
 
 

 

  

Abstract— Mobile devices are becoming increasingly sophisti-
cated and now incorporate many diverse and powerful sensors. 
The latest generation of smart phones is especially laden with 
sensors, including GPS sensors, vision sensors (cameras), audio 
sensors (microphones), light sensors, temperature sensors, direc-
tion sensors (compasses), and acceleration sensors. In this paper 
we describe and evaluate a system that uses phone-based accel-
eration sensors, called accelerometers, to identify and authenticate 
cell phone users. This form of behavioral biometric identification 
is possible because a person’s movements form a unique signature 
and this is reflected in the accelerometer data that they generate. 
To implement our system we collected accelerometer data from 
thirty-six users as they performed normal daily activities such as 
walking, jogging, and climbing stairs, aggregated this time series 
data into examples, and then applied standard classification algo-
rithms to the resulting data to generate predictive models. These 
models either predict the identity of the individual from the set of 
thirty-six users, a task we call user identification, or predict 
whether (or not) the user is a specific user, a task we call user 
authentication. This work is notable because it enables identifica-
tion and authentication to occur unobtrusively, without the users 
taking any extra actions—all they need to do is carry their cell 
phones.  There are many uses for this work. For example, in en-
vironments where sharing may take place, our work can be used to 
automatically customize a mobile device to a user. It can also be 
used to provide device security by enabling usage for only specific 
users and can provide an extra level of identity verification. 

I. INTRODUCTION 
obile devices, such as cellular phones, music players, and 
portable computers have recently begun to incorporate 

diverse and powerful sensors. These sensors include GPS sen-
sors, audio sensors (microphones), image sensors (cameras), 
light sensors, temperature sensors, direction sensors (com-
passes) and acceleration sensors. Because of the small size of 
these “smart” mobile devices, their substantial computing 
power, their ability to send and receive data, and their nearly 
ubiquitous use in our society, these devices open up exciting 
new areas for data mining research and applications. The goal of 
the WISDM (Wireless Sensor Data Mining) project [1], which 
the work described in this paper is part of, is to explore the 
research issues and applications related to mining sensor data 
from these powerful mobile devices. In this paper we explore 
the use of one of these sensors, the accelerometer, in order to 
accomplish the biometric tasks of person identification and 
authentication.  
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We chose Android-based cell phones as the platform for our 
WISDM project because the Android operating system is free, 
open-source, easy to program, and is expected to quickly be-
come a dominant entry in the cell phone marketplace. Our pro-
ject employs several types of Android phones, including the 
Nexus One, HTC Hero, and Motorola Backflip. All of these 
Android phones, as well as virtually all new “smart” phones and 
“smart” music players, including the iPhone and iPod Touch 
[2], contain tri-axial accelerometers that measure acceleration in 
three spatial dimensions. Accelerometers were initially included 
in these devices to support advanced game play and to enable 
automatic screen rotation but, as we show in the paper, can be 
used for other purposes.  

In this work we use accelerometer data to identify or au-
thenticate cell phone users. This data is generated while the 
users perform normal daily activities, such as walking and 
climbing stairs, while keeping a cell phone in their pocket. 
Clinical research has shown that gait, the way a person walks or 
runs, is sufficient to distinguish between individuals [3] and our 
research confirms this. While we measure user movements 
using an accelerometer, other studies have focused on video 
images of users, and this alternate method has also been shown 
to be effective for identification [4]. While some previous work 
has examined sensor-based gait recognition [5-10], our work 
differs in that we identify users based on the way they move 
during multiple activities (i.e., not just walking) using only 
commercially available smart phones, which are carried in the 
user’s pocket.  

Once we have sample data from each of the users, we ag-
gregate this raw time-series accelerometer data into examples, 
since most classification algorithms cannot operate directly on 
time series data (although we do plan to try Markov Models in 
the future). Each of these examples is associated with a specific 
cell phone user, thus forming labeled training data. For user 
identification we use this training data to build a single predic-
tive model to match each example with a particular user. For 
user authentication we build separate models for each user in 
order to determine whether an example came from that user or 
from someone else. Using such a model, we are able to predict 
whether or not a user is who he or she claims to be. 

Cell phone-based biometrics offers a wide range of possible 
applications. It can be used to authenticate users and thus to 
provide device security and theft prevention. Since other mobile 
devices, like laptops and music players also have accelerome-
ters, they can also use this mechanism to provide theft preven-
tion. This capability can also be used to provide an extra layer of 
security when one’s identity must be authenticated. Finally, this 
form of biometric identification can be used to automatically 
personalize mobile devices—for example, music players that 

Cell Phone-Based Biometric Identification 
Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore 

M 



 
 

 

can automatically configure particular settings or select certain 
songs after identifying the current user of the device.  

