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Abstract

This paper is an overview of architectural structures which are composed of
polyhedral cells or closely related to them. We introduce the concept of a
support structure of such a polyhedral cell packing. It is formed by planar
quads and obtained by connecting corresponding vertices in two combinato-
rially equivalent meshes whose corresponding edges are coplanar and thus
determine planar quads. Since corresponding triangle meshes only yield triv-
ial structures, we focus on support structures associated with quad or hex-
dominant meshes. For the quadrilateral case, we provide a short survey of
recent research which reveals the beautiful relations to discrete differential ge-
ometry. Those are essential for successfully initializing numerical optimization
schemes for their computation. Hex-dominant structures may be designed via
Voronoi tesselations, power diagrams, sphere packings and various extensions
of these concepts. Apart from the obvious application as load bearing struc-
tures, we illustrate here a new application to systems for shading and indirect
lighting. On a higher level, our work emphasizes the interplay between geome-
try, optimization, statics, and manufacturing, with the overall aim of combining
form, function and fabrication into novel integrated design tools.

Keywords: architectural geometry, fabrication-aware design, spatial tiling,
polyhedral packing, cell packing, polyhedral mesh, offset mesh, sphere
packing, torsion free support structure, shading system

1. Introduction

The formation of complex materials and structures from smaller and simpler
cells is an omnipresent concept in nature and certainly also in architecture.
While nature is abundant in shapes of cells, architecture - at least so far - had to
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be more conservative and uses simple cells which can be easily manufactured.
Hence, we will deal here mostly with polyhedral cells, i.e., those which exhibit
flat faces. Since part of contemporary architecture favors organic freeform
shapes, we will discuss the following basic question: How can one generate
freeform shells by tightly packing polyhedral cells? We will mainly focus on just one
layer of cells, although we will comment on how to generate multiple layers. In
the actual architectural realization, the polyhedral cells may not be completely
realized or may be decorated with additional detail (see Figures 1 and 3).
Moreover, we will discuss derived structures which are not really polyhedral
anymore, but can easily be generated from polyhedral cell packings.

Figure 1: Real projects exhibiting cell packing structures: Left and Middle:
Details from the roof of the Kogod Courtyard, Smithsonian National Portriat
Gallery, Washington DC, by Foster+Partners. Right: KREOD Pavilions, by
Pavilion Architecture, London (Architect: Chun Qing Li).

The present paper may be seen as a survey with new results. It covers
some core developments in Architectural Geometry of the past few years, but
is written from a somewhat different perspective. We therefore do not discuss
prior research at the beginning of our paper, but prefer to integrate it into the
relevant sections.

Our paper is organized as follows: In section 2, we formulate the problem,
introduce the basic terminology and concepts and focus on cell arrangements
related to Voronoi diagrams and hexagonal patterns. Section 3 presents a
survey of packings with quadrilateral combinatorics and its close relations to
discrete differential geometry. Aspects of statics, especially self-supporting
surfaces, and the rigidity of the presented structures are discussed in Section 5.
Throughout the paper, we illustrate the discussions with various applications,
which are summarized and further discussed in Section 6. This leads us also to
promising directions for future research.

2. Basic types and properties of polyhedral cell structures

A polyhedron is a solid whose boundary has planar faces only; if no confu-
sion can arise, we will also call this polyhedral boundary surface a polyhedron.
The polyhedra shall be tightly packed in order to form a thick shell (see Fig. 2).
Shared faces of neighboring polyhedra will be called inner or transversal faces;
the other faces are boundary faces. Analogously, a polyhedral packing has inner
edges and boundary edges.
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Figure 2: Todo: Introducing the basic terminology

The support structure of a polyhedral cell packing. Packing polyhedra in this way,
the planes of the inner faces, confined by the lines of the inner edges, form
an important structure for our considerations. As we want the packing to
have nonzero thickness everywhere, each inner face contains two inner edges,
which we can connect to a quad (see Fig. 2). The resulting structure of quads
will be called the support structure of the polyhedral cell packing. This name
also indicates an important application: One can align prismatic beams of a
load bearing structure with its faces (see e.g. Fig. 1, left). Then one speaks of a
torsion-free support structure and calls the inner edges node axes.

