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Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands
involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface
receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking
dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor–ligand
binding and internalization to understand how receptor internalization dynamics encodes receptor function and
regulation. A given signaling or transport receptor system represents a particular implementation of this module with
a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals
that receptor systems can be characterized as being: i) avidity-controlled where the response control depends
primarily on the extracellular ligand capture efficiency, ii) consumption-controlled where the ability to internalize
surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and
consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are
avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a
dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the
accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location
of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its
regulation.
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Introduction

There is considerable evidence to suggest that biomolec-
ular networks are optimally evolved so that they are efficient
and function in a robust fashion [1–5]. An additional feature
of human engineered as well as biological systems is
modularity [6–8]. In the context of cell signaling, a functional
module represents a relatively self-contained subnetwork
with a specific topology that is designed to perform a specific
function. However, it is important to note that the internal
system parameters of these modules are not fixed. For
instance, the kinetic parameters of a given cell-signaling
module can be tuned to achieve different levels of efficiency
and robustness. This property would allow a module to be
reused in a wide variety of cellular contexts with the
characteristics of the module being tailored to suit the task
at hand. From a reverse-engineering standpoint, under-
standing the design principles of a specific module would
further the understanding of the entire set of networks that
the module is a part of. Hence, adopting a module-based
rather than a molecule-based approach should greatly
facilitate the task of obtaining a systems-level understanding
of cell function [6].

In this manuscript we employ a module-based approach to
characterize the design principles of cell surface receptor
systems. In so doing, we illustrate a novel strategy that we
believe can be fruitfully applied to a wide range of systems
biology problems. Our general approach can be outlined as
follows. First, we create a generalized mathematical model for

the upstream biomolecular network employed by a diverse set
of cell surface receptors. Here, the biomolecular network is
the module, and a given receptor system represents a
particular implementation of the module with a character-
istic set of kinetic parameters. We establish quantitative
metrics that can be used to assess network function and
robustness. We analyze the model in the context of these
metrics to establish the critical ‘‘control parameters,’’ and to
characterize the behavior of the module in various regions of
the control parameter space. Finally, we map experimentally
determined kinetic parameters for different receptor systems
onto the control parameter space. The location of the various
receptor systems in control parameter space prescribes their
specific function and regulation. We validate our analysis
methodology by comparing model predictions with exper-
imental observations on the function and regulation of the
chosen receptor systems. We find that our results provide
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significant insights regarding differences in the dynamic
properties of the investigated receptor systems.

Receptors constitute the interface of cells to their external
environment. These molecules bind specific ligands involved
in multiple processes, such as signal transduction and
nutrient transport. It has long been appreciated that binding
specificity is a central feature of receptor function, and
numerous studies have explored the structural elements
involved in this aspect [9–11]. An equally important function
of many classes of receptors is their ability to transport
bound molecules into cells by receptor-mediated endocytosis.
In the case of transport receptors, such as those that bind
transferrin and low-density lipoprotein, this process serves
the obvious role of transporting molecules to their site of
utilization. In the case of signaling receptors, such as those
that bind growth factors and cytokines, endocytosis putatively
consumes the information-containing ligands, allowing cells
to respond to a new stimulus. Although the molecular
mechanisms of endocytosis have been explored for many
years [12], the systems-level functional constraints that drive
the evolution of receptor dynamics have not been addressed.

Receptor behavior is governed by the physical aspects of
ligands as well by as the kinetic properties of the receptor. As
an example of a physical constraint, ligands and receptors
must evolve together as cohorts because both are necessary
for system function. The functional constraints of this co-
evolution include the specificity and affinity of the ligand–
receptor binding reaction [10]. Dynamic aspects of receptor
behavior are also functionally important and thus subjected
to evolutionary pressure. For example, following endocytosis,
transferrin releases its iron in the acidic environment of the
endosome and recycles back to the cell surface while still
bound to its receptor [13]. In contrast, low-density lip-
oprotein dissociates from its receptor and is degraded in
lysosomes while its receptor recycles back to the cell surface
[14]. These behaviors make sense in terms of metabolic
efficiency because of the obvious advantage of reusing
transport molecules as many times as possible.

It is relatively easy to envision the system constraints that
drive the evolution of transport receptors. However, the
factors that constrain signaling receptors are far less clear
because biology lacks a coherent theory on how biological
information is encoded. In the case of receptor systems that
detect physical aspects of the environment, such as chemo-
tactic gradients, the information content is direct and system
properties necessary to decode it are conceptually straight-
forward (e.g., adaptive responses). In multicellular organisms,
however, much of the information transmitted between cells
is encoded in the form of growth factors and cytokines. It is
known that information can be encoded in ligand structures
and in the rate, duration, and intensity of ligand production,
but the mechanisms by which receptor systems decode this
information is poorly understood. How the need to decode
dynamic information influences the kinetic properties of
growth factor receptors has not previously been investigated.
It has been difficult to explore the functional significance

of specific aspects of receptor behavior using traditional
experimental systems. Mutational approaches have been used
to alter receptor binding and internalization characteristics
[15,16], but changing receptor structure can cause numerous
confounding effects, such as alterations in its ability to
interact with substrates or other binding proteins. It is also
difficult to investigate receptor behavior under dynamic
conditions that mimic a reasonable physiological context. For
example, ligands are generally added experimentally as a
bolus (one-time instantaneous ligand addition), but this sort
of quantal change in ligand concentration is rarely encoun-
tered in situ. Cells that artificially produce ligands in a
regulated fashion have been constructed to obviate some of
these problems, but their complexity restricts them to the
exploration of relatively simple questions [17]. Fortunately,
many of the quantitative parameters that govern the
dynamics of ligand–receptor systems have been measured
and characterized. These parameters provide a foundation
for constructing mathematical models of ligand–receptor
interactions that can be used to explore the functional
significance of different aspects of receptor dynamics.
In this study we employed mathematical modeling to

compare the characteristics of four well-defined yet distinct
receptor systems: epidermal growth factor, transferrin, low-
density lipoprotein, and vitellogenin. These receptors medi-
ate three distinct physiological functions: cell signaling,
nutrient import, and protein transport. This study was
undertaken to explore the general design principles under-
lying receptor dynamics. Specifically, we were interested in
understanding why receptors show a wide diversity in their
rates of endocytosis and trafficking. The four systems
considered here are highly regulated receptor systems and
they have been subjected to extensive kinetic character-
ization. Thus, sufficient quantitative information is available
to support their comparative analysis.
The epidermal growth factor receptor (EGFR) is an

important receptor in the context of development and
tumorigenesis [18–20]. The binding of its ligand activates
downstream signaling pathways such as the MAPK and PI3K/
Akt pathways [19]. One of the most intriguing properties of
the EGFR is enhanced endocytosis following occupancy.
Although the EGFR is probably the most extensively
characterized receptor that displays this property, it occurs
in many other receptors, too [21–23]. The activation of the
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Author Summary

Cells interact with their environment using molecules on their
surface known as receptors. Receptors bind specific companion
molecules known as ligands, which either carry information about
the outside environment or are critical cell nutrients. Signaling
receptors bind the former ligand type and convert information
about the outside environment to a cell response such as migration
or growth. Transport receptors bind the latter class of ligand and
deliver them to the cell interior. A variety of receptors are
internalized into the cell through a process known as endocytosis.
Receptors display a wide range of endocytosis patterns, but the
functional motivation behind the observed differences is not well
understood. We have constructed a generalized model to under-
stand how receptor endocytosis and other receptor–ligand proper-
ties affect the function of receptor systems. We find that the
efficiency and robustness of receptor systems are encoded by two
fundamental parameters: i) the avidity which quantifies the ability of
a receptor system to capture ligand, and ii) the consumption which
quantifies the ability to internalize bound ligand. By examining a
number of receptor systems, we demonstrate that the internal-
ization dynamics of receptor systems can be explained by examining
its effect on the avidity and consumption parameters.

