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ABSTRACT

Cell segmentation in microscopy imagery is essential for

many bioimage applications such as cell tracking and shape

analysis. To segment cells from the background accurately,

we present a pixel classification approach that is independent

of cell type or imaging modality. We train a set of Bayesian

classifiers from clustered local training image patches. Each

Bayesian classifier is an expert to make decision in its spe-

cific domain. The decision from the mixture of experts de-

termines how likely a new pixel is a cell pixel. We demon-

strate the effectiveness of this approach on four cell types

with diverse morphologies under different microscopy imag-

ing modalities.

Index Terms— Cell segmentation, microscopy image,

Bayesian classifier, mixture of experts

1. INTRODUCTION

Noninvasive microscopy imaging techniques such as phase

contrast imagery and differential interference contrast (DIC)

imagery are suitable to monitor living biological specimens

and understand their behaviors. Automated tracking of cell

populations in vitro in microscopy enables applications such

as optimizing cell culture conditions in stem cell manufac-

turing to meet research and clinical demands [4]. When de-

veloping a computer vision-based tracking system capable of

tracking cells in a large population, cell segmentation plays

an important role for shape analysis, cell detection and cell

association in spatiotemporal context [3, 4, 11].

A simple cell segmentation approach may consist of sev-

eral steps: compute an intensity histogram of all image pixels,

select an intensity threshold based on the statistical histogram,

and classify image pixels into two classes based on their in-

tensities and the threshold (pixel class c = {C,B}, where

C and B represent cell and background classes respectively).

Because microscopy image histograms may be unimodal, a

single thresholding method such as Otsu threshold [6] gener-

ates poor results as shown in Fig.1(c). An exceptional work

is done by Li and Kanade in [5], where the object image

is reconstructed based on a DIC microscopy imaging model

and impressive segmentation results are achieved by applying

a single global threshold onto the “preconditioned” image.

Fig. 1. Cell segmentation is challenging. (a-b-c): segmenting

a microscopy image by Otsu threshold [6] yields poor results

where many background pixels are misclassified as cell pix-

els; (a-d-e): segmenting the image by a single global Bayesian

classifier also generates bad results. White in (c) and (e) rep-

resents cell pixels.

However, this image preconditioning method is computing-

intense and it is dependent on the microscopy imaging model.

Some image processing techniques are also widely used

in cell segmentation. For example, morphological process-

ing after thresholding an image is used to obtain connected

components as cell objects [3], and Laplacian-of-Gaussian

(LoG) filters are applied to detect cell blobs [8, 11]. On the

blob or object level, efficient features and machine learning

techniques are explored to detect cells in microscopy images

[7, 12]. In order to segment cells accurately after blob/cell

detection, post-processing steps such as level set approaches

are usually performed to localize the object boundaries [4, 8].

To achieve accurate cell segmentation with precise bound-

aries, we consider pixel-level cell classification and for-

malize it in the basic Bayesian framework. Given fea-

tures f(x, I) (e.g. intensity, gradient, etc) at pixel x of

image I, we classify the pixel as a cell pixel if P (c =
C|f(x, I)) > P (c = B|f(x, I)) (maximum a posterior,

MAP), where P (c|f(·)) is the posterior probability of cell

class based on the pixel features. Using Bayes’ rule, we

have P (c|f(x, I)) ∝ P (f(x, I)|c)P (c) where P (f(·)|c) is

the likelihood of seeing the feature given the corresponding

class, and P (c) is the prior probability about how likely class

c will be observed. If we learn the likelihood and prior prob-

abilities from training cell and background pixels all together

and build a global Bayesian classifier using intensity features,

Jie
@inproceedings{title={Cell segmentation in microscopy imagery using a bag of local Bayesian classifiers}, author={Yin, Zhaozheng and 
Bise, Ryoma and Chen, Mei and Kanade, Takeo}, booktitle={Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on},
pages={125--128}, year={2010}, organization={IEEE}}



Fig. 2. Cluster local histograms computed around N sample

pixels. (a) Around each sample pixel x, we calculate local

histograms within its surrounding local windows with width

w; (b) we compute a pair-wise similarity matrix among the N
local histograms (white represents higher similarity); (c) the

N local histograms are clustered into K clusters.

the classification results by MAP are not good (Fig.1(e)).

Observing that the likelihood and prior probabilities within

a local window vary largely according to different window

locations in an image, we propose a cell segmentation ap-

proach using a bag of local Bayesian classifiers. First, local

histograms are computed in training images and clustered

into several clusters. From each cluster, we build a Bayesian

classifier (expert). The final decision to classify any pixel in

a new input image is made by the mixture of experts.

