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Abstract

Cell range expansion (CRE) is a technique to expand a pico cell range virtually by adding a bias value to the pico

received power, instead of increasing transmit power of pico base station (PBS), so that coverage, cell-edge

throughput, and overall network throughput are improved. Many studies have focused on inter-cell interference

coordination (ICIC) in CRE, because macro base station’s (MBS’s) strong transmit power harms the expanded region

(ER) user equipments (UEs) that select PBSs by bias value. Optimal bias value that minimizes the number of outage

UEs depends on several factors such as the dividing ratio of radio resources between MBSs and PBSs. In addition it

varies from UE to another. Thus, most articles use the common bias value among all UEs determined by trial-and-error

method. In this article, we propose a scheme to determine the bias value of each UE by using Q-learning algorithm

where each UE learns its bias value that minimizes the number of outage UEs from its past experience independently.

Simulation results show that, compared to the scheme using optimal common bias value, the proposed scheme

reduces the number of outage UEs and improves network throughput.

Introduction
Owing to the increase in demand in wireless bandwidth,

serving by only macro base stations (MBSs) has become

insufficient to serve the network’s user equipments (UEs).

Subsequently, a recent solution, Heterogeneous networks

(HetNets) whereby low power base stations (BSs) are

deployed within the macro cell, has recently received

significant attention in the literature [1]. HetNets are dis-

cussed as one of the proposed solutions as part of the long

term evolution-Advanced (LTE-Advanced) by the third

generation partnership project (3GPP) [2].

As the low power BSs, some BSs are considered, for

instance, pico BS (PBS), femto BS (FBS), relay BS, and so

on. Among these low power BSs, PBSs are mostly con-

sidered, because they can improve the capacity and they

usually have the same backhaul asMBS. In [3], the authors

place a PBS near the hot spot where the amount of traf-

fic is high to prevent many UEs from accessing the MBS.

PBSs have low transmission power, ranging from 23 to

30 dBm, and serve tens of UEs within a coverage range of

up to 300m [1]. However, in the presence of MBSs, PBSs’

ranges become smaller. MBSs’ transmit power is about

46 dBm, and the difference of them is about 16 dBm [1].
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This big difference causes PBSs’ ranges to fall within tens

of meters, whereas MBSs’ ranges are hundreds or thou-

sands of meters [1]. This is not the case for uplink (UL),

in which the reference signal strengths (RSSs) from a UE

at different BSs mostly depend on the UE’s transmission

powers [1]. Therefore, in this article, we consider only

downlink (DL).

If the range of the hot spot area is the same as that of

the pico cell, the PBS can serve UEs within that area and

improve coverage area. However, because the hot spot’s

location and amount of traffic change dynamically, PBSs

cannot always cover the hot spot area and UEs may have

to access the MBSs even if the PBS may be closer to them.

In [1], the authors discuss cell range expansion (CRE),

which is a technique that adds a bias value to pico received

power from PBSs during the handover as if pico cell range

is expanded, and many studies focus on this topic [1,3-9].

CRE can make more UEs to access the PBS even if the

macro received power is stronger than the pico received

power. However, those UEs that access the PBSwhose pico

received power is weaker than the macro received power

are affected by a large amount of interference from MBS;

such UEs are referred to as expanded region (ER) UEs

[1]. Therefore, whenever CRE is used, inter-cell interfer-

ence coordination (ICIC)may be needed so as to eliminate

the interference.
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Traditionally, UEs are set to use the same, fixed, bias

value [1,3-8]. One reason is the fact that varying the bias

value would require the measurement of the UEs’ distri-

bution, which is hard to get. However, optimal bias values

change depending on the location of UEs and BSs which

differ from one another [4].