Design Principles of Cell Surface Receptor Systems



EGFR by ligand binding causes a nearly 10-fold increase in
the rate of receptor internalization and a rapid loss of
receptors from the cell surface [24]. This accelerated
endocytosis has been postulated to be the primary mecha-
nism responsible for receptor ‘‘downregulation’’ in which the
rate of receptor degradation is also increased following their
activation [24]. However, there are many examples of
activated receptors that are degraded at an accelerated rate
despite an invariant rate of endocytosis [25,26]. Recent
studies have shown that the mechanistic basis of accelerated
endocytosis and degradation are quite distinct and mediated
by different receptor domains and intracellular processes
[27,28]. Biochemical and kinetic studies have also shown that
a complex regulatory system is involved in accelerated
endocytosis, suggesting that it plays a crucial role in receptor
regulation [29] .

The transferrin receptor (TfR) plays an important role in
the cellular uptake of iron from the extracellular space [30].
Long-term regulation of the level of TfR expression is
controlled by both iron-mediated receptor transcription
[31] and the regulated stability of the TfR mRNA [32,33].
Levels of surface TfR can be modulated acutely by the actions
of growth factors, which cause a redistribution of intra-
cellular receptors to the plasma membrane [34,35]. Like most
other receptors involved in nutrient transport, the TfR is
internalized at a constant rate regardless of its occupancy
state [36]. The internalized receptor is recycled back to the
plasma membrane once iron dissociates from transferrin in
the low pH environment inside the cell.

The low-density lipoprotein receptor (LDLR) mediates the
supply of cholesterol to the cell interior by virtue of its ability
to bind and internalize low-density lipoprotein [37]. Follow-
ing internalization, the ligand is degraded in lysosomal

compartments, and the cholesterol is liberated for cellular
use [37]. Ligand-free receptors are then recycled back to the
cell surface. The LDLR is subjected to rapid turnover even in
the absence of ligand with free receptors being constantly
internalized and recycled. LDLR internalization rates are not
significantly affected following ligand binding [38]. The cell
surface expression level of LDLR is transcriptionally regu-
lated by hormones and growth factors such as growth
hormone [39,40], phorbol 12-myristate 13-acetate (PMA)
[41], and hepatocyte growth factor [42].
The vitellogenin receptor (VtgR) is a transport receptor

that plays an important role during oogenesis in many
oviparous species, including birds, frogs, and fish [43,44].
During the growth phase of Xenopus laevis, 90% of total oocyte
protein is derived from the specific uptake of the protein
vitellogenin from the maternal bloodstream [45]. Internalized
vitellogenin is proteolytically converted to the yolk proteins
prior to their storage as crystalline inclusions, termed yolk
platelets [46]. Similar to the TfR and the LDLR, the net rate of
VtgR internalization is independent of ligand binding [47].
However, the specific endocytic rate of the VtgR is under
hormonal regulation [48].
Using a simple mathematical model for a canonical

receptor–ligand binding and trafficking module, we inves-
tigated the relationships between the kinetic characteristics
and the specific physiological functions of the EGFR, TfR,
LDLR, and VtgR systems. Our analysis of the mathematical
model reveals that module efficiency and robustness are
encoded by two dimensionless parameters: i) a specific avidity
parameter c representing the efficiency of ligand capture
from the extracellular space, and ii) a partition coefficient b,
which is the probability that a captured ligand molecule will
be internalized before it dissociates from the receptor. We
found that the module exhibits different properties depend-
ing upon its parameter values and can be characterized as
being: i) avidity-controlled where the response depends
primarily on the avidity, ii) consumption-controlled where
the consumption is the primary control parameter, and iii)
dual-sensitivity where both b and c are important. Signifi-
cantly, we found that the location of different receptor types
in the b–c parameter space correlates with their specific
function and regulation. However, all receptor types ap-
peared to be suboptimum with respect to system robustness,
apparently because of the necessity of cells to be able to
control receptor activity. Our module-based mathematical
analysis suggests that a set of general design principles can be
used to understand receptor dynamics and the opposing
needs for robustness and regulation.

Results

Model Description
We have previously described several detailed kinetic

models of the binding, internalization, and degradation of
polypeptide ligands [49–52]. However, to facilitate the
comparison of multiple receptor systems, we revert to a
canonical model that is simple yet encompasses the salient
features of the investigated systems (Figure 1). We note that
the spatio–temporal distribution of activated EGFR obtained
using the current model is similar to results (unpublished
data) obtained using extended models that we have previously
employed [49,50].

Figure 1. Schematic Representation of the Receptor–Ligand Binding and

Internalization Model

The reactant species in the model are the ligand L, free receptor R, and
receptor–ligand complex C. Ligand is produced at a rate f(t) by a source S
and enters the extracellular space with volume V. Ligand reversibly binds
free receptors with a forward rate kon and a reverse rate koff to yield
receptor–ligand complexes. Free receptors are synthesized by the cell at
a rate QR. Free receptors and receptor–ligand complexes are internalized
with the rates kt and ke, respectively. The input to the above system is
the external ligand stimulus f(t), and the output is the concentration of
surface complexes C.
doi:10.1371/journal.pcbi.0030101.g001
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In our model, ligand is produced at a specific rate f(t) by a
source S and enters a well-mixed volume V, building up to a
concentration L. The ligand reversibly binds free surface
receptors R with forward rate kon and reverse rate koff to form
a receptor–ligand complex C. The empty and occupied
receptors are internalized with characteristic rate constants
kt and ke, respectively. The act of internalization consumes the
receptors and ligands. For the purpose of our general
analysis, the input parameter is the production rate of ligand
over time f(t), and the output is the level of occupied
receptors at the cell surface C.

The rates of change for the various species in our model
can be written as:

dR=dt ¼ �konRLþ kof f C � ktRþ QR ð1aÞ

dC=dt ¼ konRL� kof f C � keC ð1bÞ

dL=dt ¼ ½�konRLþ kof f C�=ðNavVÞ þ f ðtÞ ð1cÞ

where Nav is Avagadro’s number and V is the volume of
extracellular medium per cell. In Equation 1, R and C are
expressed in molecules, L is a concentration in nM unit, f(t)
has units of nM/min, and the rate constants have the units
listed in Table 1. A typical cell culture experiment would have
10 ml of media and a cell count of 2.53107 cells. Thus V¼43

10�10 liters/cell. The factor in the denominator of the first
term of Equation 1c ensures conversion of the ligand
consumption term from molecules to a molar concentration.
When there is no extracellular ligand present L(t) ¼ C(t) ¼ 0,
we obtain the value RT ¼ QR/kt for the steady state surface
receptor abundance. This expression states that the total
number of surface receptors prior to ligand addition reflects
the balance between receptor synthesis and internalization
terms. In all, we have six independent parameters in our
model: kon, koff, ke, kt, V, and RT. Further details of our model
and the solution methodology for the reaction system
described by Equation 1 are provided in the Methods section.

