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Abstract

Morphometric analysis of nuclei is crucial in cytological examinations. Unfortunately, nuclei segmentation presents many

challenges because they usually create complex clusters in cytological samples. To deal with this problem, we are proposing

an approach, which combines convolutional neural network and watershed transform to segment nuclei in cytological images

of breast cancer. The method initially is preprocessing images using color deconvolution to highlight hematoxylin-stained

objects (nuclei). Next, convolutional neural network is applied to perform semantic segmentation of preprocessed image.

It finds nuclei areas, cytoplasm areas, edges of nuclei, and background. All connected components in the binary mask of

nuclei are treated as potential nuclei. However, some objects actually are clusters of overlapping nuclei. They are detected

by their outlying values of morphometric features. Then an attempt is made to separate them using the seeded watershed

segmentation. If the attempt is successful, they are included in the nuclei set. The accuracy of this approach is evaluated

with the help of referenced, manually segmented images. The degree of matching between reference nuclei and discovered

objects is measured with the help of Jaccard distance and Hausdorff distance. As part of the study, we verified how the use

of a convolutional neural network instead of the intensity thresholding to generate a topographical map for the watershed

improves segmentation outcomes. Our results show that convolutional neural network outperforms Otsu thresholding and

adaptive thresholding in most cases, especially in scenarios with many overlapping nuclei.

Keywords Convolutional neural networks · Watershed · Nuclei segmentation · Breast cancer · Oversegmentation ·

Mathematical morphology

Introduction

According to global cancer project (GLOBOCAN), breast

cancer is the most common cancer among women

worldwide. It was estimated that in 2012, nearly 1.7 million

new cases were diagnosed (second most common cancer

overall) and 521,907 cases of deaths due to breast cancer

occurred (fifth cause of death from cancer overall). This

represents about 12% of all new cancer cases and 25% of all

cancers in women [3].

Breast cancer is mostly diagnosed by three medical

examinations usually occurring in the following order:

palpation, ultrasonography or mammography, and fine

� Michał Żejmo
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needle biopsy (FNB). In this work, we concentrate on the

analysis of results of FNB examination in an automatic way.

In FNB method, a cytological material is gathered directly

from tumor using a fine needle. Next, it is fixed and stained

with hematoxylin and eosin. Finally, glass slide with the

cellular material is examined by the pathologist under the

microscope. FNB is less traumatic and much safer for a

patient than an open surgical biopsy. However, detection of

cancer cells on the slide glass is not an easy task. Novice

pathologists to gain experience and knowledge to become

professional specialist must spend a lot of time browsing

various cytological samples. Moreover, analysis of entire

slide is a time-consuming process, even for experienced

pathologists.

During the examination of cytological images, pathol-

ogists evaluate morphometric features of cells and their

nuclei in order to distinguish tumor type. In recent years,

we have seen a very intensive development of techniques

dedicated to microscopic digital imaging. More and more

specialists browse virtual slides on a computer screen

instead of examining glass slides under a microscope.
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This situation opens up the possibility of supporting the

pathologist’s work using modern image processing and

machine learning techniques. They can speed up diagnosis

and increase their accuracy. However, we must remember

that the accuracy of nuclei segmentation is critical to the

performance of computer-assisted cytology. Unfortunately,

cytological images are rather challenging for existing seg-

mentation methods because nuclei have the tendency to

create complex structures like clumps or nests.

The most common approaches for nuclei segmentation

are based on active contours, intensity thresholding,

mathematical morphology, region growing, watershed, and

deep learning [4, 6, 10, 11, 18]. Last years brought an

enormous progress in classification and object recognition

using Convolutional Neural Networks (CNN) [2, 29].

