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Abstract

Tracking motile cells in time-lapse series is challenging and is required in many biomedical

applications. Cell tracks can be mathematically represented as acyclic oriented graphs.

Their vertices describe the spatio-temporal locations of individual cells, whereas the edges

represent temporal relationships between them. Such a representation maintains the

knowledge of all important cellular events within a captured field of view, such as migration,

division, death, and transit through the field of view. The increasing number of cell tracking

algorithms calls for comparison of their performance. However, the lack of a standardized

cell tracking accuracy measure makes the comparison impracticable. This paper defines

and evaluates an accuracy measure for objective and systematic benchmarking of cell

tracking algorithms. The measure assumes the existence of a ground-truth reference, and

assesses how difficult it is to transform a computed graph into the reference one. The diffi-

culty is measured as a weighted sum of the lowest number of graph operations, such as

split, delete, and add a vertex and delete, add, and alter the semantics of an edge, needed

to make the graphs identical. The measure behavior is extensively analyzed based on the

tracking results provided by the participants of the first Cell Tracking Challenge hosted by

the 2013 IEEE International Symposium on Biomedical Imaging. We demonstrate the

robustness and stability of the measure against small changes in the choice of weights for

diverse cell tracking algorithms and fluorescence microscopy datasets. As the measure

penalizes all possible errors in the tracking results and is easy to compute, it may especially

help developers and analysts to tune their algorithms according to their needs.

Introduction

The cornerstone of many modern live-cell imaging experiments is the ability to automatically

track and analyze the motility of cells in time-lapse microscopy images [1, 2]. Cell tracking is
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an essential step in understanding a large variety of complex biological processes such as the

immune response, embryonic development, or tumorigenesis [3].

Automated cell tracking can be formulated as a problem of identifying and segmenting all

desired cell occurrences and describing their temporal relationships in the time-lapse series.

Because cells can migrate, undergo division or cell death, collide, or enter and leave the field of

view, a cell tracking algorithm suitable for daily practice must reliably address all these events

and provide a data structure that thoroughly characterizes the behavior of tracked objects,

which could be either whole cells or cell nuclei depending on the application.

State-of-the-art cell tracking approaches can be broadly classified into two categories [4]:

tracking by detection [5–9] and tracking by model evolution [4, 10–13]. The former paradigm

generally involves two steps. First, a cell or cell nucleus segmentation algorithm identifies all

target objects in the entire time-lapse series separately for each frame. Second, the detected

objects are associated between successive frames, typically by optimizing a probabilistic objec-

tive function. In contrast, the latter paradigm solves both steps simultaneously, usually using

either parametric or implicit active contour models.

Regardless of the particular algorithm used, its tracking results can be mathematically repre-

sented using an acyclic oriented graph. The vertices of such a graph correspond to the detected

objects while its edges coincide with the temporal relationships between them. Non-dividing

objects have one successor at most, whereas those that undergo division have two or even more

successors in the case of abnormal division. Cell lineage tracking results represented by an acy-

clic oriented graph form a forest of trees in the graph theory terminology.

With the increasing number of cell tracking algorithms, there is a natural demand for objec-

tive comparisons of their performance. In general, there are two aspects of cell tracking algo-

rithms, which are worth being evaluated: segmentation accuracy and tracking accuracy. The

former one characterizes the ability of an algorithm to precisely identify pixels (or voxels) occu-

pied by the objects in the images. It usually leads to the comparison of reference and computed

regions based on their overlap or distances between their contours [14, 15]. The tracking accu-

racy evaluates the ability of an algorithm to correctly detect individual objects of interest and

follow them in time.

There are two popular approaches to measuring the tracking accuracy. One approach is

based on the ratio of completely reconstructed tracks to the total number of ground-truth

tracks [4, 16]. The second computes the ratio of correct temporal relationships within recon-

structed tracks to the total number of temporal relationships within ground-truth tracks [16,

17]. Both approaches quantify, at different scales, how well the cell tracking algorithms are able

to reconstruct a particular ground-truth reference. However, they neither penalize detecting

spurious tracks nor account for division events, which are often evaluated separately [4, 16].

