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Céline Colnot, Ph.D.

One of the goals of bone tissue engineering is to design delivery methods for skeletal stem/progenitor cells to
repair or replace bone. Although the materials used to retain cells play a central role in the quality of the
constructs, the source of cells is key for bone regeneration. Bone marrow is the most common cell source, but
other tissues are now being explored, such as the periosteum, fat, muscle, cord blood, and embryonic or induced
pluripotent stem cells. The therapeutic effect of exogenous stem/progenitor cells is accepted, yet their contri-
bution to bone repair is not well defined. The in vitro osteo- and/or chondrogenic potential of these skeletal
progenitors do not necessarily predict their differentiation potential in vivo and their function may be affected by
their ability to home correctly to bone. This review provides an overview of animal models used to test the
efficacy of cell-based approaches. We examine the mechanisms of endogenous cell recruitment during bone
repair and compare the role of local versus systemic cell recruitment. We discuss how the normal repair process
can help define efficacious cell sources for bone tissue engineering and improve their methods of delivery.

Introduction

Bone repair is a dynamic process beginning with the
recruitment of skeletal stem/progenitor cells during the

inflammatory phase of repair, followed by cell differentia-
tion, extracellular matrix deposition, and remodeling. In
human, bone repair occurs spontaneously, providing that the
fractures are properly reduced. Surgical methods employed
to realign and stabilize bone ends are the central component
of orthopedic interventions. In 10% of all fractures, however,
delayed or impaired healing requires additional treatment.1

Electrical stimulation and ultrasound can be beneficial, but
more robust stimulation of bone formation is necessary when
facing trauma or fractures associated with age or other dis-
ease conditions such as diabetes.2–6 Bone morphogenetic
proteins (BMPs) are strong bone inducers that were discov-
ered based on the osteoinduction of bone and were approved
to augment bone formation in spine fusion and tibial non-
union in 2001.7–9 Other treatments are now in use or in trial,
such as WNT pathway regulators, parathyroid hormone,
statins, and prostaglandin agonists.10–14 In parallel, the de-
mand for new cell-based therapies is growing. The need for
additional sources of cells is particularly evident for severe
trauma cases, cancer treatment, and maxillofacial recon-
structive surgery when large bone defects cannot be filled
solely with artificial scaffolds or autografts. Skeletal devel-
opmental diseases, such as osteogenesis imperfecta, and
degenerative diseases, such as osteoporosis, are associated
with poor bone quality and could also benefit from cell-
based therapy.

The majority of bone tissue engineering approaches take
advantage of bone marrow-derived cells that are easily ac-
cessible and have been extensively described in the literature.
These cells can differentiate into chondrocytes and osteoblasts
in vitro and appear as an ideal autologous cell type.15–19 Other
autologous cell types are similarly attractive, such as adipose-
derived cells, which are also very accessible, and exhibit os-
teogenic and chondrogenic potential in vitro. Less is known
about the in vivo potential of these cells in an orthopedic set-
ting. This review describes the origins of skeletal progenitors
during bone repair and highlights a number of animal models
that have been developed to test the therapeutic effects of
skeletal stem/progenitor cells with the emphasis on the fate of
cells once transplanted at the bone repair site.

Systemic Recruitment of Cells During Bone Repair

Cell-based therapies target primarily the early stages of
bone repair when the recruitment of skeletal progenitors
may be impaired. The challenge in making these therapies
more efficient is to identify the cell sources that can be im-
planted or attracted to the bone injury site and will differ-
entiate into osteoblasts and chondrocytes. It is generally
accepted that bone repair relies on endogenous skeletal
stem/progenitor cells derived from multiple sources, both
local and systemic. These cells may come from the bone
marrow, periosteum, and surrounding soft tissues, as well as
from distant sites, and carried to the fracture site by blood
vessels that invade the callus. In the absence of molecular
markers to trace skeletal stem cells in vivo, several strategies
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have been used to elucidate the origins of skeletal progeni-
tors that support the formation of the fracture callus.

