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ABSTRACT

In this paper, the authors propose a cell segmentation algo-

rithm via spectral analysis over phase retardation features,

which are derived from the optical principle of phase contrast

microscopy image formation process. Images are first parti-

tioned into phase-homogeneous atoms by clustering neigh-

boring pixels with similar phase retardation features. Cell

segmentation is then performed by clustering the atoms into

several clusters using multi-class spectral analysis. Experi-

mental results demonstrate that our method generates quality

cell segmentation results and outperforms previous methods.

Index Terms— phase contrast microscopy image analy-

sis, phase retardation feature, spectral analysis, cell segmen-

tation

1. INTRODUCTION

Cell segmentation in phase contrast microscopy images is one

of the most fundamental and important problems in computer-

aided cell image analysis. This task is challenging due to low

contrast between foreground and background in microscopy

images, indistinct boundaries among cells, and the artifact-

s caused by phase contrast optics such as bright halos and

shade-off.

It is known that the imaging mechanism of phase contrast

microscopy, which employs interference of optics, is com-

pletely different from the general imaging system for natural

images [1]. Despite this fact, the majority of cell segmenta-

tion approaches, such as thresholding, watershed method [2]

and level sets [3], treat microscopy images as general natu-

ral images. In contrast, in our recent work [4], we proposed

a way to represent a phase contrast microscopy image as a

linear combination of diffraction patterns based on the phase

contrast image model introduced by Yin et al. [5]. In the

method, each pixel is represented by a phase retardation fea-

ture vector, with which cell detection can be effectively per-

formed [4].

In this paper, we further explore the phase retarda-

tion features to achieve quality cell segmentation. First, a
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phase contrast microscopy image is partitioned into phase-

homogeneous atoms by clustering neighboring pixels with

similar phase retardation features. The distribution of phase

retardation features within an atom is then modeled with a

multivariate Gaussian model, and the similarities between an

atom and its neighboring atoms are measured using Jensen-

Shannon divergence [6], resulting in an affinity matrix among

the atoms. Cell segmentation is subsequently performed us-

ing a multi-class spectral clustering technique [7] over the

matrix with the number of clusters automatically determined

by rate distortion theory [6].

Our experiments show that the proposed algorithm can

segment individual cells out of background with a high quali-

ty and outperforms previous methods. Since our method sep-

arates cells based on phase retardation, the segmentation re-

sults are also useful for cell stage classification (e.g., intermi-

tosis vs. mitosis/apoptosis).

2. METHODOLOGY

In [4], we derived a dictionary-based imaging model for phase

contrast optics as

g ≈
K
∑

k=1

ψk(x)PSF (θk), (1)

where g is the intensity of an observed image, K is the num-

ber of representative phase retardations, and PSF (θk) de-

notes the basis with phase retardation θk from a dictionary. In

this model, each pixel at position x = (xr, xc) is represented

by a feature vector Ψ(x) = [ψ1(x), · · · , ψk(x), · · · , ψK(x)]
T

,

where ψk(x) ∈ [0, 1].
In this section, we first present how to partition a phase

contrast microscopy image into phase-homogeneous atoms

by clustering phase retardation feature vectors of pixels. We

then apply the multi-class spectral analysis technique [7] to

segment cells by clustering the phase-homogeneous atoms.

2.1. Atom generation based on phase retardation features

We advocate a method to partition a microscopy image into

atoms and utilize them as elementary units for cell segmen-

tation rather than using pixels as units. Atom partitioning e-

liminates local redundancy and avoids over-segmented noisy

clips. It also allows to incorporate local information (e.g.,
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phase retardation distribution in an atom) rather than using

pixelwise information (e.g., intensity of a pixel).

Atoms are generated by clustering neighboring pixels

based on pairwise similarity between phase retardation fea-

tures of pixels. (Note that conventional superpixel extraction

is conducted based on image intensity or color values of

pixels.) As a result, the phase retardations within an atom

is statistically homogeneous, thus we call the atom phase-

homogeneous atom. More formally, given two feature vectors

at position xi and xj , the dissimilarity between Ψ(xi) and

Ψ(xj) is defined as

dp = ‖Ψ(xi)−Ψ(xj)‖ (2)

which is upper bounded by

dp � ‖Ψ(xi)‖+ ‖Ψ(xj)‖ � 2
√
K. (3)

And the spatial distance between xi and xj is measure by

ds = ‖xi − xj‖. (4)

On the assumption that all atoms have the same size, the dis-

tance between two pixels belonging to the same atom is upper

bounded by the atom size S = P/N , where P is the number

of pixels in the image and N is a user-specified number of

atoms.