Our work makes several contributions. One contribution 
concerns the accelerometer data that we have collected and 
continue to collect, which we ultimately plan to make available 
to other researchers. We also demonstrate how raw time series 
accelerometer data can be transformed into examples, which 
can then be used by conventional classification algorithms. 
Most significantly, we show that it is possible to perform iden-
tification and authentication with commonly available (nearly 
ubiquitous) equipment and yet achieve highly accurate results. 

The remainder of this paper is structured as follows. Section 
II describes data collection and the process for transforming the 
time-series data into examples. Section III describes our ex-
periments and results. Related work is described in Section IV 
and Section V summarizes our conclusions and discusses areas 
for future research. 

II. DATA COLLECTION AND TRANSFORMATION 
In this section we describe how we collect the accelerometer 

data and transform it into examples that can be used to build 
predictive models for user identification and authentication. For 
user identification we build a single predictive model from this 
training data, which will map each example to one of the 
thirty-six participants in our study. For user authentication we 
build an authentication model for each user, u.  In order to train 
the authentication model for u, we map the class labels to just 
two values—u or not-u—and then generate the predictive 
model.  The remainder of this section describes the data col-
lection process and the aggregation process for transforming the 
raw time-series accelerometer data into examples for these 
tasks. 

A. Data Collection 
In order to collect data for our supervised learning tasks, it 

was necessary to have a large number of users carry an An-
droid-based smart phone while performing certain everyday 
activities. Before collecting this data, we obtained approval 
from the Fordham University IRB (Institutional Review Board) 
since the study involved “experimenting” on human subjects 
and there was some risk of harm (e.g., the subject could trip 
while jogging or climbing stairs). We then enlisted the help of 
thirty-six volunteer subjects to carry a smart phone while per-
forming a specific set of activities. These subjects were asked to 
walk, jog, climb up stairs, and climb down stairs for specific 
periods of time while they carried the Android phone in their 
front pants leg pocket. Data collection was stopped when the 
subjects switched activities. Data was collected in this manner 
so that it could also be used for another research study of ours 
that addresses activity recognition—a task that requires us to 
predict the activity that a user is performing [14]. Although such 
a scenario is somewhat less realistic when examining our bio-
metrics tasks, we believe it is reasonable to expect a user to 
perform any one of these activities (walking, jogging, climbing 
stairs, or descending stairs) continuously for short periods of 
time.  

Data collection was controlled by an Android application that 
we created that runs on the phones. This application, through a 
simple graphical user interface, permitted us to record the user’s 
name, start and stop the data collection, and label the activity 
being performed. Through our application we could control 
what data was collected (e.g., GPS as well as accelerometer 
data) as well as how frequently it was collected. In all cases we 
collected the accelerometer data using our default sampling 
frequency of 50ms, or 20 samples per second. The data collec-
tion was supervised by one of the WISDM team members to 
ensure the quality of the data. Data was then collected wither 
directly from the phone via a USB connection or transmitted 
over a cellular connection to our Internet-connected server. 

B. Feature Extraction 
We first transform the raw time series data into examples, 

since the classification algorithms that we use in this paper 
cannot directly learn from time series data [11]. To accomplish 
this we divided the data into 10-second segments and then 
generated features from the accelerometer values contained in 
each 10-second interval (since acceleration data is collected for 
3 axes 20 times per second for a 10-second interval there are 
600 total values). We refer to this 10-second interval as the 
example duration (ED). We chose a 10-second example dura-
tion because we felt that it provided sufficient time to capture 
several repetitions of the (repetitive) motions involved in the 
four activities that we consider. Although we have not per-
formed experiments to determine the optimal example duration 
value, we did compare the results for a 10-second and 
20-second ED and the 10-second ED yielded slightly better 
results.  

Next we generated informative features based on the 600 raw 
accelerometer readings. We generated a total of forty-three 
features, although these are variations of just six basic features. 
The forty-three features are described below, with the number 
of features generated for each feature-type noted in brackets: 

• Average[3]: Average acceleration value (for each axis) 
 
• Standard Deviation[3]: Standard deviation (for each axis) 
 
• Average Absolute Difference[3]: Average absolute differ-

ence between the value of each of the 200 readings within 
the ED and the mean value over those 200 values (for each 
axis) 

 
• Average Resultant Acceleration[1]: Average of the square 

roots of the sum of the values of  each axis squared 
√(xi

2 + yi
2 + zi

2) over the ED 
 
• Time Between Peaks[3]: Time in milliseconds between 

peaks in the sinusoidal waves associated with most activities 
(for each axis) 

 
• Binned Distribution[30]: We determine the range of values 

for each axis (maximum – minimum), divide this range into 
10 equal sized bins, and then record the fraction of the 200 
values that fall within each of the bins. 

