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The process of lipid peroxidation is widespread in biology and is
mediated through both enzymatic and non-enzymatic pathways.
A significant proportion of the oxidized lipid products are
electrophilic in nature, the RLS (reactive lipid species), and react
with cellular nucleophiles such as the amino acids cysteine, lysine
and histidine. Cell signalling by electrophiles appears to be limited
to the modification of cysteine residues in proteins, whereas non-
specific toxic effects involve modification of other nucleophiles.
RLS have been found to participate in several physiological
pathways including resolution of inflammation, cell death and
induction of cellular antioxidants through the modification of
specific signalling proteins. The covalent modification of proteins
endows some unique features to this signalling mechanism which
we have termed the ‘covalent advantage’. For example, covalent
modification of signalling proteins allows for the accumulation of
a signal over time. The activation of cell signalling pathways
by electrophiles is hierarchical and depends on a complex
interaction of factors such as the intrinsic chemical reactivity

of the electrophile, the intracellular domain to which it is
exposed and steric factors. This introduces the concept of
electrophilic signalling domains in which the production of the
lipid electrophile is in close proximity to the thiol-containing
signalling protein. In addition, we propose that the role of
glutathione and associated enzymes is to insulate the signalling
domain from uncontrolled electrophilic stress. The persistence of
the signal is in turn regulated by the proteasomal pathway which
may itself be subject to redox regulation by RLS. Cell death
mediated by RLS is associated with bioenergetic dysfunction,
and the damaged proteins are probably removed by the lysosome-
autophagy pathway.

Key words: electrophile-responsive proteome, Kelch-like
ECH-associated protein 1 (Keap1), lipid peroxidation, nuclear
factor-erythroid 2 related factor (Nrf2), protein modification,
reactive lipid species (RLS).

INTRODUCTION

The oxidation of PUFAs (polyunsaturated fatty acids), such as
arachidonic acid, generates a broad range of oxidation products
which historically have been used as markers of oxidative
stress [1,2]. For example, the unique structural attributes of
the non-specific oxidation products known as the isoprostanes
have allowed for the development of accurate high-throughput
assays for their measurement in complex biological systems
[3]. Lipid peroxidation products have been detected in the
blood, plasma, urine, and tissue samples of humans and animal
models using an array of techniques, and, in many cases,
their levels are elevated in pathological conditions [4–7]. The
application of these analytical techniques has led to the concept
that RLS (reactive lipid species) are mediators, not simply by-
products, of multiple pathophysiological conditions [8–11]. The
cell signalling mediated by RLS has some unique biochemical
attributes. Importantly, many lipid peroxidation products are
also electrophilic, which allows them to form stable covalent
adducts with nucleophilic residues on proteins [12–14]. This
is important since it is now well recognized that the thiol
groups on cysteine residues act as redox switches controlling
cell signalling and metabolism [15–17]. The cysteine thiol
group is particularly versatile, and the concept has emerged
that different thiol-reactive signalling molecules can selectively

modulate protein function [16]. Specific mechanisms that have
been shown to modify redox cell signalling include S-nitrosation,
S-glutathionylation and Michael addition with biologically active
electrophiles [15,18,19]. Other oxidative mechanisms mediated
by either hydrogen peroxide or lipid peroxides to form sulfenic
or sulfinic acids were initially thought to be markers of oxidative
damage. However, a previous study suggested that they may also
play a role in cell signalling [20]. Interestingly, although early
studies implied that lipid peroxidation always results in damage,
a more refined view of this process has evolved and suggests that
oxidized lipids can elicit different cellular effects depending on
the species present, their concentrations and their reactivity with
protein targets [14,21–23].

Oxidized lipids can mediate biological responses through two
diverse mechanisms: classic reversible binding and irreversible
covalent modification of receptors [15,22,24–26]. Some oxidized
lipids are ligands for specific receptors [e.g. PG (prostaglandin)
receptors] and mediate biological effects through reversible
receptor–ligand interactions [27,28]. This is best understood for
the enzymatically produced PGs and LTs (leukotrienes) [29].
In contrast, some lipid peroxidation products modulate cellular
activity through irreversible covalent modification of nucleophilic
amino acid residues on proteins [15,30]. This concept was initially
in conflict with the classical paradigms for cell signalling since
to ‘turn-off’ the signal, the protein must be selectively degraded.
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However, signalling through the covalent modification of
proteins is now accepted for a number of well-defined protein–
lipid interactions, and selective degradation is mediated through
the proteasome [31,32]. Interestingly, signalling though the
covalent modification of proteins changes the relationship
between the concentration of the ligand, in this case an oxidized
lipid, and the resultant signal [33]. Since irreversible covalent
modifications of proteins can accumulate over time and amplify a
signal [33], even low levels of oxidized lipids initiate signalling.
We have termed this concept ‘the covalent advantage’ [22].

In the present review, we will discuss: (i) the formation
of RLS through both non-enzymatic and enzymatic processes;
(ii) oxidized lipid signalling through classic receptor-mediated
pathways and by covalent modification of protein targets; and
(iii) susceptibility of thiols to modification by RLS. We will then
relate these concepts to the ability of oxidized lipids to trigger
adaptive and damaging biological effects with a focus on the role
of subcellular localization.

