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Cell-penetrating peptides and antimicrobial peptides:
how different are they?
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Some cationic peptides, referred to as CPPs (cell-penetrating pep-
tides), have the ability to translocate across biological membranes
in a non-disruptive way and to overcome the impermeable nature
of the cell membrane. They have been successfully used for drug
delivery into mammalian cells; however, there is no consensus
about the mechanism of cellular uptake. Both endocytic and non-
endocytic pathways are supported by experimental evidence. The
observation that some AMPs (antimicrobial peptides) can enter
host cells without damaging their cytoplasmic membrane, as well
as kill pathogenic agents, has also attracted attention. The capacity
to translocate across the cell membrane has been reported for some

of these AMPs. Like CPPs, AMPs are short and cationic sequences
with a high affinity for membranes. Similarities between CPPs and
AMPs prompted us to question if these two classes of peptides
really belong to unrelated families. In this Review, a critical
comparison of the mechanisms that underlie cellular uptake is
undertaken. A reflection and a new perspective about CPPs and
AMPs are presented.

Key words: antimicrobial peptide, cell-penetrating peptide, drug
delivery, internalization, translocation mechanism.

INTRODUCTION

The hydrophobic nature of cellular membranes makes them im-
permeable for most peptides, proteins and oligonucleotides. Dif-
ferent strategies have been employed to penetrate the membrane
barrier and deliver hydrophilic molecules inside the cell for either
experimental or therapeutic purposes. So far, microinjection,
electroporation, liposomes and viral vectors have been used.
Most of these delivery strategies have serious drawbacks, such as
low efficiency, poor specificity, poor bioavailability and extensive
toxicity [1]. Moreover, they are time-consuming. The endocytic
route has been used as an alternative for the import of hydrophilic
macromolecules into living cells [2]. However, the proteins
engaging in this mechanism stay enclosed within endosomes,
and so fail to access the cytoplasm, thus missing their final target.

Peptides as vectors to introduce macromolecules into cells

An efficient strategy with which to penetrate the membrane barrier
was identified by the observation that some intracellular proteins,
when added to extracellular medium, were able to pass through the
membrane. Tat (HIV-1 transcriptional activator protein) [3] and
pAntp (Drosophila antennapedia transcription protein) [4] were
the first proteins to be identified with this characteristic. The abi-
lity to translocate is attributed to basic amino acid sequences
in these proteins, and the minimal peptide sequence necessary
for the translocation to occur within Tat [5] and pAntp [6] have
been elucidated. The observation that these basic peptides allow
cellular delivery of conjugated molecules such as peptides [7] or
proteins [8] made these molecules attractive, and a new class of
vectors, initially known as PTDs (protein transduction domains)
[9], but more recently re-baptized as CPPs (cell-penetrating
peptides) [10], emerged. This family now includes all the peptides
with the ability to translocate across membranes, regardless of
whether they are natural, synthetic or chimaeric peptides.

So far, these vectors have been used to translocate a wide range
of macromolecules into living cells, including proteins [8,9,11],
peptides [7,12], oligonucleotides [13,14], peptide nucleic acids
[15] and polysaccharides [16]. Nanoparticles [17] and liposomes
[18] have also been internalized by means of CPPs.

Can AMPs (antimicrobial peptides) also work as vectors?

Most organisms produce gene-encoded AMPs as innate defences
to prevent colonization and infection by several microbial
pathogens [19–22]. Despite their ubiquity, AMPs can have very
distinct sequences and modes of action [23,24]; nonetheless,
they usually share several characteristics, such as their short
length (a few tens of residues) and their cationicity, typically
of charge 4+ or 5+ [25]. Other features of these peptides include
their strong interaction with lipidic membranes, a usually broad
killing spectrum and their ability to preserve host-cell integrity
[23,24].

Clinically these peptides display antimicrobial activity at
micromolar concentrations or less, and target bacteria do not seem
to readily develop resistance. These properties make AMPs very
promising candidates for new generations of drugs to fight anti-
biotic-resistant strains of pathogens [23,26].