 



 
 

 

The “time between peaks” feature requires further explana-
tion. Repetitive activities, like walking, tend to generate re-
peating waves for some or most of the axes, and this feature 
measures the time between successive peaks. To estimate this 
value we find the highest peak within the record for each di-
mension, set a threshold based on a percentage of this value, and 
then find other peaks that met or exceed this threshold; if no 
peaks meeting this criterion are found then the threshold is 
lowered until we find at least three peaks. We then measure the 
time between successive peaks and calculate the average. For 
samples where at least three peaks could not be found, the dis-
tance between peaks is marked as unknown. This method was 
able to find the time between peaks for activities that had a clear 
repetitive pattern, like walking and jogging. Certainly more 
sophisticated schemes will be tried in the future. 

The number of examples generated for each activity differs 
for each user, due to either time or physical limitations associ-
ated with the users or due to minor variations in the data col-
lection process. The data set is summarized in Section III. 

III. EXPERIMENTS 
In this section we describe our experiments and then present 

our results. Our results for person identification are presented 
first and this is followed by our results for the authentication 
task.   

A. Description of Experiments 
The preparation required for our experiments involves col-

lecting the raw accelerometer data and then transforming this 
time-series data into examples. This process was described in 
Section II. The resulting data set has 4,866 examples from 
thirty-six users, where each example contains forty-three fea-
tures. This data set, which is subsequently used for training and 
testing, is described in Table 1.  Due to space limitations we 
provide detailed statistics for only some of the thirty-six users. 

TABLE 1.     NUMBER OF EXAMPLES PER USER AND ACTIVITY 

ID Walk Jog Up Down Total 
1 74 15 13 25 127 
2 48 15 30 20 113 
3 62 58 25 23 168 
4 65 57 25 22 169 
5 65 54 25 25 169 
6 62 54 16 19 151 
7 61 55 13 11 140 
8 57 54 12 13 136 
9 31 59 27 23 140 
10 62 52 20 12 146 
. . . . . . 

30 35 31 28 19 113 
31 64 55 17 16 152 
32 34 32 0 0 66 
33 64 0 0 0 64 
34 59 59 0 0 118 
35 55 46 19 12 132 
36 87 81 23 16 207 

Sum 2081 1625 632 528 4866 
% 42.8 33.4 13.0 10.8 100 

The last two rows in Table 1 show the number and percent-
age, respectively, of the total examples associated with each 
activity. Certain activities contain fewer examples than others, 
mainly because the users were not asked to perform strenuous 
activities, like jogging and stair climbing, for very long.  

We used the data set described in Table 1 to generate six 
distinct data sets for the person identification task. The “ag-
gregate” data set uses examples from all four activities but with 
the activity label removed, so that the type of activity is not 
explicitly encoded in the data. This data set thus represents our 
most realistic scenario, because in real-world situations users 
will perform multiple activities and we will not expect them to 
explicitly label the activity they are performing. We also created 
four data sets, each of which contains examples from only one 
activity (walking, jogging, ascending stairs, and descending 
stairs). Results based on these data sets may be less practical, 
but they provide insight into how useful each activity is for 
discriminating between users.   Finally, our sixth data set, which 
we refer to as “aggregate (oracle),” is identical to the aggregate 
data set but contains the activity label as a feature. While this 
data set does not correspond to a very realistic scenario, it pro-
vides us with information on the utility of knowing the class 
label. This is important because, as our previous research on 
activity recognition has demonstrated [14], we can accurately 
identify most activities using the same methods used in this 
paper to identify the users. Thus, should the activity labels 
provide a substantial benefit, our aggregate (oracle) data set will 
provide an upper bound on the performance of a two-stage 
learning approach, where we first predict the activity and then 
use this to help identify the user. 

After preparing these six data sets, we used two classification 
techniques from the WEKA data mining suite [12] to induce 
models for person identification—decision trees (J48) and 
neural networks. In each case we used the default settings. Thus, 
twelve experiments in identification were performed. We used 
ten-fold cross validation for all experiments and all results are 
based on these ten runs. 