FORMATION OF RLS

Much of the early research into mechanisms of lipid peroxidation
was performed by scientists in the food industry. It was well appre-
ciated that off odours and flavours could be attributed to lipid oxid-
ation, and inhibiting this process results in products with a longer
shelf life [34]. As the field evolved, it was recognized that lipid
peroxidation is endogenous to living organisms and has multiple
functions dependent on the site and mechanism of oxidation. For
example, as shown in Figure 1(A), enzymatic sources of lipid per-
oxidation yield important biological mediators of inflammation
such as the PGs from COXs (cyclo-oxygenases), and the LTs from
LOXs (lipoxygenases) [35,36]. Importantly, both non-enzymatic
and enzymatic oxidation of PUFAs results in the formation of
RLS that are electrophilic (Figure 1B). A major substrate for lipid
peroxidation is arachidonic acid, and its oxidation results in the
formation of several products (Figure 1A). Of these lipid peroxid-
ation products (Figure 1A), a subset are electrophilic in nature, and
there are both structurally distinct species derived from either non-
enzymatic or enzymatic lipid peroxidation (Figure 1B). Examples
of electrophilic products of non-enzymatic lipid oxidation include
aldehydes such as HNE (4-hydroxynonenal), malondialdehyde
and acrolein as well as the J- and A-series isoprostanes. Other
RLS include the isoketals, which result from the rearrangement
of endoperoxide intermediates of the isoprostane pathway and
have the potential to react with both proteins and lipids [37]. The
approach to research with RLS has largely focused on defining
the reactivity and biological effects of a candidate molecule. For
this reason, we know a great deal about the behaviour of HNE,
15d-PGJ2 (15-deoxyprostaglandin J2) and nitroalkanes [21,38–
44]. From these studies, two key facts have emerged: (i) the effects
of all the RLS are dependent on the amount exposed to the cell
with many exhibiting anti-inflammatory or cytoprotective effects
over the lower concentration range; and (ii) the biological effects
of the RLS vary according to the specific RLS and target cells
[33,45]. The implications of these findings are that each RLS
reacts with a specific family of proteins which we have called the
electrophile-responsive proteome [12,22]. This concept will be
explored in more depth throughout the present review.

NON-ENZYMATIC LIPID PEROXIDATION

PUFAs, such as arachidonic and linoleic acid, are targets for lipid
peroxidation. Non-specific lipid peroxidation proceeds through
a chain reaction composed of three main steps: initiation,
propagation and termination. In enzymatic lipid peroxidation,

Figure 1 Formation of lipid electrophiles via non-enzymatic and enzymatic
lipid peroxidation

(A) Arachidonic acid can be converted into several products through enzymatic and
non-enzymatic lipid peroxidation. Both free-radical-catalysed as well as enzymatically
controlled oxidation yields a subset of products that are electrophilic. 5-HPETE,
5-hydroperoxyeicosatetraenoic acid; LOOH, linoleic acid hydroperoxide. (B) Examples of RLS
produced from arachidonic acid and their structures. For simplicity, stereochemistry is not
indicated. TXA2, thromboxane A2; *reactive site.

initiation is controlled and stereospecific and propagation does
not occur. The production of specific lipid oxidation signalling
molecules is controlled by enzyme pathways and the release of
non-enzyme-bound radical intermediates is minimized. Due to
their unsaturated double bonds, the allylic hydrogen atoms in
PUFAs are readily abstracted by initiating species such as ferryl
radical, peroxynitrite (ONOO− ), hydroperoxyl radicals (HO2

•)
and hydroxyl radical (OH•). This results in the formation of
lipid radicals which react with oxygen if it is available. The
products that are formed are diverse and depend on the substrate
oxidized (e.g. arachidonic compared with linoleic acid) and
the mechanism of oxidation (non-enzymatic or enzymatic). Once
lipid peroxidation is initiated, lipid alkoxyl (LO•) and lipid
peroxyl (LOO•) radicals are capable of abstracting a hydrogen
atom from another fatty acid molecule, thus contributing to the
propagation of lipid peroxidation [46]. In biological membranes,
the presence of proteins can result in transfer of the lipid radicals
to protein side chains and adduct formation [47,48]. In this setting,
the proteins become active participants in the propagation of the
lipid peroxidation reactions. Molecular oxygen (O2) is required
for the propagation phase, and, for this reason, lipid peroxidation
proceeds at a higher rate when oxygen concentrations are high
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[46]. Lipid peroxidation can be terminated by radical–radical
reactions with other lipid radical species or with protein radicals.
Termination can also occur by radical–radical reaction of a lipid
radical species with the nitric oxide radical (NO•) [49].