Although most AMPs seem to act mainly at the membrane level
[24,25], their translocation into the cytoplasm is not uncommon
[27,28]; because of this property, membrane-crossing AMPs have
also been used as templates for CPP development [29]. Thus
AMPs can have clinical applications both as antibiotics and as
precursors of drug transporters.

HOW DO CPPs TRANSLOCATE ACROSS THE CELL MEMBRANE?

There is no consensus regarding the mechanism of translocation of
CPPs; the information available in the literature is controversial.
First it was suggested that these peptides translocate by a
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Table 1 Source, amino acid sequences and possible internalization mechanism for some examples of peptides that work as CPPs or as AMPs

Name (sequence) Source [reference] [internalization mechanism(s), reference(s)]

Penetratin (RQIKIWFQNRRMKWKK) pAntp homeodomain (amino acids 43–58) [6]
(mainly endocytosis [39], endosomal escape mediated by pH gradient or
transmembrane potential [36,53])

Tat (GRKKRRQRRRPPQ) HIV-1 transcriptional activator Tat protein (amino acids 48–60) [5]
(mainly endocytosis [40], endosomal escape mediated by pH gradient or
transmembrane potential [37])

Pep-1 (Ac-KETWWETWWTEWSQPKKKRKV-cysteamine) Amphipathic chimaeric peptide with a tryptophan-rich domain and an NLS [57]
(physical mechanism mediated by peptide–membrane interaction promoted by
pore formation [60] or by transmembrane potential without pores [35])

S413-PV (ALWKTLLKKVLKAPKKKRKV-cysteamine) Chimaeric peptide with AMP dermaseptin S4 and an NLS [61]
(mainly physical mechanism promoted by a transient membrane destabilization [62])

Magainin 2 (GIGKFLHSAKKFGKAFVGEIMNS) AMP from the skin of the South-African clawed frog Xenopus laevis [101]
(translocation mediated by toroidal pore formation; peptide molecules translocate
stochastically as the pore disintegrates [28])

Buforin 2 (TRSSRAGLQFPVGRVHRLLRK) AMP from the stomach of the Korean common toad Bufo bufo gargarizans [102]
(peptide molecules translocate stochastically after the formation and disintegration
of a non-permeabilizing pore-like structure [84])

Apidaecins (RP - - - - - PRPPHPR (conserved AMP from the lymph fluid of several insects [103]
sequence among class members) (receptor-dependent membrane docking and translocation into target cell [104])

mechanism independent of receptors [30] and independent of
the endosomal pathway [5,6]. A physically driven mechanism
was suggested, because the cellular uptake at 4 ◦C and 37 ◦C was
similar [5,6,30,31].

More recent observations led to controversial results, sug-
gesting that the cell localization observed for CPPs is an artefact
and results from cell fixation for immunochemistry and cell visu-
alization [32]. The high peptide affinity for membranes may allow
CPPs to remain attached to cells during washing. During the cell
fixation process, CPPs are released, and the apparent localization
inside the cell results therefrom. However, direct observation
of translocation in model membrane systems for some CPPs
[33–35] supports the existence of physically driven mechanisms
governed by spontaneous peptide–membrane interactions. The
translocation mechanism issue is thus complex and may differ for
different classes of CPPs (Table 1).

CPPs derived from natural proteins

The CPP derived from pAntp has 16 amino acids and is the
sequence necessary and sufficient for translocation to occur [6]
(Table 1) and is commonly called ‘penetratin’. The Tat fragment
corresponding to residues 48–60 [5] (Table 1), and a shorter
fragment (residues 47–57) [18,36,37], have frequently been used
in CPP research.