It seems to be a promising technique for semantic

segmentation of cytological images [24, 25]. The most

considerable advantage of CNN is its ability to classify a

single pixel based on its neighborhood described by high-

level features. That is why excellent results are obtained

while detecting the nuclei and cytoplasm even when their

staining is strongly heterogeneous. Problems arise when

nuclei overlap and there are no clear boundaries between

them. In this situation, ordinary CNN networks are not

able to separate such nuclei. It seems that watershed

method deals better with such cases. However, the results

obtained by the watershed are strongly dependent on the

quality of the topographical map of distances. To obtain

precise topographical map, we need a precise mask of

nuclei region. Usually, intensity thresholding or extended

h-minima are used for this purpose [7, 23]. Unfortunately,

intensity thresholding usually generates nuclei mask that

contain objects with jagged contours and clumped objects.

As an effect, watershed usually is affected by the over-

segmentation. On the other hand, the results of extended

h-minima can vary substantially with regard to the value of

chosen h. According to the results presented in [16], the

method can miss finding some nuclei for some values of h.

To tackle these problems, we propose an approach

that combines the advantages of CNN and the watershed

method. CNN is employed to detect precise nuclei mask,

which then is used to generate topographical map and

nuclei seeds for watershed. Watershed is applied to separate

overlapping nuclei. Experimental studies have shown that

the use of CNN instead of the usual thresholding to

determine the nuclei mask significantly increases the

accuracy of nuclei segmentation.

The remainder of this paper is organized as follows.

Section “Data” presents material used for experiments.

The details of the proposed approach are described in

the “Methods” and “Data Preprocessing”sections. Section

“Experiment” presents the details of the experiments carried

out. Their results are shown in the “Results” section. The

paper ends with conclusions and future research in the

“Conclusions and Further Research” section.

Data

Cytological images used in this study came from 40 patients

of the University Hospital in Zielona Góra, Poland. Half of

the cases are malignant, half are benign. All tumors were

histologically confirmed, and all patients who had a benign

disease were biopsied or followed up for a year. Cellular

material was acquired from affected tissue using 0.5-mm-

diameter needle under the control of an ultrasonograph.

The material was fixed and then dyed with hematoxylin

and eosin (H+E). Glass slides were scanned using VS120

Olympus Virtual Microscopy System. The system consists

of a 40x lens and 2/3” CCD camera giving 0.17 µm

resolution. As a result, 40 slides were generated. The

average size of slide is approximately 200k × 100k pixels.

For each virtual slide 2 regions of interests (ROI) of size,

1583 × 828 pixels representing malignant or benign cells

were selected and saved as 8 bit/channel RGB TIFF image.

Example of ROI selected by the pathologist from the virtual

slide is shown in Fig. 4.

In total, we have collected 80 images. We divided them

into subset 1 (40 images coming from 10 benign cases

and 10 malignant cases) and subset 2 (40 images coming

from the rest 10 benign cases and the rest 10 malignant

cases). Subset 1 was used to train and validate CNN, subset

2 was used as a test subset to verify the accuracy of the

proposed approach. To train CNN, we have divided subset

1 (40 images) into training subset (20 images coming from

5 malignant cases and 5 benign cases) and validation subset

(20 images coming from 5 malignant cases and 5 benign

cases). Thus, images used for training CNN were never

used to the validation procedure. Moreover, the experiment

conducted to verify the effectiveness of the segmentation

procedure was carried out using test images. They do not

include images coming from patients that were used for

training and validation of CNN.

Methods

In this section, we describe the main steps of the proposed

segmentation method: (1) semantic segmentation of nuclei

and background using CNN; (2) determining connected

object on the semantic map generated by CNN; (3) detection

of connected clusters of objects (clustered nuclei) based

on their area and roundness; (4) applying conditional

erosion to determine nuclei seeds among clumped objects;

(5) separation overlapping nuclei using seeded watershed;

(6) aggregating segmentation results for overlapping and
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non-overlapping nuclei. The first step is implemented

using Python and Keras library, the rest of the steps are

implemented using Matlab.

