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m Abstract The forebrain comprises an intricate set of structures that are required
for some of the most complex and evolved functions of the mammalian brain. As a
reflection of its complexity, cell migration in the forebrain is extremely elaborated,
with widespread dispersion of cells across multiple functionally distinct areas. Two
general modes of migration are distinguished in the forebrain: radial migration, which
establishes the general cytoarchitectonical framework of the different forebrain subdi-
visions; and tangential migration, which increases the cellular complexity of forebrain
circuits by allowing the dispersion of multiple neuronal types. Here, we review the
cellular and molecular mechanisms underlying each of these types of migrations and
discuss how emerging concepts in neuronal migration are reshaping our understanding
of forebrain development in normal and pathological situations.

INTRODUCTION

Cell migration plays an essential role in tissue formation during development. In
multicellular organisms, elaborate patterns of cell movement are required during
morphogenesis to generate complex structures. The forebrain is undoubtedly one
of the most intricate regions of the mammalian brain, and its extraordinary degree
of organization reflects the complexity of the migratory movements required to
generate it. Defects in neuronal migration during development of the forebrain lead
to mental retardation, epilepsy, and severe learning disabilities. Abnormal cell mi-
gration also occurs in other diseases affecting the forebrain; in cancer, for example,
it underlies invasion and metastasis. Understanding how cell migration occurs in
the forebrain is therefore essential to discerning the mechanisms underlying its
normal and pathological development.

The forebrain comprises acomplex set of structures that derive from the mostan-
terior region of the neural tube, the prosencephalon (Figure 1)(M&aRubenstein
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Figure 1 Anatomical organization of the developing forebraift) Gchema of a sagittal
section through the brain of an E12.5 mouse showing the main subdivisions of the forebrain,
the diencephalon and the telencephalon. In the telencephalon, the palliumis depicted in lighter
gray than the subpalliumB}j Schema of a transversal section through the telencephalon of
an E12.5 mouse, indicating some of its main subdivisions. LGE, lateral ganglionic eminence;
MGE, medial ganglionic eminence; POA, anterior preoptic area.

2002). The prosencephalon consists of the diencephalon and telencephalic vesi-
cles, which evaginate from the dorsal aspect of the rostral diencephalon. The tel-
encephalon has two major regions: the pallium (roof) and the subpallium (base).
The pallium gives rise to the cerebral cortex and hippocampus, whereas the subpal-
lium consists of three primary subdivisions: the striatal, pallidal, and telencephalic
stalk domains, all of which extend medially into the septum. Finally, the olfactory
bulbs develop as bilateral evaginations from a region of the prosencephalic neural
plate intercalated between the septal and the cortical anlagen (Cobos et al. 2001b,
Rubenstein et al. 1998).

Patterning and regional specification of the forebrain precede cell migration.
As in other regions of the central nervous system (CNS), specification of cell
types in the forebrain requires the creation of distinct antero-posterior and dorso-
ventral progenitor domains by the coordinated activity of several morphogenetic
centers (Man & Rubenstein 2002, Wilson & Rubenstein 2000). The induction of
specific transcription factors in different progenitor domains acts as an intermedi-
ary between morphogenetic cues and the acquisition of a specific cell phenotype.
Through a mechanism that involves mutually repressive interactions, these tran-
scription factors establish boundaries between different progenitor zones, which
leads to the consolidation of progenitor domain identity. Once cells are specified,
they are set to migrate to their final position in the mantle of the forebrain.

As in other CNS regions, two general types of migration have been identified
in the forebrain on the basis of its orientation: radial migration, in which cells
migrate from the progenitor zone toward the surface of the brain following the
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radial disposition of the neural tube; and tangential migration, in which cells mi-
grate orthogonal to the direction of radial migration. Below we describe examples
of both types of cell migration in the forebrain. Differences and similarities be-
tween these two general types of migration modes are discussed at the end of this
review.

RADIAL MIGRATION

Early studies on the development of different regions of the brain and spinal cord
led to the suggestion that the radial movement of newborn cells is a general trend
during the formation of the CNS in vertebrates (Ramy Cajal 1891). The notion

of radial organization in the CNS is founded on the principle that there is a point-
to-point relationship between the ventricular zone (VZ) of the neural tube and the
pial surface. During development, the radial glial scaffold provides the physical
link between these two structures (the glial coordinate system of Nieuwenhuys;
see Nieuwenhuys et al. 1998), acting as guides on which neuroblasts migrate to
reach their destination (Rakic 1972a).

Radial glial cells arise throughout the neural tube during early development of
the VZ. Each radial glial cell has its soma in the VZ and elaborates a process that
spans the wall of the neural tube and reaches the pial surface (Bergman glial cells
are one exception to this principle), where it is anchored to the basal membrane
(Gadisseux et al. 1989,d{liker 1890, Magini 1888, Ranriy Cajal 1911, Retzius
1892, Schmechel & Rakic 1979). After neuronal production ceases, radial glial
cells retract their ventricular and pial attachments and differentiate into astrocytes
(Gaiano et al. 2000, Levitt et al. 1981, Pixley & de Vellis 1984, Ramp Cajal
1911, Schmechel & Rakic 1979, Voigt 1989). Despite their name, radial glial cells
do not simply function as static supportive elements. Instead, radial glial cells are
dynamic components of the developing cortex, which undergo mitosis to produce
new neurons (Heins et al. 2002; Malatesta et al. 2000; Miyata et al. 2001; Noctor
et al. 2001, 2002). Thus, radial glial cells represent an intermediate stage in the
stem-cell lineage of the CNS (Alvarez-Buylla et al. 1990, 2001; Gray & Sanes
1992; Halliday & Cepko 1992; Zerlin et al. 1995).

The suggestion that young neurons use the radial glial scaffold to migrate to their
final destination derives from the analysis of the alignment of postmitotic neurons
with radial glial fibers during the development of cerebellar and cerebral cortices
(Rakic 1971a,b, 1972b, 1974). These pioneer observations have been extensively
supported by many in vitro (Anton et al. 1996, Edmondson & Hatten 1987, Mason
et al. 1988, O'Rourke et al. 1992) and in vivo studies (De Carlos et al. 1996,
Gadisseux et al. 1990, Gregory et al. 1988, Misson et al. 1991, Miyata et al. 2001,
Noctor et al. 2001), leading to the view that most neuronal precursors in the brain
migrate along radial glial fibers. In favor of this notion, molecular abnormalities
affecting the development of radial glial cells lead to abnormal neuronal migration
(Table 1) (Anton et al. 1997, Caric et al. 1997, Feng et al. 1994z €t'al. 1998,
Halfter et al. 2002, Rio et al. 1997, Ross & Walsh 2001).
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TABLE 1 Factors affecting radial glial cell development

Gene Function Effect on radial glial cell development

Pax@  Transcription factor Promotes neurogenesis and differentiation of cortical
radial glial cells

Notch®? Receptor Notch1 signaling promotes radial glia identity

Nrgl®  Growth factor Identified as glial growth factor (GGF), neuregulin
promotes the elongation and maintenance of radial glial
cells, in part through the brain lipid-binding protein (BLBP)

ErbBZ Nrgl receptor Same a&rgl
ErbB& Nrgl receptor Same a&rgl
Blop? Nrgl signaling Brain lipid-binding protein induces differentiation of

radial glial cells

Itga3® Cell adhesion receptor IntegrirB prevents premature differentiation of radial glial
cells into astrocytes

ltga6  Cell adhesion receptor Integrir6 is required for pial basal lamina formation,
which is essential for normal radial glial cell development

Itgh1® Cell adhesion receptor Integriil is required for pial basal lamina formation,
which is essential for normal radial glial cell development
Lamcl ECM structural Lamininy 1 is required for pial basal lamina formation,
constituent which is essential for normal radial glial cell development

Reelin  ECM secreted protein  Radial glia scaffold forms abnormally in the hippocampus
of mice deficient in Reelin

Dabl  Cytoplasmic adapter  Radial glial scaffold forms abnormally in the hippocampus
protein of mice deficient in Dabl

aCaric et al. 1997, Gtz et al. 1998, Heins et al. 2002
bGaiano et al. 2000

CAnton et al. 1997, Rio et al. 1997

dFeng et al. 1994

€Anton et al. 1999

fGeorges-Labouesse et al. 1998

9Graus-Porta et al. 2001

"Halfter et al. 2002

'Hunter-Schaedle 1997, Forster et al. 2002

In the forebrain, radial migration has been preferentially studied during the
development of the cerebral cortex, and thus most of our current knowledge of the
mechanisms that control radial migration derives from the analysis of this structure.
Although it seems likely that similar mechanisms mediate radial migration in other
regions of the forebrain, it should be kept in mind that different mechanisms might
governradial migration in those structures that develop in the absence of lamination
(i.e., the formation of cortical layers), such as the striatum.
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Modes of Radial Migration in the Cerebral Cortex

Radial migration of neurons generated in cortical progenitor zones follows a series
of highly coordinated stages and is thought to involve at least two different modes
of cell movement. The first cohort of neurons that migrate out of the cortical
VZ constitutes the preplate (reviewed in Allendoerfer & Shatz 1994), originally
described in Golgi-stained preparations as the primordial plexiform layeniMar’
Padilla 1971). The second wave of neuronal migration forms the cortical plate,
which splits the preplate into two layers, the marginal zone and the subplate.
Cajal-Retzius cells, which are born at the time the preplate is formed, remain
near the pial surface in the marginal zone, whereas the rest of the primordial cells
constitute the subplate. The development of the cerebral cortex progresses with
successive waves of migration, which position neurons within different layers in
the cortical plate (future cortical layers 2—6). Consequently, the marginal zone and
subplate contain the earliest-generated neurons of the cortex (Chun et al. 1987,
Kostovic & Rakic 1980, Luskin & Shatz 1985), whereas the cortical plate contains
progressively older neurons. It is interesting that radial migration mechanisms
seem to differ for cells destined to each one of these structures—the preplate and
the cortical plate.