The partition of atoms {An}Nn=1 is then determined by

minimizing the normalized distortion of phase retardation

features and spatial positions as

min

N
∑

n=1

∑

x∈An

(

1

4K
‖Ψ(x)− µ

(n)
p ‖2 +

ω

S2
‖x− µ

(n)
s ‖2

)

, (5)

where x is the spatial coordinate; Ψ(x) is the corresponding

phase retardation feature; and µ
(n)
s and µ

(n)
p are the prototype

(mean) of spatial coordinates and phase retardation features

for atom An, respectively. Each term is normalized by the

square of its upper bound. ω is a balance parameter to adjust

the weight between the phase and spatial proximities. In this

paper, the dissimilarities of phase retardation features and s-

patial positions are treated equally; i.e., ω is set to be 1 for all

experiments.

This minimization problem can be solved by associating

each pixel to its nearest seed iteratively, and we detail the

linear iterative clustering algorithm in Alg. 1 (See Appendix

A.1.). Fig. 1 shows an example of the atom generation based

on phase retardation features, compared to superpixels based

on image intensities. The phase-homogeneous atoms pre-

serve local structure of cell images (Fig. 1.2), i.e., cell re-

gions and halos are segmented into separated atoms, which

is consistent with biophysical content of cell images. On the

other hand, the intensity-homogeneous atoms are more likely

to produce over-segmented noisy clips (Fig. 1.3), because cel-

l intensities within cells often vary among subcellular struc-

tures.

����� ����� �����

Fig. 1: Atom generation. (1.1) Original phase contrast microscopy image;

(1.2) Phase-homogeneous atoms; (1.3) Intensity-homogeneous atoms.

2.2. Cell segmentation via multi-class spectral analysis

Cell segmentation is performed by clustering the phase-

homogeneous atoms into several clusters, which are unspec-

ified but expected to be interpretable, e.g., bright and dark

cells, halos, background, etc.

In revealing the identity of an atom, its neighborhood in-

formation plays an important role in addition to the character-

istics of itself. For example, without neighboring information,

halos and bright cells may not be distinguishable from each

other based on phase retardation features within an atom as

shown in Fig. 2.2, where the first three principle elements of

phase retardation feature vectors are mapped to R, G, and B

values of a color image. Specifically, both halos and bright

cells are represented by similar distributions of phase retarda-

tions, where the dominant one is marked as red color in the

figure. In such a case, neighborhood information helps to dis-

tinguish them since most halos are around dark cell regions

(marked as green color) while bright cells are surrounded by

background (marked as black color).

����� ����� �����

Fig. 2: Color-coded image and atom generation. (2.1) Original phase contrast

microscopy image; (2.2) Color-coded phase retardation features correspond-

ing to the original image; (2.3) Phase-homogeneous atoms.

To incorporate the neighborhood information of an atom,

we first model the distribution of feature vectors within an

atom using a multivariate Gaussian distribution, and then

measure the pairwise dissimilarity between neighboring

atoms using Jensen-Shannon (JS) divergence [6] of the t-

wo Gaussian distributions. Note that the JS divergence is

zero if distributions of the corresponding atoms are identical,

while approaching positive infinity as they get dissimilar.

Based on the dissimilarity measure, we define neighbor-

hood feature τ
(n) of An as the mean of the features in its

most distinctive neighboring atom, i.e.,

τ
(n) = µ

(m∗)
s.t. m

∗ = argmax
m:Am∈N (An)

JSD
(

p
(n) ‖ p

(m))
, (6)

where p(n) and p(m) are the multivariate Gaussian distribu-

tions of phase retardation features in atom An and Am, re-

spectively; N (An) is the set of An’s adjacent atoms, and
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µ
(m∗) is mean vector of phase retardation features in Am∗ .

By concatenating the features within an atom and the features

from its neighborhood together, we obtain the descriptor fn
for an atom An, i.e., fn = [µ(n); τ (n)] .

We define the likelihood that a pair of atoms An and Am

belong to the same category as

wmn = exp
(

−
∥

∥fn − fm
∥

∥

2) ∈ (0, 1]. (7)

By collecting all wmn together, we construct an affinity

matrix [wmn], and cluster the atoms into L clusters by solving

the following combinatorial Dirichlet problem [7]

Y ∗ = argmax
Y

1

L

L
∑

l=1

Y T
l WYl

Y T
l DYl

, s.t.