The highlights of this approach include: it is independent

of imaging modality and cell type; the segmentation is done

by classifying individual pixels with local features, and pre-

cise cell boundaries can be achieved in a soft way where each

pixel is assigned a posterior probability about how likely it is

a cell or background pixel. We describe the details of how to

build a bag of local Bayesian classifiers in the next section,

and demonstrate the effectiveness of this approach in Section

3 with conclusion followed in Section 4.

2. SEGMENTATION USING A BAG OF LOCAL

BAYESIAN CLASSIFIERS

A bag of local Bayesian classifiers are combined by a

mixture-of-experts model:

P (c|f(x, I)) =

KX

k=1

⇡k(x, I,~rk)Pk(c|f(x, I)) (1)

where k indexes the K local Bayesian classifiers and ⇡k(·)
represents the input-dependent weighting function described

in Section 2.2. The intuition behind the model is that different

local Bayesian classifiers are responsible to different types of

local image patches and they are experts to make decision in

their expertized domains. The weighting functions determine

which expert is dominant based on the input pixel to be clas-

sified. In this section, we first describe how to cluster local

histograms into K clusters, and then introduce how to build

and combine local Bayesian classifiers trained from the clus-

tered image patches.

2.1. Spectral Clustering on Local Histograms

Around any pixel in a training image, we can compute a lo-

cal histogram within its surrounding local window such as

Fig. 3. Learn and combine local Bayesian classifiers. (a)

shows a cluster of local histograms; (b) shows some local im-

age patches of the cluster, from which likelihood and prior

probabilities are learned; (c) shows the weighting function

⇡k(x, I,~rk) of the learned Bayesian classifier on a new im-

age I to be classified.

(joint) histogram of intensity or (and) gradient magnitude etc.

For a microscopy image with 1392 × 1040 pixels, we can

get more than 1.4 millions of local histograms. If learning

local Bayesian classifiers from these histograms individually,

we would get many similar and redundant classifiers. It is

more effective and feasible to cluster local histograms be-

fore the learning. During clustering, a pair-wise similarity

(or distance) matrix among all histograms is needed. Since a

1.4M × 1.4M similarity matrix can not be stored or operated

in a common computer memory, we only compute N local

histograms around randomly selected N sample pixels in the

training image (e.g. N = 4000).

The similarity between any pair of histograms, S(~hi,~hj),
is computed by histogram comparison measures such as Bhat-

tacharya coefficients or Earth Mover’s Distance [10]. Fig.2(b)

shows an example N × N similarity matrix among N local

histograms. After applying spectral analysis [1] on the simi-

larity matrix, we get K clusters in the permutated similarity

matrix as shown in Fig.2(c).

2.2. Learn and Combine Local Bayesian Classifiers

Fig.3(a,b) show a local histogram cluster and its correspond-

ing image patches. We learn local Bayesian classifiers from

the clustered image patches. Within each training image

patch, we know which pixels belong to cells and which are

from the background, then we compute a cell histogram
~hC
k and a background histogram ~hB

k over all the pixels of

the image patch cluster k. Letting mC
k = sum(~hC

k ) de-

note the number of cell pixels appearing in image patch

cluster k, mB
k = sum(~hB

k ) be the number of background

pixels in the cluster, and mk = mC
k + mB

k be the total

number of pixels in the cluster, we compute cluster k’s cell

prior as Pk(c = C) = mC
k /mk and its cell likelihood as

Pk(f(x, I)|c = C) = ~hC
k /m

C
k . Using Bayes’ rule, we get

the cell posterior pk(c = C|f(x, I)). Similarly, we do the

computation for background class. Repeating the process for

all clusters, we get a bag of local Bayesian classifiers (cell

and background posterior probabilities).

Each local Bayesian classifier is trained from a specific

cluster of image patches, thus it is an expert to perform clas-

sification on new pixels whose surrounding image patches are



Fig. 4. Experiment evaluation. (a) yellow circle: false alarm,

cyan square: miss detection; (b) cell posterior probability

P (c = C|f(x, I)), (c) classification results (red mask) by

a bag of local Bayesian classifiers match the manual-labeled

ground truth (green contours) quite well.

similar to the training image patch cluster. To classify pixel

x in a new input image, we need to decide which expert(s)

to be applied and what is the confidence level of each classi-

fier’s decision, i.e, ⇡k(·) in Eq.1. First, we calculate a local

histogram ~hx around x, and then compute the similarity be-

tween ~hx and every histogram cluster, S(~hx,~rk), where ~rk
represents the mean histogram of histogram cluster k. The

weighting function on classifier k is defined as

⇡k(x, I,~rk) =
S(~hx,~rk)PK

i=1
S(~hx,~ri)

(2)

which is proportional to the similarity S(~hx,~rk). For exam-

ple, the classifier learned from Fig.3(b) is an expert on image

patches including many cell pixels, thus in a new input image

(Fig.3(c)) the classifier has high confidence around cell pix-

els and low confidence on other regions. We’d like to point

out that the weighting function is input-dependent in the mix-

ture model, which is different from the boosting algorithm [2]

where the weights are fixed after training and they are propor-

tional to each classifier’s accuracy on its training set.