A comprehensive framework for evaluating the performance of the detection and tracking

algorithms was established in the field of computer vision [18]. Nevertheless, it targets only

topologically stable objects, such as human faces, text boxes, and vehicles. Therefore, it cannot

be applied to cell tracking applications because the tracked objects can divide over time or dis-

appear after undergoing cell death. Similarly, another evaluation framework [19], established

for comparing the performance of particle tracking methods, does not consider division events,

ruling out its ability to evaluate correct cell lineage reconstruction.

In this paper, we propose a tracking accuracy measure that penalizes all possible errors in

tracking results and aggregates them into a single value. The measure assesses the difficulty of

transforming a computed acyclic oriented graph into a given ground-truth reference. Such dif-

ficulty is measured as a weighted sum of the lowest number of graph operations required to

make the graphs identical.
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The proposed measure can serve not only algorithm developers, but also analysts in order to

choose the most suitable algorithm and tune its parameters with respect to all tracking events

by optimizing a single criterion. A typical scenario is to create ground truth and evaluate the

prospective algorithms on a part of image data, and let the most suitable algorithm run on the

rest of it. An alternative way of comparing the performance of algorithms without the need for

ground truth has been proposed recently in [20, 21]. However, this approach creates the rank-

ing based on a pairwise comparison of the algorithms and therefore the absolute performance

of the algorithms remains unknown.

A prototype of the proposed measure has been continuously used in the individual editions

of the Cell Tracking Challenge (http://www.codesolorzano.com/celltrackingchallenge/) being

an open and ongoing competition focused on objective and systematic comparison of state-of-

the-art cell tracking algorithms [22]. In comparison to [22] where the measure prototype was

only sketched out and primarily used as a black-box tool with fixed weights for ranking the

algorithms, the contribution of this paper is twofold. First, we provide a rigorous mathematical

description of the proposed measure and an extensive study of its behavior, in particular with

respect to the choice of weights, based on diverse fluorescence microscopy datasets. It is shown

that the proposed measure is robust and stable against small changes in the choice of weights

and that the weights can be set to compile rankings strongly correlated with human expert

appraisal while reflecting the importance of a particular type of error. Second, a slight modifi-

cation in the definition of edge-related graph operations, which has no practical impact on the

ranking compilation, allows us to formulate the necessary condition for the choice of weights,

which guarantees the measure value to be not only the weighted sum of the lowest number of

graph operations but also the minimum weighted cost of transforming a computed graph into

a given ground-truth reference.

Materials and Methods

Proposed cell tracking accuracy measure informally

The main purpose of the proposed measure is to evaluate the ability of cell tracking algorithms

to detect all desired objects and follow them in time. Although it does not directly evaluate the

accuracy of segmented regions, reliable object detection is a very important factor in this mea-

sure as well.

In fact, the measure counts the number of all detection as well as linking errors committed

by the algorithm. It counts the number of missed objects (FN—false negatives), the number of

extra detected objects (FP—false positives), and the number of missed splits (required to cor-

rectly segment clusters, NS). Having those three numbers of errors, we can aggregate them into

one number as the weighted sum wNS NS + wFN FN + wFP FP with non-negative weights wNS,

wFN, and wFP. The ability of the algorithm to correctly identify temporal relationships between

the objects is evaluated by counting the number of errors in object linking. Namely, it counts

the number of missing links (EA), the number of redundant links (ED), and the number of

links with the wrong semantics (EC). These numbers are again aggregated into one number as

the weighted sum wEA EA + wED ED + wEC EC with non-negative weights wEA, wED, and wEC.

The weights are penalties for individual types of errors and can, for example, reflect the manual

effort needed to correct the errors in some particular software.

The number of committed errors can be calculated by counting differences between the

ground-truth reference and the computed result where each can be mathematically represented

by an acyclic oriented graph. From the computational point of view, a critical part of the pro-

posed measure is the existence of a unique way of pairing reference and computed objects (i.e.,

graph vertices). To this end, we pair a reference object with a computed one if and only if the
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latter covers the majority of the former, which guarantees the uniqueness of established pairing

and thus straightforward computation without any optimization. Interestingly, such a simple

test does not exist for the particle tracking problem, where particles are considered volumeless,

making similar evaluation procedure computationally unfeasible.