Owing to the difficulty to set the appropriate bias

value for each UE, many articles mainly discuss applying

ICIC[5-8]. ICIC is realized by dividing the radio resource:

between two categories of MBS and PBS, ICIC is usually

realized by stopping MBS’s transmission on some radio

resources. ICIC is applied by separating frequency band

in the frequency-domain approach instead of separating

time slot in the time-domain approach. In the time-

domain approach, almost blank subframe (ABS) [5] in

which MBSs stop sending data and PBSs send to pico UEs

(PUEs), particularly ER UEs, is mainly applied. However,

even if ABS is used, reference signals are still transmit-

ted by MBS, which causes interference [7]. To elimi-

nate this interference, proposals in the literature include

using lightly loaded controlling channel transmission sub-

frame (LLCS) [7] or interference cancelation of common

reference signal (CRS-IC) [8]. In the frequency-domain

approach, furthermore, the restricted transmit power of

MBS on the allocated frequency to PBS is also discussed

in [9].

Resource blocks (RBs) introduced in 3GPP-LTE system

[10] as blocks of subcarriers can also realize ICIC by divid-

ing them between MBSs and PBSs [1]. Depending on this

ratio of RB, the appropriate bias values also change, and

this is also one reason for the difficulty to set optimal bias

values. From these aforementioned reasons, optimal bias

values are obtained only by using trial-and-error methods.

Instead of using trial-and-error methods, we propose to

use Q-learning [11], a machine learning (ML) technique,

to determine the bias values. Using ML in radio com-

munication system is becoming popular [12-17], because

situations, where different radio systems are mixed in the

same area, are very common, and since conditions change

dynamically, adjustment of parameters is more difficult

and complicated. Q-learning has been applied to many

other areas such as cognitive radio [12] and inter-cell

interference problem ofmulti-cell network [13]. It has also

been applied to cellular networks, such as: self-organized

and distributed interference management for femtocell

networks [14], self-organized resource allocation scheme

[15], cell selection scheme [16], and self-optimization of

capacity and coverage scheme [17]. However, to the best

of our knowledge, no studies apply Q-learning to setting

the optimal bias value of CRE.

In this article, each UE learns the bias value that

minimizes the number of outage UEs individually by

Q-learning and can set the appropriate bias value inde-

pendently. Simulation results show that, compared to the

trial-and-error approach to find the optimal common bias

value, the proposed scheme reduces the number of outage

UEs and improves average throughput in almost all cases.

Heterogeneous network
To solve coverage problems in MBS based homogeneous

networks where only one BS serves UE in its coverage

area, HetNets have been suggested in [18]. HetNets intro-

duce remote radio head or low power BS such as PBS, FBS,

and relay BS in a macro cell [1,18].

Though HetNets encompass many types of BSs, out of

concern for simplicity, this work shall be limited to the

case where only two types of BSs, namely MBS and PBS,

as this is also the case in themajority of the related studies.

PBSs are typically deployed within macro cells for capac-

ity enhancement and coverage extension. Moreover, they

usually have the same back-haul and access features as

MBSs [1].

PBSs are deployed within macro cell to avoid having the

hot spot UE access the MBS. Then, as the radius of a pico

cell is limited, CRE [3] is traditionally used as we shall

explain in the subsequent paragraph.

Cell range expansion

In this article, reference-signal-received-power-based

(RSRP) handover [3], whereby the handover procedure is

triggered through the assessment of the strength of the

pilot signal (reference signal), shall be considered.

Using RSRP-based cell selection, UEs compare the

power of reference signal from each BS, and connect to the

largest one [3]. Moreover, using CRE, a bias value is added

to the pico received signal, and more UEs can connect to

PBSs, which is as if pico cell range is expanded.When UEs

connect to MBS,

(w
pilot
m )dB > (w

pilot
p )dB + (�bias)dB. (1)

When UEs connect to PBS,

(w
pilot
m )dB < (w

pilot
p )dB + (�bias)dB, (2)

where (w
pilot
m )dB, (w

pilot
p )dB, and (�bias)dB represent the

decibel value of pilot signal power fromMBS and PBS, and

bias value, respectively, [1].

In this way, the pico cell range can be artificially

extended. However, since ER UEs connect to BSs that do

not provide the strongest received power, they suffer from

interference fromMBS [1].