We addressed the authentication task by transforming the 
multi-class identification problem into a binary classification 
problem, where the positive class corresponds to the user to be 
authenticated and the negative class to the other (thirty-five) 
users. Because the positive class is so rare (on average it con-
tains 1/36 of the data), most classification methods will tend to 
generate classifiers that do not perform well at predicting this 
(rare) class [15]. Since this is not desirable in this situation, we 
under-sampled the negative class such that the resulting ratio of 
positive examples to negative examples is 1:3 (i.e., the person to 
be authenticated makes up 25% of the examples). We did not 
use a 1:1 ratio, which is often used when learning from unbal-
anced data [15], because of the limited amount of data and our 
desire to have a reasonably sized training set.  

The authentication data set used examples from all activities 
(i.e., we used the aggregate data set). A separate authentication 
model is required for each user, but due to time constraints we 
generated authentication models for only the first five users in 
our data set. As with person identification we used ten-fold 



 
 

 

cross validation to build and evaluate each authentication 
model. We used J48 to build these models.  Our authentication 
results are described per class so that the fact that we changed 
the class distribution does not impact or distort the results. 

B. Identification Results 
In this section we present our results for the identification 

task. Table 2 shows the results for the six data sets introduced 
earlier in this section when using WEKA’s J48 and Neural 
Network learning algorithms, as well as when using our “Straw 
Man” strategy. The straw man strategy is for comparison pur-
poses and corresponds to the strategy of always predicting the 
most common class (i.e., user). Finally, recall that these results 
are based on individual test examples, which are formed from 
just ten seconds worth of data. As we shall soon see, if we base 
identification on multiple samples, then it is possible to improve 
the identification performance. 

TABLE 2.     ACCURACIES (%) FOR IDENTIFICATION OF 10-SECOND EXAMPLES 

 Aggregate Walk Jog Up Down 
Aggregate 
(Oracle) 

J48 72.2 84.0 83.0 65.8 61.0 76.1 

Neural Net 69.5 90.9 92.2 63.3 54.5 78.6 

Straw Man 4.3 4.2 5.0 6.5 4.7 4.3 

 
The results in Table 2 indicate that our models are quite suc-

cessful at recognizing user’s identities based upon only 10 
seconds of accelerometer data. While some of the accuracies 
may not seem that good, they are actually quite impressive when 
one considers that for this 36-class classification problem the 
straw man strategy of always guessing the most frequent class 
yields an accuracy in the 4-7% range. Using J48, the aggregate 
data set achieved 72.2% accuracy, which indicates that such 
models could be plausible in realistic scenarios. Note that for 
both J48 and the Neural Network the aggregate (oracle) data set 
achieved only modestly higher accuracy than the aggregate data 
set, indicating that it is not critical to know what activity a user 
is performing in order to identify a user. The walking and jog-
ging data sets also show the best overall performance and per-
form better than the aggregate data set, indicating that, if we do 
have control over the users, walking is a good activity to use for 
identification purposes (jogging is probably not practical given 
that not everyone is fit enough to jog). Ascending and de-
scending stairs have substantially lower accuracies, possibly 
because these activities have much less data available for 
building the model (see Table 1). 

We report the identification accuracies per user in Table 3, 
again based on the performance for each 10-second example. In 
the interest of space we present the results only for the aggre-
gate, walking, and jogging activities. In some cases there were 
no examples for an activity and this is denoted with a “–” in the 
cell. As Table 3 indicates, the accuracies are generally quite 
high when considering that the straw man strategy of guessing 
the most frequent user yields accuracies in the range of 4-7%. 

TABLE 3.     ACCURACIES (%) FOR IDENTIFICATION OF 10-SECOND EXAMPLES 

 Aggregate Walking Jogging 
 J48 NN J48 NN J48 NN 
1 66.9 65.4 87.8 98.7 40 40.0 
2 72.6 77.9 77.1 100.0 60 93.3 
3 69.1 81.0 74.2 96.8 82.8 96.6 
4 75.7 69.2 93.9 96.9 87.7 96.5 
5 74.0 69.8 87.7 95.4 90.7 96.3 
6 78.2 70.9 90.3 96.8 83.3 100.0 
7 61.4 61.4 73.78 82.0 72.7 63.6 
8 75.7 77.2 86.0 98.3 74.1 85.2 
9 72.6 78.1 83.9 98.4 86.5 94.2 