As typically done in kinetic studies, complex aspects of the
receptor dynamics are subsumed by ‘‘lumped’’ parameters in
the model. For example, the parameter kon contains factors
such as diffusivity of the ligand and steric aspects of the
ligand–receptor binding pocket. The rate of receptor
production, QR, combines the parameters for net receptor
synthesis and receptor recycling. Using C as a system output

parameter is reasonable for a variety of reasons. First, in the
case of the EGFR and other signaling receptors, the biological
response has been shown to be proportional to the number of
receptor–ligand complexes at the cell surface [53,54]. Further,
in most cases, there are ‘‘spare receptors’’ relative to the
number required to produce a maximal biological response,
suggesting that the number of occupied receptors at the cell
surface will be the controlling factor to downstream events
[55]. Most important, this model captures the parameters
common to many different receptor systems, thus allowing us
to understand the relationship between these parameters and
receptor function.

Comparative Dynamics of Receptor Systems:
Relationships between Kinetic Parameters and Receptor
Dynamics
Our objective in this study was to understand how the

kinetic properties of receptor systems influence receptor
function and to use this knowledge to uncover the general
design principles of receptor systems. As seen in Table 1, the
four receptor systems we consider span a wide range of
parameter values. In particular, the receptor systems display a
wide variation in affinity Ka (the reciprocal of the dissociation
constant KD¼ koff/kon¼1/Ka) and receptor expression RT, while
the other parameters tend to vary in a narrower range. We
hypothesized that examining the dynamics of these receptor
systems should indicate the relationships between system
parameters and receptor function. Further, quantifying the
sensitivities of each receptor system to variations in individ-
ual system parameters should reveal differences in receptor
regulation patterns. Thus, we employed our mathematical
model to simulate the response of each of our specific
receptor systems to ligand impulses and step changes in
ligand entry. First, we examined the sensitivity of receptor
dynamics to two specific parameters, the endocytosis rate of
occupied receptors ke, and the extracellular volume V. The
reason we choose these specific parameters will be readily
apparent when we examine the dimensionless version of the
governing equations for our model. Unless specified other-
wise, results presented in this section were obtained by
solving the governing equations (Equation 1) using the kinetic
parameters listed in Table 1.
Endocytic downregulation improves the information pro-

cessing accuracy of the EGFR. A distinguishing kinetic
feature among many growth factor receptor systems is

Table 1. Receptor–Ligand Binding and Internalization Parameters for Receptor Systems

Receptor koff (/min) ke(/min) kt(/min) KD(nM) RT V(liters) b ce ke/kt

EGFRa 0.24 0.15 0.02 2.47 23105 4310�10 0.63 0.34 7.5

TfRb 0.09 0.6 0.6 29.8 26000 4310�10 6.67 0.004 1.0

LDLRc 0.04 0.195 0.195 14.3 20000 4310�10 5.51 0.006 1.0

VtgRd 0.07 0.108 0.108 1300 231011 4310�10 1.44 638.6 1.0

aThe binding kinetics (koff and KD values) are from [68] and the ke, kt values are from [50]. The receptor expression levels are for EGFR in human mammary epithelial cells.
bThe binding kinetics (koff and KD values) are from [61], and the ke value is from [51]. The receptor expression levels correspond to the TfR on cultured hepatocytes (Hep-G2 cells). The result
that the kt value of the TfR is comparable to its ke value was inferred from [36] where a ke/kt of ;1.38 is reported.
cThe parameters are from [55]. Experiments were performed with hepatocytes (Hep-G2 cells). The receptor expression level was estimated from [55] and was confirmed based on numbers
reported in [37]. Evidence for the ke and kt values of the LDLR being similar can be found in [38].
dAll of the numbers are from [47]. These experiments were performed with xenopus oocytes.
eNote that for the computation of c using the expression c ¼ KaRT/(NavV) ¼ RT/(KDNavV), KD needs to be expressed in units of M, and volume should be in liters/cell.
doi:10.1371/journal.pcbi.0030101.t001
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occupancy-induced receptor loss, also known as endocytic
downregulation. Whereas the signaling receptor EGFR dis-
plays endocytic downregulation [24], the internalization rates
of TfR, LDLR, and VtgR are not significantly altered
following ligand binding [36,38]. Thus, it is likely that
endocytic downregulation confers some functional advantage
to signaling receptors. To examine this possibility, we studied
the effect of altering the magnitude of endocytic down-
regulation on the ability of the EGFR system to decode time-
varying ligand inputs (Figure 2). For these simulations, the
endocytic downregulation ratio D was quantified as the ratio
of the internalization rates of occupied versus unoccupied
receptors (D ¼ ke/kt). This was varied in the range 1–20 by
changing the value of ke while keeping kt, and all the other
parameter values constant. We note that the experimentally
measured endocytosis rate of EGFR is within this range.
Figure 2A presents the response of the EGFR system to an
input ligand pulse with a total magnitude of 0.01 KD. All
subsequent impulse response calculations in the manuscript
are also performed at this ligand dose. This corresponds to
the instantaneous addition of a ligand dose of concentration
0.01 KD nM to the extracellular volume at time t ¼ 0. Our
choice of a low ligand concentration for the impulse response
calculations was motivated both by biological and theoretical
reasons. First, such small perturbations are likely to be more
representative of physiological ligand dosages. In particular,
for signaling receptors such as the EGFR, we and others have
shown that the ligand release rates are such that the
concentration of extracellular ligand would be low [17,56].
Second, in the case of the EGFR, the occupancy of only a
small number of receptors is sufficient to trigger a biological
response. Furthermore, the chosen ligand dosage also enables
us to assess the behavior of the model in its linear regime.
This allows us to employ an analytical solution that greatly
facilitates assessment of the properties of the model.
As seen in Figure 2A, the EGFR impulse response was

characterized by a rise in the number of complexes to a peak
value followed by a subsequent decay to zero. The rise was the
consequence of the formation of new receptor–ligand
complexes, while the decay reflected the internalization of
complexes and the depletion of extracellular ligand. Increas-
ing the magnitude of endocytic downregulation increased the
responsiveness of the system. Both the time taken to reach the
peak value and time to decay were decreased when D was
increased. However, increasing D resulted in smaller response
amplitudes (Figure 2A) because of the net loss of surface
receptors that occurred when ligand-induced endocytosis was
higher. These impulse response results have implications for
the system’s ability to decode ligand pulse trains consisting of
successive spikes because a faster impulse response time
would allow the system to accurately transduce higher-
frequency pulse trains. The qualitative behavior of the
impulse response does not depend on the ligand concen-

Figure 2. Effect of Downregulation on the Accuracy of EGFR Information

Processing

The dimensionless response C* and the normalized response Cn
* of the

EGFR system were computed as a function time for various down-
regulation magnitudes, D.
(A) Impulse response of the EGFR system for various D values.
(B) Normalized response to step changes in the ligand input rate to the
system. The input—denoted by a block dotted line—consists of a 360-
min stimulus phase where ligand enters the system at a constant rate
followed by a 360-min recovery phase where ligand input is set to zero.
(C) Normalized response to a non-uniform step input. The mean value of

the ligand entry rate was set such that at steady state sustained ligand
release at this rate would leave 95% of the receptors in the unbound
form. The mean values of the durations of the on-and-off phases of the
step input were set to equal 400 min. The actual ligand entry rate and
duration for each pulse was sampled from a normal distribution with a
standard deviation of 50%. The response of the EGFR system is plotted
for D¼1 (blue line) and D¼20 (red line). The normalized input waveform
is shown as a black dotted line.
doi:10.1371/journal.pcbi.0030101.g002
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tration. Specifically, if these numerical experiments are
repeated using higher ligand dosages (a condition that better
reflects the typical in vitro cell culture experiments),
conclusions that are based on the trends in the response
time will not change. The most obvious changes will be in the
amplitude of the response, which is to be expected.