Cardiovascular disease is a pathological condition in which
predominantly non-specific lipid peroxidation occurs in vivo.
For example, in atherosclerotic lesions, the lipid peroxidation
products found are mostly those lacking stereospecificity
which is a characteristic of the non-enzymatic pathways [50].
However, increases in inflammation do lead to production of
low levels of stereospecific enzymatic lipid oxidation products
in atherosclerosis [51,52]. Several factors may promote lipid
peroxidation through non-enzymatic reactions in vivo [53]. For
example, the production of ROS (reactive oxygen species) and
RNS (reactive nitrogen species) in inflammation may result in
damage to iron- or copper-containing proteins and the release of
the metal from a protein environment in which radical reactions
can be controlled. This can occur with the proteins myoglobin
and haemoglobin [54,55]. Haem proteins then play an important
role in lipid peroxidation by decomposing lipid hydroperoxides
and facilitating the propagation phase [56]. However, unlike
free haem, haem proteins can also initiate lipid peroxidation
[57]. Interaction of hydrogen peroxide with metmyoglobin or
methaemoglobin leads to the formation of an activated haem
protein with a porphyrin cation radical (P+−Fe4 +=O) [58]. This
ferryl radical species is the initiator of lipid peroxidation rather
than the hydroxyl radical [57]. Because of the ability of hydrogen
peroxide to ‘activate’ these haem proteins to initiating species,
myoglobin- and haemoglobin-mediated lipid peroxidation may be
important for catalysing lipid peroxidation in biological systems
where hydrogen peroxide is elevated [56,59].

Peroxynitrite (ONOO− ), formed from the rapid reaction
of NO• with superoxide has also been shown to promote
lipid peroxidation [38,60,61], probably due to the reactivity of
decomposition products hydroxyl radical and nitrogen dioxide
(NO2

•). These radical species are capable of abstracting a
hydrogen atom from unsaturated fatty acids and this process is
iron-independent [60]. iNOS (inducible nitric oxide synthase) and
NADPH oxidases are cellular sources of NO• and superoxide
respectively, and their expression is concomitantly increased in
several pathologies and can form ONOO− [62,63]. The lipid
peroxidation reactions initiated by ONOO− produce isoprostanes,
aldehydes and oxysterols, but unique RLS such as nitrated lipids
only occur with this mechanism of oxidation [64–66]. The
interaction of lipid radicals with RNS such as nitrogen dioxide,
or possibly nitrite, results in a family of electrophilic RLS known
as the nitroalkenes [38,39,67].

ENZYMATIC LIPID PEROXIDATION

There are several enzymes that contribute to the controlled
peroxidation of PUFAs and the activation of multiple biological
pathways [36,68]. One of the best-studied enzymes is COX,
which is responsible for the formation of PGs from arachidonic
acid (Figure 1). Since COX acts predominantly on free fatty
acids, in many cases the production of PGs is dependent
upon phospholipase A2 [69]. COX contains two active sites
including a COX domain and a peroxidase domain [70]. The
COX site is responsible for oxygenating arachidonic acid to
form hydroperoxide PGG2. The peroxidase site then reduces
PGG2 to the alcohol PGH2, the final product of COX. There are
two isoforms of COX in the cell [70]. COX-1 is constitutively
expressed in all tissues; however, COX-2 is normally only
detected in tissues with active inflammation except kidney
and brain where COX-2 is constitutively expressed [71]. The

protein expression of COX-2 is regulated by several transcription
factors relevant to inflammation including NF-κB (nuclear factor
κB), NF-IL-6 (nuclear factor for interleukin-6 expression) and
CREB (cAMP-response-element-binding protein) [72,73]. Once
expressed, COX’s activity can also be regulated in a transcription-
independent manner [74,75]. Several ROS are known to regulate
COX-2 activity by regulating the levels of the lipid peroxide tone
which is required for activation [75–77]. The major product of
both COX-1 and COX-2 is PGH2, which can then be metabolized
to other PGs through the action of PGD, PGE, PGF, and PGI
synthases [78–83]. PGA2, PGJ2 and 15d-PGJ2 are examples of
electrophilic PGs.

The COX enzymes generate several anti-inflammatory
electrophilic RLS from arachidonic acid (e.g. cyclopentenones) as
well as products of ω − 3 fatty acids [e.g. DHA (docosahexaenoic
acid) and EPA (eicosapentaenoic acid)] [40,84]. The latter
products derived from COX-2 have been shown to be important
anti-inflammatory mediators [84,85]. Interestingly, a subset of
these are electrophilic, termed the EFOXs (electrophilic oxo-
derivatives of ω − 3 fatty acids) [84]. These enzymatically
produced RLS may be important for the protection afforded by
ω − 3 supplementation.

Another important source of enzymatic lipid peroxidation
products is through the action of LOXs. LTs and lipoxins
are the products of this pathway and have been extensively
studied in the field of immunology [29,86,87]. There are three
LOX isoforms, with 5-, 12- and 15-LOX expressed in leucocytes,
platelets and endothelial cells respectively [29,88]. The active
site of LOX contains a non-haem iron which is critical to
the enzyme’s activity [89,90]. As with COX, LOX activity is
also modulated by ROS through regulation of the enzyme’s
peroxide tone [91,92]. Among the LOXs, 5-LOX is the most
well-studied in the context of cardiovascular disease [68]. It
was originally found to contribute to asthma and was targeted
with inhibitors developed to minimize airway inflammation [86].
It is now well-established that 5-LOX products also contribute
to other inflammatory processes including the development
of coronary artery disease [51,93]. As shown in Figure 1,
following generation of LTA4 from LOX, the product LTB4 is
formed by hydration, whereas the cysteinyl LTs, LTC4, LTD4

and LTE4, are produced by a specialized GST (glutathione
transferase) enzyme, LTC4 synthase [94,95]. Aside from the
known receptor-mediated effects of the LTs, one LT is known
to be capable of receptor-independent effects through covalent
modification. Because LTA4 is uniquely electrophilic owing to its
epoxide group, it is capable of adducting to nucleophilic amino
acids as well as DNA bases [96,97]. The nucleophilic attack
of 5-LOX by LTA4 leads to the covalent modification and
inactivation of the enzyme [98].