A new input pixel x decides which expert(s) to be applied

with what confidence level based on its local histogram. Fi-

nally, all experts’ decisions are fused into an ensemble poste-

rior by Eq.1, and the pixel is classified using its local feature

by MAP: argmaxc p(c|f(x, I)).

3. RESULTS

The bag of local Bayesian classifier approach is implemented

in a scale space. We compute local histograms with sev-

eral different window sizes (for example, based on the cell

sizes in our phase contrast image datasets, we choose w =
{10, 20, 30}). To save computational cost, we use integral

histogram technique [9] for histogram computation and Nys-

trom method for spectral clustering. It costs 50 seconds to

classify 1.4M pixels on a common desktop workstation, and

it can be faster by parallel computing due to the pixel-wise

classification.

Seq1 Seq2 Seq3 Seq4

Precision 0.967 0.898 0.936 0.941

Recall 0.900 0.925 0.854 1.0

F 0.930 0.911 0.893 0.970

Table 1. Quantitative evaluation on four different types of

microscopy sequences.

Fig.4(a,b) show a microscopy image to be segmented and

its corresponding cell posterior probability after ensembling

9 local Bayesian classifiers (three clusters on each of three

window scales). After the pixel-level MAP classification, we

group the connected cell pixels into cell candidate blobs and

remove small blobs probably due to non-cell pixels. The clas-

sification achieves good cell segmentation results compared

to manual-labeled ground truth, as shown in Fig.4(c).

We quantitatively evaluate the segmentation on the object

level. In the ground truth, a cell object is detected (true posi-

tive, TP) if most (e.g. 90%) of its component pixels are cor-

rectly classified, otherwise it is missed (false negative, FN).

A cell candidate blob by classification is a false positive (FP)

if most of its pixels do not match the ground truth. There-

fore, we define precision as P = |TP |/(|TP |+ |FP |), recall

as R = |TP |/(|TP | + |FN |), and F-measure as the Har-

monic mean of precision and recall. Our approach is val-

idated on four types of cells of different appearances cap-

tured by different imaging modalities and device settings: (1)

C2C12 muscle stem cells imaged by Zeiss Axiovert 135TV

microscope at 5X magnification; (2) bovine aortic endothe-

lial cells imaged by Olympus IX71 microscope at 10X; (3)

bovine vascular endothelial cells imaged at 10X; (4) Cen-

tral Nervous System (CNS) stem cells imaged by Zeiss Ax-

iovert 135TV microscope at 40X. We use intensity feature on

the first three phase contrast microscopy sequences and joint

intensity-gradient features on the fourth DIC microscopy se-

quence. Table 1 shows the complete evaluation results with

92.5% average accuracy (F-measure). Fig.5 shows some sam-

ples of the microscopy images and corresponding cell poste-

rior probabilities.

In the end, we perform parameter sensitivity analysis on

K over one microscopy sequence. As shown in Fig.6, the

segmentation result is poor with only one local Bayesian clas-

sifier. After K ≥ 2, the results are comparable to each other

(e.g. we choose K = 2˜5 in our system).

4. CONCLUSION AND DISCUSSION

We propose a bag of local Bayesian classifier approach for

cell segmentation in microscopy imagery. Local Bayesian

classifiers (experts) are learned from clustered training image

patches. Any new pixel to be classified is assigned a posterior

probability about how likely it is a cell or background pixel

based on the mixture-of-experts model. The binary segmen-

tation results are obtained by MAP classification. We evalu-

ate our approach quantitatively on four different types of mi-

croscopy images with 92.5% average accuracy.



Fig. 5. Sample results on four different microscopy sequences. Top row: input images; bottom row: cell posterior probabilities.

Fig. 6. Quantitative measures on one microscopy sequence

(Seq1) with different K’s.

Some miss detection happens around the mitosis region

as shown in Fig.4(a). The main reason is that we have less

training samples around the mitosis region compared to other

cell/background regions. In the future, we plan to apply

boosting training on these misclassified samples and build

a related local Bayesian classifier from them. Another miss

detection on the bottom of Fig.4(a) is because we remove the

small cell candidate blob, and the two false alarms in Fig.4(a)

are due to large cell peripheral parts. The future solution to

these problems will explore high-level object classification

instead of simply pruning cell candidates by their area sizes.
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