The watershed transform is one of the most often used

segmentation method to separate touching or overlapping

objects. However, the method is effective if proper seeds

of objects are given. Here, we are proposing conditional

erosion to detect centers (seeds) of prospective nuclei.

Erosion is carried out on nuclei mask. Therefore, it is crucial

for the method to determine precise mask of the nuclei.

If nuclei overlap, we need at least to see some parts of

their silhouettes to determine their centers using conditional

erosion. Overlapping nuclei on inaccurate nuclei mask

usually create huge clumps and thus even conditional

erosion will fail to find their centers. To deal with this

challenge, we propose CNN as a tool for recognizing nuclei

regions. We also used to segment nuclei regions two other

methods based on intensity thresholding: Otsu thresholding

(GO) and adaptive thresholding (AT). Finally, we compared

the accuracy of CNN with both intensity thresholding

approaches.

Convolutional Neural Network

In recent years, CNN has gained a lot of popularity as a tool

for image segmentation and object recognition [12]. Typical

CNN is usually comprised of at least with two convolutional

layers combined with pooling layers and ended by at least

one fully connected layer (Fig. 6).

a) Convolutional layer is a core part of CNN,

composed of a set of learnable filters. Each filter extracts

different features from the input image. Filter parameters

(weights) are tuned during the learning procedure.

b) Pooling layer is used to progressively reduce the

spatial size of the input in order to extract higher level

features. Spatial size reduction is usually done by max

pooling using window of size 2×2 pixels.

c) Fully connected layer is at the end of CNN and

is connected to all activations in the previous layer.

The input of this layer is a one-dimensional feature

vector. The task of this layer is to capture the complex

relationships between high-level features and output

labels.

Trained CNN model was used for semantic segmenta-

tion. It classifies each pixel from the input image into one

of four categories (nuclei, cytoplasm, nuclei edge, back-

ground). In fact, the output of CNN contains probability dis-

tribution over four classes. Therefore, each pixel is always

labeled by the class which gained the highest probability. As

a result, we get a semantic mask for input image.

Segmentation of Nuclei Region

In this step, semantic mask generated by CNN model is

transformed into nuclei mask. Pixels belonging to nuclei are

labeled by 1, while others by 0. Therefore, such mask is very

similar to binary masks generated by GO or AT method.

Figure 1 presents sample results for CNN, GO, and AT. We

can visually asses that CNN is much more precise in nuclei

segmentation than GO and AT. It can be observed that CNN

separates the nuclei that are touching and overlapping much

better than two other techniques.

Detection of Overlapping Nuclei

All cytological images used in this study were manually

annotated by marking nuclei contours. Therefore, it is

possible to compute morphometric features of nuclei and

determine their distributions (see Fig. 2). We decided to

describe nuclei by their area and roundness [20]:

Roundness =
4 × Area

(P erimeter)2
. (1)

Based on 4447 manually annotated nuclei, it can be

concluded that nuclei have area in the range from 309 to

7801 pixels and roundness in the range from 0.31 to 0.99.

Based on these findings, we are able to distinguish the

nucleus from the object which consists of many clumped

nuclei.

Fig. 1 Segmentation of nuclei region: CNN (left), AT (middle), and GO (right)
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Fig. 2 Histograms of the nuclei areas and roundness

Nuclei mask determined by CNN usually contain

two types of regions that we call non-overlapping or

overlapping. In non-overlapping regions, objects are easily

recognized as nuclei because they are well separated, and

thus their areas and roundness are within allowed limits.

These objects are immediately classified as nuclei and they

do not require further processing. The rest of the objects that

do not meet the requirements of being single nucleus must

be subjected to a separation procedure by seeded watershed.

Separating Overlapping Nuclei Using Seeded
Watershed

The classical watershed transform treats the image to be

segmented as a topographic surface. It segments image

by flooding basins from the seeds until basins attributed

to different seeds meet on watershed lines. The input of

the algorithm is usually a binary mask of the image. It

is transformed by the Euclidean distance transform and

local maxima from this transform are used as seeds.