An endosomal pathway for internalization was initially ex-
cluded by comparison of the uptake at 4 ◦C and 37 ◦C under fixa-
tion conditions [5,6,30]. After re-evaluation for the interference of
artefacts during fixation, an internalization mediated by endo-
cytosis was concluded for both penetratin [38,39] and Tat peptide
[37,40–43]. The basic amino acids are essential for translocation
to occur, and membrane binding seems to be the first step
prior to endocytic uptake. Heparan sulfate proteoglycans at the
cell membrane were proposed to act as receptor for penetratin
[42,44–46] and Tat peptide [42,47].

Although it is accepted that these CPPs can enter the cells
by endocytosis, there is no consensus in the specific endocytic
pathway used for the import of these arginine-rich peptides. A raft-
dependent pathway involving macropinocytosis [48] or caveolae

[41,49,50], or a clathrin-dependent endocytosis [47,51,52], were
proposed. The dissimilarities among these results can arise from
the use of different cell lines, methodologies, labelled peptides,
protein-conjugated peptides and different conditions, which can
inhibit some pathways while favouring others.

Even in a picture where the endosomal pathway emerges as the
physiological uptake of CPPs, the escape from endosomes into
the cytoplasm through a physically driven mechanism persists.
An escape from endosomes due to acidification was proposed for
penetratin and Tat peptide [36,37]. This hypothesis is supported
by the results obtained by Gräslund and co-workers [53] with
penetratin encapsulated in large unilamellar vesicles. The escape
of penetratin occurred only in the presence of a pH gradient. The
role of intracellular pH in the internalization of CPPs was also
investigated using neutralization agents [38].

A dependence of translocation on a negative transmembrane
potential was identified in vitro for both penetratin and Tat peptide
[34] and in vivo for Tat peptide [54]. Terrone et al. [34] suggested
that a fraction of the peptide can transverse through the membrane
by a transmembrane potential-driven mechanism, whereas the
other fraction is internalized by an endosomal pathway. Once in-
side the endosomes, the transmembrane potential (luminal side
positive) drives translocation from the endosomal lumen to the
cytoplasm. By contrast, Drin et al. [38] did not find any internal-
ization of penetratin in liposomes, even in the presence of a trans-
membrane potential. Recently Bárány-Wallje et al. [55], following
electrophysiological measurements in planar bilayers, failed to
detect translocation, even in the presence of applied voltages.

Chimaeric peptides

The usefulness of peptides as vehicles to introduce macromole-
cules into cells led to the development of many chimaeric peptides.
Pep-1 (acetyl-KETWWETWWTEWSQPKKKRKV-cysteamine)
is a CPP with primary amphipathicity (i.e amphipathicity resulting
from the amino acid sequence itself, not from the folding structure
[56]) that comprises a tryptophan-rich so-called ‘hydrophobic’
domain, a hydrophilic domain derived from an NLS (nuclear local-
ization signal) of SV40 (simian virus 40) large T-antigen, and a
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spacer between them [57]. A cysteamine group is present at the
C-terminus [57] (Table 1).

Pep-1 has been used to introduce large proteins inside cell lines
[57–59]. An endosomal pathway was rejected because (1) there
was no difference in translocation efficiency at 37 ◦C and 4 ◦C [57]
and (2) no co-localization of a delivered protein (β-galactosidase
from Escherichia coli) with different cellular organelles (early
endosomes, caveosomes and lysosomes) was detected [59]. By
contrast, Weller et al. [58] proposed an endosome-mediated mech-
anism based on the internalization of Pep-1–protein complexes in
the presence or absence of endocytic inhibitors.

Deshayes et al. [60] proposed a transient transmembrane-pore-
like structure promoted by α-helix conformation of the hydro-
phobic domain when it interacts with membranes. This conclusion
was not corroborated by other groups, because no membrane leak-
age was detected [35,58]. An alternative mechanism, mediated
by electrostatic peptide–lipid interactions, was proposed after
observation that Pep-1 translocation both in vitro [35] or in vivo
[59] only occurs in the presence of a transmembrane potential.

When Pep-1 was modified at the C-terminus [lack of cysteamine
group and grafting of a CF (carboxyfluorescein) group], the mem-
brane affinity and the translocation efficiency was truly impaired,
but a small uptake seems to occur by an endocytic mechanism
[16].