REVERSIBLE RECEPTOR-MEDIATED SIGNALLING
BY OXIDIZED LIPIDS

It is well appreciated that oxidized lipids including the PGs
and LTs can act through reversible binding to cellular receptors
[27,99] (Figure 2). The signalling responses vary depending on
the spectrum of oxidized lipids formed, their concentration and
which receptors are bound by the ligand. As shown in Figure 2(A),
the signals arising from reversible receptor–ligand interactions
are dependent on the concentration of specific lipid peroxidation
products formed and are typically transient and saturable. Thus
it will not be an effective agonist unless a product is present at a
concentration close to the binding affinity of the receptor. In many
cases, the biological lifetimes of the PGs are also extremely short,
and this results in a transient signal.
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Figure 2 Classical receptor-mediated signalling compared with signalling
mediated through covalent modification

(A) Classical receptor-mediated signalling only occurs when a ligand is present at concentrations
which exceed the affinity constant (K m). This binding is reversible and quickly dissipates when
ligand concentrations dip below the needed threshold. (B) Signalling via covalent modification
can occur at low concentrations as well as high concentrations of the ligand. Low concentrations
of electrophile accumulate over time, resulting in persistent signalling. Higher concentrations of
electrophile may result in modification of more diverse protein targets and thus change the
cellular response.

Many of the COX products act through G-protein-coupled
receptors, including the EP receptors (EP1, EP2, EP3, and EP4 in
humans) for PGE2, the DP receptor and the CRTH2 (chemoattract-
ant receptor homologous molecule expressed on T helper type 2
cells) for PGD2 and its metabolites, the FP receptor for PGF2, and
the IP receptor for PGI2 [100]. In contrast, electrophilic PGs can
also participate in cell signalling through covalent modification of
receptors [22,33], a signalling mechanism that will be discussed
further below [23,101]. As with the PGs, LTS formed through
LOX act through specific receptors [102]. BLT (LTB receptor)
1 and BLT2 mediate the pro-inflammatory effects of LTB4

[103]. The cysteinyl LTs (LTC4, LTD4 and LTE4) act through
CysLT (cysteinyl LT receptor) 1 and CysLT2 [104]. CysLT1
is highly expressed in bronchial smooth muscle, and agonist
binding induces smooth muscle contraction [105]. CysLT1 is
also expressed in the spleen and platelets [105,106]. CysLT2
is expressed in the heart, adrenal gland, placenta, peripheral
leucocytes, spleen, lymph nodes and central nervous system [107].

Other than through specific G-protein-coupled receptors,
several lipid peroxidation products have been suggested to act
through PPARγ (peroxisome-proliferator-activated receptor γ ).
This receptor is interesting since it appears that it can function
through both reversible and irreversible binding to the receptor.

For example, the reactive PGs (e.g. 15d-PGJ2), electrophilic fatty
acids including the nitrated lipids such as nitro-arachidonic acid
and nitro-oleic acid have also been shown to bind covalently to
this receptor [39]. Binding to PPARγ is thought to be important
for the anti-inflammatory effects of a number of RLS [39,41,108].
Upon binding to PPARγ , genes involved in metabolism, cellular
differentiation and inflammation are up-regulated. PPARγ
activation is anti-inflammatory and the protein is expressed on
several cell types within the vasculature including endothelial
cells, monocytes, macrophages and smooth muscle cells [109].

ACCUMULATION OF CELL SIGNALLING EFFECTS BY LOW
CONCENTRATIONS OF RLS: THE COVALENT ADVANTAGE

Can the formation of a covalent bond between a receptor and
a RLS (Figure 2B) elicit a biological response in vivo? This
is a particularly important issue to address because the ‘free’
levels of RLS in biological systems are often reported to be
in the nanomolar range and yet in vitro micromolar ranges are
typically needed to elicit cell signalling [11,40,42,43,55,56,110].
For example, PPARγ activation may be the basis of signalling
for some electrophilic lipids [39], but it has been suggested that
they are present at concentrations insufficient to bind to and
activate this receptor [111–113]. However, these RLS can bind
covalently to a cysteine residue on the ligand-binding domain of
the receptor [114,115]. In addition, quantitative estimation of RLS
is confounded by the reactivity of the α,β-unsaturated ketone
group, since substantial amounts of the lipid will be bound to
proteins.

The fact that RLS can form covalent bonds with proteins may
allow the accumulation of a signal over time. This is governed
by several factors. The rate of activation will depend on the
concentration of the activating electrophile and the receptor
target. However, the net activation will depend on the amount
of activating electrophile to which the receptor target is exposed
to over time (Figure 2B). For example, the activation of a
signalling pathway achieved by 10 pmol of electrophile will be
half that achieved by 20 pmol in the cells that are exposed to the
same volume. Using a cell culture model system and covalent
adduct formation of 15d-PGJ2 with Keap1 (Kelch-like ECH-
associated protein 1) as a model electrophile receptor, we have
demonstrated experimentally that the covalent modification of
Keap1 by 15d-PGJ2 accumulates over time [33]. Thus a low flux
of an electrophilic RLS leads to full activation of a receptor even
when the concentration is low (Figure 2B). In part specificity
can then be attributed to the generation of a low flux of lipid
electrophile, which favours reactions with cysteine residues and
steric factors controlling the availability of the nucleophilic amino
acid residue. Reversibility of the signal is then controlled by
integration of the signalling pathway with the proteasome as will
be discussed in a later section.