Unfortunately, algorithm in this form tends to create many

micro-segments. Such over-segmentation makes the results

of the watershed method completely useless. To deal with

this problem, we used extended version of watershed that

uses nuclei seeds generated by the conditional erosion [9,

30]. The method process binary mask to detect centers of

objects. In our case, it was applied to nuclei mask INM to

find nuclei centers IS (seeds). We applied this processing

only to the objects classified as nuclei clumps.

In our approach, conditional erosion is based on classical

erosion defined as the operation of structuring element B on

image INM :

INM ⊖ B̌ = {x ∈ R|(B + x) ⊂ INM }, (2)

where B̌ is a reflection of set B. Conditional erosion

is conducted in two steps. First, coarse erosion using

structuring element Mc reduces the size of objects. To

prevent objects from disappearing, coarse phase switches

to fine phase for objects with area below T1. Fine erosion

uses structuring element Mf which is less likely to make

the nucleus disappear. It tries to separate clustered nuclei.

Element Mf is used iteratively until all objects have area

below T2. The size of both structuring elements should be

significantly smaller than the size of the processed objects to

not to reduce them too rapidly. Based on the reference nuclei

(manually segmented), we know that the size of nuclei can

vary from 300 to 8000 pixels, thus we can use the coarse

structuring element Mc and fine structuring element Mf

proposed in [30]:

Mc =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, Mf =

(

0 1 0
1 1 1
0 1 0

)

.

To determine thresholds T1 and T2, we conducted a seg-

mentation test on a few chosen images. Segmentation

results were compared with those obtained by using classi-

cal watershed segmentation. We determined experimentally

that the best segmentation is obtained for thresholds T1 =

350 and T2 = 50.

The prototype of topographic map IT M is determined

by Euclidean distance transform. Next, seeds IS are used

to refine the topographic map. Seeds IS are combined

with the original topographic map IT M by morphological

reconstruction ρIT M
(IS) [28]. The algorithm is based on

repeated dilations of a seed mask IS until the contour of the

seed mask fits under a topographic map IT M :

I ′
T M = ρIT M

(IS) =
⋃

n≥1

δ
(n)
IT M

(IS). (3)

The grayscale geodesic dilation of size n is then given by:

δ
(n)
IT M

(IS) = δIT M
(. . . δIT M

(δIT M
(IS)))

︸ ︷︷ ︸

n

, (4)
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Fig. 3 Segmentation of overlapping ellipses using seeded watershed

and classical watershed: a input mask; b result of conditional erosion;

c distance transform; d modified distance transform with imposed

seeds; e watershed using distance transform; f watershed using seeded

distance transform

and the elementary geodesic dilation is described by the

following relationship:

δIT M
(IS) = (IS ⊕ B) ∩ IT M , (5)

where (IS ⊕ B) is a standard dilation of size one followed

by an intersection (pointwise minimum ∩) and B is 4-

connected neighborhood structural element with pair of

horizontal and vertical connected pixels [28]. In Fig. 3, we

can observe how the seeds generated by conditional erosion

modify original topographic map and the positive effect of

such approach on the segmentation of overlapping objects

with the elliptic shape.

The approach described above is used to separate nuclei

clusters found in nuclei mask by procedure described

in the “Detection of Overlapping Nuclei” section. The

whole separating procedure employing conditional erosion

and watershed is applied to each object classified as

overlapping objects (clumped nuclei). Therefore, we obtain

separate segmentation results for each nuclei cluster. After

the separation procedure by seeded watershed, objects

detected are again classified as overlapping or non-

overlapping nuclei using the method described in the

“Detection of Overlapping Nuclei” section. We do this

to check if the separation was successful. All nuclei that

successfully pass the test of being single nucleus are

included in the final segmentation results. Clusters of nuclei

that have failed to be separated are rejected and do not

participate in further processing.