The conventional view of neuronal migration during the development of the
cerebral cortex is primarily based on observations of the migratory behavior of
neurons destined to the cortical plate, where it is well established that migrat-
ing neuroblasts use the processes of radial glial cells to reach their final position
(Edmondson & Hatten 1987, Noctor et al. 2001, Rakic 1972h, Rakic 1974). Cells
that adopt glial-guided locomotion have a short leading process that is not attached
to the pial surface and display a saltatory pattern of locomotion, that is, short and
rapid forward movements followed by relatively long stationary phases (Nadarajah
et al. 2001).

A second type of radial migration has been described for cortical cells mi-
grating out of the VZ at early stages of corticogenesis. This type of radial mi-
gration, named somal translocation (the perikaryal translocation of Morest; see
Morest 1970), appears to be largely independent of radial glial cells (Nadarajah &
Parnavelas 2002). Cells undergoing somal translocation typically have a long pro-
cess that terminates at the pial surface and a short trailing process (Brittis et al.
1995, Miyata et al. 2001, Morest 1970, Nadarajah et al. 2001). Time-lapse experi-
ments have shown that translocating cells first extend a process to the pial surface
as they leave the VZ, and then they lose their ventricular attachments while main-
taining their pial connections (Nadarajah et al. 2001). Thus, the migratory behavior
of translocating cells is distinct from those undergoing glial-guided locomotion
because their movement is relatively continuous and the leading process becomes
progressively shorter. It should be noted, however, that glial-guided cells appear to
use somal translocation on the last stage of their migration, once they have made
contact with the pial surface of the cortex (Nadarajah et al. 2001).

The existence of two distinct modes of radial migration suggests that these
different migratory behaviors may have evolved independently during evolution
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ofthe cortex. Ifthisis the case, it seems conceivable that the molecular mechanisms
underlying somal translocation and glial-guided locomotion are also different. In
agreement with this hypothesis, mutations that affect the cascade of signaling
mechanisms that regulate the glial-guided migration do not severely affect the
formation of the preplate (which appears to rely on somal translocation) (Gilmore
& Herrup 2001, Nadarajah et al. 2001), whereas alteration of the pial basement
membrane (which is required for anchoring the processes of translocating neurons
and radial glia) affects both the development of the preplate and cortical plate
(Graus-Porta et al. 2001, Halfter et al. 2002).

MOLECULAR MECHANISMS OF GLIAL-GUIDED
MIGRATION IN THE CEREBRAL CORTEX

Our current understanding of the mechanisms controlling radial migration derives
primarily from the study of glial-guided locomotion in the cerebral cortex, although
analysis of other regions of the forebrain is providing new insights about this
process (Bagrietal. 2002, Hamasaki et al. 2001b). The migration of young neurons
to the cortical plate from the cortical VZ involves at least four consecutive but
partially overlapping processes: first, initiation of movement; second, attachment
tothe radial glial fiber; third, locomotion, which involves nucleokinesis; and fourth,
detachment of the radial glial fiber and acquisition of appropriate laminar position
(Figure 2).

Modulation of Radial Movement by Motogenic Factors

Brain derived neurotrophic factor (BDNF) and NT4, members of the neurotrophin
family, have been shown to promote the migration of cortical neurons. TrkB, the
high-affinity receptor of BDNF and NT4, is expressed in migrating neurons in
the cortical plate (Behar et al. 1997). Both BDNF and NT4 stimulate the motility
of embryonic cortical cells in vitro through a €adependent mechanism that
involves autophosphorylation of TrkB (Behar et al. 1997). Consistent with this
observation, misexpression of TrkB ligands in the developing brain has dramatic
effects on cortical neuronal migration. Thus, infusion of NT4 or BDNF into the
lateral ventricle or application of these proteins on slices of the developing cor-
tex produces neuronal heterotopias, which appear to be the result of increased
neuronal migration (Brunstrom et al. 1997). Similarly, overexpression of BDNF
in the ventricular zone of developing embryos results in alterations of the cortex
(Ringstedt et al. 1998).

Neurotransmitters also play a role in modulating the migration of cortical pro-
jection neurons. For examplgr-aminobutyric acid (GABA) is expressed in the
developing cortex in a pattern suitable to influence migrating cortical neurons
(Soriano et al. 1989, Van Eden et al. 1989). In vitro, GABA induces dissociated
embryonic cortical neurons to migrate, and pharmacological experiments sug-
gest that this effect is mediated through multiple GABA receptors (Behar et al.
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Figure 2 Mechanisms regulating radial migration in the cerebral cortex. Shown is a
schematic representation of radially migrating neurons in the developing cortex, where
the ventricular zone is to the bottom and the marginal zone is to the top. Molecules
involved in radial migration are indicated in relation to their function (e.g., locomotion)
and location (e.g., extracellular).

1996, Behar et al. 2001). It is interesting that GABAreceptors are involved

in the movement of cells from the proliferative zones of the cortex to the in-
termediate zone, whereas GABAeceptors appear to influence migration from
the intermediate zone to the cortical plate (Behar et al. 2000). Another example
of a receptor whose activity modulates the movement of radial migrating cells
is the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor. Thus,
blockade of NMDA receptors decreases cell migration, whereas enhancement
of NMDA receptor activity or inhibition of extracellular glutamate uptake in-
creases the rate of cell movement (Behar et al. 1999, Komuro & Rakic 1993).
Regardless of which receptor is involved, modulation of radial migration by neu-
rotransmitters ultimately depends on fluctuations in the concentration of cytosolic
Ca&+ (Behar et al. 2000, 1999; Gressens et al. 2000; Horgan & Copenhaver 1998;
Komuro & Rakic 1993).
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Signaling through the epidermal growth factor receptor (EGFR) is also impli-
cated in the modulation of radial movement in the telencephalon. EGFR and its
ligands, including heparin-binding EGF (HB-EGF) and TG lare expressed in
the developing cortex (Kornblum et al. 1997, Nakagawa et al. 1998). Mice lacking
EGFR display an accumulation of neuronal precursors in telencephalic prolifera-
tive zones, suggesting a defect in their migration (Threadgill et al. 1995). In line
with this observation, expression of high levels of EGFR in the embryonic cortex
enhances radial migration (Burrows et al. 1997). The ability of cortical cells to
migrate in response to EGFR ligands depends on both their distribution and the
levels of EGFR expression, since only cells expressing high levels of EGFR appear
to increase radial migration in response to EGFR ligands (Caric et al. 2001).

Neuronal-Glial Interactions

Several molecules have been implicated in regulating the interaction of migrating
cells with the radial glia (Table 1). The first of these factors to be identified was
Astrotactin @Astnl), a glycoprotein expressed by migrating neurons both in the
cerebellum and in the cerebral cortex (Edmondson et al. 1988). Antibodies against
Astrotactin block the adhesion of granule cells to cerebellar glia and reduce their
rate of migration (Fishell & Hatten 1991, Stitt & Hatten 1990), whereas ectopic
expression of Astrotactin in 3T3 cells promotes their adhesion to glia (Zheng
et al. 1996). Accordingly, mice lackingstnldisplay slowed radial migration
(Adams et al. 2002). The identification of a second member of the Astrotactin
family (Astn2, whose expression is largely overlapping with thafetn1(M.E.
Hatten, personal communication), suggests Asihland Astn2may cooperate

in neuron-glia adhesive interactions critical for radial migration.

Integrins, cell-surface glycoproteins that mediate cell-cell and cell-extracellular
matrix (ECM) interactions (Hemler 1999), appear also to be implicated in the as-
sociation between migrating neurons and radial glia (Figure 2). Function-blocking
antibodies against3 integrin reduce the rate of migration and cause neuronal de-
tachment from radial glial fibers in vitro (Anton et al. 1999, Dulabon et al. 2000).
Moreover, radial migration is altered in the cerebral cortex®integrin mutant
mice (Anton et al. 1999). Thus, although large numbers of neurons reach their nor-
mal position in the cortex, some cells arrest their migration prematurely and fail
to migrate to their appropriate layer. As a result, cortical layers are less precisely
defined than in normal mice. Blocking antibodies againsintegrin also perturb
the interaction between neurons and radial glial cells in vitro (Anton et al. 1999),
but genetic evidence is necessary to verify the involvement of this integrin in the
development of the cortex in vivo.

Integrins are expressed as cell-surface heterodimers consistiranof sub-
units. Becausg1 integrin is the only subunit known to bindd@ integrin (Hemler
1999), blockings1 integrin function should produce similar alterations to those
observed when the activity of3 integrin is perturbed. Accordingly, blocking an-
tibodies agains$l integrin perturbs neuron-glia interactions in vitro (Anton et al.
1999). Moreover, analysis of mice in which tjié& integrin gene was selectively
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inactivated in the precursors of neurons and glia by Cre/Lox-mediated recombina-
tion alsorevealed thg@l integrin is essential for cortical development (Graus-Porta
et al. 2001). However, the defects observed in the cortgsdahtegrin mutants
appear to be largely secondary to the abnormal development of the basement
membrane and the marginal zone and not directly due to a defect in neuron-glia
interactions. Thus, cortical lamination was not severely perturbgd imtegrin
mutants, although the width of layers II/11l in the mutants was increased compared
to control mice (Graus-Porta et al. 2001)—a feature that could be reminiscent
of the phenotype described &8 integrin mutants (Anton et al. 1999). The dif-
ferences observed betweeaf® integrin andgl integrin mutant mice are most
likely due to the fact thaBl integrin binds othew subunits, such ag6 integrin.
Consistent with this notion, a phenotype similar—although less severe—to that
described in31 integrin mutant mice is found in mice mutant for @ integrin

gene (Georges-Labouesse et al. 1998).

Locomotion During Radial Migration

A critical aspect during radial migration concerns the dynamic adaptation of the
microtubule network. Time-lapse experiments have shown that two processes in-
volving the microtubule cytoskeleton are essential for neuronal migration: the
extension of a leading process and the translocation of the nucleus (Edmondson
& Hatten 1987, Komuro & Rakic 1996, Nadarajah et al. 2001, Rakic et al. 1996,
Rivas & Hatten 1995). These observations indicate that proteins controlling the
cellular machinery responsible for these processes are likely to play a major role
in neuronal migration.