We further examined the effect of endocytic downregula-
tion on EGFR signal processing by considering the response
to a periodic square wave ligand input. In Figure 2B, the
normalized response Cn

* is plotted as a function of time for
various D values. For these simulations, the step input
corresponds to a 360-min phase where ligand was added to
the system at a constant rate followed by a 360-min relaxation
phase where the ligand entry rate was zero. The ligand entry
rate in the stimulus phase was set such that at steady state,
95% of the total receptors would remain as free unoccupied
receptors if the ligand addition was sustained at that level.
Thus, these square-wave ligand inputs also constitute rela-
tively small perturbations to the system. As seen in Figure 2B
for the case where there is no endocytic downregulation (D¼
1), the system output has a sawtooth appearance and bears
little resemblance to the square wave input. Increasing D
leads to outputs that more closely resemble the ligand input
waveform.

To better understand the implications of different values
of D on the ability of cells to process ligand information, we
simulated step inputs with non-uniform variations in the
ligand addition and relaxation durations (Figure 2C). A mean
duration of 400 min each was chosen for the ligand addition
and the relaxation phases, but the actual duration for each
random pulse was sampled from a Gaussian distribution with
a 50% standard deviation. When D¼ 20, despite the irregular
nature of the input pulse train, the response was a faithful
reproduction of the information contained in the input in
terms of both time and magnitude (red line). On the other
hand, when there was no endocytic downregulation (D ¼ 1),
the shape and magnitude of the system output was poorly
correlated to the input pulse train (blue line). Clearly,
increased endocytic downregulation improves the informa-
tion processing accuracy of the EGFR system.

Comparison of the effect of occupancy-induced internal-
ization on receptor function. We explored whether the
sensitivity displayed by the EGFR to variations in endocytic
downregulation was a general feature of all receptors, or
whether it was dependent on the characteristic parameters of
the EGFR. To address this issue, we evaluated the sensitivity
of the receptor dynamics to changes in the ke/kt ratio for each
of the four receptor systems listed in Table 1 (Figure 3).
Because most of the receptor systems were transport
receptors, the amount of internalized ligand was used to
assess their performance. Specifically, the response to a
ligand impulse of magnitude 0.01KD was simulated for
different ke values, and the variation in internalized ligand
was plotted as a function of time. All the other parameters
were those specified in Table 1. The number of internalized
ligand molecules was taken to be equal to the number of
internalized receptor–ligand complexes, which was deter-
mined by integrating the product keC(t). Hence, we express
the cumulative internalized ligand as a percentage of the total
amount of ligand initially added to the system. Note that the
panels in Figure 3 employ different time scales to facilitate an
easier visual comparison. Time ranges for each case were

chosen such that the fastest curve (red curve) reaches a
magnitude of 80% when 20% of the time has elapsed. As seen
in Figure 3, the receptor systems display a wide variation in
minimum response times with the speed increasing on the
order VtgR . EGFR . TfR . LDLR.
We observed that although the response speeds of the

EGFR (Figure 3A) and the VtgR (Figure 3D) were sensitive to
variations in the value of ke relative to kt, the temporal
response patterns of the TfR (Figure 3B) and LDLR (Figure
3C) were mostly unaffected by variations in ke. Thus,
endocytic downregulation is an effective strategy for increas-
ing response times only in the context of a specific set of
receptor parameters. This indicates that analyzing response
sensitivity to a single kinetic parameter is insufficient for
understanding the functional characteristics of a receptor
system.
Sensitivity of receptor function to system volume. The

extracellular volume is a unique model parameter in that it is
independent of receptor and ligand properties. Receptor–
ligand systems presumably evolve in a specific physical
context and are likely to be optimized for a specific
extracellular volume or range of volumes. A receptor system
that is required to function in a broad range of extracellular
volumes needs to be relatively robust to volume changes. On
the other hand, a receptor system that only encounters a
narrow range of volumes in vivo would not be impaired by
sensitivity to volume changes. To understand the design
principles of receptor systems, it is thus instructive to
examine the effect of volume changes on the receptor
response. We simulated the effect of changing the volume
in a broad range between 4 3 10�13 liters/cell to 4 3 10�10

liters/cell on the impulse response of our four model
receptors (Figure 4). The smallest extracellular volume used
in the simulations corresponded to approximately one cell
volume per cell. This is a reasonable value for interstitial
tissue volume and represents the situation where a growth
factor is released and consumed locally (i.e., an autocrine or
paracrine growth factor). The upper volume limit approx-
imates tissue culture systems or the circulating volume in the
body. We note that ligand secretion and diffusion processes
have been explicitly modeled by others using partial differ-
ential equation based formalisms and stochastic simulations
[57,58]. By comparing results from our simplified model with
these spatial simulations, it should be possible to determine
the apparent extracellular volume to use in our model for
various ligand consumption and intercellular communication
scenarios.
As seen in Figure 4A, the EGFR is relatively insensitive to

volume changes in a two-orders-of-magnitude range from 43

10�13 liters/cell to 43 10�11 liters/cell. This would suggest that
the EGFR system is capable of functioning robustly over a
reasonably broad range of volumes. In contrast, the TfR
(Figure 4B) and the LDLR (Figure 4C) systems display a much
greater sensitivity to volume changes. Surprisingly, the
response of the VtgR system (Figure 4D) appears completely
refractory to changes in extracellular volume. The reason for
the disparate response of the different receptor systems to
changes in the extracellular volume is not apparent from a
simple inspection of their parameters. This suggests that the
optimization of receptor behavior involves a non-intuitive
interaction of multiple system parameters.
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Receptor Behavior as a Function of Two Dimensionless

Parameters

As the above reported results indicate, examining the
contributions of individual parameters to receptor dynamics
may not be adequate to improve our understanding of how
the kinetic parameters encode the physiological function of
receptor systems. To better understand the relationship
between parameters and receptor function, we converted
the model equations to a dimensionless form. The dimen-
sionless governing equations for the system are as follows:

dR�=dt� ¼ �R�L� þ C� � aðR� � 1Þ ð2aÞ

dC�=dt� ¼ ðR�L� � C�Þ � bC� ð2bÞ

dL�=dt� ¼ c½�R�L� þ C�� þ f �ðt�Þ ð2cÞ

In Equation 2, R* ¼ R/RT , C* ¼ C/RT , L* ¼ L/KD are the
normalized species abundances, t*¼ tkoff is the dimensionless
time, f*(t*) is the dimensionless time-dependent ligand entry
rate, and KD ¼ koff/kon is the dissociation constant.
There are three apparent dimensionless parameters in the

system that emerge naturally during the course of the
conversion, viz. a ¼ kt/koff, b ¼ ke/koff, and c ¼ KaRT/(NavV)
where Ka ¼ kon/koff is the receptor–ligand binding affinity.
However, we are interested in how the system responds; that
is, how the number of receptor–ligand complexes C* evolves
as a function of time for specified ligand inputs f*(t*). It can be
shown that the response C*(t*) for any given input f*(t*) is a
function only of two parameters viz. b and c. Here c is the
specific avidity characterizing how efficiently a receptor
system can capture extracellular ligand. The parameter b is
the partition coefficient quantifying the probability that a
captured ligand molecule will be internalized before it