Data Preprocessing

Input images are preprocessed by color separation proce-

dure and cutting into blocks of fixed size (patches). Patches

are further processed and augmented to prepare training data

for CNN.

Color Separation

Cytological samples are subjected to a staining process

to precisely visualize the cellular material that is being

analyzed. We usually use hematoxylin and eosin for this

purpose. Hematoxylin is mainly absorbed by the cell nuclei

and dyes them blue. Eosin dyes the cellular material in

red and deposits mainly in the cytoplasm. Unfortunately,

the process of staining and digitizing glass slides is not

standardized. In effect, cytological samples coming from

different laboratories may differ in color. Color variation

can arise due to different staining protocols, different

stain brands, a shelf life of stains, or due to using

different microscopy scanners. It has been shown that

the performance of segmentation algorithms deteriorates

substantially when the color of processed images differs

from the color of training images [8, 15, 17]. To tackle

this problem, various color normalization methods have

been proposed. They can be generally categorized into

histogram matching methods, color transfer methods, and

spectral matching methods (For a complete overview of

the state of the art color normalization methods please see

[22]).

Color normalization is usually preceded by the stain

separation because different cellular structures absorb all

stains to some extent. The stain concentration is closely

related to the attenuation of the light transmitted through

the stained material. In turn, light transmission through the

cytological sample can be described by the Beer Lambert

law:

I = I0 exp (−WH), (6)

where I is the intensity of the light that passed the sample

(3 × n matrix, n - number of pixels), I0 is the intensity of

light entering the sample (matrix of the same size as I ), W
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Fig. 4 Image representing

hematoxylin concentration

is a stain color matrix of size 3 × k (k = number of stains),

and matrix H (k × n) represents the stain concentrations.

Stain separation approaches can be divided into supervised

and unsupervised methods. The well-known supervised

method is based on color deconvolution [21]. In this method

matrix, W is determined empirically and it uses pseudo

inverse transform to obtain H . By contrast, unsupervised

methods estimate both W and H . Usually these methods

are based on independent component analysis (ICA) or

non-negative matrix factorization (NMF) [1, 19]. Another

approach is based on a model where image colors are linear

combinations of stain vectors which describe the proportion

of absorbed light in RGB channels. Due to the fact that

absorption weights are non-negative, thus every value may

exist between stain vectors. The method exploits this fact to

find them using two largest singular values determined by

singular value decomposition (SVD) [14].

In this study, we applied a supervised method of stain

separation proposed in [21]. The effectiveness of this

algorithm is confirmed by numerous research publications

and moreover it is easily available for many scientific

computing environments. Our implementation is based on

built-in stain vectors for Hematoxylin/Eosin taken from

ImageJ color deconvolution plugin. Absorption spectra

of hematoxylin and eosin overlap in RGB space, but

mentioned color separation allows us to some extent

evaluate the contribution of hematoxylin and eosin at

Table 1 Collections of patches

Training Validation

Number of images 20 20

Total patches 18,315,912 18,961,569

− nuclei border 1,739,200 1,968,232

− nuclei center 5,105,059 5,788,305

− cytoplasm 5,588,398 5,770,039

− background 5,883,255 5,434,993

each pixel. Three separate intensity images are created

as a result of deconvolution, the first represents the

hematoxylin concentration, second eosin concentration,

and third residuals. For further processing, we are using

images of hematoxylin concentration. They emphasize

nuclei and suppress cytoplasm which absorbs mainly eosin

(Fig. 4).

After color separation, hematoxylin image is subjected

to feature-wise standardization. Each pixel in the image

array is treated as a separate feature. Based on the randomly

chosen sample of 10,000 training image patches, we can

determine the mean and standard deviation for every feature

(pixel). They are stored and then used to standardize images.