Polyhedral plate structures. In some cases, it may be possible to close all cells
of the support structure with just two flat faces, one on either side. Then we
have two combinatorially equivalent polyhedral meshes A,B, which form the
boundary of a structure we refer to as a polyhedral plate structure. It is obtained
by joining corresponding vertices and edges in meshes A and B (which have
the particular property that corresponding edges are co-planar). One may see
meshes A and B as variable distance offsets. A practically useful special case
occurs when corresponding faces of A and B lie in parallel planes; then also
corresponding edges are parallel. Such offset meshes have been investigated in
detail (see e.g. [1]). If the plates are of constant thickness (width) w, the planes
of the support structure are bisecting planes of the adjacent face planes of the
plates and the two meshes A and B are so-called conical meshes introduced by
Liu et al. [2]. At each vertex vA of A, the bisecting planes of the incident
edges of A intersect in an inner edge (node axis) nA: Hence, nA is the axis of
a right circular cone which touches all face planes meeting at vA. Note that a
polyhedral mesh whose vertices are all of valence three, is always conical and
thus suitable for generating a polyhedral plate structure of constant thickness.

Boundary meshes A and B of a support structure generate an arrangement
similar to the vertices and edges in a planar tiling. Thus, the basic regular types
can be taken from the planar case: triangular, quadrilateral and hexagonal. In
the plane, we have regular tilings all whose tiles and vertex stars are congruent.
This is clearly not possible for general freeform shapes, even not on the combi-
natorial side. For example, instead of a regular quad tiling, the inner faces will
be arranged in a quad-dominant structure, which may exhibit extraordinary
vertices (valence , 4) and extraordinary faces (non-quads).

Triangular structures. If the support structure is arranged in a triangular way,
all inner edges (node axes) pass through a common point or are parallel. This is
obvious, since (i) the three face planes of a triangular cell intersect in a common
point C or are parallel and thus its three inner edges pass through C or are
parallel, and (ii) neighboring polyhedra share two inner edges. Reformulating
this property, we can say that a triangle mesh does not possess a torsion-free
support structure. In the present context, this is the least interesting case which
will not be further pursued.
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Quadrilateral structures. A quadrilateral support structure is geometrically
very interesting, and its discussion depends a bit on whether is is a plate
structure or not. The quad structure in Fig. 1, left, is obviously not a plate
structure, as is seen clearly in the detail of its upper side in Fig. 1, middle. We
will discuss the remarkable geometry of quadrilateral structures in section 3.

Figure 3: Hex-dominant structures. Left and Middle: The KAUST Breakwater
Beacon at the entrance to the harbor of the King Abdullah University of Science
and Technology in Saudi Arabia, by Urban Art Projects. Right: ICD/ITKE
Research Pavilion 2011 at the University of Stuttgart.

Hexagonal structures. Such structures seem to appear frequently in nature and
are closely related to Voronoi diagrams. We will discuss them below.

2.1. Voronoi diagrams

Given a set of seed points si, a Voronoi diagram associates with each of these
points a cell Cpsiq formed by all points which are closer to si than to any other
seed point sk. For our application, we can place the seeds si on a surface Φ
and consider only that part of the Voronoi diagram which is sufficiently close
to Φ. This determines immediately the support structure of a polyhedral cell
packing, whose nodes are generically of valence three and whose faces tend to
be hexagonal, especially if the cells are roughly of the same size.

A good way to achieve nearly the same size for all cells, is to use a centroidal
Voronoi tesselation (CVT) [3]. In the plane or for a full 3D diagram, this means
that the seeds are the barycenters of their cells. For a diagram on a surface Φ,
the seeds si are placed by an optimization algorithm. With S as the set of seeds
and Vi as cells obtained by restricting the Voronoi diagram V of S to the surface
Φ, such a CVT minimizes

EpS,Vq “
ÿ

i

ż

Vi

}p ´ si}
2dp. (1)

We refer to Yan et al. [4] and for fast computation to Liu et al. [5]. Figure 4
shows examples of such structures.