Figure 3. Effect of Altering ke on the Impulse Response of the Receptor Systems

The increase in internalized ligand following a ligand impulse was computed as a function time for the various receptor systems. Internalized ligand
concentrations are presented as a fraction of the total ligand dose added. Results are presented for EGFR (A), TfR (B), LDLR (C), and VtgR (D). For each
receptor system, ke was varied to obtain the various D values (ke/kt ratios) indicated, while all other parameters were set to equal the values listed in
Table 1. The arrow in (A) denotes the direction of increasing ke. Note that the subplots have different time scales. To clarify the axis labeling, the x-axis
ranges from 0 to 25,000 min and 0 to 40,000 min in (B) and (C), respectively.
doi:10.1371/journal.pcbi.0030101.g003
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dissociates from the receptor. Hence, the partition coefficient
can also be viewed as a consumption parameter because it
quantifies how well a cell can internalize or consume surface-
bound ligand molecules. With respect to our simulation
results that were reported in the previous section, increasing
the ke value (Figure 3) corresponds to increasing the
consumption parameter b of a receptor system. Decreasing
the extracellular volume V (Figure 4) is equivalent to
increasing the specific avidity c.

As discussed above, the speed of the response of a receptor
system to changes in ligand production appears to be a good
way to assess system function for both signaling and transport
receptors. For signaling receptors such as the EGFR, faster
response times reflect better information processing accu-
racy. For transport receptors such as TfR, LDLR, and VtgR,
the impulse response speed is directly related to the net
ligand internalization rate, and hence faster responses reflect
higher uptake efficiencies. Here, we computed the dimen-
sionless relaxation time s for the response to a ligand impulse

of magnitude equal to 0.01KD and used this as a common
metric to assess receptor performance. The relaxation time s
is the time taken for the impulse response (see Figure 2A for
example) to decay to a value of 1/e of the peak value.
The s value is inversely related to the response speed. A

smaller relaxation time implies a faster response and hence
indicates better receptor system performance. Dependence
of s on the dimensionless model parameters b and c is
examined in Figure 5. The b and c values for the specific
receptor systems considered here are shown overlaid on the
panels in Figure 5. These values were computed using the
information tabulated in Table 1. The dimensionless relax-
ation time s varies over a wide range from 10�2 to 106 when b
and c values are varied in their respective physiological
ranges (Figure 5A). For small values of b and c, the impulse
response is characterized by large relaxation times (red
region in Figure 5A). When b and c are increased, the
relaxation time decreases, with the smallest relaxation times
being found in regions where both of the parameters are high

Figure 4. Sensitivity of Receptor Function to Extracellular Volume

The increase in internalized ligand following a ligand impulse is plotted as a function of time for various extracellular volumes for EGFR (A), TfR (B), LDLR
(C), and VtgR (D). The volume V was varied as indicated in Figure 4, while all other parameters were set equal to the values listed in Table 1. The arrow in
(A) denotes the direction of increasing volume.
doi:10.1371/journal.pcbi.0030101.g004
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(blue region). These findings can be explained based on the
physical meanings of these parameters. The specific avidity c
is a measure of the efficiency of ligand capture from the
extracellular space. The consumption parameter b represents
the efficiency with which ligand captured by the cell surface
receptors can be sequestered into intracellular compart-
ments. Thus, the two parameters complement each other in
determining the efficiency of ligand transport into the cell,
and, therefore, an increase in either parameter leads to the
shortening of the relaxation time.

The locations of the various receptor systems in the b–c
parameter space specify their respective response speeds. The
locations of the EGFR, TfR, LDLR, and VtgR in the b–c
parameter space are consistent with the impulse response
speeds seen in Figures 3 and 4. Note that the dimensionless s
values in Figure 5A have to be divided by the respective koff
values prior to comparison with the results plotted in Figures
3 and 4.
The relative sensitivity of the relaxation time to changes in

b and c provides us with specific information on the strategy
that a receptor system operating at a given point in the
parameter space could employ to improve its response. For
this purpose we define a relative sensitivity rs parameter,
which was computed as the ratio of the sensitivity of s to c to
the sensitivity of s to b as described in Methods. This quantity
varies from 10�3 to 103 in the parameter range studied
(Figure 5B). Hence, depending upon the location in the
parameter space, the relaxation time can be up to 1,000 times
more sensitive to one of the parameters compared with the
other. At high values of b (b . 10), the relaxation time is far
more sensitive to the avidity c than the consumption (red
region). In this region of the parameter space, changes in the
value of c would be much more effective in decreasing
response times. Similarly, for high c values (c . 10; blue
region) the sensitivity to b is orders of magnitude greater
than the sensitivity to c. In this region of the parameter space,
only changes in the value of b would be effective in
optimizing response times. For the region where rs is close
to 1 (near the diagonal, green region), modifying either b or c
has an approximately equal effect. Thus, the product bc is the
more relevant optimization parameter in this intermediate
region of the b–c space.
Overall, there are three distinct regions in the b–c

parameter space: i) region with high b and modest c where
s is insensitive to b, ii) region with high c and modest b where
s is insensitive to c, and iii) region with intermediate b and c
values where s is equally sensitive to b and c. Region 1 is
avidity-controlled, Region 2 is consumption-controlled, and
Region 3 has dual sensitivity. As seen in Figure 5B, the TfR
and the LDLR are in the avidity-controlled region, whereas
the VtgR is in the consumption-controlled region. In
contrast, the EGFR occupies the dual sensitivity region of
the parameter space. Thus, avidity modulates the behavior of
the TfR and LDLR systems, whereas the consumption
coefficient controls the function of the VtgR. As we show in
the Discussion section, for dual-sensitivity receptors such as
the EGFR, endocytic downregulation is an optimal strategy to
improve response accuracy.

Discussion

Understanding how cells adjust their internal molecular
concentrations and reaction rates to accomplish specific tasks
is one of the important goals in the emerging field of systems
biology [59,60]. Given the ubiquity of receptor-mediated
signaling and transport, the identification of design princi-
ples for receptor systems is likely to be of significant value for
understanding and learning how to modify the mechanisms
by which cells process information. The problem we are
addressing is analogous to the identification of structure–
function relationships in proteins. In the current scenario,
the reaction network and the parameters correspond to the

Figure 5. Relaxation Time and Its Sensitivity to Variations in System

Parameters

The relaxation time s was computed for a range of specific avidity and
partition coefficient values by solving the differential equations
governing the system.
(A) Dimensionless relaxation time s is plotted as a function of b and c.
Blue regions correspond to small relaxation times and hence a rapid
response, while red regions correspond to large relaxation times and a
sluggish response.
(B) The relative sensitivity of the relaxation time to changes in b and c, rs.
Blue regions indicate sensitivity primarily to b alone, and red regions
indicate sensitivity to c alone. The green region in the middle indicates
approximately equal sensitivities to b and c. The b and c values
corresponding to the TfR, LDLR, EGFR, and VtgR are marked in each of
the panels. The main diagonal, b ¼ c is shown as a black line.
doi:10.1371/journal.pcbi.0030101.g005
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‘‘structure’’ of the receptor system, while the manner in
which the receptor system responds to ligand inputs
corresponds to its ‘‘function.’’ By establishing such ‘‘struc-
ture–function’’ relationships for biomolecular networks, it
should eventually be possible to determine the function of
the network simply by examining its ‘‘structure’’ and vice
versa.