Thus, we need ICIC that can eliminate the interference

from MBS to PBS. We apply ICIC by dividing the radio

resource between MBSs and PBSs to avoid the interfer-

ence between them [18]. Although each PBS can interfere

with another PBS’s signal, it is not a big problem because

they have almost the same transmit powers.
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The configuration of optimal bias value

Optimal bias values that minimize the number of outage

UEs are changed by the ratio of radio resource among BSs

and by the location of UEs and BSs. Since the optimal bias

values vary from one UE to another [4], bias values should

be defined by each UE. However, because of the difficulty

to find the suitable sets of the ratio of radio resource and

UEs’ distribution, most articles use the common bias value

among all UEs [1,3]. In this article, each UE learns bias val-

ues that minimize the number of outage UEs individually

and can decide each bias value independently.

Reinforcement learning
Although supervised learning is effective, it may be hard

to get training data on field. Thus, RL represents a suitable

alternative as it only uses experiences of agents that learn

automatically from the environment. In the RL, instead

of the training data, agents get scalar values referred

to as costs, and only these costs provide knowledge to

agents [11].

The interaction between the agents and their environ-

ment, shown in Figure 1, can be summarized as follows:

1. Agents observe the state st of environment and make

actions at based on the current observed st at the

time t.
2. State transits to the next state st+1 due to the

execution of the selected action at , and agents get

costs ct when executing action at in state st .

3. Time t transits to t + 1, then repeat steps 1 and 2.

Thanks to the algorithm described above, RL is allowed

an online learning which is one of the most important

characteristic of RL.

Value function and policy

RL has two important components, policy and value func-

tion.

Policy defines the action of agents at each step, in other

words, policy is the mapping from observed state to an

action that should be taken. It is expressed as a simple

function, a look-up table, or other cases that need more

exploration. Policy itself is enough to decide the action

Figure 1 Interaction between agent and environment.

of agents [11]. It is represented as a probability π(s, a) of

selecting action a at state s. To calculate the policy means

to decide π(s, a) of all available actions at every state. The

agent’s goal is to maximize the total amount of reward it

receives over the long run.

Almost all reinforcement learning algorithms are based

on estimating value functions—functions of states or of

state-action pairs that estimate how good it is for the

agent to be in a given state or how good it is to perform

a given action in a given state. The expression of “how

good” means the expected future rewards. Of course,

the rewards that the agent can expect to receive in the

future depend on what actions it will take. Accordingly,

value functions are defined with respect to particular

policies [11].

Recall that a policy π is a mapping from each state s and

action a to the probability π(s, a) of taking action a when

in state s. Informally, the value of a state s under a policy

π , denoted by Vπ (s), is the expected return when starting

in s and following π . Vπ (s) can be defined formally as

Vπ (s) = Eπ

{

∞
∑

t=0

γ tct|s0 = s

}

(3)

where Eπ {·} denotes the expected value given that the

agent follows policy π . Note that if the terminal state

exists, its value is always zero. The function Vπ is referred

to as the state-value function for policy π [11].

Similarly, the action-value function Q(s, a) can be

defined, which is explained in the following subsection.

In this article, action-value function Q(s, a) is used as

the value function. This represents the value of select-

ing action a at state s; this is the Q-value of Q-learning

explained later. The best Q(s, a) denotes the best action a

at the state s.

Q-learning

Q-learning is one of the typical methods of RL that

is proved to converge in single agent systems [11,19].

Q-learning uses Q-value that means action-value func-

tion. Agents have Q-table where they save the sets of

states, actions, and Q-values that represent the effective-

ness of the sets.

The goal of the agents is to minimize costs after select-

ing actions. RL considers not only instant costs but also

cumulative costs in the future that are represented as

scalar value referred to as Q-value. It is defined as follows:

Q(s, a) = E

{

∞
∑

t=0

γ tc(st , at)|s0 = s, a0 = a

}

, (4)

where γ , c(st , at), s0, and a0 represent discount factor

(0 ≤ γ ≤1), the cost of the set of state st and action at ,

initial state, and initial action, respectively, [12].



