + kB) for i # 1°

cov(ui,ui.) ® T(re + AaB)
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These results are sometimes written in terms of

p = oé/ué:
" .+ ko)(1 + Ap/r) .
V("li) 1 + akp/r e

and

n o~ (Ap/x)(1 + kp)
cov(yfy ) = S ane/e

g for 1 # 1'
e

Finally, it can be noted in passing that when A = r = b and k = a, a

BIB becomes an RCB whereupon (46) reduces to

By F b(e + aB) e + aB .- ble + aB) 7.- Yi. »

A b(e + aB) [; - —ab__ - baB - ] _ -
i« -
as is to be expected.

5. Estimating Cell Means

a. Without within-cell covariance

Suppose, despite the within-column covariance represented by az in the

preceding development, that there was interest in estimating cell means pij

with
E(yijk) = Mgy
Then
a b
X= @(@ln ) (48)
imlM=1 "ij

Using (48) and (17) we therefore have, similar to (20),

xvlx - @ @1' )(1/e>[z-82'(@*3~n )P]G) ®l“13)

i=1V3=1 143 j=1 37 Hi=1Yj=1

= (1/e)[® @n - 8Q' é)‘jgm )g] (49)

i=1 j=1 j=1 -3
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for
a b
Q=K =20 OL
i=1 j=1 "ij
where P is the permutation matrix defined in (13). P has order n__. We

now define another permutation matrix, I, of order ab such that

I[{{yij-}:) }i::] ) {{y”}ij:}j:: '

Q = PXI'T where, for X of (48), PXI' = () () ) .
Cj=lM= 1" ij

Hence in (49)

Z'Y-l’é - (l,e)[ic:)l j?lnij - BI'(PXI")' (@x J )(er )T] (50)
b b
= (I/e)(iél jc?lnij - BT g[((? ij) i~ ng 1@11 ij)}‘f')
= (1/e)[I'~ él jé)lnij)l'I - SZ'jél)‘j({nijni'j}ij:::){']

(l/e)E[@ @n B@XJgj~3}£

j=1 i=1 1] i=1

(1/e>T'® @niJ - et )t (51)

i=]

Example 1 (continued): The central portion of the second term in (50)

is
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(PXI')’ C)xJJ )ggg'
j=1 3
1 i
1 11
"t B!
Q 9
2 .1 12
1 g Ad 1
T22 .2 "22
0 0
1 1
T3 3
A 23, I 23,
A.n? A.n
1"11 1711721 0 0
Mngnr o Mol
12 Mamymgn
2 =
aM2aM12 Ay j 1
A.n? A.n..n
0 0 313 3"13%23
2
] M3Pp3ny3 Agnog
We seek the inverse of (51). First, as a special, well-known case of
(17) of Searle (1982, p. 261), note that
o e
D-ett' =D + ] (52)
1 -6t'Dt
Then with
& ® .
(/ng, [ (i/n >]{ }
i=1 G0 WPaafy ) T e
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an application of (52) gives

-1 a BA,l 1!

@n -ax~~) - ®(l/n,,) + —8a
- 65 1 + Bga

, n,,. Bn .
im} Tij (e + n B)(l _ ____-_J__)
-3 e + n_jB

1 B

= () — +=7J .
i=1 nij e ~a
Hence the inverse of (51) is
b a -1
-1_.-1 -1 -1
@y = @@y - Brygel) T
j=1Vi=1 37373
b
- I"C)( (D L )z : (53)
j=1\ i=1 13
Similarly
..1 b
X'y = @(@ Yz - sz @x 3 )P]x
1=1Vi=1""15 3=1
j=b,i=a C)
- (lle)[{{y } } -t (@ g )p ]
13 ymrbia DY o

i=a, j=b
} (54)

- rerlyy. - ey j*jy-J-}igl

Therefore, on using (53) and (54),

j=b,i=a _ - _
vallag b b ety
IV j=171=1

i=1

= T'() () -——-+ BJ )T(l/e)T {{ g " Bnijljy.j.}1=a}3=b

j=1 j=1 ° i=17j=1
and so

{{ i=a, j=b é @ i=a, j=b
ﬁ..} } [ L + (B/e)J ]{{y ..~ Bn Ay . } } :
iijapdye1 geibi=r P 1] R B} YRS P
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i.e.,

ﬁij = yij-/nij + (B/e)y,j, - Ble,j. - (BIe)Bn.jxjy.j.
1 n_jB

- 1
= yij' + By.j~ [; - e + n-jB - e(e + n-js)]

= yi'

je (55)

Hence in the 2~way cross-classification mixed model, with unbalanced data,
the estimator of the cell mean uij is the sample cell §ij - a not un-

expected result.

b. Including a within-cell covariance
Suppose that the variance-covariance structure of (11) also includes

the within~cell covariance

= 2 [ .
°°V(yijkyijk') LI for k # k', V i and j .

Denote the resulting var(y) as Xy. Then for ¥V of (14)

a b
v =Yy+r@® O®I
4 i=1 j=1 P43
a b a b

i=1 j=1 P13 M=l j=1" 7

-1+{@ 01, @ o1, )
ij

for X of (48). Using (17) of Searle (1982), p. 261 again,

e e g™ =y -y ey (56)

~
for

M= (/DL + XY
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Denoting by ji the solution in (55), we know that

Xi= X'V 'y . (57)

1

And letting the solution using X; be ﬁ + z we need to solve

-1

X'y
~~7

XE+ D = X0y

for §. Using (56), this equation is

'y % - x v ey

With (57), we find that (58) reduces to

XT =0, (59)

Since the matrix in (59) is §'X~1§ and 1s presumed to be non-singular, the
solution to (59) is i = 0. Hence E of (55), where there is no within-~
cell covariance a;, is also the solution vector when there is a within-cell
covariance. Thus in both cases ﬁij = §ij- is the estimator of uij - as

might well be expected.
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APPENDIX: Analysis of BIB Data

a. Reconciliation of ﬁi with Scheffé.