Several genes have been identified that regulate events related to the micro-
tubule cytoskeleton during radial migration. One of these genkisiqthe non-
catalytic 81 subunit of the platelet-activating factor acetylhydrold2ahl1b),
which encodes for a protein involved in multiple protein-protein interactions (Feng
& Walsh 2001, Gupta et al. 2002). Mutations in humasil cause a severe form
of lissencephaly named Miller-Dieker syndrome (Hattori et al. 1994, Reiner et al.
1993), which appears to reduce neuronal number and the rate of migration. Ac-
cordingly, neuronal migration is delayed in the cortex of mice with one inactive
allele ofLis1, and mice with further reduction of LIS1 activity display severe corti-
cal disorganization (Hirotsune et al. 1998). Moreover, analysis of mice expressing
a truncated_is1 allele demonstrates that cortical neurons migrate slowly in the
absence of normal LIS1 (Cahana et al. 2001).

The function of LIS1 in neuronal migration is still unclear. NudF, a LIS1 ho-
molog inAspergillus nidulansandDrosophiladLis1 are both required for nuclear
migration (Lei & Warrior 2000, Xiang et al. 1995). In all organisms studied, LIS1
binds tubulin and other proteins that interact with the microtubule network (Sapir
etal. 1997). Inthe brain, one of these proteins is cytoplasmic dynein (Faulkner et al.
2000, Smith et al. 2000), a microtubule-based motor protein involved in the intra-
cellular transport of organelles and in retrograde axonal transport. Overexpression
of LIS1 leads to the aggregation of dynein and dynactin, as well as transport of
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microtubule fragments to the cell periphery (Smith et al. 2000). Consistent with
these findings, dynactin fails to aggregate, and microtubules are largely concen-
trated near the nucleus in fibroblasts derived fiagi heterozygous mice (Sasaki

et al. 2000, Smith et al. 2000). Moreover, LIS1-deficient neuror@rosophila
display axonal transport abnormalities (Liu et al. 2000). Thus, LIS1 appears to con-
trol microtubule dynamics in migrating cells through its association with tubulin
and dynein/dynactin.

Two additional proteins interact directly with LIS1 in mammals: NUDEL and
mNudE, homologs of thé\. nidulansprotein NudF (Efimov & Morris 2000,
Kitagawa et al. 2000, Niethammer et al. 2000, Sasaki et al. 2000). NUDEL
and mNudE colocalize with LIS1, although they appear to interact with LIS1
at different developmental stages (Efimov & Morris 2000, Kitagawa et al. 2000,
Niethammer et al. 2000, Sasaki et al. 2000). In addition, mNudE associates with
specific proteins in the centrosome—the major microtubule-organizing center of
animal cells—and with the light chain of dynein, whereas NUDEL interacts pri-
marily with the heavy chain of dynein (Feng et al. 2000). Overexpression experi-
ments suggest that NUDEL controls the localization of dynein (Niethammer et al.
2000, Sasaki et al. 2000), whereas mNudE affects the microtubule network at the
centrosome (Feng et al. 2000). Because the centrosome plays a prominent role in
cell division, it is possible that LIS-mNudE-dynein interactions also contribute to
mitosis and cell-cycle progression (Faulkner et al. 2000, Liu et al. 2000).

Doublecortin DcX) is another gene whose mutation in humans leads to X-linked
lissencephaly (des Portes et al. 1998, Gleeson et al. 1998). MutatiDox dause
lissencephaly in males, whereas affected female patients have a double cortex syn-
drome, also known as subcortical band heterotopia. The latter condition probably
reflects a mosaic state owing to the random inactivation of normal and mutant
X chromosomes. Multiple lines of evidence suggest that DCX is a microtubule-
associated protein (MAP) that functions in the stabilization of the microtubule
network (Francis et al. 1999, Gleeson et al. 1999a, Horesh et al. 1999). DCX is
expressed in migrating and differentiating neurons, where it interacts with poly-
merized microtubules. Recombinant DCX stimulates the polymerization of tubulin
in vitro, and overexpression of DCX in heterologous cells leads to the formation
of abnormally thick bundles of microtubules that are resistant to depolymerization
(Gleeson et al. 1999a). Structural analysis also supports the idea that DCX is a
MAP. DCX contains two repeats that formgagrasp superfold, a structural mo-
tif found in Ras-related GTP-binding proteins. These repeats bind to tubulin and
drive microtubule polymerization and stabilization (Taylor et al. 2000). Moreover,
missense point mutations within these repeats are found in lissencephalic patients,
which suggests that their integrity is essential for DCX function (Gleeson et al.
1999b).

An engineered loss-of-function mutation in thexlocus in mice causes a dis-
rupted cytoarchitecture in the hippocampus but exhibits roughly normal lamination
in the neocortex (Corbo et al. 2002)js1 mutant mice also display a rather subtle
phenotype in the neocortex but show prominent hippocampal defects (Fleck et al.
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2000). LIS1 and DCX appear to be coexpressed, interact, and function in the same
protein complex in the developing brain (Caspi et al. 2000). Thus, although their
functions are likely to be distinct, these proteins may coordinate similar processes
during neuronal migration, such as the translocation of the nucleus and other soma
contents during cell movement.

The roles of LIS1 and DCX in the developing cortex illustrate the prominent
influence that microtubule dynamics have on neuronal migration. The actin cy-
toskeleton also regulates the motility of migrating neurons, as demonstrated by
the prominent migration defects observed in humans with mutations in the gene
encoding the actin-binding protein Filamin(FLNA), also known as Filamin 1
(Fox et al. 1998, Moro et al. 2002, Sheen et al. 2001). Mutatiori¥riA cause
periventricular heterotopia, a migration disorder in which many neurons destined
for the cortical plate fail to migrate and instead accumulate close to the progenitor
zones of the cerebral cortex (Eksioglu et al. 1996). FLNA crosslinks F-actin into
orthogonal arrays, increasing the viscosity of the F-actin network and enhancing
cell motility (Stossel et al. 2001). FLNA is expressed in migratory neurons as they
leave the VZ (Fox et al. 1998), which suggests that its expression overlaps with the
mechanism that signals the start of the migration of cortical neurons. Conversely,
molecules expressed in the VZ prevent premature migration toward the cortical
plate. One of these molecules is the Filamin A interacting protein (FILIP), a pro-
tein that negatively regulates the function of FLNA (Nagano et al. 2002). FILIP is
expressed in VZ cells and induces the degradation of FLNA, preventing premature
migration of cortical neurons. Thus, the coordinated function of FLNA and FILIP
regulates the initiation of radial migration in the cortex.

Layer Formation

Once migrating neurons have reached their destination, they have to detach fromthe
radial glia processes and halt their migration. Birthdating studies have shown that
layers in the cortical plate (future cortical layers 2—6) are established according
to an inside-outside pattern, where the deeper layers contain cells that become
postmitotic earlier than the cells in more superficial layers (Angevine & Sidman
1961, Rakic 1974). Thus, neurons born simultaneously (in terms of cell-cycle
sequence rather than time of neurogenpsissg (Takahashi et al. 1999) migrate

and stop migrating roughly at the same time, so they all occupy the same cortical
layer. Although it has been shown that the laminar identity of cortical neurons
is determined early in the cell cycle (McConnell & Kaznowski 1991, Frantz &
McConnell 1996), the nature of the factors that control the migration of cortical
neurons to their appropriate layer is poorly understood.

Analysis of mutations in mice and humans has revealed that the interaction
between migrating neurons and Cajal-Retzius cells is essential for this process
(Table 2). As noted earlier, Cajal-Retzius cells remain in the marginal zone of
the cortex after the first wave of neurons destined to the cortical plate (the future
layer 6) split the preplate into the marginal zone and the subplate. During the


RepliGo Reader
Highlight

RepliGo Reader
Highlight


Annu. Rev. Neurosci. 2003.26:441-483. Downloaded from www.annualreviews.org

by Universitat Zurich- Hauptbibliothek Irchel on 11/17/11. For persona use only.

TABLE 2 Genetics of radial migration in the cortex

Gene Name and function Description of mutation
AstnP Astrotactinl; neuron-glia adhesion Decreased neuron-radial glia binding, slowed
molecule radial migration
Itga3® a3 Integrin; cell adhesion receptor, Abnormal laminar position of cortical
interacts with Reelin projection neurons, which tend to occupy deeper
positions than normal
Itga6® a6 Integrin; cell adhesion receptor Abnormal laminin deposition, cortical layer
perturbation without layer inversion
Itgb1d B1 Integrin; cell adhesion receptor, Abnormal basement membrane remodeling,
interacts with Reelin cortical layer perturbation without layer inversion
LamcF  y1 Laminin; ECM structural Abnormal basement membrane, cortical layer
constituent perturbation without layer inversion
Pafahlbi Platelet-activating factor acetylhydrolase, Also knowt.iad, its mutation causes
isoform 1b, betal subunit; interacts lissencephaly in humans. Decreased rate of
with tubulin, dynein, NUDEL, mNudE  migration and cortical disorganization in mice
DcxXd Doublecortin; microtubule-associated Lissencephaly in humans. Disrupted hippocampal
protein cytoarchitecture but normal neocortical
lamination in mice
Flnah Filamin alpha, actin-binding protein Also known as Filamin 1, its mutation causes
periventricular heterotopia in humans
Relr Reelin, ECM secreted protein Lissencephaly in humans. Inverted cortical
layering, including the subplate, ieeler
Vidiri Very-low-density lipoprotein receptor, Sameraslerwhen mutated simultaneously
Reelin receptor with.rp8
Lrp8 Low-density lipoprotein receptor- Sameraglerwhen mutated simultaneously
related protein 8, Reelin receptor wittdIr. Also known as ApoE receptor 2
Dabi¥ Disabled homolog 1; interacts Samerasler. Mutated inscramblerandyotari
with VIdIr, Lrp8
Cdkg Cyclin-dependent kinase 5; Inverted cortical layering, without affecting
phosphorylate Dab1 and NUDEL the subplate
Cdk5rI™  Cyclin-dependent kinase 5, regulatory Sam€dk5when mutated simultaneously
subunit 1 (p35) withCdk5r2
Cdk5r2"  Cyclin-dependent kinase 5, regulatory Sam€dk5when mutated simultaneously
subunit 2 (p39) witrCdk5r1