Kudo and Ohtsuki EURASIP Journal onWireless Communications and Networking 2013, 2013:61 Page 4 of 10

http://jwcn.eurasipjournals.com/content/2013/1/61

If the terminal state can be defined, costs are calculated

up to the final one in Equation (4). However, since it can be

rarely defined, the final time becomes infinity and future

costs make Q-values diverse. That’s why a concept that

discounting future costs is required. If γ = 0, agents do

not care about future cost and consider only immediate

costs, and if γ is about 1, agents have comprehensive views

and consider the future costs.

It is very difficult to obtain optimal policy from Equation

(4), because we cannot have the knowledge of all states.

Therefore, instead of solving Equation (4), Q-learning is

proposed in [11].

Equation (4) can be rewritten as follows [12]:

Q(s, a) = E{c(s, a)} + E

{

∞
∑

t=1

γ tc(st , at)|s0 = s, a0 = a

}

= E{c(s, a)} + γ
∑

v∈S

Ps→v(a)

× E

{

∞
∑

t=1

γ t−1c(st , at)|s1 = v, a1 = b

}

= C(s, a) + γ
∑

v∈S

Ps→v(a)Q(v, b),

(5)

where Ps→v(a) is the transition probability from state s to

the next state v when action a is executed, and c(s, a) and

C(s, a) represent the cost of action a at the state s and

mean value of c(s, a), respectively. According to Equation

(5), the current state’s Q-value can be evaluated by the

current cost and the next state’s Q-value.

All Q-values are stored per each state and action pair

in Q-table and updated repetitively. Although because

Q-learning has to save all Q-values, there may be a mem-

ory problem, it can converge the action-value function

Q(s, a) directly. Equation (4) can be approximately exe-

cuted with using Q-table. It is enough to converge this

learning if all Q-values of the sets of states and actions are

continue to be updated. Because this concept is simple, it

makes the analysis of algorithm easier.

We describe the flow of Q-learning, illustrated in

Figure 2, as follows.

Step (1) Agents observe their states from the

environment and find the sets that have the state in

the Q -table. They also get costs from the

environment as the evaluation of the selected actions.

Step (2) Using the state and cost that are known at

step (2), the Q -value selected at the previous state

and action is updated.

Step (3) Following an action selection policy, for

instance ε-greedy policy mentioned later, an action is

selected making use of the Q -values of observed

states at step (1).

Figure 2 The flow of Q-learning.

Through above steps, Q-learning realizes Equation (4).
Q-value is updated as follows:

Q(st , at) ← (1 − α)Q(st , at) + α

[

ct+1 + γ min
a

Q(st+1, a)
]

,

(6)

where α represents the learning rate (0 < α ≤1) that con-

trols the amount of the change ofQ-value and “←” means

update. This equation comes from Equation (5), and it

considers future costs.

The aforementioned Q-learning algorithm has been

proved in the system of the single agent [19]. However, our

system is the multi-agent system that has multiple agents,

because all UEs can be the agents in our system. The con-

vergence of Q-learning in a multi-agent system has not

been proved in general, because of the complex relation-

ship among the different agent. The multi-agent system

has the proof of the convergence only when the agents do

not move and know all the other agents’ strategies [20].

Cell range expansion withQ-learning
Though many articles use common bias value among all

BSs and all UEs, UEs can improve coverage area by using

their own bias values. Because of the difficulty to find the

optimal bias value of each UE, in this article, we propose

the scheme that every UE decides bias value indepen-

dently to minimize the number of outage UEs by using

Q-learning. Because all UEs should learn by themselves, in

other words, all UEs can be the agents in our system, this

system is a multi-agent system.Moreover, an online learn-

ing which is allowed in the algorithm of RL is also used in

our system.