Many efforts have concentrated on the identification of
systemic cell sources. The existence of circulating osteoblast
precursors suggested a possible recruitment of these cells in
response to bone injury.20,21 In the study by Kumagai et al.,
the parabiosis mouse model was used to show that circu-
lating cells were mobilized to the fracture site.22 Although
cells brought by blood vessels expressed the osteoblast
marker alkaline phosphate, they were found as bone-lining
cells, but did not integrate within new bone as osteocytes.
Whether these circulating cells can produce new bone matrix
or support repair via producing osteoinductive factors is not
clear. Blood vessels carry various progenitor cells including
endothelial progenitors that are found at higher numbers in
the circulation following an injury and that can stimulate
repair, but there is no in vivo evidence yet for their direct
contribution to repair as skeletal progenitors.23 Other cell
types associated with blood vessels, such as pericytes, may
play an important role in bone repair. As pericytes are
closely associated with vessels in every tissue, they could
either be brought from distant organs to the site of injury or
be activated locally.24

Bone marrow is recognized as a source of skeletal pro-
genitors that can be brought systemically to the injury site
via blood vessels. To trace bone marrow-derived cells during
bone repair, Taguchi et al. transplanted GFP bone marrow
into wild-type mice and identified GFP-expressing cells at
the bone surface in the fracture callus. Similar to the para-
biosis model, donor cells did not incorporate within the new
bone as osteocytes.25 When combining parabiosis and bone
marrow transplantation, circulating bone marrow-derived
cells were also recruited at sites of ectopic bone formation,
where they line the new bone.26 The exact role of these bone-
lining cells remains to be determined. Another lineage-tracing
study using Rosa26 donor mice for bone marrow trans-
plantation did not reveal a contribution of donor bone
marrow to cartilage and bone within the callus.27 Donor
bone marrow gave rise to inflammatory cells and osteoclasts
at the fracture site, pointing out the role of bone marrow as a
source of cells within the hematopoietic lineage.28,29 Conse-
quently, bone marrow transplantation can compensate for
defects in inflammation and bone remodeling during bone
repair, but cannot compensate for defects that are intrinsic to
cartilage and/or bone.30,31

Nonetheless, bone marrow also contains nonhematopoietic
cells that have been characterized as mesenchymal stem cells
(MSCs), which are now widely used for tissue engineering
approaches.32 After bone marrow transplantation, MSCs re-
main of host origin and are not maintained long term, which
explains the poor osteogenic potential of bone marrow
transplants for bone repair.33,34 Granero-Molto et al. carried
out systemic transplantation of bone marrow-derived MSCs
(BMSCs) in a mouse model by injecting the cells intrave-
nously.35 Via bioluminescence imaging, transplanted BMSCs
were detected at the fracture site by 3 days postinjury. BMSCs
were marked genetically and located within bone marrow
and at the endosteal surface of bone by histological analyses.
BMSCs that did not express C-X-C chemokine receptor type 4
(CXCR4) at their surface were not found within the callus,
demonstrating the role of CXCR4 in BMSCs homing to the
injury site. Although BMSCs can differentiate into osteoblasts

and chondrocytes in vitro,15,36–38 they do not participate in
cartilage and bone formation in the fracture callus.35 Thus,
BMSCs do not spontaneously stimulate repair by providing a
source of skeletal progenitors when recruited systemically.

Other reports have shown that when BMSCs were ma-
nipulated in vitro before transplantation, they could be re-
cruited systemically and integrate into the bone matrix. In
the study by Shirley et al., bone marrow cells were cultured
in osteogenic conditions and transplanted into a remote bone
marrow site. Following osteotomy, donor cells were mobi-
lized from the distant bone marrow site and localized to the
callus. Some of these cells integrated in the new bone as
osteocytes.39 Another study used genetically labeled stromal
cells that were injected into the blood circulation.40 Follow-
ing fracture, stromal cells were recruited systemically to the
callus where they integrated in bone matrix and localized
mostly at the bone surface.

The characterization of skeletal stem/progenitor cell
populations within bone marrow is the object of active re-
search. However, given the heterogeneity of the bone mar-
row and the multiple molecular markers identified so far, it
is unclear whether bone marrow actually contains an en-
dogenous group of skeletal stem cells that can be recruited
systemically during bone repair to form cartilage and/or
bone.41–43 The difficulty comes from the small percentage of
MSCs within the bone marrow and their close association
with cells from the hematopoietic lineage.44 Further in vivo
analyses are required to better understand BMSCs’ normal
physiological functions. The work by Sacchetti et al. identi-
fied a molecular marker for BMSCs that can reconstitute
hematopoietic and skeletal lineages both in vitro and
in vivo.45 The role of these stem cells in bone repair remains
to be characterized.