In the rest of this section, the basic terminology and notation necessary to establish a con-

nection between cell lineage tracking results and acyclic oriented graphs is introduced, and the

proposed measure is formally defined.

Basic terminology and notation

Let N be the number of frames in a time-lapse series, L be a set of object labels shared among

all frames, and? =2 L be a background label. Let a markerMt
i be a set of pixels or voxels of a

unique label i 2 L in the t-th frame, t 2 {0, . . ., N − 1}, related to a particular object. Such mark-

ers can be manually created by experts, automatically computed by cell tracking algorithms,

established by combining both in an edit-based framework [23], or inherently generated using

a simulation toolkit as digital phantoms [24, 25]. A track θi is defined as the longest temporal

series of markersMtinit
i ; � � � ;Mtend

i , 0� tinit � tend � N − 1, without temporal gaps. When a par-

ticular object temporarily disappears from a frame, the corresponding track terminates and a

new one with a unique label is established once the object reappears in another frame. Analo-

gously, when a particular object undergoes division, the track of the mother object terminates

and new daughter tracks with unique labels are initiated. In either case, the new established

tracks are descendants of the terminated tracks. We denote a set of all tracks for the particular

time-lapse series with the symbolΘ. To keep the information about relationships between indi-

vidual tracks, let P : Y ! L [ f?g be a parent function defined as

PðyiÞ ¼

j if yi is a descendant of yj ;

? otherwise :

ð1Þ

8
<

:

For simplicity, we also define two other functions, I : Y ! f0; � � � ;N � 1g and

T : Y ! f0; � � � ;N � 1g, returning zero-based indices of the initial and terminal frames, tinit
and tend, for each track. Finally, tracking results for the particular time-lapse series can be

expressed as a quadruple ðY;P; I ; T Þ.

Any quadruple ðY;P; I ; T Þ can be directly transformed into an acyclic oriented graph G =

(V, E) where a set of vertices V is composed of all markers present in tracks θi 2 Θ and a set of

oriented edges E� V × V represents temporal relationships between the markers. More pre-

cisely, a pair ðMt1
i ;M

t2
j Þ is an edge of the graph G if and only if either i = j ^ t2 = t1 + 1 or

i 6¼ j ^ t
1
< t

2
^ T ðyiÞ ¼ t

1
^ IðyjÞ ¼ t

2
^ PðyjÞ ¼ i. In the former case, the edge connects

two successive markers within a single track, whereas the terminal marker of θi is linked to the

initial one of θj in the latter case. Hereinafter, we refer to the former edge as track link and to

the latter one as parent link. Over the set of edges E, we define a function S : E ! fT;Pg

describing the semantics of an edge e 2 E as SðeÞ ¼ T for track links and SðeÞ ¼ P for parent

links. Note that the orientation of the edges follows the ascending temporal ordering of mark-

ers within as well as between tracks, which ensures acyclicity of the graph G. An example of the

graph G is depicted in Fig 1.

Acyclic oriented graphs matching (AOGM) measure

Let GR = (VR, ER) be a reference graph for a time-lapse series and GC = (VC, EC) be a computed

graph, the accuracy of which we want to evaluate with respect to the reference one. For clarity

Cell Tracking Accuracy Measurement Using Acyclic Oriented Graphs
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and brevity, we denote the reference graph vertices as Rt
i , and the computed graph vertices as

Ct
j . To determine whether a reference marker Rt

i was found, we exploit a simple binary test

jRt
i \ Ct

j j > 0:5 � jRt
i j ; ð2Þ

checking whether a computed marker Ct
j covers the majority of the reference marker Rt

i . Note

that each reference marker can be assigned to one computed marker at most, whereas one

computed marker can have multiple reference markers assigned using this detection test. For

instance, the latter happens when a cell division was not detected by the algorithm, leaving the

daughter cells clustered in a single marker Ct
j . In the case of positive detection test, we write

Rt
i ⋐Ct

j and say that R
t
i is assigned to C

t
j . Analogously, we consider edges eR ¼ ðRt1

i ;R
t2
j Þ and

eC ¼ ðCt1
k ;C

t2
l Þ to match if and only if the corresponding vertices have positive detection tests

(i.e., eR ⋐ eC $ R
t1
i ⋐C

t1
k ^ R

t2
j ⋐C

t2
l ).