Thus the key feature of the covalent advantage signalling
paradigm is that cysteine modification occurs in a specific manner.
As such there are several factors which regulate susceptibility to
thiol modification. Although cysteine is present in most proteins,
only a small percentage of cysteine residues are susceptible to
modification [116] as will be discussed in the next section.

POST-TRANSLATIONAL MODIFICATION OF PROTEINS BY RLS:
PROTEIN DAMAGE COMPARED WITH CELL SIGNALLING

Protein adducts with RLS can occur by reaction with nucleophilic
centres such as those shown in Figure 3(A) [117]. The RLS
shown in this Figure have been extensively studied and include
electrophilic lipid oxidation products such as acrolein and HNE
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Figure 3 RLS differ in their reactivity with specific amino acids

(A) Basic structure of an electrophilic lipid and cylopentenone. The β-carbon of the
α,β-unsaturated carbonyl is electrophilic, making the compound reactive with the nucleophilic
amino acids cysteine, lysine and histidine. (B) The specificity and reactivity of lipid electrophiles
differ depending on relative hardness. Although soft electrophiles such as the cyclopentenones
15d-PGJ2 and isoprostane J2 are largely reactive with cysteine residues, harder electrophiles
including the isoketals show less specificity and react with many other nucleophilic targets.

as well as electrophilic cyclopentenone PGs and isoprostanes.
Acrolein and HNE possess an aldehyde functional group and
an α,β-unsaturated carbonyl functional group which allow for
reaction by both Schiff’s base formation and Michael addition
respectively. The cyclopentenone structure reacts through
Michael addition only. Michael addition occurs by reaction of the
electrophile with the nucleophilic amino acids cysteine, lysine
and histidine (Figure 3A).

Exposure of electrophiles to biological systems modifies a
subset of proteins (termed the electrophile-responsive proteome)
which, in concert, orchestrate the biological response. These
proteomes are determined by a number of inter-related pro-
perties of both the electrophile and protein target. The
chemical reactivity of pathologically relevant electrophiles and
nucleophiles has been investigated in some depth [118]. As shown
in Figure 3(B), an important property determining which nucleo-
philic amino acids are modified by an electrophile are governed by
the hard/soft acid–base principle [118–120]. ‘Hard’ electrophiles
include a number of mutagenic compounds and often react with
the ‘hard’ nucleophilic centres in purine and pyrimidine bases.
On the other hand, ‘soft’ electrophiles include many RLS [119]
and react readily with ‘soft’ nucleophiles such as GSH and protein
cysteinyl thiols [119,121]. In comparison with the cyclopentenone
lipid electrophiles, α,β-unsaturated aldehydes including acrolein
and isoketals are relatively harder [122], allowing them to adduct
to harder nucleophiles including DNA and the amino groups on
lysine and lipids. An example of a relatively soft electrophile is
15-PGJ2, which reacts with thiol groups on cysteine, but does not
modify other nucleophilic amino acids [123–125]. Reactivity with
soft lipid electrophiles occurs mostly through the modification
of cysteine residues in the more reactive thiolate anion form
[23,126,127]. These modifications are biologically significant

Table 1 Selected protein targets of RLS

ANT, adenine nucleotide translocator; NF-κB, nuclear factor κB.

Protein Functional change Reference

p50 subunit of NF-κB Inhibition of NF-κB DNA binding [183]
H-, N-, K-Ras Activation of H-, N-, K-Ras [124,184]
Keap1 Release of Nrf2 [136]
Thioredoxin Serves as sensor for oxidative stress [185]
Thioredoxin reductase Disruption of the conformation of the tumour-

suppressor protein p53
[186]

c-Jun Inhibition of AP1 DNA binding [187]
β-Actin Filament disruption [188,189]
GSTP1-1 Inactivation of GSTP1-1 [30]
26S proteasome Inhibition of proteasome and impairment of

proteasomal assembly
[190]

Hsp70 Release of HSF1 to up-regulate the heat-shock
response

[42,43]

Hsp90 Release of HSF1 to up-regulate the heat-shock
response

[42,43]

PPARγ Activation of receptor; anti-inflammatory [123,191]
ANT Mitochondrial membrane permeabilization [140,192]
ATP synthase Inhibits ATP synthesis [140,193]
Cytochrome c oxidase Inhibited oxidase activity [194–196]

since thiol residues are ‘redox sensors’, which are important in cell
signalling. In addition to modification by RLS, signalling can also
be initiated by several other thiol-dependent post-translational
modifications including S-nitrosylation, S-glutathionylation,
formation of sulfenic and sulfinic acids, and disulfide formation
[128–133]. Importantly, the local protein environment can
influence the pKa value of candidate thiols influencing their
reactivity with electrophilic lipids as well as with other oxidants
and will be discussed in more detail below [126–128].