The chimaeric peptide S413-PV, which results from the combi-
nation of a 13-amino-acid sequence derived from the dermaseptin
S4 (S413 domain) with the NLS from SV40 large T-antigen (see
Table 1), was proposed as a potential vehicle to introduce macro-
molecules into cells [61]. The uptake of this peptide under non-
fixation conditions was not decreased in the presence of endocytic
inhibitors [62]. An endocytic uptake was only evident at low
peptide concentration [63]. The binding of the S413-PV peptide to
the cell membrane is promoted by electrostatic interactions with
negatively charged components at the cell surface, and a confor-
mation change in the S413 domain upon insertion into the bilayers
was detected [62]. The translocation of S413-PV across the cell
membrane is considered to be a consequence of a transient mem-
brane destabilization produced by peptide–membrane interactions
[62]. Endosomal internalization at low peptide concentration
suggests that higher peptide concentrations are necessary to
induce membrane destabilization.

Translocation mechanism or mechanisms?

Considering the abovementioned examples, it is clear that the
mechanism by which CPPs translocate across cell membrane and
deliver their cargoes in the cytosol is far from being totally under-
stood. Although some CPPs are able to translocate by an endocytic
pathway, the escape from endosomes demands a physically driven
mechanism.

The affinity of each CPP for lipid bilayers may be the key factor
for their main mechanism of uptake. Penetratin, for instance, does
not show a strong affinity for zwitterionic membranes [46,64,65]
and does not induce significant membrane destabilization [66].
Interaction with model membranes only occurs in negatively
charged lipid bilayers [46,65]. In studies of the interaction of this
peptide with eukaryotic cells, negatively charged proteoglycans
presented at the cell surface were regarded as essential for trans-
location to occur [42,44,45]. Cellular uptake of penetratin occurs
via endocytosis, but requires the expression of proteoglycans [42],
which demonstrates the importance of electrostatic interactions in
increasing the affinity of the peptide for cell membranes [45].

By contrast, Pep-1 has a high affinity for lipidic membranes,
even in the absence of negatively charged phospholipids or pro-
teoglycans [67], and it induces significant membrane destabi-

lization [35], which seems to favour internalization. Moreover,
the introduction of a CF dye into the hydrophilic domain of
Pep-1 and/or deletion of a cysteamine group decreased the
peptide’s affinity and, consequently, its uptake [16,58], and a
slight internalization by endosomal pathway occurs [16]. This
suggests that the membrane affinity and the capacity to destabilize
it dictate the extent to which a peptide enters the cell by a physical
mechanism (a fast process during which the endosomal pathway
may be considered stationary) to the detriment of the endosomal
pathway.

The hypothesis of the co-existence of endosomal and physically
mediated mechanisms was also proposed by Boisseau et al. [68]
in a study with maurocalcine, a CPP isolated from the Israeli gold
scorpion (Scorpio maurus palmatus). A contribution of both me-
chanisms was identified where the physically driven mechanism
results from a transmembrane potential. Moreover, Nakase et al.
[69] showed that greater amounts of oligo-arginine were found
in the cytoplasm when cells were incubated at 4 ◦C than at 37 ◦C.
They proposed that, when endosomal pathways are inhibited and
an alternative pathway can operate, the peptide is more efficiently
translocated to the cytosol. When incubation is at 37 ◦C, oligo-
arginine release in the cytoplasm is difficult, owing to endosome
entrapment.

Translocation by a physical mechanism demands not only the
existence of a high membrane affinity, but also a promoting force:
pH gradients [53] and transmembrane potentials [34] are two poss-
ible driving forces. The existence of such driving forces is well
understood in the cell context, where in/out media are char-
acterized by the preservation of gradients.

HOW DO AMPs GET INSIDE CELLS?