Every pixel in the image is standardized using a mean and

standard deviation determined exactly for his position in the

image

Manual Segmentation

To train CNN, we needed ground truth images with labeled

objects. Therefore, all images used in this study were

subjected to manual segmentation. The procedure was

carried out using ImageJ software1 and involved selection

of four types of objects: nuclei interior, nuclei contour,

cytoplasm, and background. In the case of ambiguity, e.g.,

if overlapping nuclei cannot be separated, no objects were

marked. But, if the separation was possible, then nuclei were

marked as separate objects.

Based on selected regions, semantic maps were created

for each image. On a semantic map, each pixel is

given the label and can belong to the following classes:

indeterminate, background, cytoplasm, nuclei, or nuclei

border. Set of pixels belonging to nuclei border was

determined automatically by extracting pixels from nuclei

regions lying on the contours of nuclei.

1https://imagej.nih.gov/ij/
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Fig. 5 Example of training patches (hematoxylin concentration). From left: nuclei, nuclei border, cytoplasm, background

Extraction of Patches

The images were cut into patches of size 43×43 pixels.

The size of the patch was chosen arbitrary so that the

patches contain large fragments of cell nuclei. For each

pixel, a single patch is extracted. The class of each patch is

assigned based on the label of central pixel. Label is read

from semantic map. Patches corresponding to unlabelled

pixels are excluded from further processing and thus are

not used to train or validate CNN. As in many other

studies concerning semantic segmentation, CNN is deciding

about the class of the pixel based on the patch centered

in that pixel. Set of all patches was divided into training

and validation subsets, their sizes, and distributions are

presented in Table 1. Examples of patches used for training

CNN are shown in Fig. 5.

Patches Augmentation, Transformation,
and Preprocessing

The raw patches generated in the previous step were

augmented and preprocessed to improve the learning

process of the CNN model. It is important for learning

procedure to have balanced number of training samples

within each class. In our case, the class of patches describing

nuclei borders is underrepresented (see Table 1). To

overcome this problem, a set of nuclei border patches was

augmented by artificial patches. They were generated using

some well-known transformations applied to actual patches.

To generate new patches, each original nuclei border

patch was subjected to three randomized transformations:

scaling by a factor from range 0.8 to 1.2, rotating using

random angle, flipping vertically and/or horizontally. The

set of patches was enlarged four times using augmentation

technique. To increase the diversity and variability of

patches coming form other classes, they were also randomly

subjected to these transformations. In order not to increase

the size of these classes, the original patch after being

transformed was replaced by the new one.

Experiment

Network Architectures and Training Parameters

A lot of different CNN architectures have been already

described and tested in the scientific literature [12, 13,

27]. They vary in the layer configuration and depth of

the structure. The structure of CNN used in this study is

shown in Fig. 6. Our network consists of four convolutional

Fig. 6 The structure of CNN
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Fig. 7 Results of semantic segmentation using CNN: input image: hematoxylin concentration (left), semantic mask generated by CNN classifier

(middle), and nuclei mask (right)

layers, which are separated by two max-pooling layers.

At the top of the network, we placed two fully connected

layers (512 neurons and 4 neurons respectively). All

convolutional layers are followed by rectified linear units

(ReLU). Weights in convolutional layers were initialized

using Xavier method, learning rate was set to 10−4, and

weight decay was set to 10−6 [5]. Training was conducted

using stochastic gradient descent, mini-batch was set to

256, and training process was finished after 20 epochs.

We applied dropout technique to prevent the network

from over-fitting [26]. This allowed us to achieve the

91.33% classification accuracy for the validation set. All

experiments were realized with the help of GeForce GTX

TITAN X with 12GB of RAM.

Semantic Segmentation

Trained CNN model was used to predict classes for all

pixels in the images from the test set. The input of the

network is a single patch. The output is a class probability

distribution for a central point of the patch. To segment

the whole image, classification procedure must be repeated

for each pixel in the image. As a result, we obtain a class

probability distribution for every pixel. Finally, pixel is

labeled by the class that achieved the highest probability.