There are two types of models using Q-learning: cen-

tralized learning, where one agent learns with by gather-

ing information, and distributed learning, where multiple

agents learn by themselves. The proposed scheme is the

latter type, and we refer to it as distributed Q-learning

[12]. All UEs learn by themselves and they never share

their Q-tables. Since the aim using PBSs is to make UEs in

the hot spot areas to access the PBSs in order to decrease

loads on MBSs, some UEs are allocated in the hot spot
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areas. We show the example of such UE distribution in

Figure 3. UEs and hot spots may move and hot spots’

moving speed is slower than UEs’ one.

We use RBs as radio resources and they denote blocks

of subcarriers in this article. RB is the basic resource

allocation unit for scheduling in 3rd-generation partner-

ship project long term evolution (3GPP-LTE) system [10].

Although one or more RBs are considered to be allocated

to UEs considered in 3GPP-LTE system [10], UEs can be

allocated only one RB in this article. To eliminate the inter-

ference from MBSs to ER UEs, RBs [1] should be divided

into MBSs and PBSs. If UEs use the same RBs simulta-

neously, there will be interference among the UEs. UEs,

that do not get allocated RB by the BS, cannot access radio

services.

Definition of state, action, and cost

We show the definition of state, action, and cost in Table 1.

• State: The state of time t is defined as:

st = {pM, pP} (7)

where pM and pP denote the received powers of the

pilot signals from MBS and PBS, respectively.

Although UEs can hear many signals from various

BSs, they use the largest macro and pico ones, in

other words, only two parameters are saved as state

in Q -table. To make Q -table small, those two powers

are quantized.
• Action: The action of time t is defined as:

at = b (8)

where b denotes the bias value.

Figure 3 UE’s distribution. + expresses UEs, red line means pico

cell, and MBS is the center of this black circle. UEs move inside of this

black circle. There is a hotspot around each PBS.

Table 1 The definition of state, action and cost

State pM : Received powers of the pilot signals from MBS.

pP : Received powers of the pilot signals from PBS.

UEs use the largest macro and pico ones.

Action b: The UE’s bias value

Cost n: The number of UEs that cannot get the radio service

because of no spectrum vacancy or weak received power,
referred to as outage UEs.

Using the backhaul between BSs, we can calculate this
number and broadcast it to UEs.

• cost: The cost of time t is defined as:

ct = n (9)

where n denotes the number of UEs that cannot get

the radio service because of no spectrum vacancy or

weak received power, referred to as outage UEs.

Using the backhaul between BSs, we can calculate

this number and broadcast it to UEs.

On this definition, UEs decide bias values that min-

imize the number of outage UEs depending on the

received power from each BS. Furthermore, consider-

ing the amount of radio resources, when there are many

macro RBs (MRBs), access to the MBS may be better even

if the difference is small, and vice versa. Each UE can cope

with aforementioned situations and decide optimal bias

value by using Q-learning.

Flow of learning

We describe the flow of each UE’s learning as follows.

Step (1) Each UE receives pilot signals from each BS,

and chooses the strongest macro and pico ones. In

other words, each UE observes its state.

Step (2) The received power is quantized to converge

faster, and each UE compares these pilot signal

powers with Q -table’s states.

Step (3) If there are no equal received powers on each

UE’s Q -table, they add new received powers to their

own Q -tables.

Step (4) Among those sets whose received powers are

equal to the pilot signal powers, UEs usually choose

one set that has the lowest Q -value or rarely choose

one set randomly to avoid local minima as ε-greedy

policy [11].

Step (5) Each UE uses chosen set’s bias value as an

action.

Step (6) Each UE compares “macro received power”

with “pico received power” added by bias value, they

try to connect to the larger one.

Step (7) BSs allocate each UE to each RB randomly.

In this article, each UE can use only one RB. strongly



Kudo and Ohtsuki EURASIP Journal onWireless Communications and Networking 2013, 2013:61 Page 6 of 10

http://jwcn.eurasipjournals.com/content/2013/1/61

interfered by the MBS’s signals. Therefore, in this

article, RBs are split.