10 70.0 45.7 77.4 96.8 86.4 98.3 
11 72.2 84.0 87.5 96.9 90.9 92.7 
12 76.8 54.6 88.9 83.3 81.0 84.1 
13 70.2 59.0 86.7 51.7 79.0 98.4 
14 66.2 77.9 87.1 96.8 – – 
15 62.8 71.3 91.8 85.3 81.3 96.9 
16 80.0 61.2 89.2 98.5 95.1 96.7 
17 82.0 87.0 87.1 98.6 – – 
18 84.2 88.5 81.8 97.0 88.1 96.6 
19 75.9 71.2 88.4 95.7 75.8 97.0 
20 56.5 47.6 77.4 87.1 77.4 96.9 
21 70.6 54.1 85.3 94.4 95.2 96.8 
22 75.2 72.9 87.9 97.0 96.7 96.7 
23 43.4 54.7 66.7 93.3 0 60 
24 85.9 93.4 95.2 98.4 – – 
25 77.4 75.6 91.0 97.0 92.2 96.9 
26 75.2 72.3 78.8 92.9 86.5 92.3 
27 67.8 53.3 77.4 95.2 78.6 95.7 
28 71.7 83.8 96.9 100.0 94.7 100.0 
29 67.5 63.7 70.8 81.5 92.7 61.8 
30 87.6 49.6 88.6 97.1 90.3 96.8 
31 71.1 77.0 82.8 93.8 65.5 90.9 
32 71.2 83.3 91.3 85.3 62.5 96.9 
33 67.2 45.3 78.1 53.1 – – 
34 77.1 89.8 84.8 88.1 89.8 96.6 
35 51.5 45.5 74.6 87.3 52.2 84.8 
36 73.9 82.1 79.3 74.7 92.7 96.3 

 
We can achieve vastly superior results if we base identifica-

tion on more than ten seconds worth of data. The strategy that 
we recommend involves taking multiple examples generated 
from a single user and then assigning the identity based on the 
user that is predicted most often. We refer to this as the most 
frequent user strategy.  In our implementation of this strategy 
we consider all of the examples from a single user in the test set, 
but this typically corresponds to only about 5-10 minutes worth 
of data, which seems to be a reasonable length sample. Table 4 
reports the fraction of the users that are correctly identified 
when using the most frequent user strategy. In some cases the 
denominator is less than 36 because we did not obtain data for 
all activities from all users. Fractional values are the result of 
averaging the results over 10 runs. 

TABLE 4.     USERS CORRECTLY IDENTIFIED USING MOST FREQUENT USER  

 Aggregate Walk Jog Up Down Aggregate 
(Oracle) 

J48 36/36 36/36 31/32 31/31 28/31 36/36 
Neural Net 36/36 36/36 32/32 28.5/31 25/31 36/36 



 
 

 

Table 4 demonstrates that when using the most frequent user 
strategy we are able to achieve perfect identification accuracy in 
the most realistic situation—when  using the aggregate data set. 
Even in cases where the accuracies for the 10-second examples 
are far from perfect, we can still accurately identify the users 
because, as our detailed analysis of the errors shows, the errors 
are distributed across many users and not concentrated on just 
one or two users—thus the most frequent user strategy had no 
problem correctly identifying the correct user. To demonstrate 
this we provide more detailed information about the errors in 
Table 5. Specifically, for each user we determined the user most 
often incorrectly predicted (i.e., the “imposter” most often 
confused with the actual user). We compared the number of 
these erroneous predictions with the number of times the user 
was correctly identified. This ratio of these values (correct to 
incorrect) for the aggregate data set is presented in Table 5. 

TABLE 5.     RATIO OF CORRECTLY IDENTIFIED RECORDS TO INCORRECTLY 
IDENTIFIED RECORDS OF MOST FREQUENT IMPOSTER 

User J48 Neural Net User J48 Neural Net 
1 14:1 12:1 19 24:1   9:1 
2 21:1 15:1 20 10:1    2:1 
3 15:1 27:1 21 34:1    5:1 
4 21:1   4:1 22 24:1  23:1 
5 25:1 15:1 23   4:1    3:1 
6 30:1 21:1 24 22:1 49:1 
7 11:1 10:1 25 26:1 18:1 
8 15:1 18:1 26 20:1   7:1 
9 27:1 23:1 27 16:1   9:1 

10   8:1   5:1 28 17:1 16:1 
11 17:1 13:1 29 17:1   7:1 
12 25:1   4:1 30 24:1   2:1 
13 16:1 16:1 31 18:1 16:1 
14   5:1 20:1 32   6:1 18:1 
15 16:1 46:1 33 14:1   5:1 
16 17:1 13:1 34 30:1 26:1 
17 21:1 17:1 35   6:1   7:1 
18 17:1 49:1 36 13:1 12:1 

The results in Table 5 show that in no case is an imposter 
almost mistaken for the true user (i.e., the ratios are significantly 
greater than 1:1). In the cases where the ratio is smallest, this is 
due to a limited amount of training data from the user; however, 
as seen in the case of the aggregate data set, even a user with 
very few examples like User 23 still has significantly more 
examples that are correctly identified than are incorrectly 
identified as the most frequent imposter. 