3Adams et al. 2002

bAnton et al. 1997

°Georges-Labouesse et al. 1998

dGraus-Porta et al. 2001

®Halfter et al. 2002

fReiner et al. 1993, Hattori et al. 1994, Hirotsune et al. 1998, Cahana et al. 2001
9des Portes et al. 1998, Gleeson et al. 1998, Corbo et al. 2002

hFox et al. 1998, Sheen et al. 2001, Moro et al. 2002

iD'Arcangelo et al. 1995, Hirotsune et al. 1995, Ogawa et al. 1995, Hong et al. 2000
ITrommsdorff et al. 1999

kHowell et al. 1997, Sheldon et al. 1997, Ware et al. 1997

'Ohshima et al. 1996, Gilmore et al. 1998

MChae et al. 1997, Kwon & Tsai 1998, Ko et al. 2001
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subsequent days, cohorts of migrating neurons pass over previous neurons un-
til they reach the proximity of the marginal zone, where they detach from the
radial glia. These observations suggest that the interaction between migrating
neurons and some cells in the marginal zone—the Cajal-Retzius cells—has a
prominent influence in the laminar organization of the cortex. Cajal-Retzius cells
express Reelin, a large secreted protein that associates with the ECM and, when
mutated, causes the disruption in neuronal migration observezklar mutant

mice (D’Arcangelo et al. 1995, Hirotsune et al. 1995, Ogawa et al. 1995) and
lissencephaly with cerebellar hypoplasia in humans (Hong et al. 200@eler

mice, the first wave of migrating cells destined to form the cortical plate fails to
split the preplate. Subsequently, new waves of migrating neurons are unable to
pass the previous ones and accumulate in progressively deeper positions, creat-
ing a cortex in which layers 2—6 are roughly inverted (Caviness 1982, Hoffarth
et al. 1995, Ogawa et al. 1995, Rice & Curran 2001, Sheppard & Pearlman 1997).
Of note, many neurons are correctly positionedeieler (Caviness 1982), which
suggests that normal positioning can occur in the absence of Reelin and that the
layer inversion reported in theeeler cortex is an oversimplification of the actual
phenotype.

Reelinis a high-affinity ligand for two members of the LDL family of lipoprotein
receptors, the very-low-density lipoprotein receptor (VLDLR) and the low-density
lipoprotein receptor-related protein 8 (LRP8, also known as ApoER?2), which are
expressed by migrating cortical cells (D’Arcangelo et al. 1999, Hiesberger et al.
1999). Signaling through VLDLR/LRP8 mediates Reelin internalization and ty-
rosine phosphorylation of the mouse homolog ofliinesophilaprotein Disabled,
DAB1 (D’'Arcangelo et al. 1999; Hiesberger et al. 1999; Howell et al. 1999, 2000).
DABL is a cytoplasmic adapter protein that interacts with the cytoplasmic tails of
VLDLR and LRP8 (Trommsdorff et al. 1998, 1999) and is linked to events re-
lated to the reorganization of microtubules and microfilaments in the cytoskeleton.
Remarkably, mice lacking both théldlr and Lrp8 genes (Trommsdorff et al.
1999), mice with a targeted disruption of thab1gene (Howell et al. 1997), and
naturally occurring mutants affecting tli2zabl gene—scramblerand yotari—
(Gonzalez et al. 1997, Rice et al. 1998, Sheldon et al. 1997, Sweet et al. 1996,
Ware et al. 1997, Yoneshima et al. 1997) have lamination defects that are indis-
tinguishable from those found ineelermice. This suggests that Reelin, VLDLR,
LRP8, and DAB1 work in the same genetic pathway controlling neuronal position
during radial migration.

A second signaling pathway controls neuronal positioning during development
of the cortex. This second pathway involves the cyclin-dependent kinase 5 (Cdk5)
and its activating subunits, p35 and p39. Mice deficien€ak5 p35 or both
p35andp39 exhibit lamination defects that are similar but not identical to those
observed in mice with defects in Reelin signaling (Chae et al. 1997, Gilmore
et al. 1998, Ko et al. 2001, Kwon & Tsai 1998, Ohshima et al. 1996). Moreover,
mice lacking the class 11l POU domain transcription fact®ns1 andBrn2, which
cell-autonomously regulate the expression of p35 and p39 in migrating cortical
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neurons, also exhibit a cortical inversion (McEvilly et al. 2002). Mutations in the
Cdk5 signaling pathway do not prevent normal splitting of the preplate into the
marginal zone and subplate but still cause an inversion of cortical lamination in a
manner evocative of that observedréeler mutants. These findings suggest that
the splitting of the preplate and the acquisition of normal cortical lamination are
partially independent processes, with the initial invasion of the preplate depending
primarily on Reelin. Consistent with this view, subplate neurons separate from
Cajal-Retzius cells imeelermice in which Reelin is ectopically expressed in the
VZ (Magdaleno et al. 2002). Expression of Reelininthe VZ, however, is not able to
rescue the lamination defects observed in the cortexadérmice, which suggests
that expression of Reelin in the marginal zone of the cortex is indispensable for
normal cortical lamination.

How does Reelin influence the laminar positioning of migrating cells in the
cerebral cortex? It has been suggested that Reelin inhibits neuronal migration and
thus acts as a stop signal for radially migrating neurons (Dulabon et al. 2000,
Frotscher 1997, Sheppard & Pearlman 1997). This is primarily based on the ob-
servation that exposure to full-length recombinant Reelin reduces the rate of radial
migration (Dulabon et al. 2000). Contrary to this hypothesis, ectopic expression
of Reelin in the VZ of the cortex does not prevent radial migration (Magdaleno
et al. 2002). Moreover, if Reelin works merely as a stop signal for radially migrat-
ing cells, one would not expect cells to accumulate at progressively more distant
positions from the marginal zone faelermutants.

A second hypothesis to explain the effects of Reelin on radial migration is
that Reelin—and probably other factors produced by Cajal-Retzius cells—could
directly regulate the identity and function of radial glia, and thus defects in the
glial scaffold would underlie the alteration of cortical lamination (Super et al.
2000). This is consistent with the observation that localized expression of Reelin
in the marginal zone seems to be crucial for its function in cortical lamination
(Magdaleno et al. 2002), that a normal radial glial scaffold fails to form in the
dentate gyrus of the hippocampusreeler, scrambler and 81 integrin mutant
mice (Forster et al. 2002, Hunter-Schaedle 1997), and that loss of Cajal-Retzius
cells ora3 integrin promotes premature differentiation of radial glial cells into
cortical astrocytes (Anton et al. 1999, Super et al. 2000).

A third possibility is that Reelin promotes detachment of migrating neurons
from the processes of radial glial cells. Because successive waves of neurons born
from the same radial progenitor cell ordinarily use the same radial process to
reach the cortical plate (Noctor et al. 2001, Rakic 1988), the lack of detachment of
early-born neurons from the radial glial process may constitute a physical barrier
for the migration of subsequent cohorts of neurons toward the marginal zone.
Accordingly, there is a persistent apposition of migrating neurons with radial
glial fibers inreeler mice (Pinto-Lord et al. 1982). Moreover, Reelin appears to
modify the adhesive interactions between neuronal precursors migrating toward
the olfactory bulb, inducing the shift from chain migration to individual radial
migration necessary for the dispersion of newly generated neurons in the olfactory
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bulb (Hack etal. 2002). Thus, changes in the adhesive interactions between neurons
and radial glial cells may play a prominent role in the establishment of distinct
layers in the developing cerebral cortex.

The influence of Reelin on the adhesive properties of radially migrating neu-
rons may be the result of its interaction with other proteins. For example, it has
been shown that Reelin bindsd@81 integrin receptors, which are expressed in
radially migrating neurons (Dulabon et al. 2000). Cells lacki#®yintegrin are
no longer sensitive to radial detachment induced by Reelin (Dulabon et al. 2000),
which suggests that the interaction between Reelineg@gil integrin receptors
is responsible for the separation of migrating neurons from radial glial fibers and,
consequently, the establishment of laminar organization in the cortex. Unlike the
VIdid/ApoERZouble mutants, however, lossadd or 81 integrins does not cause
an inversion of cortical lamination (Anton et al. 1999, Graus-Porta et al. 2001),
indicating thate381 integrin receptors are not responsible in vivo for the estab-
lishment of cortical layers. Reelin also binds to members of the cadherin-related
neuronal receptor (CNR) family, which are expressed in cortical-plate neurons that
are adjacent to the marginal zone (Senzaki et al. 1999), although the functional
significance of this interaction is still unknown.

Is there a nexus between the Reelin and Cdk5 signaling pathways? The defects
observed in mutants comprising proteins involved in each of these pathways are
remarkably similar, which suggests that Reelin and Cdk5 signaling overlap to some
degree. Cdk5is a serine/threonine kinase that phosphorylates proteins that maintain
cytoskeletal structures and promote cell motility. It is interesting that Cdk5 and
Reelin signaling can phosphorylate Dabl independently of each other (Keshvara
etal. 2002). Although it is unknown how Dab1 tyrosine phosphorylation translates
into the activation of signaling cascades and cytoskeleton rearrangements, these
observations suggest that there is cross talk between the two signaling pathways
that control cell positioning in the cerebral cortex. In addition, a recent series of
experiments demonstrated that NUDEL is likely to be a physiological substrate
of Cdk5 (Niethammer et al. 2000, Sasaki et al. 2000), which indicates that some
of the defects observed in Cdk5 mutants may be caused by abnormal motility of
radially migrating neurons.