In order to vary the size of the cells in a controlled way, one can use weighted
Voronoi diagrams, which are also called power diagrams [6]. A seed Si is now a
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Figure 4: Hexahedral support structures of cell packings derived from cen-
troidal Voronoi tesselations on surfaces.

sphere of a certain radius and its cell CpSiq is the set of all points whose power
with respect to Si is smaller than the power with respect to any other seed
sphere Sk. Recall that the power of a point p with respect to a sphere with
center c and radius r is defined as pp ´ cq2 ´ r2. All points which have equal
power with respect to two spheres lie in a plane, the so-called power plane. As
a consequence, the power planes to three spheres (with non-collinar centers)
pass through a line, and four general spheres generate 6 power planes all of
which pass through a point (power center). This is used to show that the cells
defined via the power of the seed spheres are polyhedral. Obviously, if the
spheres are all of the same radius, power planes are bisecting planes and we
get an ordinary Voronoi diagram.

Figure 5: Cell structure based on weighted CVT (the reference surface for this
illustration is a model of the Heydar Aliyev Cultural Center in Baku, by Zaha
Hadid Architects).

The concept of a CVT can be extended to a weighted CVT. One prescribes a
density functionρppq on the input domain (part of 3-space) and seeks a weighted
CVT where each seed sphere center lies at the barycenter of the respective
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cell and the seed sphere radius is given by the density function. Using the
variational formulation, one can extend this also to surfaces by replacing the
integrand in (1) by ρppq}p´si}

2 and thus generate hex-dominant patterns where
the designer can steer the cell sizes (see [4, 5] and for an example, Fig. 5).

2.2. Sphere packings and associated cell packing structures

A special case of power diagrams arises when the seed spheres are tangent
to the planes of their cells. This amounts to tightly packing spheres which are
centered at a surface and provides us with a good way of designing support
structures with well shaped, nearly ’circular’ cells. Schiftner et al. [7] have
discussed the basic geometry and construction of such structures.

We start with an initial triangle mesh whose combinatorics remains fixed
but whose vertices vi are changed in the proximity of the given reference surface
Φ during optimization. At each vertex vi we place a sphere of radius ri; some of
the radii may be fixed, but most will change during optimization. The centers
of adjacent spheres are connected by an edge of the mesh. To achieve tangency
of adjacent spheres and thus a sphere packing, we obviously have to minimize
the following objective function,

fp “
ÿ

edges viv j
p}vi ´ v j} ´ ri ´ r jq

2. (2)

To make sure that vertices stay close to the reference surface Φ and boundary
vertices remain close to the boundary BΦ, we use penalty functions fprox and
f B
prox as follows. Let symbols π and rπ denote the closest point projections onto

the surface Φ and its boundary BΦ, respectively. Further, let τx denote Φ’s
tangent plane in the point x, and Tx denote the tangent of the boundary curve
BΦ. We let

fprox “
ÿ

vertices vi

distpvi, τπpviqq2, f B
prox “

ÿ

bdry vertices vi

distpvi,Trπpviqq2.

The resulting optimization problem “F “ fp ` λ1 fprox ` λ2 f B
prox Ñ min” is a

nonlinear least squares problem which can be solved with a damped Gauss-
Newton method; for details, see [7].

We consider a mesh triangle Ti jk with vertices viv jvk and the pairwise tangent
spheres Si,S j,Sk. Then, the spheres’ tangent planes at their contact points
intersect in the rotational axis of the triangle’s in-circle. This implies that the in-
circles of the mesh faces form a packing in the sense that the circles of adjacent
faces share the same contact point at the common edge; the mesh is therefore
called a circle packing (CP) mesh. The support structure associated with a CP
mesh has the in-circle axes as its node axes. A CP mesh and its sphere packing,
in-circle packing and support structure are illustrated in Fig. 6.

Design flexibility. There is numerical evidence for an intuitively plausible conjec-
ture, namely that the natural correspondence between combinatorially equiv-
alent CP meshes approximates a conformal mapping of surfaces. Employing
results of conformal geometry (see e.g. [8]), one then comes to the conclusion
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Figure 6: A CP mesh is a triangle mesh whose in-circles (orange) form a packing.
It is always associated with a packing of spheres (blue), which are centered at
mesh vertices. The axes of in-circles define the node axes of a hexagonal
support structure whose faces lie in the tangent planes at contact points of
touching spheres.