Local Recruitment of Cells During Bone Repair

As systemic recruitment of skeletal progenitors during
normal bone repair appears to be minimal, the recruitment of
skeletal progenitors within the local environment of bone is
presumably predominant. These skeletal progenitors may
come from the bone marrow within the injured bone, from
the surrounding periosteum, and from soft tissues in close
proximity with the bone. All these tissues are closely linked,
which makes it difficult to distinguish their participation
during bone regeneration. In addition, once osteoblast pre-
cursors start differentiating, they express key osteogenic
factors that are lineage specific, but not tissue specific,
making it even more difficult to distinguish the specific roles
of the various local cell sources. The periosteum is known for
its key role in the endogenous repair process.46–51 Cauteriz-
ing the periosteum from the surface of the bone delays
healing, suggesting the presence of a key cell source.52–54

Periosteum activation following injury is very localized and
coincides with a local increase in cell proliferation.55 Si-
multaneously, fundamental changes can be observed in the
periosteal vasculature characterized by increased popula-
tions of endothelial cells and pericytes and transformed
mesenchymal cells.56 Using an Osterix-GFP mouse line,
Maes et al. showed that osteoblast precursors within the
periosteum were also found in close association with in-
vading blood vessels within the fracture callus, suggesting
that osteoblast precursors within the periosteum locally
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migrate along with blood vessels to contribute to new bone
within the callus.57

To circumvent the lack of tissue-specific Cre lines for
skeletal lineage analyses, bone transplantation approaches
have been developed. Live bone grafts from Rosa26 mice
containing periosteum were transplanted at the fracture
site.47 During repair, periosteum gave rise to chondrocytes,
osteoblasts, and osteocytes adjacent to the graft, but not at a
distance from the graft. Therefore, skeletal stem/progenitor
cells derived from the periosteum did not migrate from
distant sites to form the fracture callus. Using the same ap-
proach, endosteum was shown to contribute locally to osteo-
blasts and osteocytes, but not chondrocytes. Bone marrow
including cells of the endosteal surface primarily gave rise to
osteoblasts and osteocytes adjacent to the graft. These results
showed that the local periosteum is a major contributor to
cartilage and bone in the fracture callus and that endosteum
and bone marrow also contribute to bone within the bone
marrow cavity. The role of the local periosteum as a cell
source was also illustrated in a murine segmental graft
model.49,58 This model showed that bone graft devitalization
decreased graft survival and integration because of the ab-
sence of local periosteal cells within the transplanted bone.48

Besides bone marrow and periosteum, the role of other local
sources of cells has not been yet addressed in vivo. Skeletal
stem/progenitors cells have been isolated from fat, muscle,
and tendon.59–61 These cells can differentiate into osteoblasts
and chondrocytes in vitro, but their participation in the
normal repair process has not been demonstrated. Never-
theless, they have been tested as exogenous sources of cells
for bone tissue engineering.

Main Cell Sources for Bone Tissue Engineering

Various sources of stem cells are now being employed for
bone tissue engineering (Table 1). Some of these cell sources

normally contribute to bone repair (bone marrow, perioste-
um), whereas others may or may not participate in repair (fat
and muscle). Stem cells that normally would not participate
in adult tissue repair, such as embryonic stem cells (ESCs),
induced-pluripotent stem cells (iPSCs), and cord blood cells,
have also been investigated.62–65 The therapeutic potential of
skeletal stem cells is usually defined by their ability to dif-
ferentiate into osteoblasts and/or chondrocytes in vitro.
However, these in vitro assays as well as in vivo assays such
as subcutaneous transplantation or ectopic bone formation in
muscle may not reflect the fate of the cells during bone repair
(Table 1). The difficulty is to prompt skeletal stem/progenitor
cells to integrate into the fracture callus or the bone defect
and to differentiate toward the chondrogenic and osteo-
genic pathways in situ. For cell-based therapies, a number of
animal models have been developed, including stabilized
and nonstabilized fractures, distraction osteogenesis, seg-
mental defects, cortical defects and calvarial defects, implant
osseointegration, bone grafting, and bone transplanta-
tion.39,47,58,66–72