The results in Table 5 are important because they suggest that 
our performance will scale up to significantly more than 36 
users and that good identification performance is possible even 
if the accuracies associated with individual examples is only 
modest. In order to get more insight into the impact of the 
number of users on performance, we analyzed how the accuracy 
of individual predictions for the aggregate data set is affected by 
the total number of users. The results, which are shown in Fig-
ure 1, show that while accuracy does decrease with the number 
of users, the decrease is gradual once we have more than a few 
users. Our expectation is that with the most frequent user strat-
egy we probably could maintain perfect identification accuracy 
even if we had two or three times as many users.  
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Fig. 1.  The identification accuracy associated with individual ten-second 
examples as the number of users included in the aggregate data set increases.  

C. Authentication Results 
Our experiments in authentication obtained promising results 

as well. Because authentication requires a separate model for 
each user, we report authentication results for only five users 
due to time constraints. As with the case for person identifica-
tion, we first present the results associated with individual 
examples and then apply a most frequent user strategy to de-
termine the actual authentication performance statistics.  

Our key statistics for authentication are the positive authen-
tication rate and the negative authentication rate. To make 
things more concrete, here we assume that we are trying to 
authenticate user 1, u1. The positive authentication rate for u1 is 
the fraction of test examples coming from u1 that are correctly 
classified as belonging to u1. The negative authentication rate 
for u1, or the imposter identification rate, is the fraction of test 
examples from an imposter (i.e., not u1) that are correctly 
identified as not belonging to u1. Clearly we would like to have 
a high positive authentication rate and a high negative authen-
tication/imposter identification rate. 

Table 6 summarizes the authentication results. In addition, to 
showing the positive and negative authentication rates, it also 
shows the results of applying the most frequent user strategy to 
all of the individually classified test examples. For the most 
frequent user strategy we use a ‘+’ to indicate that a user is 
correctly identified as himself or herself (for positive authenti-
cation) or that an imposter is correctly identified as an imposter 
(for negative authentication).  

TABLE 6.     ACCURACIES (%) FOR IDENTIFICATION OF 10-SECOND EXAMPLES 

User Positive Authentication 
Rate (%) 

Negative Authentication 
Rate (%) 

 10 sec. 
 Example 

Most Frequent 
User 

10 sec.  
Example 

Most Frequent
User 

1 86.6 + 94.8 + 
2 92.9 + 96.5 + 
3 82.1 + 94.2 + 
4 85.8 + 97.1 + 
5 82.2 + 92.6 + 



 
 

 

Our results for these five users demonstrate that acceler-
ometer data can be used to authenticate user’s identities with a 
basic level of accuracy with only 10 seconds worth of data. 
However, these rates may not be sufficient by themselves for 
acceptable levels of real-world authentication—where we 
would need authentication rates well in excess of 99%. To 
achieve such rates we need to obtain multiple examples from 
each user and then apply the most frequent user strategy. In our 
experiments we achieve 100% positive and negative authenti-
cation rates for all five users. We believe that by using multiple 
test samples we can consistently achieve perfect or near perfect 
authentication rates. 

IV. RELATED WORK 
The use of sensor data for biometric identification and au-

thentication is relatively new but has been increasingly explored 
in recent years. Gait recognition—the use of a person’s unique 
style of walking to identify or authenticate one’s identity—has 
shown some promising results as a biometrics tool. In his survey 
of biometric gait recognition, Gafurov [5] identifies three areas 
of gait recognition research—machine vision-based, floor sen-
sor-based and wearable sensor-based methods. Our research 
focuses on the wearable sensor-based approach, which has been 
much less widely explored than the machine vision-based ap-
proach that uses camera images of users to identify them by 
their gaits [3]. While vision-based approaches have typically 
focused on gait while walking, Yam et al. [4] explored how gait 
during running and walking could be used to identify users. 
They found that gait while running was more useful than gait 
while walking for identification purposes, demonstrating the 
importance of utilizing multiple activities. 