In this way, a semantic mask was obtained for a given

input image. From the semantic mask, it is possible to

extract nuclei mask to generate a topographic surface for

the watershed transform. Sample semantic mask and nuclei

mask are shown in Fig. 7.

Results

Evaluation Procedure

In order to verify the effectiveness of the proposed

approach, it was applied to detect nuclei in 20 test

images. The accuracy of CNN was compared with the

accuracy of GO and AT method. These methods were

used to determine the nuclei mask but final segmentation

was always carried out using seeded watershed (see

“Segmentation of Nuclei Region”). Thus, three methods

used to extract nuclei mask were compared with respect to

watershed segmentation accuracy.

To measure the accuracy of automatic segmentation,

we compare nuclei segmented automatically with reference

nuclei segmented manually. We are given a list of manually

Table 2 Results for Hausdorff distance

TP FP

CNN AT GO CNN AT GO

Benign

Mean 83.4% 52.4% 51.3% 5.1% 14.6% 14.9%

Sd 12.8% 21.6% 19.0% 4.1% 5.0% 5.8%

Max 98.2% 86.1% 77.2% 15.5% 23.1% 30.8%

Min 41.0% 7.7% 10.3% 0.0% 3.8% 6.3%

Malignant

Mean 78.1% 54.4% 56.6% 21.4% 27.9% 19.2%

Sd 11.7% 10.8% 12.1% 13.4% 12.4% 7.2%

Max 93.7% 77.8% 85.2% 51.9% 63.6% 32.7%

Min 56.3% 38.7% 37.0% 3.2% 14.5% 8.1%

The best results are italicized

J Digit Imaging (2020) 33:231–242238



Table 3 Results for Jaccard distance

TP FP

CNN AT GO CNN AT GO

Benign

Mean 77.6% 50.1% 49.6% 10.9% 16.9% 16.5%

Sd 14.2% 22.6% 20.0% 6.5% 6.5% 7.6%

Max 93.3% 81.9% 76.8% 24.6% 27.4% 38.5%

Min 38.5% 7.7% 10.3% 1.3% 7.1% 7.5%

Malignant

Mean 73.2% 55.1% 57.8% 26.3% 27.2% 18.0%

Sd 11.4% 10.9% 13.7% 11.2% 11.9% 6.7%

Max 90.5% 81.5% 92.6% 52.7% 54.5% 29.3%

Min 53.1% 38.7% 37.5% 12.0% 10.9% 3.7%

The best results are italicized

Fig. 8 Aggregated TP rates and FP rates with regard to methods of segmentation

Fig. 9 The number of images for which the segmentation method obtained the best result
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Fig. 10 Sample segmentation results: TP (white), FP (gray)

segmented nuclei in the form of binary masks. Nuclei

segmented automatically can be also presented in the form

of binary masks. Therefore, it is possible to measure

distances between reference nuclei and automatically

segmented nuclei. To do that, we are using Hausdorff

distance (HD) and Jaccard distance (JD). For each

segmentation method, (CNN + seeded watershed, GO +

seeded watershed, AT + seeded watershed), two distance

matrices were determined using Hausdorff distance and

Jaccard distance respectively. The distance matrix stores

the distances between all pairs of manually segmented

nuclei and nuclei segmented using a chosen automatic

segmentation method. Using distance matrices, we are

trying to pair all manually segmented nuclei with the

closest nuclei segmented automatically. We assumed that

the nuclei between which Hausdorff distance is greater

than 30 or Jaccard distance is greater than 0.5 are so

different that must be considered as two separate objects.