The differences in reactivity of softer and harder electrophiles
may explain, in part, the different cellular effects of RLS. For
example, cyclopentenones react specifically with thiol groups on
cysteine residues, whereas acrolein can react with other amino
acids. This is important when considering the ability of RLS
to modify proteins thus changing their function and the cellular
response. It is now appreciated that site-specific modification of
cysteine residues contributes to cell signalling through cysteine
rich proteins, such as Keap1, whereas modification of lysine
residues is associated with toxicity [21,122,134–137].

The development of lipid- and electrophile-tagging techniques
has been crucial in the identification of several key metabolic
and signalling proteins which are covalently modified by RLS
at reactive cysteine residues [138–140]. Some selected proteins
known to be modified by RLS and their cellular effects are given
in Table 1. As can be seen, the signalling pathways regulated by
electrophilic adduct formation are diverse in both their cellular
location and their role in pathophysiology. These data imply that
there is specificity in terms of RLS signalling with respect to
both the electrophilic lipid and the protein targets. This concept
is shown schematically in Figure 3. The amino acid residues on
proteins can confer specificity in reaction with lipid electrophiles
which, in turn, are important for determining whether the lipid
peroxidation products formed elicit a cell signalling response or
contribute to damage [37,124,136,141].

PROTEIN THIOL REACTIVITY AS A REGULATOR OF SIGNALLING BY
RLS

The primary mechanism by which redox signalling occurs is
through the post-translational modification of critical cysteine
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Figure 4 Factors which determine susceptibility to thiol modification and
cellular thiol targets

Thiol residues have different susceptibilities to being modified by thiol-reactive agents. One
important factor is accessibility (within the cell as within a protein) and the pK a value of the
thiol target. (A) The pH of the environment is different, depending on the subcellular location.
As shown, the average pH of the mitochondrial matrix is 8–8.5, whereas lysosomes are much
more acidic, averaging a pH less than 5.5. The pH, along with the thiol pK a value determines
whether a thiol is deprotonated to form thiolate anion. (B) The local protein environment is a
very important determinant of thiol reactivity. For example, an inaccessible, high pK a protein
thiol would be considered the least prone to modification. However, a low pK a accessible thiol
would be a highly sensitive target.

residues (thiols) in redox-sensitive proteins. This modification
can then change the structure and/or function of the modified
protein and alter downstream signalling [16]. There are multiple
lines of evidence which demonstrate that redox signalling occurs
in a regulated and specific manner and does not simply represent
non-specific oxidative damage. Conserved cysteine residues occur
in almost all classes of proteins and, in many cases, are important
for protein function [142–144]. For example, there are 25 cysteine
residues in the redox sensor Keap1 which are selectively modified
by reactive species [145]. It is for this reason that thiols are poised
to mediate diverse redox signalling responses to multiple stimuli.

In Figure 4, we have integrated the factors which regulate
susceptibility to thiol modification by RLS. The susceptibility of
cysteine residues to modification by a defined RLS is dictated by a
combination of factors including the pKa of the thiol and the local
pH of the intracellular compartment (Figure 4A). Interestingly,
the range of pH within the cell is likely to have a major impact
on thiol reactivity. For example, the high intramitochondrial pH
may be one reason mitochondrial protein thiols are particularly
susceptible to modification and play a key role in cell signalling
[146,147]. Other factors are the accessibility of the thiol within the
protein structure, subcellular localization and the reactivity of
the thiol-modifying agent. The pKa of a specific thiol is defined
as the pH at which 50% of that thiol will be deprotonated.

Thus a thiol having a pKa of 7.4 will be 50% deprotonated at
physiological pH. Since deprotonated thiol (thiolate) is much
more nucleophilic in nature, lower pKa thiols, which are more
likely to be deprotonated at physiological pH, are favoured in
their reaction with lipid electrophiles [148]. However, this factor
alone is not sufficient to explain why electrophiles can activate
cell signalling pathways independent of GSH.

Localization of thiol residues, either within a protein or within
the cell, also seems to be important in dictating their relative
susceptibilities to modification; however, these factors are less
well characterized. This is shown in Figure 4(B), where the most
accessible thiol residue is more likely to be modified than those
less accessible. There is evidence demonstrating site-selective
modification of cysteine residues within a single protein by two
different RLS [124], although characterization of this type of
regulation for a larger subset of proteins has not been examined
to date. As shown in Figure 4(B), it is the combined properties
of a low pKa thiol and accessibility which are the most consistent
feature of proteins activated by electrophilic signalling.

The combination of steric and biochemical factors result in
a functional hierarchy for the activation of cellular signalling
pathways on exposure of cells to an electrophile. The
first pathways to respond are those which are closest to the site
of formation or exposure to the electrophile and with the most
reactive protein thiol to the specific electrophile in question.
The functional consequence of these factors is that the ‘first
responders to electrophile exposure’ are not necessarily the most
abundant thiol-containing proteins. For example, actin possesses
several reactive thiol groups, but is modified by 15d-PGJ2 at
concentrations higher than those required for modification of
Keap1, which is a lower-abundance protein than actin [149].
The consequence for cell signalling is that the RLS-dependent
signalling pathways are activated sequentially according to the
site of formation, specific chemistry, available signalling proteins
and characteristics of the specific electrophile.