The mechanisms by which AMPs gain access to a cell’s interior
can be classified as pore-dependent and pore-independent, the
former being the most usual. In fact, there are relatively few AMPs
that do not exert their main function via cell lysis, membrane
permeabilization or other forms of bilayer disruption. Few AMPs
attack internal targets, and, of those, only a small number can do
so without membrane perturbation [70].

AMPs that induce membrane permeabilization

After the initial peptide–membrane interaction, mechanisms
diverge; besides lysis, usually by a mechanism known as the
‘carpet’ model [71,72], two other models have been proposed for
AMP pore formation: the barrel-stave pore and the toroidal pore
(for further detailed information, see references [73,74]).

Independently of the pore type, diffusion of free peptide through
the pore may not be the principal process of translocation; instead,
it has been proposed that it is the peptide molecules that are in-
volved in pore formation that stochastically translocate as the pore
disintegrates [28]. Several factors support this statement, the most
relevant being the fact that, for AMPs, the local concentration
of membrane-bound peptide molecules is usually several orders of
magnitude higher than in the aqueous phase (e.g. [75,76]); as
such, there will be many more peptide molecules available for
pore formation than for pore crossing. In addition, pore diameters
are relatively narrow and usually not longer than the length of the
peptides (alamethicin barrel stave pores have a diameter of 2–3 nm
[77] and those of toroidal mellitin have a diameter of 3–4 nm [74]),
preventing or hindering a free diffusion of the peptide; lastly, pore
lifetimes are in the microsecond-to-millisecond range (between
40 µs for magainin and 200 ms for dermaseptins [28,78]), which
is long compared with a single-molecule translocation time, but
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probably not long enough to quickly equilibrate inner and outer
peptide concentrations.

Given this hypothesis, pore formation can be regarded not only
as a membrane perturbation process, but also as an important
intermediate step towards cellular invasion by AMPs. This is
in agreement with recent findings that indicate that a synergic
effect of activity at both membrane and cytoplasm levels may be
required to fully explain the mechanisms of some pore-forming
AMPs [79–81].

Non-lytic AMPs

For AMPs that preferentially attack internal cellular targets,
similar translocation mechanisms have been reported: for buforin
2, which translocates efficiently, but with little membrane activity
[70,82,83], the structure and orientation in the bilayer have been
observed to be very similar to those of magainin 2 (Table 1)
[83,84]. From these results a model was proposed whereby buforin
2 molecules would form a toroidal pore, just as magainin 2 does,
but less stable; this would result in shorter pore lifetimes – with a
concomitant decrease in permeabilization – at the same time that
the translocation rate would increase because pore disintegration,
which is the actual translocation step, would become more
frequent [83,84]. This model is supported by results that show
that the presence of bilayer components that prevent the formation
of toroidal pores (such as dioleyl phosphatidylethanolamine [28])
inhibit buforin 2 translocation, whereas anionic phospholipids,
which decrease the charge repulsions between the cationic peptide
molecules, stabilize the pore to a point that significant leakage
and flip-flop is observed [84]. Buforin 2 translocation has also
been shown to withstand cargo addition, as demonstrated by the
attachment of green fluorescent protein [29,85], which makes this
peptide a promising candidate for its development into a CPP.

Other mechanisms of translocation

Apidaecins, which are another class of non-lytic AMPs that are
able to kill bacteria with undetectable membrane permeabili-
zation, act by binding to a cytoplasmic target (Table 1) [86]. In this
case, translocation has been proposed to occur by specific inter-
action with a putative membrane permease or transporter in the
target bacterial cell; this was suggested by the fact that the all-D
enantiomers of the peptides lose the ability to cross the membrane
[86]. This characteristic confers a high selectivity on these pep-
tides, which can even be modulated [87], but, on the other hand,
the need for a membrane transporter makes apidaecins unap-
pealing as templates for CPP design.