One of the few places where the randomness of the blocks in a BIB
design has been taken into account in estimating treatment effects is in
Scheffé (1959) at pages 165-178. We show that the result given there, for
estimation using recovery of interblock information, is consistent with ﬁi

of (46). We begin with laying out equivalent notation.

Scheffé This paper
p. 1l61: # of treatments I a=t
# of blocks J b
# of replications T o
block size k
p. 162: # of occurrences of Kij = (0 or 1 nij
(line 3 up) treatment i in block j
p. 164: i'th treatment total gy vy
(lines 8-9)
j'th block total hj y_j
i'th adjusted treat- .&i
ment total
-1 -
(after 5.2.9): ,&i =g - k zjKijhj Vi T zjnijy-j-
Yie T iy
sum of block totals Ti
in which treatment i
occurs
.2, : = h, kry, .
(5.2.10) T, zjnij ; Yi(3)
p. 166: efficiency factor '3
(5.2.17)
g = tk - r + 2 (k- 1)I Aa _(k - Da
rk k(I - 1) rk  k(a - 1)
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p. 165: 83, = G _
(last line) 5 = /es Yi. T V(1)
i i ré
= rk(yi. - yi(j))/ha
-1 -
o 1721 . Ti rJ zjhj kryi(j) ijy.iib
(5.2.33) 3 r - oA
N kry;lj) -ry /b
r - A
i} kr(yi(j) -y )
r -2
(5.2.32b): o; = kzufB + ka; k(e + k8)
(line 5 up): = Eiciai
Z.c. =0
~ a~y 1
o= Lyegdy
p. 174: w = réldi Aa/ke
(5.2.41)
w' = (r - X)/o% (r - W) /k{(e + kB)
b+ w'i'
p. 175: Pk = ¥ -
(5.2.42) witw

v* is described by Scheffé as being unbiased and having minimum

variance. It therefore corresponds to our ﬁ. Since ¢ is a contrast of

a,'s it is also a contrast of (p + ai) terms. The comsistency of ¢* with {i

i

will therefore be shown by adapting ¥¥ to be
-~ A [ AR
w(fl + ai) + w' (' + ai)

~

L

w+w'

and showing that ﬁi = ﬁi.
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Scheffé gives &i on page 165 — as shown above. Nowhere there does he
show the corresponding fi. But in the last line of page 164 he mentions

the "correction term for the grand mean". From that we infer that

f=y,,
The expression for &; is given at (5.2.34) on page 172. From (5.2.33) we
get the corresponding

fi' = kI.h /k?J = ka = y
¥ i/ ek =y

3

Thus, using i = fi' = §.. and w, w', @, &' as above we have, from

Scheffé's methodology,

- kr(yi(j) - }’.‘)

G, -5p)
o o.c L kedxalVse " Vi) " k(e + kB) T -\
Fg 7 Y. \a r -1

ke ¥ k(e + k8)

- ‘[(51- - ;;(i))/e * (;g(j) = ks)]

=yt [ha(e + kB) + (r = Mel/ke(e + KB)
=7 4 e v w5y, - 5) * Ty -5
Y.. XakB + rke ,

because Aa + r - X = rk

.o re + alB i e + kB yi(j) e + kB y..

(e + kB) = _ _kB - + 3\ =
re + aAB ] 7i- e + kB yi(j) r(e + kB) Y-+ ]’

which is (46).
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b. The variance of ﬁi

From (46)

V(@) = v r(e + kB) ; - kB ; + AaB ;
Hy re + \aB i+ e + kB 7i(j)  r(e + kB) 7--

r’(e + kp)? k

- XZ az BZ
" (te + raB)? {V(yi') "l

292 - _
T "y t e 7 EmyE VUL

_ kB = = _ k8 AaB = -
+ 2[ =+ 1B VU5V T T R T(e + ®B) V(4.

AaB - -
Y I(e + kB) °°"(yi""—-)]}

ri(e + kB)? {r(e + B) + k?g2rk(e + kB) A2a?B2ar(e + kB)

* (e + raB)? rt (e + kB)?r?k? r?{e + kB)%a’r?
+ 2 -kB r(e + kB) _ __ Akap? kr(e + kB) + raBr(e + kB)
e + kB rrk r(e + kB)? krar r(e + kB)rar

= f;i-f—%gﬁyf {r(e+B)(e+kB) + rkB? + A2aB?/r + 2[(~-rB+\B)(e+kB) - kXBZ]}

(e + kB)

= Tre + \aB)? {fez + B2 (rktrk+rZa/r-2rk+22k-2k\) + Be(r+rk—2r+2k)}

e + kB

A2a
- 2 4 A2 o -
(re + \AaB)? [re *oT B ek - x4 2X)]

= ?%Eﬁf—%géjy [r%e? + rX(a + 1)Be + A%ap?l/r, because rk-r+2)1 = X(a + 1)

(e + kB)
r(re + \aB)?

(re + AaB)(re + AB)

- (e + kB)(re + AR)
r(re + laB)

, which is (47).