BMSCs are the most used both clinically and experimen-
tally with various degrees of success depending on the
method of delivery as discussed in the next section. BMSCs
alone are not very effective as exogenous osteoblast pro-
genitors, and their capacities decrease with age.73,74 BMSCs
are easy to collect compared with other adult stem cells, but
there are risks associated with the collection of autologous
BMSCs because of donor site morbidity.75 The regenerative
potential of periosteum-derived cells is high and these cells
directly contribute to cartilage and bone.48,76–78 However,
periosteum-derived cells cannot be easily harvested. Meth-
ods to purify and expand skeletal stem cells from the perio-
steum would be valuable. Approaches to reconstitute a live
periosteum in vitro by combining a structural bone allograft
with BMSCs have been proposed, but the ability of BMSCs to
home to a periosteal niche has not been yet demonstrated.79

Table 1. Contribution of Endogenous and Exogenous Cell Sources to Orthotopic

and Heterotopic Bone Induction In Vivo

Systemic recruitment Local recruitment

Endogenous cell sources Orthotopic Heterotopic Orthotopic Heterotopic

Bone marrow Bone-lining cells22,25

Osteoclasts22,27,31

Inflammatory cells27,30

Bone-lining cells26 Osteoblasts/osteocytes
within bone marrow47

Chondrocytes (weak)47

N/A

Periosteum ND ND Osteoblasts, osteocytes,
chondrocytes within
the callus46–49,57

ND

Systemic delivery Local delivery

Exogenous cell sources Orthotopic Heterotopic Orthotopic Heterotopic

Bone marrow Bone-lining cells35

Oseoblasts,
osteocytes39,40,98

Bone-lining cells45

Osteoblasts,
osteocytes45

Bone-lining cells77,79

Osteoblasts,
osteocytes60,77,79,110,111

Bone-lining cells60

Osteoblasts, osteocytes60

Periosteum ND ND Osteoblasts, osteocytes47,48,77 Osteoblasts, osteocytes78

Fat ND ND ND Osteoblasts, chondrocytes61

Muscle ND ND Osteoblasts, osteocytes82–84 Osteoblasts, chondrocytes60

Embryonic
stem cells

ND ND Osteoblasts, osteocytes89 Osteoblasts65

ND, not determined; N/A, not applicable.
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Cells derived from adipose tissue and muscle are more ac-
cessible than periosteum and can potentially serve for au-
tologous transplants. Adipose-derived stem cells (ADSCs)
have been expanded in vitro and tested in vivo for cartilage
and bone formation.80 When transplanted in muscle, ADSCs
induce ectopic bone.61 In a canine defect model, ADSCs did
not have a significant effect on repair when transplanted
locally even after osteogenic differentiation. ADSCs can
augment bone regeneration after genetic modification to
overexpress BMP2, but their contribution to bone is un-
clear.81 Similarly, muscle-derived stem cells (MDSCs) gave
better results when expressing BMP4.72,82 Shen et al. used
genetic markers to follow transplanted cells in a critical-size
defect. MDSCs could still be found in the repair site at 3
weeks postsurgery, but were mostly gone by 4 weeks, al-
though some of the cells appeared to differentiate into oste-
oblasts in the new bone.83,84 Thus, MDSCs and ADSCs act
mainly as carriers, producing osteogenic factors to recruit
endogenous cells. Although MDSCs and ADSCs can differ-
entiate into osteoblasts and chondrocytes in vitro, their in vivo
osteogenic potential is weak. Are these adipose- or muscle-
derived MSCs with osteogenic potential real stem cells or
tissue-specific progenitors, which can be driven toward
skeletal lineages in vitro? MSCs have been described in many
adult tissues and may have distinct origins. Local pericytes
associated with blood vessels could serve as a local reservoir
of cells for tissue repair.85,86 Whether any tissue-specific
MSCs can be efficiently exploited to repair bone will require
further investigation.