Figure 7: The connectivity of a CP mesh determines the sphere radii and the
cell sizes of the resulting support structure. Left: A CP mesh with vertices of
valences 4 and 8, with associated sphere packing. Right: Derived quad-octagon
support structure.

that optimization of a triangle mesh towards the CP property works if the ref-
erence geometry is a topological disk or topological sphere. Convergence (on
closed surfaces or with fixed boundaries) is unlikely to happen in other topo-
logical cases [7]. A nice feature of CP meshes and the associated cell structures
is the good control of the combinatorics. In a CVT-based cell structure, non-
hexagonal cells may pop up in an undesired way, but one has the advantage of
no topological restrictions (which also get weakened in CP-meshes if one adds
freedom at boundaries).

2.3. Designing anisotropic cell packings

Much of the work discussed so far can be extended to design cell packings
whose cells exhibit a given anisotropy. Geometrically, we can say that the cells
on the reference surface approximate the shapes of prescribed ellipses. Hence,
instead of using spheres, one uses ellipsoids. This amounts to prescribing a
3 ˆ 3 tensor field Mpxq, at least in the proximity of the reference surface. Then
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the cell centered at a point v should be close to the ellipsoid with equation

px ´ vqT ¨ Mpvq ¨ px ´ vq “ 1.

This ellipsoid can be seen as a unit sphere of a local Euclidean metric which
measures squared lengths of vectors y by }y}2 :“ yTMpvqy.

It has to be expected that CP-meshes and associated sphere packings can
be extended towards anisotropic cell packings as follows. We put the ellipsoid
size distribution into the tensor field Mpxq which is seen as input. Typically
one will prescribe a few tensors and obtain the field by interpolation (for tensor
field design, see also Zhang et al. [9]). To get nice hexahedral cells, one would
now start with a triangle mesh of regular combinatorics and optimize it so that
its edges are of nearly equal length in these local metrics (which actually differ
a bit at the two vertices of each edge). Hence we replace (2) by

fp “
ÿ

edges viv j
rpvi ´ v jq

T ¨ Mpviq ¨ pvi ´ v jq ` pvi ´ v jq
T ¨ Mpv jq ¨ pvi ´ v jq ´ 2cs2. (3)

The desired squared edge length c is also subject to optimization.
Todo: try out!
Shimada [10] formulates the problem of finding anisotropic cells as an el-

lipsoid packing problem. Li et al. [11] extended centroidal Voronoi diagrams
on surfaces to the anisotropic case, but their discussion would go beyond the
scope of our article.

2.4. Hex-dominant plate structures
In general, it is not possible to close each cell in a hex-dominant support

structure with two faces, one on either side, to obtain a polyhedral plate struc-
ture. Using one plate per cell, we will see misalignment on the outside. This
misalignment can be a design element (Todo: rendering with hexagonal stone
cells like facades of buildings in the Middle East). Certainly, there is a variety
of options to arrive at a polyhedral cell packing by using more faces per cell.
This is illustrated in Fig. 8 and in Fig. 3, right (for details on this bio-inspired
structure, see Knippers et al. [12]).

To design a polyhedral plate structure with hex combinatorics, one has to
start from a polyhedral hex mesh. Their computation appears at first sight easy
since a Phex mesh can be obtained by intersecting tangent planes at the vertices
of a triangle mesh [13]. A vertex of valence 6 in the triangle mesh thus generates
a hexagon of the tangent plane mesh. This approach has various shortcomings,
including numerical instability, high sensitivity and lack in aesthetics. An
improvement can be achieved by slightly deviating from tangent planes based
on a variational formulation [14]. However, the problem is even harder: if one
wants to have aesthetically pleasing faces, which cannot be convex in negatively
curved areas of an underlying reference surfaceΦ (see Fig. 9, right), one should
base the design of the hex mesh on a careful curvature analysis of Φ, since
the hexagons approximate the shapes of Φ’s Dupin indicatrices (see [15]). The
advantage of polyhedral meshes with planar faces and vertices of only valence
3 is that they always define plate structures of constant thickness (see Fig. 9).
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Figure 8: Left: A hexahedral support structure can in general not be extended to
a hexagonal plate structure. Closing each cell just with a single plane on either
side of the shell, results in misalignment which is particularly apparent in
negatively curved areas of the reference surface. Right: A hexahedral support
structure, derived from a CP mesh and extended towards a honeycomb-like
polyhedral cell structure.