Previous work using the wearable sensor-based approach 
includes work by Mantyjarvi et al. [6], where users were iden-
tified via a small accelerometer-based device placed on a belt at 
the middle of the user’s waistlines in back. Data was collected 
from thirty-six subjects who walked at fast, normal, and slow 
walking speeds. Correlation, frequency domain, and data dis-
tribution statistics were used for identification. Annadhorai et 
al. [7] performed experiments similar to the Mantyjarvi work. 
Their system used two wireless sensor nodes: a unit consisting 
of a tri-axial accelerometer and a bi-axial gyroscope and a base 
station unit which received sensor readings from other node.  
Data was collected from four users who wore the device above 
their ankles. Gafurov, Helkala, & Sondrol [8] authenticated 
user’s identities using data collected from 21 users, using a 
tri-axial accelerometer-based device attached to the user’s right 
lower legs. The readings for each axis were transformed into a 
combined gait signal, similar to our resultant acceleration fea-
ture. A similar procedure was followed by the same authors in 
another work [9], except that the mobile device used for data 
collection was a Micro-Electro-Mechanical-System (MEMS).  

Gafurov & Snekkenes [10] analyzed data collected from 
accelerometer-based sensors placed on the foot, hip, pocket, and 
arm to authenticate user’s identities. The accelerometer placed 
on the foot gave the best results. They also found that attributes 
such as weight of a shoe, sideways direction of ankle/foot mo-

tion, and different points of the gait cycle could impact recog-
nition. Gait recognition was shown to perform well when an 
imposter attempted to mimic another person’s gait; however, 
when the imposter knew the gender of the users in the data set or 
knew his closest match in the data set, the imposter’s attempts 
were found to have higher chances of being wrongfully ac-
cepted. Gafurov, Snekkenes, and Buvarp [13] further supported 
these conclusions regarding the robustness again impersonation 
attacks in another work using an accelerometer-based MEMS 
placed on the hip in experiments with 20 and 22 users.   

While these works offer important insight in the area of sen-
sor-based gait recognition, our work differs in several important 
ways. Firstly, the devices used in our experiments, smart 
phones, are not specialized sensors but are widely available 
commercial devices that are routinely carried by millions of 
users. Furthermore, we relied only on the device being carried 
in the user’s pocket—a natural location to carry such a de-
vice—while the other work typically involved the user being 
monitored with multiple sensors, often placed in awkward body 
locations. We also consider a set of users that is significantly 
larger than in some of the prior studies.  

Another basic way that our work differs from previous work 
is that most sensor-based biometric exploration has focused 
only on analyzing gait while walking. However, the effect of 
multiple activities rather than simply walking is of interest 
because 1) different activities may provide a more robust bio-
metric signature than just walking, 2) users perform many dif-
ferent activities during a day that a continuous identification or 
authentication systems may fail to recognize if the system is 
based only on walking gait recognition, and 3) it will be much 
easier to automatically collect movement data for training a 
model if the user is permitted to perform his daily routine. Yam 
et al. [4] used machine vision-based approaches to examine both 
running and walking movement for biometric identification, but 
our work goes further in that we analyzed four activities. We 
hope to expand the number of activities in the future and to 
collect data as users perform their daily routines. 

V. CONCLUSIONS & FUTURE WORK 
In this paper we described how a smart phone can be used to 

perform person identification and authentication, simply by 
keeping it in one’s pocket. We have demonstrated that accel-
eration data collected while walking, jogging, ascending stairs, 
and descending stairs all have the potential to function as bio-
metric signatures. In addition, we show that users can often be 
recognized quickly, using only 10 seconds worth of data. But 
we also showed that we can build highly accurate models for 
identification and authentication—and can often achieve perfect 
performance—if we utilize multiple samples before making an 
identification or authentication decision. We have also demon-
strated that such models have the potential to perform well in 
realistic settings in which the activity that a user is performing is 
unknown and, unlike most prior work, our system requires no 
specialized equipment or awkwardly placed sensors.  

We plan to improve our identification and authentication 
systems in several ways. With respect to data collection, we 



 
 

 

intend to increase the number of users in the data set, collect 
more data per user, and expand the number of activities for 
which we collect data. In addition and perhaps most signifi-
cantly, in the future we plan to collect data from the users in a 
more natural manner. Instead of having a researcher run the user 
through a well defined course with specific activities, all of the 
accelerometer data from the user’s cell phone will be collected, 
without knowledge of what activity is being performed. Thus 
we will learn to identify users using profiles that can be gener-
ated in a completely automated manner, without the users taking 
any specific actions. Our aggregate data set currently ap-
proximates this scenario, but the approximation is far from 
perfect (e.g., only four activities). We will also try methods for 
classification that can operate directly on the time-series data, 
like hidden Markov models. Such methods can potentially yield 
superior results since information is lost when the raw 
time-series data is aggregated into examples. 