Step (8) BSs calculate the number of outage UEs and

pass it to UEs as a cost.

Step (9) Each UE reevaluates the chosen set’sQ -value

at Step 4 as update based on Equation (6).

Step (1) to step (6) and step (9) are carried out by each UE,

while step (7) and step (8) are done by BS.

Repeating the above steps makes Q-value of all sets of

states and actions converge, and then agents can make

right actions.

In our system, when the agents find a new state, if

they always add them to the Q-table, the size of Q-table

increases, which is not allowed by the memory constraint.

Moreover, this makes the learning time longer. To solve

this, we use priori data of the common bias values to

converge faster. The number of outage UEs of all the

common bias values can be checked with trial-and-error

method before starting to learn and sending data to make

the learning time shorter, because the common bias val-

ues are easier to know than the optimal bias values of

each UE. Although the common bias values among all the

UEs are not the best bias value for each UE [4], they are

tend to be a close value to the best bias value of each

UE. We also quantize received powers used as the state

to be even values on step (2) and set upper and lower

limits to check and remove outlier values. After outlier

checking and quantization, state is added. By introduc-

ing these, required memory size becomes smaller and the

convergence becomes faster.

UEs keep having the data of Q-table when they move to

another PBS coverage area because even if the situation

changes and if situations may have some similarities, the

data got in one situations helps to learn in another situ-

ation [21]. UEs use the data as the initial values of next

learning, because we expect that it helps a learning algo-

rithm to converge faster. Even in different situations, UEs

learn environment so that the table is updated.

Simulationmodel and results
Each PBS has one hot spot, and hot spots are placed ran-

domly around PBSs. A hot spot area has 25 UEs inside

it and they are uniformly distributed. The rest 50 UEs

are also uniformly distributed inside the macro cell. We

show the simulation parameters in Table 2. Furthermore,

in this simulation, as interval of bias value, we use 2 dB for

Q-learning to make Q-table small. The maximum value of

bias value is 32 dB, in other words, the actions have 17 lev-

els. As for states, however, agents in our scheme add new

one toQ-table if they find it. Because of this characteristic,

the number of states is not fixed. During the simulation,

about 1600 states are observed.

Table 2 Simulation parameters [1,3]

Macro cell radius 289m

Pico cell radius 40m

Carrier Frequency 2.0 GHz

Bandwidth 10MHz

RBs 50

Thermal noise density −174 dBm/Hz

Macro BSs 1

Pico BSs 2

Hot spots 2

UEs inside macro cell 50

UEs inside Hot spot areas 25

Macro BS transmit power 46 dBm

Pico BS transmit power 30 dBm

Macro path loss model 128.1 + 37.6 log10(R) dB (R [km])

Pico path loss model 140.1 + 36.7 log10(R) dB (R [km])

Velocity of UEs 3 km/h

Channel Rayleigh fading

trials 500000

Learning rate 0.5

Discount factor 0.5

ε 0.1

At first, we show the number of connected UEs and ER

UEs when the ratio of RBs of PBS (PRBs), the splitting

ratio between MBS and PBS is 40% that means the num-

bers of RBs of pico and macro are 20 and 30, respectively

(Figures 4 and 5). From Figure 4, we can see that the big-

ger bias value, the larger the number of UEs that connect

to PBS. This is because the number of ER UEs increases as

bias value increases, as shown in Figure 5. However, a very

large bias value reduces coverage area because it makes

fewer UEs access to MBS and PBSs have fewer vacancies

of RBs. From Figure 4, we can also see that the best bias

value that connects most UEs to BSs exists. If we consider

only the number of connected UEs, the bias value should

be from 16 to 20 dB. Moreover, this optimal range of bias

value is not fixed, because it depends on the location of

UEs, hot spots, and BSs. We found that the bias values,

that have the largest number of connected UEs, are not

fixed, through the simulations.