TANGENTIAL MIGRATION IN THE FOREBRAIN

The radial glial scaffold provides the primary guidance system for CNS-migrating
neurons. Nevertheless, it has long been recognized that cells disperse in the fore-
brain in patterns that do not coincide with the plane of the glial fiber system (Altman
1969, Austin & Cepko 1990, Morest 1970, O’'Rourke et al. 1992, Price & Thurlow
1988, Rakic & Sidman 1969, Shoukimas & Hinds 1978, Stensaas 1967, Walsh &
Cepko 1992). Tangential migration, as the nonradial migration of cells in the CNS
is generally designated, comprises distinct types of cell movement that diverge
primarily in the type of substrate used by migrating cells. In some cases, groups
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of neurons migrate using each other to promote their migration, as in the case of
olfactory bulb interneuron precursors. In other cases, tangentially migrating neu-
rons follow growing axons to reach their destination. Finally, some tangentially
migrating neurons may not follow specific cellular substrates and instead disperse
in a rather individual manner, such as the cells migrating from the subpallium to the
pallium. Regardless of their mode of migration, cells moving tangentially do not
seem to respect regional forebrain boundaries. Thus, cells move across different
subdivisions of the forebrain (Heffron & Golden 2000, Letinic & Rakic 2001) or
even traverse long axonal pathways (Spassky et al. 2002, Wray 2001). In addition,
tangentially migrating cells respond to some of the same molecules that control
the guidance of growing axons (Tessier-Lavigne & Goodman 1996).

In the following sections, we review the cellular and molecular mechanisms
controlling tangential migration in the forebrain. We describe three different types
of tangential migration, which illustrate the different substrates used by tangen-
tially migrating cells: first, the rostral migratory stream; second, the migration
of Gonadotropin-releasing hormone (GnRH) neurons; and third, the migration of
interneurons and oligodendrocytes from the subpallium to the cortex.

MECHANISMS OF MIGRATION IN THE ROSTRAL
MIGRATORY STREAM

In mammals, precursors of olfactory interneurons (periglomerular and granule
cells) are not intrinsically generated in the olfactory bulb but instead are born in
the subpallium and reach their destination through tangential migration (Altman
1969, Lois & Alvarez-Buylla 1994, Luskin 1993). The precise origin of olfactory
interneurons in the embryonic subpallium is still a matter of debate, although both
experimental embryology (Wichterle et al. 2001) and genetic experiments (Corbin
etal. 2000, Dellovade et al. 1998, Mag Rubenstein 2001, Sussel etal. 1999, Yun

et al. 2001) suggest that most precursors of olfactory interneurons are generated
in the dorsal region of the lateral ganglionic eminence (LGE).

The migration of olfactory interneuron precursors continues through adult-
hood, providing a constant supply of new GABAergic local circuit neurons to the
olfactory bulb (Lois & Alvarez-Buylla 1994). The origin of olfactory interneuron
precursors in the postnatal telencephalon is the subventricular zone (SVZ) (Altman
1969, Lois & Alvarez-Buylla 1994, Luskin et al. 1988), a mitotically active region
that surrounds most of the ependymal wall of the lateral ventricles and is thought
to develop at least in part from residual progenitor cells derived from the LGE.
Consistent with this idea, LGE-derived cells transplanted into the adult SVZ give
rise to neurons that migrate rostrally to the olfactory bulb (Wichterle et al. 1999).
Migration of olfactory interneurons in the adult occurs along a highly restricted
route termed the rostral migratory stream (RMS) (Kornack & Rakic 2001, Lois
& Alvarez-Buylla 1994, Pencea et al. 2001, Thomas et al. 1996), which is readily
apparent at early postnatal stages (Luskin 1993, Pencea et al. 2001). In contrast to
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the migration of olfactory interneuron precursors during embryonic stages, which
spread through a large extracellular space as they move toward the olfactory bulb
(Kishi et al. 1990), migrating neuronal precursors in the adult SVZ are organized
as a network of chains that coalesce to form the RMS (Doetsch & Alvarez-Buylla
1996, Doetsch et al. 1997, Lois et al. 1996, Rousselot et al. 1995). Thus, the cellu-
lar and molecular mechanisms underlying the migration of olfactory interneuron
precursors may differ in adults and embryos.

Neonatal and adult olfactory interneuron precursors move in close association to
each other, which suggests that neurophilic interactions are important for this type
of cellular translocation, called chain migration. Chains of interneuron precursors
are ensheathed by astrocytes in vivo (Jankovski & Sotelo 1996, Lois et al. 1996,
Peretto et al. 1997, Thomas et al. 1996), although experiments in vitro suggest
that chain migration is largely independent of the assistance of astrocytes or other
cell types (Wichterle et al. 1997). In contrast, embryonic olfactory interneuron
precursors seem to migrate less closely associated, and chains do not form in vitro
from embryonic cells obtained from the LGE (J.E. Long and J.L.R. Rubenstein,
unpublished results). It is interesting that chain migration of early postnatal ol-
factory interneuron precursors in vitro depends on the extracellular substrate used
(Kleinman et al. 1982, Wichterle et al. 1997). This observation suggests that the
change in the migratory behavior of olfactory interneuron precursors—individual
versus chain migration—may be a consequence of a modification in the extracel-
lular composition of the RMS or in the adhesive properties of migrating cells that
occurs perinatally.

The polysialylated form of the neural cell adhesion molecule (PSA-N-CAM), a
member of the immunoglobulin superfamily that mediates homo- and heterophilic
cell-cell interactions, is one of the factors that appears to play a role in this process.
Mutation of N-CAM in mice results in a small olfactory bulb and the accumulation
of olfactory interneuron precursors in the SVZ (Chazal et al. 2000, Cremer et al.
1994, Tomasiewicz et al. 1993). These defects are thought to be caused by the
specific loss of the polysialylated form of N-CAM because enzymatic removal
of the polysialic acid (PSA) moiety associated with N-CAM mimics the defects
observed in N-CAM mutant mice (Ono et al. 1994). PSA-deficient cells migrate
normally when transplanted into a wild-type RMS, which suggests that loss of
PSA-N-CAM does not impair the migratory ability of olfactory interneuron pre-
cursors (Hu et al. 1996). PSA-N-CAM may instead facilitate olfactory precursors
to use neighboring cells as their substrate to increase their migratory speed in the
highly restrictive conditions of the adult RMS (Chazal et al. 2000). Accordingly,
PSA-N-CAM is weakly expressed in the embryonic and neonatal RMS, when few
chains are formed, but its expression is strong at later postnatal stages, when chain
migration is the predominant form of cellular translocation in the RMS (Hu 2000,
Murase & Horwitz 2002, Pencea et al. 2001, Rousselot et al. 1995). Moreover,
enzymatic removal of polysialic acid (PSA) results in the dispersion of chains into
single cells both in vitro and in vivo (Hu 2000). Finally, interneuron migration
within the olfactory bulb, where the cells disperse individually, is not affected
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by loss of PSA (Hu et al. 1996, Ono et al. 1994), which reinforces the notion
that PSA-N-CAM is required for the cellular interactions necessary during chain
migration.

Several additional adhesion molecules have been identified in the migratory
route of olfactory interneuron precursors. The pattern of expression of these
molecules is highly dynamic, suggesting that differences in the interaction be-
tween migrating cells and the ECM may also determine the differential behavior
of olfactory migrating cells at different stages (Murase & Horwitz 2002). For ex-
ample, Tenascin-C, a ligand fav 83 andavg6 integrins (Yokosaki et al. 1996),
is strongly expressed in the astrocytes that form the tubes through which olfactory
precursors migrate in the adult RMS (Jankovski & Sotelo 1996),cand83-,
andp6-integrin subunits are also present in the postnatal RMS. During embryonic
stages, on the other hard], andg1 integrins and5 andy 1 laminins are found in
the route of olfactory interneuron precursors (Murase & Horwitz 2002), which sug-
gests that migrating cells usd 81 integrins to migrate along a laminin substrate.
Although blocking experiments in vitro suggest that specific integrin subunits are
required for the migration of olfactory interneuron precursors (Jacques et al. 1998,
Murase & Horwitz 2002), the lack of abnormalities in the olfactory bulb of mice
with individual mutations for some of these molecules precludes a more defini-
tive assessment about the function of these proteins in the migration of olfactory
precursors.

In addition to ECM molecules, proteins that mediate cell-cell contact also mod-
ulate chain migration. For example, members of the Eph family of tyrosine kinases
and their membrane-associated ephrin ligands are expressed in cells of the RMS.
Ephrin-B2 and ephrin-B3 are expressed in astrocytes that encase the chains of mi-
grating precursors, whereas EphA4, EphB2, and EphB3 receptors are expressed
in yet unidentified cells within the RMS (Conover et al. 2000). Partial disruption
of Eph/ephrin interactions through the infusion of clustered EphB2 or ephrin-B2
ectodomains (i.e., lacking their signaling components) into the lateral ventricle of
adult mice disrupts migration of neuroblasts in the RMS (Conover et al. 2000).
This result suggests that signaling from both EphB receptors and ephrin-B ligands
is required to maintain the stability of migrating chains, maybe in a similar manner
as PSA-N-CAM contributes to the maintainance chain migration. However, be-
cause Eph/ephrin signaling can modulate proliferation in the SVZ (Conover et al.
2000), it is possible that disruption of neuroblast chain migration in the RMS may
be a secondary defect.

Migration of interneuron precursors from the subpallial telencephalon to the
olfactory bulb is a highly directional process (Hu & Rutishauser 1996, Lois &
Alvarez-Buylla 1994). Migrating cells are bipolar, with a short trailing process
and a leading process tipped by large growth cones oriented toward the olfactory
bulb (Kishi 1987, Murase & Horwitz 2002). Time-lapse experiments show a highly
uniform direction of migration in the RMS, with relatively few cells displaying
transitory retrograde migration (Murase & Horwitz 2002). Moreover, when the net-
work of chains of the adult SVZ is eliminated by a transient antimitotic treatment,
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the SVZ network is able to rapidly regenerate and restore the normal direction of
migration (Doetsch et al. 1999), which suggests that signals in this region regulate
this process.