Based on the detection test, we classify the reference vertices VR as either true positive V
TP
R

or false negative VFN
R in the following way:

• True positives: the correctly detected objects (i.e., reference markers assigned to a computed

marker):

VTP
R ¼ fRt

i 2 VR : R
t
i ⋐Ct

j for some Ct
j 2 VCg : ð3Þ

We denote the number of true positive vertices as TP ¼ jVTPR j.

• False negatives: the missed objects (i.e., reference markers not assigned to any computed

marker):

VFN
R ¼ fRt

i 2 VR : R
t
i ⋐Ct

j for no Ct
j 2 VCg : ð4Þ

We denote the number of false negative vertices as FN ¼ jVFNR j.

Note that each vertex is included in exactly one set and their union contains all reference

vertices (i.e., VR ¼ VFN
R [ VTP

R ).

Fig 1. An example of tracking results represented by an acyclic oriented graph. Individual tracks are
visualized using different colors. Solid lines correspond to track links, whereas parent links are depicted using
dashed lines.

doi:10.1371/journal.pone.0144959.g001
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Similarly, we classify the computed vertices VC as true positive V
TP
C , false positive VFP

C , or

non-split vertices VVS in the following way:

• False positives: the extra detected objects (i.e., computed markers without any reference

marker assigned):

VFP
C ¼ fCt

j 2 VC : Rt
i ⋐Ct

j for no Rt
i 2 VRg : ð5Þ

We denote the number of false positive vertices as FP ¼ jVFPC j.

• Non-split vertices: the computed markers with more than one reference marker assigned:

VVS
C ¼ fCt

j 2 VC : Rt
k ⋐Ct

j ;R
t
l ⋐Ct

j for some Rt
k;R

t
l 2 VR; k 6¼ lg : ð6Þ

We denote the number of non-split vertices as VS ¼ jVVSC j. Whenm reference markers

(m> 1) are assigned to a single computed marker,m − 1 split vertex operations need to be

performed to locally equalize the number of vertices of the reference and computed graphs.

These operations decompose the computed marker intom non-empty, disjoint markers,

such that each of them reference markers is assigned to exactly one of them. The total num-

ber of split vertex operations can be easily obtained as the difference between the number of

true positive reference vertices and the number of the computed graph vertices with a refer-

ence marker assigned:

NS ¼ TP � jfCt
j 2 VC : Rt

i ⋐Ct
j for some Rt

i 2 VRgj : ð7Þ

• True positives: the computed markers with exactly one reference marker assigned:

VTP
C ¼ VC n ðV

VS
C [ VFP

C Þ : ð8Þ

Note that each computed vertex is included in exactly one set and their union contains all

computed vertices (i.e., VC ¼ VFP
C [ VTP

C [ VVS
C ).

Knowing vertex classification, we define edge-related errors by comparing the reference

edges with those in an induced subgraph ĜC ¼ ðV̂C ; ÊC Þ of the computed graph GC by a vertex

set V̂C ¼ VTP
C , which is formed of the uniquely matching computed vertices (i.e., those with

exactly one reference vertex assigned) and all their incident edges (i.e.,

ÊC ¼ fðCt1
i ;C

t2
j Þ 2 EC : C

t1
i ;C

t2
j 2 VTP

C g).

First, we define the set of redundant edges in the computed graph. These are the induced

subgraph edges without any counterpart in the reference graph:

EFP
C ¼ fðCt1

i ;C
t2
j Þ 2 ÊC : R

t1
k ⋐C

t1
i ;R

t2
l ⋐C

t2
j for some

R
t1
k ;R

t2
l 2 VR; ðR

t1
k ;R

t2
l Þ =2 ERg :

ð9Þ

We denote the number of redundant edges as ED ¼ jEFP
C j. Note that the computed edges

attached to a false positive vertex or non-split vertex are not included because they are inher-

ently removed together with deleting the false positive vertices or with splitting the non-split

vertices.