The average UE’s throughput converges after many tri-

als which is shown as the red line in Figure 6. It can be

seen that average throughput is not stable and changes

rapidly. This is owing to the change of channel that stems

from UE’s and hotspot’s moving. We can also see that the

throughput of the no learning schemes that use 16 dB and

32 dB as fixed common bias values also change by the sim-

ilar degree. Before 5000 trials, the Q-learning approach
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Figure 4 The number of connected UEs at each common bias

value. The number of connected UEs at each common bias value.

The ratio of PRB is 40%. No machine learning is used. MUE and PUE

represent the UE that accesses MBS and PBS, respectively.

has low throughput, and it almost converges after about

50000 trials, and it has the best throughput after about

100000 trials.

Figure 7 shows the bias values that have high probabil-

ity to minimize the number of outage UEs. Optimal bias

value that minimizes the number of outage UEs has linear

increase as against the percentage of PRBs. This is because

the higher a ratio of PRBs is, the more UEs can connect to

PBS with controlling the bias value. Note that these values

cannot always minimize the number of outage UEs.

From now on, we compare three schemes: the proposed

Q-learning scheme, no learning scheme (best bias value),

Figure 5 The number of ER UEs at each common bias value. The

ratio of PRB is 40%. No machine learning is used.

Figure 6 Convergence of average throughputs through trials.

The ratio of PRB is 40%. The Q-learning scheme is compared with the

schemes using fixed common bias values, 16 dB and 32 dB. To show

the convergence, the throughput’s values are averaged per 10 trials.

and no learning scheme (fixed bias value). In the no learn-

ing schemes, all UEs use a common bias value. Both no

learning schemes use trial and error method and search

the bias value that minimizes the number of outage UEs.

No learning scheme (best bias value) searches the bias

value that minimizes the number of outage UEs with trial

and error method every time. Although it can get mini-

mum number of outage UEs with using a common bias

value, this is not practical because the best bias value can

be found after checking the number of outage UEs of all

bias values. Since the channel condition changes dynami-

cally, they check these values at every trial, in other words,

Figure 7 Optimal common bias value among all UEs. No learning

scheme uses trial and error method every time and finds common

bias value that minimizes the number of outage UEs. The values on

this figure get minimum number of outage UEs during simulation.



Kudo and Ohtsuki EURASIP Journal onWireless Communications and Networking 2013, 2013:61 Page 8 of 10

http://jwcn.eurasipjournals.com/content/2013/1/61

Figure 8 CDF of UE throughputs. Average throughputs of all UEs through whole trials at the various ratios of PRBs. (a) CDF when the ratio of PRB is

20%. (b) CDF when the ratio of PRB is 40%. (c) CDF when the ratio of PRB is 60%. (d) CDF when the ratio of PRB is 80%.

this approach has the best performance in the case using

common bias value. However, since it takes a bit long

time to do that, it is not suitable in the real environment.

Because of this, no learning scheme (fixed bias value) uses

trial and error method only at the first trial as a practical

scheme. These compared schemes use 1 dB as the inter-

val of bias value while 2 dB is used in our proposal. Note

that the smaller interval results in better performance. In

our proposal, to make the size of Q-table small, a bit large

interval, 2 dB, is used.

From Figure 8, we show the CDF of average through-

puts of all UEs through all trials. Our proposal, the red line

of Figure 8, can enhance the throughputs of the UEs who

get weak received power such as cell-edge UEs. No learn-

ing schemes have a lot of UEs who have weak received

power while our proposed Q-learning scheme can serve

high throughput to such cell-edge UEs. In spite of this fair-

ness, when the ratio of PRB is 20%, the UEs of our proposal

who are between about 0.2 and 0.7 of CDF in Figure 8a

have lower throughputs than no learning schemes. When

the ratio of PRB is 40 and 60%, the CDFs of our pro-

posed scheme in Figure 8b,c are partially worse than no

learning schemes. When the ratio of PRB is 80%, the CDF

of our proposed scheme in Figure 8d are always better

than them. These results relate to the number of outage

UEs and the UE’s average throughput in Figures 9 and 10

that are discussed below. No learning scheme (best bias

value) can always be better than no learning scheme (fixed

bias value).