GSH AND RELATED ENZYMES AS INSULATORS OF ELECTROPHILE
SIGNALLING DOMAINS

In addition to protein thiols, GSH is an abundant low-molecular-
mass thiol, with a pKa value of 8.3, which is present at micromolar
levels within the cell. Interestingly, electrophiles such as 15d-PGJ2

activate the Keap1 pathway at concentrations in which reaction
with GSH is not detectable [150]. This lack of involvement
of the GSH pathway in electrophile signalling probably occurs
for two reasons. The first relates to the fact that the direct
reaction of GSH with electrophiles, due to its high pKa value,
is slow even though it is present in the cell in the micromolar
range. It is often not appreciated that, although this may seem
a high concentration, it may, in many cases, be lower than the
protein thiol levels. For example, intramitochondrial protein thiol
levels have been demonstrated to be 26-fold higher than GSH
[151]. A further important factor is that the pH of intracellular
compartments, which will modulate the amount of reactive thiols,
shows great variability between cellular compartments as shown
in Figure 4(A). In a compartment with elevated pH, such as
the mitochondrion, electrophilic adduct formation with a reactive
protein thiol on a signalling protein will be favoured over reactions
with free GSH.

The major route of GSH reaction with electrophiles is
catalysed by GSTs. The Km value for GSTs for electrophiles
is typically in the micromolar range which suggests that if the
RLS concentration is the nanomolar range, the metabolism
of RLS through the GSH–GSTs pathway will be minimal [152].
In addition, the access to GSTs will be restricted by steric factors.
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This is important because the generation of a lipid electrophile
is likely to occur in a hydrophobic environment inaccessible
to water-soluble GSH or GSTs. Evidence is now emerging in
which the potential site for an electrophile formation is in close
proximity to the nucleophilic redox sensor. For example, a
sub-population of Keap1 has been shown to be associated with
the mitochondrion and may be a mechanism through which
mitochondria regulate the Keap1/Nrf2 (nuclear factor-erythroid
2-related factor) system [153]. If this is the case, what is the
role of the GSH–GSTs system in cells? We suggest that the
conjugation of reactive electrophiles which are formed in an
uncontrolled manner are deleterious to endogenous low-level
signalling, and the GSH systems ‘insulate’ against high levels of
electrophile production which may cause cellular damage.

The reactivity of the thiol-modifying agent itself imparts
an important selective pressure for the subset of proteins (or
subproteome) which will be modified. Similarly, the source of
an electrophile often dictates its potential protein targets, as the
site of generation may promote modification within a subcellular
microdomain. Indeed, it is now becoming clear that the redox
characteristics of intracellular compartments are not equivalent
and differ widely in their key biochemical characteristics. As
alluded to above, mitochondria have emerged as both a key site of
RLS-mediated signalling and a target of RLS-dependent damage.
Owing to the basic microenvironment in the mitochondrial
matrix, mitochondrial protein thiols are more often in the thiolate
form and are particularly sensitive to modification [151]. At
low levels of electrophile, the interaction with mitochondria
may result in adaptive cell signalling. For example, blocking
mitochondrial thiols has been shown to attenuate HO-1 (haem
oxygenase-1) induction by lipid electrophiles, suggesting that
the mitochondrion plays a critical permissive role in this
signalling pathway [125]. This raises the possibility that localized
ROS production in mitochondria can induce the formation
of reactive electrophiles that participate in cell signalling.
Exogenous electrophilic lipids have also been shown to localize
with the mitochondrion and modify proteins in this subcellular
compartment [154]. At high concentrations this can result in
the promotion of apoptosis, probably through inducing the
permeability transition [140,155]. Some of the strongest evidence
for a localized effect of electrophilic signalling in specific domains
of the cell comes from a series of experiments with 15d-PGJ2.
This electrophile activates the Keap1/Nrf2 system in the cytosol,
as discussed below, but also targets mitochondria and induces
mitochondrial ROS [154]. If a mitochondrial derivative of 15d-
PGJ2 is used, the cytosolic signalling is essentially repressed
and the dominant effect becomes mitochondrial dysfunction
followed by apoptotic cell death [156]. Other studies have
shown that cardiolipin (diphosphatidylglycerol) oxidation in the
mitochondria can contribute to the release of cytochrome c
from the organelle and the initiation of apoptosis [157]. This
is one of the most direct examples in which mitochondrial lipid
peroxidation has been linked to cell signalling.

LIPID ELECTROPHILES AND THE ADAPTIVE RESPONSE TO
OXIDATIVE STRESS

One important protein target of electrophilic lipids mediating
an adaptive response is Keap1, an adaptor protein normally
bound to the transcription factor Nrf2. Modification of Keap1
by electrophilic lipids, including 15d-PGJ2 and HNE, results
in the release of Nrf2 and translocation of the transcription factor
to the nucleus (Figure 5A). In the nucleus, Nrf2 binds to the EpRE
(electrophilic-response element) and genes responsible for the

Figure 5 Modification of protein targets involved in the adaptive response

(A) Modification of Keap1 leads to the release of the transcription factor Nrf2 and its translocation
to the nucleus. Upon binding to the EpRE, several genes are up-regulated including HO-1,
GCL (glutamate-cysteine ligase), GST and NQO1 (NADPH-quinone oxidoreductase). (B) The
heat-shock response is also regulated by RLS. Normally present in monomeric form and bound to
Hsp70 or Hsp90, HSF1 trimerizes upon exposure to several electrophilic lipids and up-regulates
the expression of Hsps by binding to the heat-shock element (HSE). Ub, ubiquitin.

antioxidant proteins HO-1 and GCL (glutamate–cysteine ligase)
are transcribed. The EpRE is also called the ARE (antioxidant-
response element). It is thought that many of the protective effects
of dietary electrophiles such as sulforaphane and resveratrol may
be indirect and lie in their ability to up-regulate endogenous
cellular antioxidants through the EpRE [158,159].