The single manually segmented nucleus can be paired with

the only one, nearest nucleus segmented automatically and

the distance between them must be below the predefined

threshold. As a result, 3 scenarios are possible: manually

segmented nucleus can be matched with the nearest

automatically segmented nucleus and such case is classified

as true positive (TP), no automatically segmented nucleus

can be found to match with the manually segmented

nucleus and such case is classified as false negative (FN),

and automatically segmented nucleus can stay without

corresponding manually segmented nucleus and thus it is

classified as false positive (FP).
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Experimental Results

Tables 2 and 3 summarize basic statistics for TP and FP

coefficients determined for all test images. The results

are presented separately for benign and malignant cases.

Aggregated (for benign and malignant cases) mean values

of TP and FP rates are shown in Fig. 8.

We can observe that CNN method outperforms GO and

AT for benign cases. On average, CNN-based approach can

extract 83.4% of benign nuclei according to HD and 77.6%

according to JD. Whereas the methods based on GO and

AT are able to extract from 51.3 to 52.4% of benign nuclei

according to HD and from 49.6 to 50.1% according to

JD. We also see that CNN-based segmentation outperforms

other methods for malignant cases. For malignant cases,

CNN-based method can correctly detect 78.1% of nuclei

according to HD and 73.2% according to JD, while for the

other methods average values are in range 54.4%–56.6% for

HD and 51.1%–57.8% for JD.

The CNN method received on average lower FP error for

benign cases than the other methods, while for malignant

cases FP error is slightly larger than for GO method. The

obtained values of standard deviations indicate that for all

methods results are distributed in similar range around the

mean.

In Fig. 9, we have presented results that indicate how

many times each segmentation method reached the highest

TP rate and the lowest FP rate. CNN clearly outperforms

two other approaches, because it gained the best results for

most test images.

Classical intensity thresholding methods (AT, GO) are

very effective for detecting areas occupied by the nuclei

if nuclei are well separated. Unfortunately, these methods

usually fail if overlapping nuclei are present in an image.

This problem is much less visible if we use CNN instead of

GO or AT. Sample segmentation results confirming this fact

are shown in Fig. 10. The CNN method is more effective

than AT and GO in detecting overlapping objects, but the

side effect is the detection of redundant objects. Thus, the

value of FP for some images can slightly increase if we

use CNN segmentation. However, on average CNN method

performs much better than GO and AT.

Conclusions and Further Research

Methods of nuclei segmentation based on intensity thresh-

olding, edge detection, watershed transform, active contours

and artificial neural networks usually have problems with

cytological images. Mainly because of complex and het-

erogeneous nature of these images which often contain

overlapping and touching nuclei. In this paper, we are

presenting an alternative approach which uses CNN

classifier to pre-segment nuclei and then seeded watershed

to deal with overlapping nuclei. We are showing that our

approach outperforms classical watershed method. More-

over, we determined that the proposed method can detect

about 81% of real nuclei (on average) and, at the same time,

have a low rate of false positive detection (13%).

Despite the fact that obtained result looks quite

promising, there are some points of our project which

can be improved. Semantic segmentation using a classical

convolutional neural network turned out to be very

computationally expensive. Especially training process was

time consuming. In future research, we are going to use for

semantic segmentation fully convolutional network (e.g., U-

Net network) which will allow us to significantly reduce the

computational burden of the method.

Another drawback of the method is that it needs manually

segmented nuclei to train CNN. Unfortunately, the process

of manual segmentation is very time consuming and tedious.

Therefore, we plan to develop a software for semi-automatic

segmentation of nuclei, an operator will have to only

correct the errors introduced by the automatic method. Such

approach allows us to prepare richer set of training images

and save time.

We also plan to modify the step responsible for detection

of overlapping nuclei coming from semantic segmentation.

We are going formally determine the thresholds for

roundness and area based on hypothesis testing framework.

Our system can be used to segment and detect

nuclei. Therefore, we plan to develop a computer-aided

cytology system to help diagnose breast cancer and

lung cancer. Based on the segmentation results of our

system, we plan to compute morphometric, textural, and

colorimetric features of nuclei and apply machine learning

techniques to make predictions about the type of the

cancer.
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