Instead of adult stem/progenitor cells, less mature cells
isolated from fetal bone marrow, cord blood cells, ESCs, and
even iPSCs have been considered more recently.64,87 These
cells can all be induced into osteoblasts or chondrocytes
in vitro. In the study by Zhang et al., human fetal MSCs
(hfMSCs) were shown to augment healing of rat critical-sized
defects via stimulating vascularization.88 Although more
primitive than adult MSCs, hfMSCs did not exhibit higher
osteogenic capacities in vivo even after in vitro osteogenic
priming. Cells filled the defect by 4 days, but vanished after 4
weeks. New bone was produced by endogenous cells in the
defects as shown by the lack of human-specific osteopontin
expression. Human ESCs are osteogenic in subcutaneous
bone formation assays and calvaria defects.65,89 iPSCs have
been tested for periodontal tissue regeneration, but the origin
of the bone-forming cells was not verified.90 Further in vivo
assays will need to prove the effectiveness of cord blood
cells, ESCs, and iPSCs in bone repair in correlation with their
cellular contribution.91

Systemic Versus Local Delivery of Cells
for Bone Repair

Regardless of the source of cells, the method of delivery
can affect the regenerative potential of transplanted cells. As
discussed earlier, systemic recruitment of skeletal progeni-
tors is minimal compared with local recruitment in the
course of endogenous repair. Therefore, systemic delivery
may not be the ideal route to direct exogenous skeletal
progenitors toward osteogenesis and chondrogenesis in a
bone repair site. The study by Granero-Molto et al. showed
that BMSCs injected intravenously do not give rise to oste-
oblasts within the callus. BMSCs stimulated repair via ex-

pression of BMP2 and by decreasing the expression of key
inflammatory factors such as TNFalpha, IL1beta, and other
interleukins, suggesting that BMSCs may have systemic anti-
inflammatory effects.35 MSCs were previously known for
their immunosuppressive effects.92,93 This immunomodula-
tory effect of BMSCs correlates with the previously reported
role of bone marrow stromal cells and osteoblasts in regu-
lating hematopoietic stem cells.94,95 Future research may find
ways to control homing of stem cells to the correct niche and
allow their long-term integration.34,96 One major advantage
of systemic delivery of cells is that it is more practical, no
surgical intervention is needed, and cells could potentially be
injected at multiple time points after injury. Moreover, sys-
temic delivery could also benefit other bone disorders af-
fecting the whole body.97,98

A number of strategies have been used to deliver cells
locally and support bone formation. Percutaneous injection
of autogenous bone marrow can be beneficial for the treat-
ment of tibial nonunions and congenital pseudoarthrosis.99–101

A clinical trial showed successful treatment of nonunion
fractures with direct injection of concentrated bone marrow
cells.102 Interestingly, there was a positive correlation be-
tween the volume of mineralized callus at 4 months and the
number and concentration of fibroblast colony-forming
units in the bone marrow graft, suggesting that the number
of stem cells was proportional to the extent of osteogenic
stimulation. Compared with bone marrow aspirates, ilial
crests contain more osteogenic progenitors and are the gold
standard for many orthopedic trauma applications.75 The
presence of trabecular osteoblasts may also increase the os-
teogenic potential of these iliac crest autografts. It is assumed
that autografts provide osteoblasts and/or osteoblast pre-
cursors, but their direct contribution to repair is difficult to
assess in human. The identification of molecular markers for
clonogenic skeletal progenitors within the bone marrow
stroma may help further enrich these cell populations before
transplantation.45

To augment the therapeutic effects of bone marrow cells
delivered locally, many efforts are focused on the design of
scaffolds to create a biocompatible environment and to
provide a surface for cell adhesion and migration. The clas-
sical orthopedic carriers include allogeneic bone, deminer-
alized bone matrix, and various bone graft substitutes such
as hydroxyapatite and calcium phosphate. New scaffolds are
now being developed using nanotechnologies to combine
nanofiber mesh with biocompatible carriers such as hydro-
gels.103–105 The design of these new scaffolds aims to protect
cells from the inflammatory environment and cell death. In
vivo, cells need blood vessels to receive oxygen, nutrients,
and the proper signals to proliferate and differentiate. Fol-
lowing transplantation, cells are exposed to hypoxia until the
construct can be properly vascularized by the host; therefore,
methods to protect cells from apoptosis are essential.106,107