Electrophilic lipids have also been shown to increase protection
through the up-regulation of Hsps (heat-shock proteins),
particularly HSF (heat-shock factor) 1 [42,160]. As shown in
Figure 5(B), the activation of HSF1 by oxidative stress is
mediated by covalent modification of Hsp70 and Hsp90 [42].
These chaperone proteins normally maintain HSF1 in the cytosol
[42,161–163]. Once HSF1 translocates to the nucleus, it is
responsible for up-regulating Hsp110, Hsp90, Hsp70 and Hsp40,
all of which are cytoprotective against toxic stressors [164].
Several oxidative stressors including hydrogen peroxide, ozone
and metal toxicity have been shown to increase the heat-shock
response [165–167]. It is likely that some of these pro-oxidants
mediate their effects through the secondary production of RLS.

One important example of the activation of an adaptive
protective response is cardiac ischaemic pre-conditioning. This
describes the condition where several short periods (∼5 min)
of ischaemia and reperfusion protect the heart from longer
ischaemic periods [168,169]. Importantly, the oxidants that have
been hypothesized to play a role in the ischaemic pre-conditioning
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Figure 6 Subcellular localization of protein targets governs the biological
response to RLS

The diverse biological effects of electrophilic lipids is due, in part, to their subcellular targets.
On the left-hand side, cytosolic targets predominate with the modification of proteins such as
Keap1 and the Hsp70/Hsp90, leading to an increase in adaptive responses. On the right-hand
side, mitochondrial targets control the response, leading to changes in cellular respiration and
apoptotic cell death. In addition, RLS may mediate autophagy and/or mitophagy, leading to
proteasome-independent degradation of adducted proteins. ETC, electron-transport chain; HSE,
heat-shock element.

process may also cause lipid peroxidation [170,171]. It is clear that
some of the protection afforded by ischaemic pre-conditioning
occurs though increases in EpRE- and HSF-regulated genes (e.g.
HO-1 or Hsp70) [172–179], and emerging literature suggests that
electrophilic nitroalkanes can induce these protective mechanisms
[160]. Understanding whether the modification of protein targets
by RLS contribute to pre-conditioning may help direct the devel-
opment of therapeutic agents in ischaemia/reperfusion injury.

FUTURE DIRECTIONS

A number of important questions remain to be addressed in
our understanding of how RLS modulate cell function. The
development of sophisticated mass spectrometry techniques
for the identification of lipidomes will allow for a complete
characterization of the oxylipidome, an important subset of the
lipidome. The development of techniques to monitor specific
lipid–protein adducts to define the electrophile-responsive
proteome for specific RLS will be integral to investigate
further this paradigm of covalent modification as a cell
signalling mechanism. Relating the concentration-dependent
biological responses to the intrinsic biochemical properties of
the electrophile and the proteomes they modify is an important
research problem. This has been most effectively demonstrated
with the cyclopentenone 15d-PGJ2 [23,149,156,180].

As markers of responses to physiology and pathophysiology,
the isoprostanes have been particularly successful as indicators
of oxidative stress in human subjects [7]. Perhaps surprisingly,
it is now clear that the RLS react with a discrete electrophile-
responsive proteome and this is domain-sensitive [23,124,156].
Although cytosolic targets, including the Hsps and Keap1, drive
the adaptive response, mitochondrial targets govern apoptosis,
ROS production and cellular respiration, and also participate
in the adaptive response (Figure 6). For example, targeting an
electrophile to the mitochondria suppresses activation of the
Keap1/Nrf2 pathway and promotes mitochondria-dependent cell
death [156]. This role of the mitochondrion in cell signalling
is now becoming more prominent since it is a site for the
controlled formation of ROS and plays an important role in
the transcriptional regulation of HO-1 [125]. The reason the
mitochondria plays such a central role is probably related to
the extensive lipid environment within the inner mitochondrial
membrane adjacent to redox active transition metals in the
electron-transport chain. Is the mitochondrion the source of
endogenous low levels of RLS for cell signalling? We have
proposed that the mitochondrion can transduce hydrogen peroxide
to form a reactive electrophilic lipid oxidation product [154,181].
Understanding the interface between the pathological effects of
RLS and their cell signalling is challenging. An aspect we have
not discussed in depth in the present review, but which is emerging
as an important area, is the role autophagy and mitophagy play in
the biological effects of RLS [182].

In summary, the current paradigm is that low levels of RLS
can accumulate over time and specifically modify cysteinyl thiols
to modulate protective cell signalling pathways. In contrast, high
levels of RLS can modify other nucleophilic residues in a less spe-
cific manner resulting in protein damage and activation of GST-
mediated GSH conjugation. Failure to decrease the RLS levels and
subsequently repair or remove the damage is likely to lead to de-
leterious consequences for the cell and the development of patho-
logy. It will be interesting to see how these concepts develop over
the next few years as analytical techniques allow the identification
of specific cellular targets for RLS in physiology and pathology.
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