{

Y ∈ {0, 1}N×L

Y 1L = 1N
,

(8)

where Yl is the lth column of Y , D is a diagonal matrix with

Dmm = ΣiWmi, and 1L and 1N in the second constraint

denote L×1 and N×1 column vectors with all elements being

1, respectively. Note that the second constraint ensures that

each row of Y ∗ contains only one 1. The nth row of Y ∗ is the

binary cluster indicator of atom An, i.e., Y ∗

nl = 1 means that

An is determined to belong to the lth cluster.

In order to set the number of clusters L, we present a

method following the rate distortion theory [6]. Note that if Y
is relaxed to take real values, the problem in Eq. (8) reaches

its relaxed peak value

κL = max
Y

{

1

L

L
∑

l=1

Y T
l WYl

Y T
l DYl

}

=
1

L

L
∑

l=1

λl, (9)

where λl is the lth largest eigenvalue of D−
1

2WD−
1

2 . The

rate distortion of κL is defined as

dr(L) = κ−K
L , (10)

where K is the number of selected bases in Eq. (1). By in-

creasing the number of clusters L from 2 to a large num-

ber (e.g., 100), we obtain a rate distortion curve (dr vsL),

as shown in Fig. 3. We utilize a two-segment line to fit the

curve, and the best cluster number L∗ is determined as the

intersection of the two line segments

L∗ = argmin
L

L− 1

Lmax − 1
FE1 +

Lmax − L

Lmax − 1
FE2, (11)

where FE1 and FE2 are fitting errors of the first and second

line segments, respectively.

Once the cluster number L in Eq. (8) is determined, we

calculate the first L largest eigenvalues of D−
1

2WD−
1

2 , and

a relaxed continuous solution is given by the corresponding

eigenvectors; the clustering result is obtained by finding a

discrete solution that is the closest to the optimum and sat-

isfies the binary constraint. The atom clustering procedure is

detailed in Alg. 2 (See Appendix A.2.). Finally, cell segmen-

tation is conducted by grouping the neighboring atoms with

the same labels.

�
� � ��	
�
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Fig. 3: A plot showing how to determine the number of clusters, L∗.

3. EXPERIMENTAL RESULT AND DISCUSSION

Data: The proposed approach was tested on two sequences

of images of two different cell types. Seq. 1 includes images

of bovine aortic endothelial cells with resolution 1040×1392
pixels, and we manually labeled 7020 cells (including 193

mitotic cells) and 1.2×106 cell atoms as ground truth. Seq. 2

contains images of muscle stem cells with resolution 696×520
pixels, and we labeled 1459 cells (including 396 mitotic cells)

and 2.6× 105 cell atoms.

Segmentation and clustering: Sample results of cell seg-

mentation and clustering are illustrated in Fig. 4. In Fig. 4(c),

the phase-homogeneous atoms are clustered into different cat-

egories: (1) dark cells (i.e., intermitotic cells, marked as or-

ange), (2) bright cells (i.e., mitotic cells, marked as yellow),

(3) halos and their adjacent atoms including background, etc.

Fig. 4(d) shows segmentation results where cells are marked

by red contours.

�	� �� ��� ���

Fig. 4: Sample results of cell segmentation and clustering. (a) Zoom-in de-

tails of input images. (b) Phase-homogeneous atoms. (c) Results of spectral

clustering, where clusters are indicated by different colors. (d) Segmentation

results marked by red contours.

Comparison and evaluation: For comparison, we imple-

mented two other cell segmentation approaches: (1) partition

images into intensity-homogeneous atoms, and utilize spec-

tral clustering for segmentation (Intensity-Atom), and (2)

cluster pixels based on pixelwise phase retardation features

without the atom segmentation step (Phase-Pixel). Sam-

ple results illustrated in Fig. 5 clearly show that our pro-

posed algorithm produces quality cell segmentation results

(Fig. 5(b)). On the other hand, segmentation of Intensity-

Atom often results in fuzzy segmentation on the boundary

and over-segmented clips (Fig. 5(c)), because pixel intensity
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within a cell is sometimes similar to that of the background,

and subcellular structures within a cell exhibit dissimilar ap-

pearances. The results of Phase-Pixel are not comparable to

our methods either (Fig. 5(d)) due to the noise in both cell

regions and the background. Furthermore, Phase-Pixel is

time costly due to the huge number of instances, since the

computational complexity of spectral clustering is O(N3)
where N is the number of instances.

�� ��� ����	�

Fig. 5: Comparison among different segmentation methods. The top and

bottom rows show results on Seq. 1 and Seq. 2, respectively. (a) Zoom-in

details of input images, (b) Results of our method, (c) Results of Intensity-

Atom, (d) Results of Phase-Pixel.