Because the cellular mechanisms of migration may be different for embryonic
and adult neuroblasts, it is conceivable that different molecules regulate the migra-
tion of olfactory interneurons through development and in the adult RMS. In the
embryonic brain, it has been proposed that chemorepulsive factors present in the
septum may direct migration of immature interneurons toward the olfactory bulb
(Hu & Rutishauser 1996). Slitl and Slit2, two secreted proteins that interact with
Robo receptors (Brose et al. 1999, Li et al. 1999), are thought to be responsible for
this activity (Hu 1999, Wu et al. 1999). Both Slits are expressed in the embryonic
and adult septum (Itoh et al. 1998, Yuan et al. 1999). Moreover, in vitro exper-
iments have shown that Slits repel migrating cells derived from the embryonic
subpallium or the postnatal SVZ (Hu 1999, Wu et al. 1999), which suggests that
these proteins may contribute to setting the direction of the olfactory neuroblasts
migration. The olfactory bulbs dlitl andSlit2 double mutants are smaller than
normal at birth, though they contain GABAergic interneurons (O. IMa&.S.
Plump, M. Tessier-Lavigne, J.L.R. Rubenstein, unpublished results). The precise
contribution of these proteins to the migration of olfactory neuroblasts in vivo
remains to be elucidated.

In addition to the existence of a repulsive activity that may guide interneuron
neuroblasts to the olfactory bulb during embryonic stages, it has been suggested
that an attractive activity present in the olfactory bulb may contribute to setting the
direction of this migration. Netrinl is expressed in mitral cells of the olfactory bulb
during embryonic stages and early postnatal development, whereas the Netrinl
receptors DCC (for deleted in colorectal cancer) and Neogenin (a DCC-related
protein) are expressed in migrating cells from E15 to P5 (Murase & Horwitz
2002). Moreover, anti-DCC antibodies altered the direction of the leading process
of migrating neuroblasts in slice cultures, which suggests that this receptor may
be implicated in establishing directionality in this migration (Murase & Horwitz
2002).

However, several lines of evidence argue against the hypothesis that an ol-
factory bulb attractant is responsible for setting the direction of migration in the
adult RMS. First, Netrinl expression in the olfactory bulb is greatly reduced by
P4 (Murase & Horwitz 2002). Second, Netrinl does not affect migration from
postnatal SVZ explants in vitro (Mason et al. 2001). Furthermore, the RMS per-
sists and directional migration of SVZ precursors continues after elimination of
the olfactory bulb (Jankovski et al. 1998, Kirschenbaum et al. 1999). Accordingly,
it has been suggested that the directionality of neuroblast migration in the adult
RMS is not achieved by direct attraction from the olfactory bulb but rather by the
combination of Slit-mediated repulsion in the SVZ and motogenic activity present
in the RMS (Mason et al. 2001). In support of this hypothesis, it has been recently
found that postnatal RMS astrocytes stimulate the migration of SVZ cells through
the release of a protein activity called MIA (for migration-inducing activity)



Annu. Rev. Neurosci. 2003.26:441-483. Downloaded from www.annualreviews.org
by Universitat Zurich- Hauptbibliothek Irchel on 11/17/11. For persona use only.

460 MARIN = RUBENSTEIN

(Mason et al. 2001). Astrocytes are present throughout the entire RMS (Jankovski
& Sotelo 1996, Lois et al. 1996, Peretto et al. 1997, Thomas et al. 1996), which
suggests that this activity may act as a motogenic factor within the adult RMS.

AXONOPHILIC MIGRATION IN THE FOREBRAIN:
LHRH NEURONS

The migration of neurons expressing Gonadotropin-releasing hormone (GnRH,
also known as luteinizing hormone-releasing hormone, LHRH) constitutes the
best-characterized example of axonophilic migration in the forebrain (Wray 2001).
GnRH neurons are derived from the nasal placode (Schwanzel-Fukuda & Pfaff
1989, Wray et al. 1989), but they eventually reside in the postnatal preoptic area
and hypothalamus, where they control the release of gonadotropic hormones from
the anterior pituitary gland and facilitate reproductive behavior (Fink 1988). To
reach the forebrain, GhnRH neurons migrate along the nasal septum, cross the
cribiform plate under the olfactory bulb, and proceed into the forebrain following
vomeronasal (VMN) axons. Thus, the migration of GhnRH neurons is axonophilic
in nature.

GnRH neurons migrate toward the brain following the VMN nerves in the nose.
These axons express peripherin, PSA-N-CAM, DCC, and TAG1, an axonal surface
glycoprotein (Schwanzel-Fukuda et al. 1992; Schwarting et al. 2001; Wray et al.
1994; Yoshida et al. 1995, 1999). Once the axons of the VMN nerve enter the brain,
they split into two branches, one that grows into the olfactory bulb and another
that extends toward the lamina terminalis. The vast majority of GhnRH neurons
migrate selectively along the latter pathway, which retains expression of TAG1 and
DCC.

Several factors have been suggested to influence the migration of GhRH neu
rons before they enter the brain. For example, GABAceptor agonists inhibit
the migration of GhRH neurons in vitro without altering the VMN axons or the
number of GNRH cells (Bless et al. 2000, Fueshko et al. 1998). In addition, the en-
zymatic removal of PSA from N-CAM during embryonic development or the
application of antibodies against N-CAM inhibits the migration of a large number
of GnRH neurons in vitro (Schwanzel-Fukuda et al. 1994, Yoshida et al. 1999).
However, migration of GnRH neurons is normal in N-CAM mutant mice (Yoshida
etal. 1999), which suggests that N-CAM is not essential for the axonophilic migra-
tion of GNRH neurons. Recently, a novel factor termed NELF (for nasal embryonic
LHRH factor) has been identified in a differential screen comparing a migrating
with a nonmigrating GnRH cell (Kramer & Wray 2000). Itis interesting that NELF
is expressed on both GnRH and VMN axons prior to their entrance in the forebrain,
but it is downregulated from GnRH neurons as they migrate toward the hypotha-
lamus. The role of NELF in the migration of GnRH remains to be determined.

Experimental embryological manipulations have demonstrated that GnRH neu-
rons follow VMN axons even when they extend into ectopic locations of the brain
(Gao et al. 2000). Accordingly, the trajectory of the caudal branch of the VMN



Annu. Rev. Neurosci. 2003.26:441-483. Downloaded from www.annualreviews.org
by Universitat Zurich- Hauptbibliothek Irchel on 11/17/11. For persona use only.

CELL MIGRATION IN THE FOREBRAIN 461

and the route followed by GnRH neurons in the forebrain are similarly altered in
DCC-mutant mice despite the fact that GnRH neurons do not express the Netrinl
receptor DCC after they enter the forebrain (Deiner & Sretavan 1999, Schwarting
et al. 2001). These observations reinforce the notion that migration of GnRH neu-
rons is largely dependent on their interactions with axons.

Kallman syndrome (KS) represents a clinical expression of the dependence
of GnRH neuron migration on the development of the VMN nerve. KS is char-
acterized by anosmia, hypogonadism, and occasionally mental retardation. The
hypogonadism in KS appears to be caused by the defect in the migration of the
GnRH-secreting neurons from the olfactory placode to the preoptic and hypotha-
lamic areas, which is likely secondary to failure of VMN axons to penetrate the
olfactory bulb (Schwanzel-Fukuda & Pfaff 1989). The mutation responsible for
one form of KS has been mapped to a gene designééd(Franco et al. 1991),
which encodes an ECM protein termed Anosmin-1. Recently, it has been shown
that Anosmin-1 promotes axonal branch formation from olfactory bulb output
neurons (Soussi-Yanicostas et al. 2002), although its role in the guidance VMN
axon has not been studied.

CONTROL OF CELL MIGRATION FROM THE
SUBPALLIUM TO THE PALLIUM

The embryonic subpallium is the origin of a large number of cells that migrate
tangentially toward the developing cerebral cortex and hippocampus (Anderson
etal. 1997, Corbinetal. 2001, De Carlos etal. 1996, Lavdas etal. 1999, Letinic etal.
2002, Marh & Rubenstein 2001, Pleasure et al. 2000, Sussel etal. 1999, Tamamaki
etal. 1997, Wichterle et al. 1999). Cells tangentially migrating into the cortex give
rise primarily to GABAergic interneurons (Anderson et al. 2002, Cobos et al.
2001a, Sthmer et al. 2002, Wichterle et al. 2001), although the subpallium also
appears to generate cortical oligodendrocytes during embryogenesis (Olivier et al.
2001, Spassky et al. 1998). Cells tangentially migrating to the cortex have multiple
origins within the subpallium (Anderson et al. 2001, dimez et al. 2002, Nery et al.
2002), although most GABAergic interneurons seem to derive from the medial
ganglionic eminence (MGE) (Table 3) (Lavdas et al. 1999, Sussel et al. 1999,
Wichterle et al. 1999, Wichterle et al. 2001), and the origin of oligodendrocytes
appears to be largely restricted to the entopeduncular area (AEP) (Olivier et al.
2001, Spassky et al. 1998). The MGE is the source of interneurons for other
forebrain structures, such as the striatum (Mat al. 2000).