Preconditioning in bioreactors may reinforce cell integration
within artificial scaffolds before transplantation.108,109 Pre-
differentiation in the osteogenic pathway can also be em-
ployed, but it decreases the capacity for expansion. Thus far,
the most robust donor contribution to bone has been re-
ported in calvaria defect models, wherein inflammatory and
mechanical signals may be reduced and cell retention may be
favored.110,111 In long bones, the challenge is to provide early
structural support, while allowing cell survival, proliferation,
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and osteogenic differentiation followed by the timely re-
sorption of the scaffold to support matrix deposition. An-
other approach aimed at supporting cell survival and
stimulating MSC-induced bone is coculture of MSCs with
endothelial cells. Although healing was improved, an in-
crease in the vascularisation of the construct or in the oste-
ogenic differentiation of MSCs was not determined.112

Growth factors added exogenously or through genetic
manipulation can stimulate angiogenesis and osteogenic
differentiation. Indeed, in most animal models, purified
BMSCs loaded onto various materials give better results
when combined with exogenous growth factors. Burastero
et al. showed that bone repair was enhanced in a rat critical-
sized defect when BMP7 was added to hBMSCs.69 In another
animal study, BMSCs were transfected with an adenovirus
vector to overexpress BMP2, leading to improved union of a
mouse critical-sized defect.70 Genetic modification can be a
powerful method to drive osteogenesis via either expression
of BMPs, key transcription factors, and/or angiogenic fac-
tors.113 Although these ex vivo genetic manipulation aim to
further enhance the regenerative potential of cells, they may
also induce major alterations of their inherent osteogenic
capacity. These approaches are still in their infancy as new
vectors are required to prevent tumorigenesis that may be
due to insertional mutations.64 New vectors have been de-
veloped and nonviral approaches, such as gene activated
matrices, are also promising.114

Conclusions

When considering biological methods to stimulate bone
formation and repair, several strategies may be envisioned.
The ideal treatment for skeletal diseases or trauma would be
minimally invasive and would stimulate the endogenous
machinery, such as utilization of growth factors or small
molecules. However, when endogenous cell sources are
compromised or cannot be activated because of disease
conditions, cell-based therapies may be necessary. The
source of cells and route of delivery are two considerations
that are still being addressed experimentally. Autologous
cells can prevent immune rejection but require time to collect
and expand. Although allogeneic cells allow the preparation
of off-the-shelf products, the downside is the likelihood of
immune rejection. So far, BMSCs are the most appealing, but
other adult stem cells and ESCs are being explored. All ex-
hibit in vitro osteogenic and chondrogenic potential, but need
to be more effectively osteogenic in vivo. When delivered
systemically, MSCs home to the injury site but contribute
modestly to bone-forming osteoblasts and osteocytes. MSCs
stimulate repair mostly by modulating inflammation and by
creating a microenvironment to recruit endogenous stem/
progenitor cells, via their ‘‘trophic’’ activity (i.e., expression
of BMPs and other factors).93 Future research may help
control homing of MSCs to allow their integration within
osteogenic niches that are mobilized for bone repair.115 Local
delivery of cells may be more efficient to deliver skeletal
progenitors for bone repair. However, in many approaches,
proof of the origins of the cells is often lacking and it is
generally assumed that the ectopic bone is derived from the
transplanted cells. Several studies have illustrated the weak
osteogenic potential of BMSCs, MDSCs, or ADSCs seeded on
specific scaffolds to concentrate the cells at the repair site.

Even in these conditions, cells are more effective when
combined with growth factors or used as a vehicle for
growth factor delivery. To augment the direct contribution of
exogenous cells to bone formation, a great deal of work is
still required to define the ideal cell source(s) and identify
methods of purification and ways to direct/stimulate stem
cell differentiation in vivo. For this purpose, the development
of new scaffolds is essential. Tissue engineering will also
largely benefit from new ways to track cells in vivo either
experimentally or for clinical applications using genetic
methods or nanotechnologies.116 Bringing together tissue
engineering, stem cell biology, and developmental and re-
generative biology will lead to better exploit and stimulate
the normal regenerative process. We still do not fully com-
prehend the mechanisms of endogenous stem cell activation
during normal bone repair and how they are affected in
disease conditions. Consequently, new strategies for bone
tissue engineering will benefit from advances in the basic cell
biology of bone repair.
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Paris 75015
France

E-mail: celine.colnot@inserm.fr

Received: May 1, 2011
Accepted: August 17, 2011

Online Publication Date: September 26, 2011

CELL SOURCES FOR BONE TISSUE ENGINEERING 457