We quantitatively evaluate the segmentation performance

using the normalized probabilistic rand index (NPR) [8],

which penalizes both cases of over- and under-segmentations.

The quantitative comparison is reported in Table 1, which

demonstrates that our proposed method outperforms the other

two methods. Intensity-Atom and Phase-Atom show relative-

ly low NPR indices as over- and under-segmentations occur

more frequently, caused by fuzzy segmentation and noisy

segmented clips.

Table 1: NPR Index on Cell Segmentation

Seq.1 Seq.2

Phase-

Atom

Intensity-

Atom

Phase-

Pixel

Phase-

Atom

Intensity-

Atom

Phase-

Pixel

0.87 0.42 0.76 0.85 0.72 0.69

Since our segmentation method is based on clustering

among atoms, cells with different properties are separately

clustered. This additional information is useful for cell stage

classification because cells undergoing the same stage (e.g.,

mitosis) are more likely to be clustered into the same cluster.

To quantitatively validate this argument, we manually labeled

mitotic cells and examined whether they are indeed grouped

into the same cluster. As expected, 96.6% of mitosis in Seq. 1

and 93.9% of mitosis in Seq. 2 were clustered to the same

cluster, and only 7.7% and 6.1% of the elements in the cluster

were non-mitotic cells in Seq. 1 and Seq. 2, respectively. This

result shows that our proposed algorithm can provide qual-

ity candidates for cell stage classification or event detection

methods, e.g., [9].

4. CONCLUSION

In this paper, we propose a cell segmentation algorithm vi-

a spectral analysis over phase retardation features derived

in [4]. Based on the similarity between phase retardation

features, a phase contrast microscopy image is first parti-

tioned into phase-homogeneous atoms. Cell segmentation is

then performed by a multi-class spectral clustering technique

based on the features from each atom and its neighboring

atoms. Experimental results compared with manual anno-

tation and against alternative methods show our method’s

effectiveness on cell segmentation and its potential for cell

event detection or stage classification.
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A. APPENDIX

A.1. Algorithm for atom generation

Algorithm 1 Atom Generation based on Phase Retardation

Features in Phase Contrast Microscopy Images

1: Input: Phase retardation feature {Ψ(x)} of an image,

the user specified number of atoms N and the threshold

th for stop criterion.

2: Output: A set of atoms {An}, and their descriptors {fn}
3: //Partition phase contrast microscopy images into atoms

4: Initialize Seeds: Partition an image into N regular rect-

angle grids, and place a seed in each grid as {�n}.

5: repeat

6: for all pixels xi do

7: Associate Pixel to its nearest seeds determined by

�∗n = argmin
�n

( 1

4K
‖Ψ(xi)−Ψ(�n)‖2+

ω

S2
‖xi−�n‖2

)

.

8: end for

9: Define atom An as union pixels associated with �n

An � {xi|xi → �n}.
10: Update Seeds as center of atom An: �n ← C(t)

n (x).
11: Compute Center Offset:

E =

N
∑

n=1

‖C(t+1)
n (x)− C(t)

n (x)‖2.

t ← t+ 1.

12: until E � th

13: //Calculate descriptor for each atom

14: for all atoms An do

15: Model phase retardation feature for An with a multi-

variate normal distribution Ψ(x) ∼ N (µ(n),Σ(n)).
16: end for

17: for all atoms An do

18: Define the descriptor fn for atom An as

fn = [µ(n), τ (n)]T ,

where µ
(n) is the mean phase retardation feature vector

of atom An, and τ
(n) is its neighboring characteristic

τ
(n) = µ

(m∗)
s.t. m

∗ = argmax
m:Am∈N (An)

JSD
(

p
(n) ‖ p

(m))
.

19: end for

A.2. Algorithm for cell segmentation

Algorithm 2 Cell Segmentation based on Multi-class Spec-

tral Clustering

1: Input: Atoms {An} of an image, and their descriptors

{fn}.

2: Output: Cell segmentation result Y ∗

3: //Construct the affinity matrix

4: Compute similarity between atoms An and Am

wmn = exp
(

− ‖fn − fm‖2
)

∈ (0, 1],

and construct the affinity matrix as W = [wmn].
5: Compute the diagonal degree matrix D as

D = Diag
([

N
∑

i=1

w1i, ...,
N
∑

i=1

wNi

])

.