Analogously, we define the set of missing edges in the computed graph. These are the refer-

ence graph edges without any counterpart in the induced subgraph:

EFN
R ¼ feR 2 ER : eR ⋐ eC for no eC 2 bECg : ð10Þ

We denote the number of missing edges as EA ¼ jEFN
C j.

Cell Tracking Accuracy Measurement Using Acyclic Oriented Graphs
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Finally, we define the set of edges with wrong semantics in the computed graph. These are

the matching edges between the reference graph and the induced subgraph, which differ in

semantics:

ECS
C ¼ feC 2 bEC : eR ⋐ eC for some eR 2 ER;SðeRÞ 6¼ SðeCÞg : ð11Þ

We denote the number of such edges as EC ¼ jECS
C j.

The transformation of any computed graph into the reference one involves the following

procedure. First, one can build a binary matrix with |VR| columns and |VC| rows containing the

results of the detection test given by Eq (2) for each pair of vertices ðRt
i ;C

t
j Þ, R

t
i 2 VR, C

t
j 2 VC .

Due to the majority overlap criterion, each reference vertex is assigned to at most one com-

puted vertex. Therefore, either none or only one match can appear in each column, resulting in

either false negative or true positive classification of the respective reference vertices. Similarly,

the matrix rows without any match reveal false positive vertices, and those with multiple

matches correspond to the computed vertices that need to be split. Note that the number of

matches in each such row decremented by one gives the number of splits that must be executed

on the particular non-split vertex to locally equalize the number of vertices in both graphs.

Because the reference as well as computed markers are spatially localized, the vertex matching

is unique. In total, NS split vertex operations, FN add vertex operations, and FP delete vertex

operations need to be performed to have the vertex sets of both graphs matching. Subsequently,

we remove redundant edges, add missing ones, and finally correct those with wrong semantics.

These operations are also unique because any of them cannot be replaced by a reasonable com-

bination of the others. This requires ED delete edge operations, EA add edge operations, and EC

alter the edge semantics operations, respectively.

The weighted sum of the executed operations is considered as the cost of transforming the

computed graph into the reference one (AOGMmeasure):

AOGM ¼ wNSNSþ wFNFN þ wFPFP þ wEDEDþ wEAEAþ wECEC : ð12Þ

With the assumption of non-negative weights along with at least one weight being positive,

the AOGMmeasure is bounded below by zero. Its value is equal to zero when a computed

graph is identical to the ground-truth reference or when it contains only errors penalized with

a zero weight. The AOGM value increases, theoretically to infinity, with the increasing com-

plexity of the transformation that converts the computed graph into the reference one, where

complexity is judged with respect to operations penalized with non-zero weights. The higher

the AOGM value is, the worse output an algorithm has provided and the worse its ranking is.

An example of calculating the AOGMmeasure is illustrated in Fig 2.

The ability of an algorithm to detect all important objects can be measured using the AOGM

measure when keeping only vertex-related weights positive (i.e.,wNS, wFN, wFP> 0; wED = wEA =

wEC = 0). We further refer to such variant of the AOGMmeasure as AOGM-D. Analogously,

when keeping only the edge-related weights positive (i.e.,wNS = wFN = wFP = 0; wED, wEA, wEC>

0), the AOGMmeasure evaluates the ability of an algorithm to follow objects in time (i.e., its asso-

ciation skills). We further refer to such variant of the AOGMmeasure as AOGM-A.

Results and Discussion

In this section, we first discuss the minimality of the proposed measure, describe testing data

used for the experimental evaluation, and present their properties in terms of tracking errors.

Next, we study how sensitive the AOGMmeasure is to the choice of weights, and how its

behavior coincides with human expert appraisal. Finally, we discuss the size of necessary

ground truth.

Cell Tracking Accuracy Measurement Using Acyclic Oriented Graphs
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Measure minimality

The computation of theAOGMmeasure is a deterministic procedure, which always returns a sin-

gle value derived from the number of differences between the computed and reference graphs.