Figure 9: Hex-dominant plate structure of constant width.

2.5. Basic patterns via parameterization algorithms

Arbitrary patterns on surfaces can be generated by parameterization al-
gorithms. Parameterization is of central importance for texture mapping in
Computer Graphics and thus it has been studied extensively . Its discussion
within the present context would lead too far. However, as we have dealt
here a lot with hexagonal patterns, we refer to the work of Nieser et al. [16]
on hexagonal global parameterization; this paper also contains a long list of
references on parameterization.

2.6. Computing a support structure to a mesh

Given a mesh A with vertices ai, can we find a mesh B with vertices bi so
that they define a support structure? This associates a constraint with each
edge aia j, namely planarity of the quad aia jb jbi. We have one degree of freedom
for the plane of this quad. At a vertex of valence ν, all these planes have to be
co-axial, which amounts to ν´ 2 scalar constraint equations.
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A support structure to a mesh all whose vertices have valence 3, gives
rise to one degree of freedom per face and one scalar condition per vertex.
Leaving aside a possible boundary, the numbers v, e of vertices and edges
respectively, are related by 2e “ 3v, and thus we have 1.5 times more degrees
of freedom than constraints and an optimization algorithm will work. We can
even be more specific and try to get node axes as orthogonal as possible to the
reference surface (see Figures 10 and 18), or planes of the structure arranged
so that they optimally block sun light for selected sun positions (Fig. 19). The
formulation and implementation of the optimization algorithm follows the final
optimization step suggested by Wang et al. [17] for the harder case of quad
structures.

Figure 10: Computing a support structure for a hex mesh so that node axes
are as orthogonal as possible to the reference surface. Left: Initialization of
the optimization with node axes as surface normals; right: after optimization
towards planarity of faces. The deviation from planarity is color coded by the
diagonal distance in the quads, based on a scale which sets the average edge
length in the hex mesh to 1.

The above count of degrees of freedom also shows that chances to compute
a support structure to a quad mesh (without allowing to adapt the mesh) are
much smaller, since we have 2 constraints for a vertex of valence 4, leading
roughly to balance between the number of unknowns and degrees of freedom.
This is not sufficient if the support structure has to satisfy additional constraints
like orthogonality to a reference surface or blocking of sun. Fortunately, as dis-
cussed in the next section, the quadrilateral case is deeply rooted in differential
geometry and this helps us to succeed.

3. Quad-dominant structures

3.1. Structures from planar quad meshes
Todo: very short, since addressed well in other papers. Only the basic

insight is important here.
PQ; integrable systems and DDG [18] appearance of special cases in architec-

ture: Glymph [19] conical [2], multi-layer [1] support structures arise through
parallel meshes.

Further references to PQ meshes and more general polyhedral meshes:
Zadravec et al. [20], Liu et al. [21], exploration [22], alternative computations
[23, 24], Vaxman [25] linear spaces in the space of polyhedral meshes [26]
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b0 j b1 j b2 j b3 j b4 j

a0 j a1 j a2 j a3 j a4 j

(ii)

(i)

Figure 11: A quadrilateral support structure defines prismatic beams of con-
stant height along a mesh polyline tai, ju j“const in exactly two cases: (i) Unfolding
the discrete developable through the mesh polyline either yields a straight strip,
or (ii) a strip where the lines connecting ai, j, bi, j are bisecting the angle between
adjacent edges. The example at left has constant beam height along one family
of beams (the larger one), it belongs to case (ii).

sphere packing with quad combinatorics: discrete isothermic surfaces:
Bobenko et al. [27], approximately isothermic [28].