Figure 9 Average number of outage UEs at each ratio of RBs.

Q-learning approach compared to optimal common bias approach.
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Figure 10 Average throughput of all UEs at each ratio of RBs.

Q-learning approach compared to optimal common bias approach.

As shown in both Figures 9 and 10, the number of out-

age UEs and the UE’s average throughput change depend-

ing on the ratio of PRBs. This is because bias values that

minimizes the number of outage UEs also differ according

to the ratio of RBs between MBS and PBS. The number

of outage UEs changes depending on the ratio of PRBs.

In spite of the rough interval, Q-learning, the red line of

Figure 9, has fewer outage UEs than no learning schemes

at almost all ratios of RBs. This means if UEs define their

own bias values, we can get fewer outage UEs. When

the ratio of PRBs is 20%, no learning schemes have fewer

outage UEs than Q-learning scheme. Many UEs have a

small difference between macro and pico received powers

enough for the common bias value to occupy all RBs at this

ratio. Of course, our proposal can also occupy all RBs at

this ratio, however its ε-greedy policy’s occasional random

actions make a bit more outage UEs. That is why no learn-

ing schemes can keep the number of outage UEs smaller

than that of the proposed scheme. In this figure, no learn-

ing (best bias value) represents the minimum value of the

number of outage UEs among the schemes using common

bias value. Since the best bias value changes depending

on some factors, no learning (fixed bias value) has more

outage UEs than no learning (best bias value).

The same thing can also occur to the average through-

put of all UEs in Figure 10. When the ratio of PRBs is 20%,

no learning schemes have higher throughput than the pro-

posed Q-learning scheme; except this ratio, Q-learning

scheme performs better than no learning schemes.

From the figures of CDF, we can confirm that our pro-

posal can serve higher throughput to the UEs who get

weak throughputs in the conventional scheme. Because in

the 3GPP standard, cell-edge UE throughput is defined as

5% worst UE throughput [22], we also evaluate this value

in Figure 11. Q-learning scheme has the best throughput

at all ratios of PRB.When the ratio of PRB is 40%, our pro-

posed scheme has the largest improvement that is 61.7%

higher than no learning scheme (best bias value). When

the ratio of PRB is 20%, our proposal has worse average

throughput of all UEs than no leaning schemes because

of this enhancement of worst UE throughput. Although

the common bias value among all UEs simplifies the con-

trolling the system, cell-edge UE throughput degradation

is revealed. This result shows that setting UE’s own bias

value improves cell-edge UE throughput largely.

Conclusions
HetNets that introduce PBSs near hot spots in the macro

cells are necessary to improve the coverage area. Since

pico cell range may be too small to cover the hot spot

area, pico’s CRE is considered. However, to the best of our

knowledge, there have been no studies on the optimal bias

value that minimizes the number of outage UEs, because

this value depends on several factors such as the dividing

ratio of radio resource between MBSs and PBSs, and it is

determined only by trial-and-error method. Thus, in this

article, we proposed a scheme using Q-Learning that UEs

learn bias values that minimize the number of outage UEs

from past experience.

We got the results of the number of outage UEs and

average throughput which show that after thousands of

trials, the Q-learning approach can perform better than

no learning schemes. We showed that our proposal can

decrease the number of outage UEs and improve average

throughput at almost all ratios of RBs. Moreover, it can

largely enhance the cell-edge UE throughput compared

with the schemes using a common bias value.

In the simulation, UEs keep having the data of Q-table

when they move to another PBS coverage area, and we

Figure 11 Average throughput of 5%worst UE at each ratio of

RBs. Q-learning approach compared to optimal common bias

approach.
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expect that it helps a learning algorithm to converge faster.

However, we have not evaluated the effect of UEs’ mov-

ing to other PBS coverage area in detail. This evaluation

is our future study. The required learning time should

also be studied for realizing this system because if it takes

too much time to converge, it cannot be used in the real

system.
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