Interneurons migrating toward the cortex follow very restricted routes. During
the early stages of their migration, interneurons fated to the cortex avoid entering
the developing striatum and thereby invade the cortex either superficial or deep
to the striatal mantle (Man'et al. 2001). Superficially migrating neurons initially
avoid the cortical plate and migrate through the marginal zone of the cortex or
through the subplate (Lavdas et al. 1999). On the other hand, deeply migrating
interneurons migrate at first through the lower intermediate zone (DeDiego et al.
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TABLE 3 Factors affecting development of cortical interneurons

Gene

Function in telencephalon

Effect on interneuron production or

migration

Titf12 (Nkx2-1)

Transcription factor; cell specification
of MGE, AEP, and POa

Mutation Wkx2-1causes reduction of
cortical interneurons§0%) and complete
loss of striatal interneurons at birth

Pax@ Transcription factors specification Prevents excessive migration. Its loss causes
and differentiation in pallium and LGE increased migration from the subpallium to
the cortex
DIx1/2* Transcription factor; cell differentiation Simultaneous mutatiobfl andDIx2
in LGE, MGE, AEP, and POa causes severe loss of cortical (75%-100%),
striatal, and olfactory interneurons at birth
Ascl (Mash1) Transcription factor; cell differentiation Mutation dfashlcauses reduction of cortical
in LGE, MGE, AEP, and POa ~50%) and striatal interneurons at birth
Emx1/2 Transcription factors; neurogenesis MutatiorEofixlandEmx2causes reduced
in pallium interneuron migration from the subpallium
Citf Citron kinase; cytokinesis Its mutation flatheadrats causes a severe
reduction of cortical interneurons-{0%)
Cntn2 (Tagl) Cell adhesion molecule; expressed Antibodies against Contactin2 (TAG1) reduce
in cortical axons interneuron migration to the cortex in vitro
Hgf® Growth factor; motogenic Promotes scattering of interneurons. Antibodies
against HGF reduce interneuron migration to
the cortex in vitro
u-PAR Urokinase-type plasminogen activator Mice lacking u-PAR have reduced numbers of
receptor; HGF activation calbindin interneurons in the cortex, most
prominently in frontal and parietal cortex
BDNF, NT4 Growth factor; motogenic, Cause ectopic accumulation of interneurons
differentiation in the cortex; stimulate MGE migration in
vitro; affect differentiation of GABA cells
TrkB' BDNF/NT4 receptor; motogenic, Its mutation causes reduction of calbindin
differentiation interneurons in the embryonic cortex50%)
Slit1/2 Guidance molecules Repel cells from the embryonic LGE in vitro.
Their simultaneous mutation does not perturb
interneuron migration to the cortex
Sema3A/3F Guidance molecules Repel MGE-derived cells migrating to the cortex
in vitro
Nrp1k Neuropilinl; Sema3A receptor A dominant negative form of Nrp1 reduces
interneuron migration to the cortex and
increases migration to the striatum in vitro
Nrp2 Neuropilin2; Sema3F receptor Its mutation causes increased number of

interneurons in the striatum

aSussel et al. 1999, Mar‘et al. 2000

bChapouton et al. 1999, Stoykova et al. 2000, Yun et al. 2001
CAnderson et al. 1997, Pleasure et al. 2000

dCasarosa et al. 1999, Marét al. 2000

€Shinozaki et al. 2002

fSarkisian et al. 2001, 2002

9Denaxa et al. 2001

"Powell et al. 2001

1Jones et al. 1994, Brunstrom et al. 1997, Polleux et al. 2002
iZhu et al. 1999, Mari et al. 2003

kMarin et al. 2001, Tamamaki et al. 2003
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1994, Denaxa et al. 2001, Lavdas et al. 1999), but as development proceeds they
seem to occupy a deeper position within the developing cortex, largely overlapping
the SVZ (Del Rio et al. 1992, Mar'& Rubenstein 2001, Wichterle et al. 2001). Of
note, whereas interneurons migrating through the marginal zone and subplate travel
individually, cells invading the cortical SVZ migrate as a rather compact cluster.
Thus, perhaps this deep migration contributes cells to the developing SVZ of the
cortexina manner similar to how the RMS supplies cells to the SVZ of the olfactory
bulb (Anderson et al. 2001, Miaxr'& Rubenstein 2001, Wichterle et al. 2001).

Three different types of factors influence the tangential migration of interneu-
rons from the subpallium and pallium: first, factors that stimulate the movement
of interneurons; second, structural elements that constitute the substrate for their
migration; and third, cues that direct interneurons toward their target through the
appropriate pathways (Figure 3).

” Attraction

MGE

Motogenic
HGF
BDNF
Sema3A| _ NT4
SemaSFJ Repulsion =) __
’ POa
|

' Repulsion m———

Figure 3 Mechanisms regulating interneuron migration from the subpallium to the
cerebral cortex. Schematic drawing of a transversal section through the telencephalon
in which the midline is to the right and dorsal is to the tof).feveral motogenic
factors, including HGF, BDNF, and NT4 promote the migration of neurons from the
medial ganglionic eminence (MGEJ)i.XAn unidentified repulsive activitynfinus sigh
presentin the preoptic area (POa) prevents ventral migration of interneurons, directing
them toward the cortexii) Expression of Sema3A and Sema3F in the mantle of
the developing striatum (Str) prevents cortical interneurons, which express neuropilin
receptors, from entering this structuré:) (An unidentified attractive activityplus

sign) guides interneurons toward the cortex and probably contributes to their medial
spreading.
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Motogenic Factors for Tangentially Migrating Interneurons

Cells tangentially migrating from the MGE to the cortex have an outstanding mi-
gratory capability (Wichterle et al. 1999), which suggests that they are highly
responsive to scatter factors in the telencephalon. One of these molecules is hep-
atocyte growth factor (HGF), which is expressed in the telencephalon at the time
of interneuron migration to the cortex (Powell et al. 2001). In slice cultures, HGF
increases the number of cells migrating away from the subpallium, whereas anti-
bodies against HGF inhibit cell movement. Moreover, mice lacking the urokinase-
type plasminogen activator receptor (u-PAR, one of the enzymes that cleaves the
inactive pro-form of HGF to the biologically active protein) have fewer cortical
calbindin interneurons at birth than normal (Powell et al. 2001). Similar to radially
migrating neurons in the embryonic cortex (Behar et al. 2000), tangential migration
of GABAergic interneurons is also strongly stimulated in vitro by BDNF and NT4
and attenuated by tyrosine kinase inhibitors (Polleux et al. 2002). In addition, it
has been reported that TrkB mutant mice have a significant decrease in the number
of calbindin interneurons migrating tangentially in the embryonic cortex, leading
to the suggestion that TrkB signaling is indeed essential for normal interneuron
migration to the cortex (Polleux et al. 2002). However, because BDNF induces
the expression of calbindin and neuropeptides in telencephalic GABAergic cells,
and loss of BDNF results in the downregulation of these molecules in cortical in-
terneurons (Arenas et al. 1996, Fiumelli et al. 2000, Jones et al. 1994), itis unclear
whether the reduction of calbindin in the embryonic cortex of TrkB mutant mice
actually reflects a decrease in the number of migrating interneurons or just a mere
reduction in the expression of calbindin by these cells.

What is the Substratum Used by Tangentially Migrating
Interneurons?

Presently, the substratum that interneurons use in their migration toward the cortex
is unknown. Tangential migration appears to be independent of interactions with
radial glial cells, unless migrating cells glide across one glial palisade to the next
as they move perpendicular to the radial glial processes. On the other hand, some
tangentially migrating cells in the intermediate zone of the cortex appear to be
closely associated with corticofugal axons (Denaxa et al. 20@tin\t al. 2000,

Meétin & Godement 1996, O’'Rourke et al. 1995), which has led to the sugges-
tion that interneurons may use axons as a substratum for migration. Accordingly,
antibodies against TAG-1, which is expressed on corticofugal axons, reduce the
number of interneurons reaching the cortex in slice cultures (Denaxa et al. 2001).
However, analysis ofagl:mutant mice has not revealed major alterations in the
tangential migration of interneurons to the embryonic cortex (Denaxa et al. 2002).
Moreover, the fact that a large number of cells migrating from the subpallium to
the pallium are concentrated in the axon-sparse lower intermediate zone or in the
SVZ, avoiding the axon-rich upper intermediate zone, suggests that tangentially
migrating cells preferentially use substrates other than axons.
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Directional Guidance of Migrating Interneurons

Guidance of tangentially migrating interneurons involves the coordination of mul-
tiple guidance cues (Figure 3), similar to growing axons steering through different
terrains in search of their target. The general direction of interneuron migration—
ventral to dorsal—appears to be established by the simultaneous activity of chemore-
pulsive and chemoattractive factors produced by the preoptic area (POa) and the
cortex, respectively (Mam et al. 2003, Wichterle et al. 2003). A repulsive activ-

ity in the POa prevents interneurons from migrating in a ventral direction and is
largely responsible for their dorsal orientation toward the cortex. The molecule(s)
responsible for the chemorepulsive activity present in the POa has not been iden-
tified yet. Previous studies have suggested that repulsion of interneurons from
the subpallium toward the cortex is mediated by Slits (Zhu et al. 1999), large
ECM molecules that possess chemorepulsive activity for growing axons and mi-
grating cells in a variety of systems (Brose & Tessier-Lavigne 2000). However,
the chemorepulsive activity found in the POa is still present in mice with tar-
geted mutations in botBlitl and Slit2, the two Slit members expressed in the
subpallium (Marm et al. 2003). Moreover, migration of interneurons to the cor-
tex is normal inSlitl/Slit2 mutants (Mam et al. 2003), which suggests that
Slits do not play a major role in this tangential migration. Netrinl has been
implicated in repelling striatal neurons from the LGE (Hamasaki et al. 2001b);
however, mice simultaneously lacki&djt1, Slit2, andNetrin1 have normal num-

bers of interneurons at birth (Mar’et al. 2003), which indicates that none of
these molecules is essential for the tangential migration of interneurons to the
cortex.