Design flexibility. shortly discuss the degrees of freedom for the important cases.

3.2. Support structures for non-polyhedral quad meshes: Discrete torsal parameteri-
zations of line congruences

Todo: Very short description of the connection to line congruences and
reference to DDG Doliwa [29] and our SGP paper [17].

Relation to support structures associated with PQ meshes. Into a quad support
structure S, we can (at least locally) fit a PQ mesh M whose vertices lie on
the node axes of S. To illustrate this claim, let us take a simply connected
quad support structure S with grid combinatorics. Then, we can choose two
transversal polylines of the PQ mesh aligned with S and the rest follows by
planarity of faces, since each vertex of the PQ mesh is constrained to a given
node axis of S. However, this construction does not have enough degrees of
freedom to maintain proximity to a reference surface. Likewise, as discussed
above, if we first compute the PQ mesh, we usually do not have enough degrees
of freedom to attach a support structure which satisfies additional requirements.
Hence, if we are just interested in a quad support structure and not in a PQ
mesh attached to it, it is not a good ideas to base its construction on a PQ mesh
and the related concept of parallel meshes.

Beams of constant height. The question if edges of meshes A,B with planar faces
can be at constant distance was studied by [1]. It turns out that A must have
special properties. For a general mesh A lying on a discrete torsal parametriza-
tion we can always achieve parallel edges along one family of mesh polygons,
but not for both. In this one family one can achieve constant height of the beams
in exactly two cases which are illustrated by Figure 11.
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Design flexibility. Todo

Multiple layers. Todo Straightforward for Voronoi-based cell packings. Exten-
sion of quad structures to 3D, i.e. hexahedral cells with planar faces, see [18].
Computational approach in our paper on circular arc structures, but not yet
fully developed.

Figure 12: A CP mesh generates a hex-mesh (left), whose edges are rotated
so as to form nearly equally sized triangular nodes (middle) along which the
beams of a reciprocal structure for the Kreod Pavilion are placed (right); images
courtesy Evolute, Vienna.

4. Derived structures

Resolvig nodes and reciprocal structures. There are many ways to derive further
structures from those we have discussed so far. Given a support structure,
one may resolve its node axes into cells either by an appropriate rotation or
translation of the face planes of cells. An example is provided by Fig. 12, where
the nodes of valence 3 in the original structure become triangular cells. They are
stable and easier to be manufactured from wooden elements than the original
nodes. The resulting design shares some basic geometry with reciprocal frame
structures. For a classical architectural discussion of reciprocal structures, see
[30]; a very recent computational design approach is due to Song et al. [31].

There is obviously a close connection between planar tilings and patterns
arising in reciprocal frame structures (for another example based on a quad
mesh, see Fig. 13). It is not necessary to start the computation from a support
structure with nodes of higher valence and resolve them; we can generate
reciprocal structures directly, e.g. by parameterization algorithms (see Song et
al. [31]). The challenge lies in providing the designer with handles to steer
shape, orientation and size of the cells. This is part of our ongoing research and
is connected to the computational design of shading structures.

Transfer of 3D textures. Basic support structures suggest a general way of gen-
erating designs made from repeating small elements. This is illustrated by
Figure 14 with help of a quadrilateral support structure. It consists of many
combinatorial cubes, and we can use 3D texture mapping to transfer any master
element (contained in the unit cube) to each of them.
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Figure 13: Reciprocal frame structures with quadrilateral cells. The structure
on the right has been optimized for blocking light at selected positions of the
sun.

Figure 14: A design by Egon Eiermann, at left, motivates a shading system in
form of a 3D texture. A quadrilateral support structure (transparent) allows us
to transfer this design to a curved building skin.