Our work would not have been possible without establishing 
our WISDM Android-based data collection platform, and we 
view this software and hardware architecture, in which data is 
transmitted by the phone to our Internet-based server, as a key 
resource for future work. This platform, as well as the data that 
is collected, will ultimately be made public. We also plan to 
significantly enhance our WISDM platform so that we can 
generate results in real-time, whereas currently our results are 
generated off-line and are not reported back to the mobile phone 
and user. We plan to provide real-time results using two ap-
proaches. The first approach minimizes the intelligence re-
quired on the phone by having the phone transmit the data to our 
Internet-based sever over the cellular connection, with the 
server applying the biometrics model and transmitting the re-
sults back to the phone.  The second approach involves im-
plementing the model directly on the phone. This is feasible 
given the computational power of these devices and has the 
advantage of not requiring a server or any shared resources, 
which makes the system infinitely scalable, and also ensures the 
user’s privacy, since the sensor data then can be kept locally on 
the user’s cell phone. 

The work described in this paper is part of a larger effort to 
mine sensor data from wireless devices. We plan to continue our 
WISDM project and will apply the accelerometer data to other 

tasks.  In addition, we plan to collect and then mine other sensor 
data, including GPS data. We believe that mobile sensor data 
provides tremendous opportunities for data mining and we 
intend to leverage our Android-based data collection/data 
mining platform to the fullest extent possible. 

REFERENCES 
[1] WISDM Project. Fordham University, Department of Computer and 

Information Science,  http://storm.cis.fordham.edu/~gweiss/ wisdm/ 
[2] Apple iPhone & Apple iPod Touch. Apple Inc., 2009. www.apple.com.  
[3] M. Nixon, T. Tan, and R. Chellapppa, Human Identification Based on 

Gait. New York: Springer Science + Business Media Inc., 2006, ch. 1. 
[4] C.Y. Yam, M. Nixon, and J. Carter, “Automated Person Recognition by 

Walking and Running via Model-based Approaches,” Pattern 
Recognition, vol. 37, no. 5, pp. 1-16, 2003. 

[5] D. Gafurov, “A Survey of Biometric Gait Recognition: Approaches, 
Security, & Challenges,” Annual Norwegian Computer Science 
Conference, Oslo, Norway, November 19-21, 2007. 

[6] J. Mantyjarvi, M. Lindholdm, E. Vildjounaite, S.M. Makela, and H. 
Ailisto, “Identifying Users of Portable Devices from Gait Pattern with 
Accelerometers,” Proceedings of IEEE International Conference on 
Acoustics, Speech, and Signal Processing, pp. 973-976, 2005. 

[7]  A. Annadhorai, E. Gutenberg, J. Barnes, K. Harage, and R. Jafari, “Human 
Identification by Gait Analysis,” Proceedings of the 2nd International 
Workshop on Systems and Networking Support for Health Care and 
Assisted Living Environments, Breckenridge, Colorado, June 17, 2008. 

[8] D. Gafurov, K. Helkala, and T. Sondrol, “Biometric Gait Authentication 
Using Accelerometer Sensor.,” Journal of Computers, vol. 1, no. 7, pp. 
51-59, 2006. 

[9]  D. Gafurov, K. Helkala, and T. Sondrol, “Gait Recognition Using Ac-
celeration from MEMS,” Proceedings of the First International Confer-
ence on Availability, Reliability, and Security, pp. 6-12, 2006.  

[10] D. Gafurov and E. Snekkenes, “Gait Recognition Using Wearable Motion 
Recording Sensors,” EURASIP Journal on Advances in Signal Processing, 
2008. 

[11] G. M. Weiss and H. Hirsh, “Learning to predict rare events in event 
sequences”  Proceedings of the Fourth International Conference on 
Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, CA, 
pp. 359-363, 1998. 

[12] Witten, I. and Frank, E. Data Mining: Practical Machine Learning Tools 
and Techniques. San Francisco, Morgan Kaufmann Publishers, 2005.  

[13] D. Gafurov, E. Snekkenes and T.E. Buvarp, “Robustness of Biometric Gait 
Authentication Against Impersonation Attack,” International Workshop 
on Information Security, OnTheMove Federated Conferences, Springer 
LNCS 4277, Montpellier, France, Oct 29 - Nov 3, 2006. 

[14] J.R. Kwapisz, G. M. Weiss, and S.A. Moore. “Activity recognition using 
cell phone accelerometers,” Proceedings of the Fourth  International 
Workshop on Knowledge Discovery from Sensor Data, pp. 10-18, 2010.  

[15] G. M. Weiss and Foster Provost, “Learning when training data are costly: 
The effect of class distribution on tree induction, Journal of Artificial 
Intelligence Research, vol. 19, pp. 315-354, 2003. 

 