Despite their apparent simplicity, many AMPs have been shown
to possess activity-specific regions: through sequence manipula-
tion it has been possible to regulate translocating behaviour, target
specificity or antimicrobial efficiency [87–89]. By means of these
alterations, it has become possible to broaden the spectrum of CPP
template candidates beyond non-cytotoxic translocating AMPs.
This has been taken advantage of, for example, in the derivatives
of the membrane-active Bac7 peptide [29,88,90], which, unlike
their precursor, are not membrane-disruptive, but have retained
translocation capabilities.

CPPs AND AMPs OR JUST MEMBRANE-ACTIVE PEPTIDES?

Membrane translocation is a corollary for membrane permeabili-
zation. Although treated differently by people interested in CPPs
and AMPs, the ability to reach the inner leaflet of lipid bil-
ayers is of crucial importance to both. Potentially, all CPPs are
AMPs and all AMPs are CPPs. At high enough concentration, pep-

tides reported as CPP perturb membranes and become membrane
permeabilizers (see reference [91], in which antimicrobial activity
of different CPPs is evaluated), whereas AMPs may reach cyto-
plasmatic targets before membrane permeabilization. This is
not surprising, because both CPPs and AMPs are very similar
molecules: short cationic peptides. It should be stressed that both
classes cannot be differentiated on account of their structure
because there is a wide diversity of conformations within each
class of peptides [25,92]. The attention devoted to both CPPs
and AMPs is very application-oriented, which dictates why
these very similar classes of molecules are considered in such
a separate fashion. CPPs are mainly studied by people focusing
on gene therapy and drug delivery. AMPs are mainly regarded as
tools to fight bacterial infections. However, from the molecular
mechanistic point of view, the separation of these peptides into
two groups is really rather academic.

Cellular membranes of target cells where the activity of these
two peptides are evaluated are quite different. CPPs are generally
evaluated against mammalian cells, whereas the target of AMPs
is the bacterial cell. The major differences rely on anionic-lipidic
and cholesterol contents. The bacterial membrane has a higher
percentage of negatively charged lipids and does not contain
sterols [24]. Different effects reported with CPPs and AMPs
can arise from the differences in membrane composition, factors
which modulate peptide affinity and membrane destabilization.

Considering the overlap between the mode of action of CPPs
and AMPs, it does not seem reasonable to obstinately seek an
exclusive answer to the question whether CPPs enter cells through
endocytic or physical processes. As indicated above in the present
Review, depending on circumstances, the same peptide may
potentially use both [16,63,68]. Moreover, endocytic entrapment
has to be followed by physical membrane translocation if the
peptide is to reach the cytoplasm. The physical pathway can be
mechanistically described by the interaction equilibrium between
the peptides in the medium and the outer leaflet of membranes,
perturbation of bilayers, translocation among leaflets and a
second equilibrium of the peptides between the inner leaflet of
the membrane and the reducing conditions of the cell interior
[67,93–95] (Figure 1). A more effective or faster formation of a
membrane-disturbing structure, mediated by the AMP magainin,
was identified when a transmembrane potential was present [96].

Certain chimaera peptides, such as Pep-1, may even be con-
sidered a ‘blend’ between AMPs and CPPs. Although reported
as a CPP, Pep-1 is a strongly amphipathic cationic peptide,
rich in basic amino acids and tryptophan, having a proline residue
in its sequence. These are classical characteristics attributed to
AMPs. The ability to cysteine-bridge monomers, which greatly
improves translocation efficiency, further increases the similar-
ities to AMPs. Not surprisingly, Pep-1 uses mainly physical routes
to translocate membranes [35,57,59]. However, this route is not
always operative [16], and endocytic pathways are alternatives.
The results obtained with Pep-1 confirm the co-existence of
endocytic and physically mediated pathways. Such co-existence
was previously proposed by other authors [97] using other CPPs,
but this proposal was largely overlooked. The kinetic factor
is important, as progress through physically driven pathways is
rapid compared with that through endocytic pathways: when
both physical and endocytic pathways are operative, the physical
pathway is dominant, owing to faster kinetics [67,93].