6: //Formulate the optimization problem

7: Formulate cell segmentation as a combinatorial Dirichlet

minimization problem as

Y ∗ = argmax
Y

1

L

L
∑

l=1

Y T
l WYl

Y T
l DYl

, s.t.

{

Y ∈ {0, 1}N×L

Y 1L = 1N
,

where Y ∗ is the atom indicator matrix.

8: //Determine the optimal cluster number

9: Determine the cluster number L∗ as

L∗ = argmin
L

L− 1

Lmax − 1
FE1 +

Lmax − L

Lmax − 1
FE2,

where FE1 and FE2 are the fitting errors of line seg-

ments for the rate distortion defined in Eq. (10), respec-

tively.

10: //Solve the optimization problem

11: Calculate the eigenvectors of D−
1

2WD−
1

2 that corre-

spond to its first L∗ largest eigenvalues

V = [v1, · · · ,vL∗ ].

12: Find the optimal solution in Eq. (8) by

Y ∗ = D−
1

2V = D−
1

2 [v1, · · · ,vL∗ ].

13: //Cell segmentation and stage classification

14: Find the optimal discrete solution via an iterative refining

procedure in [7], and cell segmentation is thus realized

by grouping the neighboring atoms with the same labels.
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A.3. Supplemental figures

• Flowchart of our proposed cell segmentation and stage classification algorithm
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Fig. 6: Steps of our proposed cell segmentation algorithm. Phase contrast microscopy images are restored with sparse representation algorithm [4], and

partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. After modeling the distribution of phase

retardation feature with a multivariate Gaussian model, we utilize the Jensen-Shannon divergence [6] to measure the dissimilarity between an atom and its

neighborhood. An affinity matrix is then constructed to characterize the similarity between any pair of atoms. Furthermore, we employ multi-class spectral

clustering technique to classify the atoms into several clusters, e.g., background, intermitotic cells, mitosis cells, etc.

• Sample results for Seq. 1 (Detailed results of Fig. 4)

�
�

� �
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Fig. 7: Sample results of cell segmentation and stage classification for Seq. 1. (a.1) Phase contrast microscopy image. (a.2) Cell segmentation result on the

image. (b) Zoom-in details of input phase contrast microscopy image. (c) Results of phase-homogeneous atoms, which show that the atoms preserve local

structures of cell images, i.e., cell regions and halos are segmented into separated atoms. (d) Results of spectral clustering where each cluster is indicated by a

different color. The atoms are categorized into dark cells, bright cells, halos and their adjacent atoms including background, etc. (e) Results of cell classification

and segmentation, where bright cells (mitosis cells) and dark cells (intermitotic cells) are separately clustered. (f) Segmentation results where cells are marked

by red contours.
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• Sample results for Seq. 2 (Detailed results of Fig. 4)

�� ��� ��� ��� ����	���
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Fig. 8: Sample results of cell segmentation for Seq. 2. (a.1) Phase contrast microscopy image. (a.2) Cell segmentation result on the image. (b) Zoom-in details

of input phase contrast microscopy image. (c) Results of phase-homogeneous atoms, which show that the atoms preserve local structures of cell images, i.e.,

cell regions and halos are segmented into separated atoms, which consists with biophysical content of cell images. (d) Results of spectral clustering, where

each cluster is indicated by a different color. The atoms are categorized into dark cells, bright cells, halos and their adjacent atoms including background, etc.

(e) Results of cell classification and segmentation, where bright cells (mitosis cells) and dark cells (intermitotic cells) are separately clustered. (f) Segmentation

results where cells are marked by red contours.

• Comparison among different segmentation algorithms (Detailed results of Fig. 5)

�� ��� ��� ��� ����	� ���

Fig. 9: Comparison of our proposed algorithm with other methods: segmentation based on image intensity (Intensity-Atom) and segmentation based on

pixelwise phase retardation feature (Phase-Pixel). The top and bottom rows show results on Seq. 1 and Seq. 2, respectively. (a) Zoom-in details of input phase

contrast microscopy images. (b) Results of phase-homogeneous atom generation. (c) Segmentation results where cells are marked by red contours. (d) Results

of intensity-homogeneous atoms. (e) Cell segmentation results based on the intensity-homogeneous atoms, which show a fuzzy segmentation between cells

and background (top row) due to the low contrast between cells and background, and noisy over-segmented clips (bottom row) due to dissimilarly between

subcellular structures. (f) Spectral clustering results based on pixelwise phase retardation features. By Eq. (11), a much larger number of clusters was selected.

(g) Segmentation results based on pixelwise clustering, which shows noisy over-segmented clips and fuzzy contours.
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