In this study, we employed a generalized mathematical
model to comparatively explore the design principles of
signal transduction and transport receptors. Our simulations
revealed that the relationships between the individual kinetic
parameters and the dynamics of cell surface receptors are
complex. In particular, the function of the EGFR was found
to be very sensitive to the extent of endocytic downregulation
with the information processing accuracy of this system
increasing with the ke/kt ratio. Although the receptor systems
considered here displayed unique patterns of sensitivity to
individual parameters, these relationships can be placed in a
unified framework by considering the dimensionless equa-
tions governing the model. This generalized treatment reveals
that the efficiency and robustness of cell surface receptors
depend upon two distinct dimensionless parameters: the
specific avidity c and the consumption coefficient b. Based on
their dependence on these parameters, we find that receptor
systems can be classified as being i) avidity-controlled, ii)
consumption-controlled, or iii) dual-sensitivity systems. The

TfR and the LDLR receptor systems are avidity-controlled.
The VtgR system is consumption-controlled. Finally, the
EGFR is a dual-sensitivity receptor.
An extremely informative approach for analyzing receptor

systems was to use relaxation time s as a measure of their
‘‘efficiency.’’ This allowed us to map the relative efficiency of
receptors in parameter space to understand some of their
design principles (see Figure 6). In Figure 6, b–c parameter
pairs that give rise to equal values of s are connected by
contour lines. The region with the smallest s values (i.e.,
fastest response time) is the region where both b and c are
high (Figure 6, upper right-hand corner). The shapes of the
contour lines in the plot indicate the local direction in which
a receptor system would have to move to decrease its
relaxation time; the best strategy being to move in a direction
perpendicular to the local contour lines. The avidity-
controlled, consumption-controlled, and dual-sensitivity re-
gions have been demarcated in the plot using contours for
the relative sensitivity rs drawn at the rs values of 2 (boundary
between avidity-controlled and dual-sensitivity) and 0.5
(boundary between dual-sensitivity and consumption-con-
trolled). We were also able to use this approach to map the
regions in the parameter space with the highest overall
robustness (overall sensitivity ms , 0.8) and sensitivity (ms .

1.2) computed as described in the Methods section.
In this study, we computed the relaxation time based on the

response of receptor systems to a ligand impulse of
magnitude 0.01KD. However, we have also performed
numerical integration of our ODE system to obtain the
relaxation time at a ligand dose of KD nM. The parameter
dependency of the relaxation time seen at this higher ligand
dosage is qualitatively similar to that reported in Figures 5A
and 6 (unpublished data). Thus, our conclusions would still
hold true even at the higher ligand concentrations.
As seen in Table 1, the TfR has a small c value and a large b

value. This places it in the avidity-controlled regime (Figure
6). In retrospect, as c is inversely proportional to V, this
explains why the TfR was sensitive to the volume and not to ke
(Figures 3B and 4B). We note that increasing the specific
avidity c improves the response of the TfR and moves it in the
direction toward the global efficiency maximum (Figure 6).
The specific avidity is by definition given as c ¼ KaRT/(NavV).
Because c is proportional to RT, an effective regulatory
strategy to improve uptake accuracy and to achieve robust
ligand uptake would be to modulate the receptor expression
level at the plasma membrane, RT. Interestingly, several
experimental observations support the existence of such a
strategy: the expression level of the TfR is modulated at the
transcriptional level [31,32], and the number of cell surface
TfR molecules are rapidly modulated by membrane trans-
location following growth factor treatment [34,35]. The LDLR
system also occupies the avidity-controlled region of the
parameter space with the TfR system (Figure 6). Hence, the
impulse responses of these receptor systems display identical
parameter dependencies (Figures 3 and 4). The LDLR also
displays a similar regulation pattern to the TfR in that its
expression level is transcriptionally modulated following the
addition of hormones and growth factors [39–42].
An important reason that the TfR and the LDLR are in the

avidity-limited region of the b–c parameter space is that the
low ligand off-rate of these receptors gives them a relatively
large b value. Receptor–ligand binding parameters are

Figure 6. Control Parameters and Their Effect on the Response of

Receptor Systems

The parameter values for EGFR, TfR, LDLR, and VtgR are shown overlaid
on a contour plot of the relaxation time. Smaller relaxation times
correspond to larger system efficiencies. Arrows depict the effect of
changing the respective control parameters on the response for each of
the receptor systems. The control parameters are: i) the specific avidity, c,
for TfR and LDLR; ii) the consumption, b, for VtgR; and iii) the
downregulation—D with b and c being altered simultaneously for the
EGFR. The most efficient manner in which the response of a given
receptor system can be improved is by traveling in a direction normal to
the contour lines. Figure 6 illustrates how each of the control parameters
can be identified based on their ability to move the system in the
appropriate direction in the parameter space. The length of the arrows
provides a sense as to which receptors are the most sensitive to
parameter changes. The sensitivity is in the order: TfR . LDLR . EGFR .
VtgR. Solid arrows indicate the effect of increasing the control parameter,
while the broken arrows show the effect of decreasing the parameter.
The contours demarcating the most robust (ms , 0.8) and the most
sensitive (ms . 1.2) regions of the parameter space are indicated in gray.
doi:10.1371/journal.pcbi.0030101.g006
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strongly influenced by ligand size and structure. Growth
factors are small proteins and thus tend to have a high
association rate with their receptors. In addition, the small
ligand size leads to a smaller receptor–ligand contact area
and may contribute to the relatively high receptor–ligand off-
rates generally seen for these molecules. On the other hand,
transport receptors engage molecules that are usually much
larger than growth factors. Their association rates are likely
to be smaller due to both steric constraints and lower
diffusion coefficients. Conversely, these molecules tend to
have smaller dissociation rates by virtue of their ability to
establish multiple contacts with their receptors. Low receptor
off-rates are seen for a number of transport molecules, such
as transferrin [61], low-density lipoprotein [14], and asialoor-
omucocoid [62].

Unlike the case with other transport receptors, the VtgR
has a very high c value and an intermediate b value (Table 1).
This places it in the consumption-limited regime where
control of the response is primarily a function of b (Figure 6).
Hence, altering the c value for this receptor system would
have a negligible effect on its performance. This is in
agreement with the volume sensitivity results for this
receptor (Figure 4D). The high c value is primarily caused
by the high densities of VtgR found at the surface of oocytes,
to which these receptors are typically restricted. High
receptor densities are likely an evolutionary consequence of
the need to maximize vitellogenin uptake despite the limited
surface-to-volume ratio of oocytes. Nevertheless, increasing b
improves the response of the VtgR and moves it in the
direction toward the global efficiency maximum (Figure 6).
Because b ¼ ke/koff, the uptake efficiency of the VtgR can
ideally be improved by increasing ke given that koff is already
negligible [47]. In agreement with this notion, hormonal
regulation of the VtgR system has been found to be at the
level of modulating ke [48].