The existence of a diffusible cortical attractive activity (CAA) for tangentially
migrating interneurons has been recently revealed by two independent approaches
(Marin et al. 2003, Wichterle et al. 2003). Thus, MGE-derived cells preferentially
migrate toward cortical cells in matrigel matrix experiments (Maat al. 2003,
Wichterle et al. 2003). In slice cultures, the addition of an ectopic cortex deviates
the migration of MGE-derived cells from their normal route, attracting the cells
in a distance-dependent manner (Meaet al. 2003). Moreover, genetic disruption
of the embryonic cortex ilEmx1land Emx2double mutants reduces tangential
migration of interneurons from the subpallium (Shinozaki et al. 2002), which
supports the notion that factors present in the embryonic cortex directly affect the
migration of interneurons from the subpallium. Of note, migration of interneurons
from the MGE to the level of the subpallial/pallial boundary is largely independent
of the cortex (Mam et al. 2003), indicating that the role of the CAA may be to
guide interneurons once they reach the pallium. In line with this observation,
the direction of migration from lateral toward medial regions of the cortex is
preserved in the absence of the subpallium (O.IMand J.L.R. Rubenstein,
unpublished observations), and the CAA appears to be present in a high-medial to
low-lateral gradient in the cortex (Miar'et al. 2003), which suggests that it may
contribute to the proper dispersion of interneurons through different cortical areas.
The molecular nature of the CAA remains to be determined.
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In addition to controlling the ventral to dorsal direction of migration, guidance
cues are also required to distribute interneurons to different telencephalic struc-
tures. For example, sorting of interneurons destined for the cerebral cortex or the
striatum appears to be mediated by Neuropilin/Semaphorin interactionsn(Mar’
et al. 2001). Neuropilins are transmembrane receptors that mediate the repulsive
actions of class 3 semaphorins on axons (Raper 2000). In the subpallium, Neu-
ropilinl and Neuropilin2 are expressed by interneurons that migrate to the cortex
but not by interneurons that invade the developing striatum. Expression of neu-
ropilins allows migrating cortical interneurons to respond to a chemorepulsive
activity in the striatal mantle, of which the class 3 semaphorins (Sema3A and
Sema3F) are components (Figure 3). Loss of Neuropilinl or Neuropilin2 function
increases the number of interneurons migrating to the striatum and decreases the
number reaching the embryonic cortex (Megt al. 2001). Expression of Sema3A
and Sema3F may also influence the distribution of GABAergic interneurons in the
embryonic cortex (Tamamaki et al. 2002).

The guidance of neurons tangentially migrating to the cortex may also be in-
fluenced by neuronal activity in a similar manner to the way in which growth cone
turning responses to guidance cues are modulated by electrical activity fifa Ca
dependent manner (Ming et al. 2001). Thus, glutamate released from corticofugal
axons could lead to receptor activation in tangentially migrating cells and thereby
modulate their response to guidance cues. Tangentially migrating cells display
intracellular calcium changes in response to agonists of NMDA, AMPA/Kainate,
and GABA, receptors (Mtin et al. 2000, Soria & Valdeolmillos 2002), and stim-
ulation of AMPA receptors in slice cultures induces neurite retraction and GABA
release in tangentially migrating cells (Poluch et al. 2001, Poluch & Konig 2002).
Additional experiments are required to clarify the functional significance of the
endogenous activation of these receptors on tangential migration.

Once they reach the pallium, interneurons invade the cortical plate and dis-
tribute into different cortical layers. It has been shown that cortical interneurons,
like projection neurons, are generally born in an inside-out order with respect
to their location within the cortical layers and roughly contemporaneously with
pyramidal neurons that occupy the same layer @raet al. 1986, Miller 1985,
Peduzzi 1988). It is interesting that molecules that influence migration of projec-
tion neurons, such as Cdk5, do not seem to influence the tangential migration of
interneurons from the subpallium to the cortex or their subsequent movement into
the cortical plate (Gilmore & Herrup 2001). It is not known, however, whether
the laminar distribution of GABAergic cells is affected in mutants with defects in
cortical lamination. Inroads to solve this question are being made with the analysis
of the distribution of small subpopulations of GABAergic interneurons in the cor-
tex of reeler mice. Thus, the laminar position of a subpopulation of GABAergic
interneurons that express the neuropeptide somatostatin is altezetbrmutants
(A.Renfro, O. Marh, J.L.R. Rubenstein, J.W. Swann, and G. D’Arcangelo, unpub-
lished results), which suggests that subpopulations of interneurons either respond
to Reelin to find their appropriate cortical layer or they are able to follow specific
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subpopulations of pyramidal neurons—those that are born roughly at the same
time—independently of their laminar position within the cortex. Cortical interneu-
rons appear to seek the VZ of the cortex before moving radially to take up their
positions inthe cortical plate (Nadarajah etal. 2002), which indicates that positional
information present in the VZ may instruct interneurons to find their appropriate
lamina.

COMMON THEMES IN RADIAL AND TANGENTIAL
MIGRATIONS

How Different are the Cellular Interactions in Radial
and Tangential Migrations?

The large majority of migrating cells in the forebrain use cellular substrates for
their migration. Thus, despite the difference in the orientation of the migration, all
types of radial and tangential migrations share an obvious common feature: con-
tact to other cells. In some cases, neurons use the processes of other cells to guide
their migration, such as the radially migrating cortical projection neurons or the
tangentially migrating GnRH neurons. It has always been considered that migra-
tion along radial fibers was fundamentally different from migration along axons
because of the distinct nature of radial glial cells and neurons. The recent findings
suggesting that radial glial cells are indeed neuronal progenitors in the cerebral
cortex (Heins et al. 2002; Malatesta et al. 2000; Miyata et al. 2001; Noctor et al.
2001, 2002) have opened the door for a new interpretation of the cellular interac-
tions occurring during migration in the forebrain. Thus, the interactions between
cortical neurons and radial glial cells, GhnRH neurons and vomeronasal axons, or
among olfactory interneurons during chain migration may be more similar than we
previously thought. In line with this observation, a recent study has suggested that
Reelin may have a general role as a detachment factor in neuronal migration, either
acting on the interaction between radial processes and migrating neurons or on the
interaction between apposing cells in chain migration (Hack et al. 2002). Similarly,
early radial translocation and tangential migration of interneurons both appear to
be largely independent of contact with other cell types, which suggests that these
two migrations, distinct in their orientation, may also share common mechanisms.

Do Neurons Switch Between Different Migration Modes?

Tangentially migrating cells are able to disperse in a radial fashion. For example,
once interneurons derived from the MGE have reached the cortex, they turn radially
into the cortical plate to seek their appropriate cortical layer. Similarly, newly
generated olfactory interneurons migrate radially after they reach the olfactory bulb
through the RMS. Are tangentially migrating cells able to undergo glial-guided
radial migration? It has been shown that interneurons migrating radially into the
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cortical plate commonly make contact with radial glial cells, but the orientation of
their leading process is not always aligned with the processes of radial glial cells
(Polleux et al. 2002). This would suggest that interneurons do not require radial
glial cells for their migration into the cortical plate. On the contrary, migration of
granule cells in the cerebellum seems to be largely dependent on their interaction
with glial processes, even though they reach the cerebellar primordia by tangential
migration (Hatten 1999). Thus, it seems conceivable that tangentially migrating
cells change their repertoire of adhesive molecules once they switch into a radial
mode of migration.

COORDINATION OF RADIAL AND TANGENTIAL
MIGRATIONS AND THE FORMATION OF COMPLEX
NEURONAL CIRCUITS

It is now clear that most structures in the forebrain, including the cortex, hip-
pocampus, olfactory bulb, striatum, and hypothalamus, arise from the integration
of neurons arriving via radial and tangential migrations. Radially migrating neu-
rons are borninthe VZ, which gives rise to most of the cells found in each structure.
In contrast, tangentially migrating neurons typically arise from distant progenitor
zones, in some cases very far away from the place where these neurons finally
reside. What is the advantage of producing different cell types in diverse locations
of the forebrain? One explanation for this phenomenon is that patterning and mi-
gratory processes have been intimately linked during development of the CNS.
For example, the generation of certain populations of telencephalic neurons with
distinct neurotransmitter phenotypes appears to be linked to specific progenitor
cells that are located in different dorsoventral subdivisions of the telencephalon.
Thus, glutamatergic neurons appear to be produced exclusively from progenitor
cells in the pallium, whereas most GABAergic nheurons may be generated in the
subpallium, and cholinergic neurons may derive solely from the most ventral re-
gion of the subpallium (Man et al. 2000, Wilson & Rubenstein 2000). As a result,
tangential migration in the CNS might be a mechanism selected through evolution
to increase the cellular complexity of specific circuits, such as the cerebral cortex.
An additional implication of this hypothesis is that tangential migration would
also occur from the pallium to the subpallium when cell types specified in dorsal
regions of the telencephalon are required in ventral structures, and recent studies
suggest that this can be the case (Hamasaki et al. 2001a, Striedter et al. 1998,
Tomioka et al. 2000).

The discovery that the development of complex structures in the forebrain,
such as the cerebral cortex, requires radial and tangential migrations has important
clinical implications. Because the majority of the neurons in the cortex are pro-
jection neurons, disruption of the migration of these neurons typically results in
severe malformation of the cortex (Ross & Walsh 2001). In contrast, defects in the
migration or final arrangement of cortical interneurons may lead to more subtle
morphological defects that nevertheless may cause severe impairment of cortical
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function. The cortex of mice defective in u-PAR, for example, has a prominent
reduction in the number of calbindin interneurons without compromising the over-
all morphology of the cortex (Powell et al. 2001). Of note, u-PAR-defective mice
live, but suffer from severe physiological alterations in cortical activity (Powell
et al. 2003). Moreover, mice with a targeted mutation of the aristaless-related
homeobox geneArx) have abnormal migration and differentiation of GABAergic
cortical interneurons (Kitamura et al. 2002). This observation may explain some
of the clinical features of several syndromes in humans, including the X-linked
lissencephaly with abnormal genitalia syndrome, the X-linked infantile spasm
syndrome, and a less severe epileptic syndrome, all of which appear to arise from
different types of mutations iArx (Bienvenu et al. 2002, Kitamura et al. 2002,
Stromme et al. 2002). Thus, it seems conceivable to foresee that the identification
of new genes affecting tangential migration in the forebrain will contribute to our
understanding of other complex neurological diseases.
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