These peptides are able to destabilize the membrane (fusion and
vesicle aggregation were detected) without evidence for pore
formation or flip-flop [35,66]. A ‘membrane-thinning’ effect was
proposed for the AMP magainin 2 [98], in which the peptide
aggregates on the surface of the membrane and the decreased local
surface tension allows the peptide to intercalate the membrane.
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Figure 1 CPP translocation by a physically driven process can be regarded
as a composite of three sequential steps

(A) The peptide (dark-grey cylinder) inserts in the bilayer outer interface (light-grey head-groups
with fatty acid tails) and causes local membrane perturbation. (B) Owing to a membrane gradient
(e.g. transmembrane potential, pH gradient) or concentration effects, the peptide overcomes
the hydrophobic core of the bilayer by an unknown mechanism. (C) The peptide is released
from the inner leaflet of the membrane (blue head-groups with fatty acid tails) to the cytoplasm.
In a model artificial system (e.g. a vesicle) the system would tend to an equilibrium that can
be accounted for by three different partition constants, one for each of the elementary steps
(A, B and C).

Flexible sealing between peptide side groups and lipid head-
groups minimize leakage during the peptide passage through the
membrane [29].

A pore-formation mechanism was proposed for MPG (a 27-
residue amphipathic peptide) and Pep-1 [60,99], which is also
a common mechanism used by antimicrobial peptides. In the
case of a transmembrane pore, a large pore would be necessary
to allow the passage of attached macromolecules, a situation
that compromises cell viability and all the significance of these
peptides as vehicles. In some cases pore formation can explain
the translocation of the peptides per se; however, these pores are
not large enough to explain the translocation of proteins [28].

The history of CPP research can be summarized from two dif-
ferent periods, with a sudden change of paradigm in 2001 [32],
later confirmed in 2003 [100]. First, the physical paradigm domi-
nated. CPPs were considered to cross bilayers by a physical
process. Since 2001–2003 there has been a tendency to think the

opposite. Reality may not be so black-and-white, and this rather
simplistic view of physically driven versus endocytic mechanisms
seems inadequate. The CPP research community should go back
to basics and redefine CPPs on the basis of their cargo trans-
location ability rather than their stand-alone peptide properties.

Most of the CPP research focuses on the peptides’ membrane-
translocation ability in the absence of cargoes. It is thus crucial to
develop new methodologies to detect and quantify translocation
of peptide-mediated cargo translocation in vesicles and cells.

As to the peptides themselves, and their interaction with lipid
bilayers, it may be that the frontiers between fusogenic peptides,
AMPs and CPPs become so undefined that, in the near future,
only the unified broad-scope title of ‘membrane-active peptides’
will make sense.

REFERENCES

1 Wadia, J. S., Becker-Hapak, M. and Dowdy, S. F. (2002) Protein Transport, CRC Press,
New York

2 Leamon, C. P. and Low, P. S. (1991) Delivery of macromolecules into living cells:
a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. U.S.A. 88,
5572–5576

3 Frankel, A. D. and Pabo, C. O. (1988) Cellular uptake of the tat protein from human
immunodeficiency virus. Cell 55, 1189–1193

4 Joliot, A., Pernelle, C., Deagostini-Bazin, H. and Prochiantz, A. (1991) Antennapedia
homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 88,
1864–1868

5 Vives, E., Brodin, P. and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain
rapidly translocates through the plasma membrane and accumulates in the cell nucleus.
J. Biol. Chem. 272, 16010–16017

6 Derossi, D., Joliot, A. H., Chassaing, G. and Prochiantz, A. (1994) The third helix of the
Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem.
269, 10444–10450

7 Theodore, L., Derossi, D., Chassaing, G., Llirbat, B., Kubes, M., Jordan, P.,
Chneiweiss, H., Godement, P. and Prochiantz, A. (1995) Intraneuronal delivery of protein
kinase C pseudosubstrate leads to growth cone collapse. J. Neurosci. 15, 7158–7167