The b and c values of the EGFR place it in the dual
sensitivity region—a region of the parameter space where the
receptor system is equally sensitive to changes in b and c
(Figure 6). This finding explains the results seen in Figures 3A
and 4A for the EGFR wherein both ke and volume were found
to have a modulating influence on the impulse response.
Given its dual sensitivity, in a local sense, increasing the
product bc would lead to an improvement in the EGFR
response. However, the best strategy for moving the system to
the global efficiency maximum would be to move up the
diagonal shown in Figure 6. This can be accomplished by
simultaneously increasing both b and c while keeping the
ratio b/c a constant. However, b ¼ ke/koff, and it can only be
increased by reducing ligand dissociation rates or increasing
receptor internalization rates. The former parameter is
constrained by both the small size of growth factors and the
free energy needed for inducing receptor conformational
changes [63]. On the other hand, if the internalization rate of
both occupied and empty receptors were the same (i.e., ke ¼
kt), then increasing ke would have the effect of decreasing c
because RT¼ QR/kt. This strategy works for the VtgR because
it is in the consumption-controlled region, but would not be
effective in the case of the EGFR. Indeed, the only effective
strategy for a dual-sensitivity receptor is to uncouple the
internalization rate of the occupied receptor ke from the
internalization rate of empty receptors kt. This provides the
means by which to increase b without a concomitant decrease

in c. The diversity of regulatory mechanisms that have
evolved to uncouple ke from kt attests to the strong selective
advantage of this design strategy for signaling receptors.
The response characteristics of the EGFR system can be

improved by either increasing ke or decreasing kt or both. The
local symmetry of the dual-sensitivity region implies that each
of these strategies would have the same benefit when it comes
to improving response characteristics. However, when we
consider order-of-magnitude changes in the system parame-
ters, the ideal strategy would be to move along the diagonal,
which can be accomplished by increasing ke/kt while main-
taining the constraint kekt¼ constant (i.e., b/c¼ constant). This
amounts to increasing downregulation by simultaneously
increasing ke and decreasing kt. This suggests that signaling
receptors should greatly benefit from decoupling the internal-
ization of receptor–ligand complexes from the internalization
of free receptors. Indeed, in agreement with this concept, it
has been shown that the internalization of empty EGFR can be
regulated independently of occupied receptors [64].
Traditionally, endocytic downregulation has been pro-

posed to be a mechanism to prevent cells from ‘‘over-
responding’’ to a growth factor stimulus, with a perceived role
analogous to a pressure relief–valve system. Furthermore, the
term ‘‘downregulation’’ implies that once the receptor system
is induced to respond to ligand, the system enters a refractory
period wherein further stimulation would not result in a
biological outcome. However, it is very unlikely that cells
would ever see a dose of ligand sufficient to downregulate a
significant number of surface receptors to transform the cells
to a refractory state. For example, quantitative analysis of
autocrine systems has shown that cells produce sufficient
ligand to occupy only a small fraction of available receptors
[17]. Instead of seeing endocytic downregulation as a relief
valve, our analysis suggests that it is more analogous to a
negative feedback control module that improves the response
accuracy of the system. Endocytosis itself is clearly a
mechanism to ensure that ligand molecules that enter the
extracellular space are promptly cleared. However, the
differential endocytosis of occupied versus empty receptors
appears to be primarily a regulatory mechanism to enhance
the temporal fidelity of signaling receptors.
The eventual output of a signaling system is a cellular

response such as cell proliferation or migration. It is possible
that different cellular responsesmay display varying degrees of
couplingwith the temporal ligand input. Based on our analysis,
we propose that the upstream portion of a signaling receptor
system such as the EGFR is designed for accurate synchronous
signal processing so that a change in ligand concentration is
accurately reflected in the number of surface complexes.
Downstream cellular responses that are intimately coupled to
the number of surface complexes would also display a match
with the input signal. Responses such as cell migration could in
fact follow this strategy where transient inputs result in
transient outputs. On the other hand, the number of
internalized complexes reflects an integration of the input
signal from the time of endocytosis to the time of receptor
inactivation [65]. If the eventual cellular response were to be
coupled to the number of internalized complexes, then the
cellular response would be an integration of the input signal.
Assessing the design principles of receptor systems requires

establishing quantitative measures of receptor function.
Drawing upon analogies with engineered systems, we can
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employ two qualitatively different measures to evaluate a
system: efficiency and robustness. Whereas it is intuitively
evident that the efficiency is a desirable system trait, the
situation with respect to robustness is less certain. For
example, we found that none of the receptor systems we
investigated were located in the maximally robust region of
the parameter space (Figure 6). However, we note that a
receptor system that is completely robust to all parameter
variations cannot be effectively regulated. For example,
hormonal modulation of receptor expression levels and
internalization rates would have no significant effect on
system response. Hence, maximal robustness might not
necessarily be a desirable outcome during receptor evolution.
There are situations, however, where robustness to a specific
parameter, such as volume changes, would be a desirable
trait. For example, the EGFR system operates in a wide variety
of physical contexts both during development and in the
adult organism. Robustness to volume changes would allow
this system to function with comparable efficiencies in
numerous circumstances. We note that there is experimental
evidence to support the fact that the extracellular volume can
affect EGFR-mediated signaling. It has been shown previously
that interstitial volume changes due to mechanical stress can
result in a proportional change in the EGFR-mediated ERK
phosphorylation levels [66]. It is possible that the interstitial
volume in these experiments is greater than 4 3 10�11 liters/
cell, which would place the EGFR system in the volume-
sensitive portion of the parameter space (see Figure 4A).
Alternately, low levels of volume sensitivity coupled with the
amplification provided by the MAPK cascade could result in
the proportional coupling between ERK activation and
volume change seen in the experiments. In summary, there
is clearly a tradeoff between robustness and regulation.
Understanding which specific receptor characteristics are
robust could provide important insights into the evolutionary
pressures on a particular receptor system.

The inherent tradeoff between efficiency and robustness can
be used to further categorize the control strategies used by our
specific receptor systems. We suggest that the TfR and the
LDLR as seen in Figure 6 are in a basal state of operationwhere
the efficiency (response speed) is low.However, this comeswith
the advantage that these systems can be easily regulated at the
level of receptor expression with a change in receptor
expression leading to a substantial relative change in system
efficiency. Thus, hormones and growth factors can switch these
systems to an ‘‘on state’’where the efficiencies are higher. Thus,
it is possible to view the TfR and LDLR as receptor-controlled
systems where the response control is at the level of the
receptor.On the other hand, the EGFR system as seen in Figure
6 inherently has a higher efficiency and a lower sensitivity to
parameter changes. Further, to the best of our knowledge we
are not aware of instances where the EGFR system is acutely
regulated analogous to the hormonal regulation seen in the
TfR and LDLR systems. Thus, the EGFR system by virtue of its
inherently higher information processing accuracy is a ligand-
controlled system where the system response is tightly coupled
to variations in ligand concentration.

Materials and Methods

Construction of the mathematical model. Figure 1 presents a
schematic description of the reaction system analyzed in this paper.