Because we can, thanks to the detection test given by Eq (2), uniquely match the graphs, the set

of errors is also unique and can be easily determined. The allowed graph operations to correct

the errors are add, delete, and split a vertex and add, delete, and alter the semantics of an edge. All

but the split vertex operation are independent in a sense that they cannot be substituted by a rea-

sonable combination of the others and each operation directly corrects one error. A non-split

vertex withm reference vertices assigned could also be corrected using the following sequence of

operations: delete the non-split vertex and addm new vertices. If the cost of this sequence is

Fig 2. An example of calculating the AOGMmeasure for a reference graph (upper left) formed of circular vertices and black edges and a computed
graph (upper right) formed of rectangular vertices and dark pink edges. In both graphs, the vertical axis represents the temporal domain and the
horizontal axis represents the spatial domain (i.e., each vertex has a certain spatial extent). The AOGMmeasure is the weighted sum of the following
quantities (bottom): the number of splits (NS = 5, black asterisks in pink-white rectangles) computed as the difference between the number of true positive
vertices (20 green circles) and the number of white and pink-white rectangles containing at least one green circle (15), the number of false negative vertices
(FN = 5, white circles with the black plus sign), the number of false positive vertices (FP = 3, white rectangles with the black cross), the number of redundant
edges (ED = 1, black cross), the number of missing edges (EA = 16, small red circles), and finally the number of edges with wrong semantics (EC = 2, small
blue circles).

doi:10.1371/journal.pone.0144959.g002
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higher than the cost ofm − 1 split vertex operations, the AOGM value is equal to the minimum

cost necessary to transform the computed graph into the reference one. We formulate the neces-

sary condition, which guarantees the AOGM value to be not only the weighted sum of the lowest

number of graph operations but also the minimum weighted sum, as

wNSðm
? � 1Þ � wFP þ wFNm

? ð13Þ

wherem? is the maximum number of reference vertices assigned to a single non-split vertex

among all non-split vertices. For practical purposes, the minimality condition can be weakened

to wNS� wFN to be independent of the input graphs.

Note that the measure prototype used in the first Cell Tracking Challenge calculated the

edge-related errors over the entire computed graph and therefore, some of the erroneous edges

attached to non-split vertices were inherently corrected along with the vertex splitting while

the others were not. This complicated the measure minimality reasoning because the cost of

correcting a single non-split vertex may have also involved the penalties for a variable number

of delete edge and alter the edge semantics operations on the left side of Eq (13) and for a vari-

able number of add edge operations on the right side of Eq (13), and therefore we slightly mod-

ified the measure definition. By calculating the edge-related errors over the induced subgraph

only, the correction of vertex-related errors is clearly separated from the edge-related ones,

allowing minimality condition to be formulated only using the vertex-related weights. In gen-

eral, the proposed measure penalizes the splitting errors slightly higher than the measure used

in the first Cell Tracking Challenge, in particular due to a slight increase in the number of add

edge operations, being in average approximately 1.88 per non-split vertex, caused by inherent

deleting of all edges attached to non-split vertices during their splittings. However, such

increase does not have any practical impact on the compiled rankings and they remain

unchanged for all algorithms and datasets used in the first Cell Tracking Challenge regardless

of the way how the edges attached to non-split vertices are handled.

Testing data

We experimentally validated the proposed measure using the results of four cell tracking algo-

rithms (COM-US, HEID-GE, KTH-SE, and PRAG-CZ as named in [22]) that participated in

the first Cell Tracking Challenge. These algorithms provided complete tracking results for the

entire competition dataset repository [22], which allowed us to study the AOGMmeasure

behavior under distinct scenarios involving, in particular, various cell phenotypes (i.e., shape,

density, and motion model) and acquisition configurations (i.e., imaging system, image data

dimensionality, and time step). The basic properties of the competition datasets are listed in

Table 1. As our primary interest lies in analyzing the AOGMmeasure behavior with respect to

the choice of weights in Eq (12), rather than in compiling a ranking of the competing algo-

rithms and in discussing their strengths and weaknesses, details about the algorithms are omit-

ted. We further refer to them as A1, A2, A3, and A4 in a random but fixed order.