8 Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B. and Barsoum, J.
(1994) Tat-mediated delivery of heterologous proteins into cells. Proc. Natl.
Acad. Sci. U.S.A. 91, 664–668

9 Ezhevsky, S. A., Nagahara, H., Vocero-Akbani, A. M., Gius, D. R., Wei, M. C. and
Dowdy, S. F. (1997) Hypo-phosphorylation of the retinoblastoma protein (pRb) by
cyclin D:Cdk4/6 complexes results in active pRb. Proc. Natl. Acad. Sci. U.S.A. 94,
10699–10704

10 Lindgren, M., Hallbrink, M., Prochiantz, A. and Langel, U. (2000) Cell-penetrating
peptides. Trends Pharmacol. Sci. 21, 99–103

11 Rojas, M., Donahue, J. P., Tan, Z. and Lin, Y. Z. (1998) Genetic engineering of proteins
with cell membrane permeability. Nat. Biotechnol. 16, 370–375

12 Rojas, M., Yao, S., Donahue, J. P. and Lin, Y. Z. (1997) An alternative to
phosphotyrosine-containing motifs for binding to an SH2 domain. Biochem. Biophys.
Res. Commun. 234, 675–680

13 Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C. and Prochiantz, A. (1995)
Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro.
J. Cell Biol. 128, 919–927

14 Morris, M. C., Vidal, P., Chaloin, L., Heitz, F. and Divita, G. (1997) A new peptide vector
for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 25,
2730–2736

15 Pooga, M., Soomets, U., Hallbrink, M., Valkna, A., Saar, K., Rezaei, K., Kahl, U., Hao,
J. X., Xu, X. J., Wiesenfeld-Hallin, Z. et al. (1998) Cell penetrating PNA constructs
regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol.
16, 857–861

16 Henriques, S. T., Costa, J. and Castanho, M. A. (2005) Re-evaluating the role of strongly
charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using
Pep-1. FEBS Lett. 579, 4498–4502

17 Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T. and
Weissleder, R. (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo
tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414

18 Torchilin, V. P., Rammohan, R., Weissig, V. and Levchenko, T. S. (2001) TAT peptide on
the surface of liposomes affords their efficient intracellular delivery even at low
temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. U.S.A.
98, 8786–8791

c© 2006 Biochemical Society



6 S. T. Henriques, M. N. Melo and M. A. R. B. Castanho

19 Koczulla, A. R. and Bals, R. (2003) Antimicrobial peptides: current status and therapeutic
potential. Drugs 63, 389–406

20 Tossi, A., Mitaritonna, N., Tarantino, C., Giangaspero, A., Sandri, L. and Winterstein,
K. A. (2003) Antimicrobial Sequences Database (http://www.bbcm.units.it/∼tossi/
pag1. htm)

21 Powers, J. P. and Hancock, R. E. (2003) The relationship between peptide structure and
antibacterial activity. Peptides 24, 1681–1691

22 Hancock, R. E. (2001) Cationic peptides: effectors in innate immunity and novel
antimicrobials. Lancet Infect. Dis. 1, 156–164

23 Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature (London)
415, 389–395

24 Yeaman, M. R. and Yount, N. Y. (2003) Mechanisms of antimicrobial peptide action and
resistance. Pharmacol. Rev. 55, 27–55

25 Hancock, R. E. (1997) Peptide antibiotics. Lancet 349, 418–422
26 Melo, M. N., Dugourd, D. and Castanho, M. A. R. B. (2006) Omiganan

pentahydrochloride in the front line of clinical application of antimicrobial peptides.
Recent Pat. Anti-Infect. Drug Discov. 1, 201–207

27 Zhang, L., Rozek, A. and Hancock, R. E. (2001) Interaction of cationic antimicrobial
peptides with model membranes. J. Biol. Chem. 276, 35714–35722

28 Matsuzaki, K., Murase, O., Fujii, N. and Miyajima, K. (1995) Translocation of a
channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a
pore. Biochemistry 34, 6521–6526
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