Cells bounded by developable surfaces. A sequence of planar quadrilaterals is a
discrete developable surface. This interpretation motivates us to apply a re-
finement procedure according to [2] to a support structure in order to convert it
into a system of smooth developable surface strips: we iteratively apply splitting,
smoothing, and optimization towards planar faces (see Fig. 15). Depending
on how exactly the splitting is done, we end up with different patterns of de-
velopables — Fig. 15, top row, and Fig. 16, left, shows one which follows the
mesh polylines, while Fig. 15, bottom row, Fig. Fig. 16, right, and Figure 17 ex-
hibit one developable per cell. Applications for the former are structures built
from plywood or sheet metal, whose manufacturing depends on the developa-
bility property. The latter is useful for applying known methods of lighting
to curved building skins (see Figure 17; for previous work combining shad-
ing with subdivision, but such that the shading system follows the edges of
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Figure 15: Subdivision of a quadrilateral support structure in direction of mesh
polylines (top row) and per cell (bottom row). From left to right: Original, and
result after 1,2 and 3 rounds of subdivision.

Figure 16: Packings of cells which are bounded by developable surfaces and
generated from a quad support structure via subdivision along mesh polylines
(left) and faces (right).

a mesh created by subdivision, see http://aedasresearch.com/features/view/all/
method/envelope-design).

5. Rigidity and statics

Todo: Short discussion of thrust networks and design of self-supporting
masonry structures [32, 33, 34, 35, 36, 37]. Hexahedral cell packing (bricks) in
particular in the paper by Panozzo et al [36].

Torsion-free support structures attached to PQ meshes and in static equilib-
rium [37], formfinding with polyhedral meshes and associated support struc-
tures [38]

Infinitesimal flexibility test through velocity fields. Address stability of
nodes in reciprocal structures.

Todo: Example of rigidity analysis for a reciprocal structure with quad
combinatorics. We can show that the system gets more rigid as the four axes
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Figure 17: Indirect lighting by oblique cylinders (at left, High Museum of Art,
Atlanta) motivates a shading system consisting of developables, created by a
subdivision process.

in a node do not lie in a bundle. Similar to our paper for the Design Modeling
Symposium.

Figure 18: Hexagonal structures for a self-supporting surface. The underlying
support structure is that of Fig. 10, right. The mis-alignment of plates can be
used for the generation of a pattern which becomes particularly visible through
light and shade effects. The two examples differ in the height computation for
the hexagonal cells, giving rise to different patterns.

6. Applications and Discussion

There are numerous applications of cell packing structures, simply because
it is in most cases not feasible to build a large structure in a monolithic way.
One has to decompose it into smaller units, which naturally leads to some
kind of cell packing. Obviously, the geometric concept of support structures
as discussed in our paper, is suitable for load bearing structures, and has been
used for that in many real projects, espcially steel/glass constructions. Cell
packing structures, in particular those which are statically optimized (such as
the ones in Fig. 18), may be built from opaque material like stone, leading to
contemporary freeform designs from natural and maybe often locally available
material.
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A wide and not yet systematically studied application area is the use of cell
packing structures for shading and indirect lighting (see Wang et al. [17] and
Figures 20 and 19).

Figure 19: In this example, the hex mesh of Fig. 10 has been extended to a
support structure which blocks light for a given light direction and thus is
suitable as a shading structure.

Conclusion and future work

We have provided an overview of architectural structures which are com-
posed of polyhedral cells or closely related to them. As this is a wide topic,
our paper is certainly biased towards work in Architectural Geometry, espe-
cially by researchers from Geometry Processing. We added new aspects at
various places, having in mind the overall goal of combining form, function
and fabrication into novel integrated design tools.

We have very briefly touched our own ongoing work on the theme of
this paper, which develops around structurally sound shading systems based
on reciprocal meshes in a design environment which leaves enough artistic
freedom and helps to keep the structure as light and cost-effective as possible.

It is hoped that our discussion illustrated the necessity to carefully elab-
orate on the relationships between geometry, numerical analysis and aspects
of statics, functionality and manufacturing. In this area, we have so far only
scratched the surface, and there are plenty of possibilities for future research.
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Figure 20: Two aligned quadrilateral support structures, one for load bearing
and, on top of it, one for shading or indirect lighting. Left: The top structure
is optimized for shading during the hottest part of June 21st (location: Lon-
don). Right: The top structure blocks direct sunlight, but reflects light into the
entrance hall of this subway station. For details on the computation of such
structures we refer to Wang et al. [17]
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