The governing equations corresponding to this reaction system are
presented in Equation 1 (Results section). We made several simplify-
ing assumptions in constructing our mathematical model. First, we
restricted our analysis to the formation of cell-surface receptor–
ligand complexes and used the number of surface complexes as the
system readout. It has been shown that in the case of the EGFR and
other signaling receptors, the biological response is proportional to
the number of receptor–ligand complexes at the cell surface, and
thus they constitute a good readout for cell responses. This does not
imply that the surface receptors are the source of the signal. It only
means that since the formation of surface complexes is a precursor to
subsequent downstream events, it can be used to assess the magnitude
of signal transduction. A second simplification in our analysis is that
we restrict our model to internalization and do not explicitly include
subsequent receptor/ligand trafficking phenomena such as recycling.
For the transport receptors, recycling increases the capacity of the
ligand internalization system and can be approximated as an increase
in apparent avidity. For signaling receptors, receptor recycling does
not appear to play a major role in modulating the efficiency of
information processing [67]. Restricting our model to internalization
alone reduced the dimensionality of our parameter space and
simplified the comparison of the different receptor systems.

Numerical solution of the governing equations. The governing
equations (Equation 1) were integrated using the MATLAB (The
Mathworks, http://mathworks.com) stiff equation solver ode15s to
obtain the response to various inputs such as impulses and square
waves. The parameter values used for the various receptor systems
are listed in Table 1. In simulations examining the contribution of a
single parameter to the receptor dynamics, the chosen parameter
was varied in a specified range while all other parameters were held
fixed at the values listed in Table 1. For impulse response simulations
where the response to an impulse of magnitude 0.01KD was desired,
f(t) was set equal to zero for the entire simulation, and the initial
conditions used were R ¼ RT, C ¼ 0, and L ¼ 0.01KD. The
dimensionless response was computed as C* ¼ C/RT and plotted as
a function of time. The repeating unit of a time-periodic square
wave is an activation phase where ligand enters the system at a
constant rate followed by a relaxation phase where the ligand entry
rate is zero. For square wave inputs, the f(t) value for the activation
phase was chosen such that the free receptor number R would drop
to a steady state value of 0.95RT if the activation phase was sustained.
By setting the rates of change of the various species in Equation 1 to
zero, we can show that this condition yields the expression, f(t) ¼
0.05QR/(NavV) M/min for the activation phase. In the relaxation phase
of the square wave, f(t) was set equal to zero. For the square-wave
simulations, the response was normalized based on the maximum
value of C reached in the simulation window, as Cn

* ¼ C/Cmax to
facilitate comparison of the time lags between the input and the
output for various parameter values. Square waves are characterized
by three parameters, namely the magnitude (f(t) in the activation
phase) and the duration of the activation and the relaxation phases.
To generate noisy square-wave inputs, all three of these parameters
were chosen from a standard normal distribution with a 50%
standard deviation.

Simulations where the ligand uptake dynamics of the various
receptor systems were compared were performed using a ligand
impulse of magnitude 0.01KD. In these simulations, the concentration
of internalized ligand based on the extracellular volume was
computed using the equation dLi/dt ¼ (keC)/(NavV). The internalized
ligand concentration was expressed as a percentage of the total
externally added ligand as percent internalized ligand¼ [Li/(0.01KD)]
3 100.

Computation of the relaxation time and its sensitivity to b and c.
The relaxation time s is defined as the time taken for the impulse
response to decay to a value 1/e ¼ 1/2.7183 of the maximum. To
compute the s value, we need to first compute the impulse response
C*(t*), which can be done by numerical integration of the dimension-
less model equations (Equation 2 in the Results section). Subse-
quently, the s value can be obtained by interpolation so as to satisfy
the relationship C*(s) ¼ C*

max/e, where C*
max is the maximum value

reached by the response. Because the impulses employed here are
quite small (magnitude¼ 0.01), the response C*(t*) can be reasonably
approximated by obtaining an analytical solution for the system of
equations obtained by linearization of Equation 2 around the initial
steady state in the absence of ligand, namely R*¼1, C*¼ 0, L*¼0. This
procedure leads to two linear ordinary differential equations for the
rates of change of C* and L*, respectively, each of which are
independent of R*. These equations are: dC*/dt* ¼� (1 þ b)C* þ L*;
dL*/dt* ¼ cC* � cL* þ f*(t*). Because b and c are greater than zero,
eigenvalues for this equation system are always real, distinct, and
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negative. It can thus be shown that the solution for C* involves a
double exponential and is given by:

C�ðt�Þ ¼ 1
p1 � p2

ðe p1t� � e p2t
� Þ;

where

p1;2 ¼
�ð1þ bþ cÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bþ cÞ2 � 4bc

q

2
ð3Þ

Equation 3 clearly demonstrates that the response of the system is
only a function of the b and c parameters. The primary advantage of
obtaining an analytical solution is the substantial gain in computa-
tion speed compared with the numerical solution. The time
resolution for generating the response curve C*(t*) needs to be
reasonably small so that interpolation to obtain the s value yields
accurate results. Our tests showed that, for an impulse of magnitude
0.01, the analytical solution yielded relaxation times that were within
4% of the results obtained using the numerical solution over the
entire range of b and c values (unpublished data). We therefore
computed the relaxation time s for a range of b and c values by using
Equation 3 for C*(t*) and then interpolating the results to obtain s.

We also computed the sensitivity of the relaxation time to changes
in the system parameters b and c by numerically evaluating the
derivatives @bs ¼ (b/s)@s/@b ¼ @lns/@lnb and @cs ¼ (c/s)@s/@c ¼ @lns/
@lnc. The sensitivity indices @bs and @cs quantify the percentage
change in s for a 1% change in b and c, respectively, and can thus be
characterized as specific sensitivities. For computing these sensitivity
indices, we generated a linear grid for the variables (b, g). Logarithmic
b and c values at a particular (bi, gj) grid point are given by bi ¼
log10(bi) and cj¼ log10(gj). The i and j indices vary from 1 to 100; that is,
the size of the grid was 1003 100. The linear grid spanned the values
from�2 to 2 and�3 to 3 for the b and g variables, respectively. Thus,
in our computations, b and c values were varied in the range 10�2 to
102 and 10�3 to 103, respectively, on a logarithmic scale. These ranges
were chosen based on our analysis of experimental data reported in
the literature for receptor–ligand binding and trafficking. We

computed the numerical derivatives @s/@bj(i, j) and @s/@gj(i, j) at each
grid point (bi, gj). The relative sensitivities to b and c were then
computed using these values as @bsj(i, j) ¼ [bi/s(i, j)] @s/@bj(i,j)/ln10 and
@csj(i, j) ¼ [cj/s(i, j)] @s/@gj(i, j)/ln10. Once the relative sensitivities were
computed, we determined the ratio of the sensitivities rs(i, j)¼ [@csj(i,
j)]/ [@bsj(i, j)]. The rs(i, j) values indicate the relative sensitivity of the
relaxation time to changes in c and b. Small rs values would indicate
that the relaxation time is more sensitive to changes in b, and large
values would indicate greater sensitivity to c. Finally, we computed
the overall magnitude of the sensitivity of the relaxation time to
changes in b and c as ms(i, j) ¼ [(@bsj(i, j))

2 þ (@csj(i, j))
2]1/2. ms(i, j)

quantifies the robustness of the system in the face of cumulative
parameter variations. Small values indicate robustness, and large
values are a sign of increased sensitivity to parameter changes.

Supporting Information
Accession Numbers

Accession numbers used in this paper from UniProt (http://www.
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(Q42126) and (Q6NS01).
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