In this work, two types of ground-truth references were used, depending on the origin of a

particular dataset, referred as real and synthetic datasets. They were adopted without any mod-

ification from [22]. For the real datasets, three experts were requested to place a quintessential

marker inside every object and establish temporal relationships between the markers to provide

an acyclic oriented graph for each time-lapse series. Because it is widely documented in the lit-

erature that humans commit errors when performing manual tracking [26, 27], the reference

graphs were created based on majority voting to reduce human errors. For the synthetic data-

sets, the reference graphs were inherently generated by a simulation toolkit [24, 25] along with

the time-lapse series to be analyzed.
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Distribution of tracking errors

We focused on the statistical analysis of errors in tracking results produced by the four tested

algorithms to reveal the distribution of errors under distinct scenarios displayed in the compe-

tition datasets (Table 1). The average number and standard deviation of particular errors, nor-

malized either per ground-truth vertex or per ground-truth edge to facilitate the comparison

between datasets with different numbers of objects, are listed in Table 2. The distribution of

errors that the algorithms made in particular datasets is shown in Fig 3. The measured values

revealed three key observations. First, from the computed standard deviations of errors, it can

be observed that the tested algorithms made different types of errors in each particular dataset.

Second, there is a preponderance of the add edge operations over the add vertex ones because

correcting a false negative vertex requires adding at least one edge to integrate the vertex into a

particular track, except when a whole track is formed of a single vertex. Furthermore, missing

edges may need to be added also due to inherent deletion of all edges attached to non-split ver-

tices. Third, the predominance of a specific error seems to be dataset-dependent: the false nega-

tive detection predominates in Datasets 5 and 8, the incorrectly clustered objects in Dataset 3,

and the false positive detection in the remaining datasets.

Table 1. Basic properties of the competition repository of diverse fluorescence microscopy datasets analyzed in this work.

Dataset Objects of interest Imaging system Dim. Time step [min] No. of frames No. of series

1 Rat mesenchymal stem cells PerkinElmer Ultraview ERS 2D 20 48 2

2 H157 human lung cancer cells PerkinElmer Ultraview ERS 3D 2 60 2

3 MDA231 breast carcinoma cells Olympus FluoView F1000 3D 80 12 2

4 Nuclei of embryonic stem cells Leica TCS SP5 2D 5 92 2

5 Nuclei of HeLa cells Olympus IX81 2D 30 92 2

6 Nuclei of CHO cells Zeiss LSM 510 3D 9.5 92 2

7 Nuclei of HL60 cells Simulation toolkit 2D 28.8–57.6 56–100 6

8 Nuclei of HL60 cells Simulation toolkit 3D 28.8–57.6 56–100 6

doi:10.1371/journal.pone.0144959.t001

Table 2. The average number and standard deviation of errors in tracking results normalized either per ground-truth vertex or per ground-truth
edge depending on a particular error type. The second and third columns list the aggregated numbers of vertices and edges in the ground-truth references
per dataset.

Dataset
S

i|VRi
|

S
i|ERi

| μNS ± σNS μFN ± σFN μFP ± σFP μED ± σED μEA ± σEA μEC ± σEC

1 915 885 0.017 ± 0.018 0.510 ± 0.267 0.651 ± 0.494 0.011 ± 0.015 0.607 ± 0.229 0.001 ± 0.001

2 490 478 0.012 ± 0.012 0.057 ± 0.069 0.232 ± 0.300 0.003 ± 0.003 0.097 ± 0.076 0.003 ± 0.003

3 846 767 0.159 ± 0.072 0.064 ± 0.030 0.155 ± 0.085 0.010 ± 0.005 0.400 ± 0.102 0.006 ± 0.005

4 5432 5364 0.009 ± 0.011 0.142 ± 0.125 0.385 ± 0.445 0.003 ± 0.003 0.185 ± 0.160 0.002 ± 0.002

5 29374 29136 0.012 ± 0.011 0.095 ± 0.148 0.059 ± 0.019 0.004 ± 0.003 0.132 ± 0.174 0.004 ± 0.002

6 1993 1968 0.010 ± 0.014 0.059 ± 0.027 0.222 ± 0.167 0.001 ± 0.001 0.097 ± 0.052 0.002 ± 0.001

7 11741 11617 0.001 ± 0.001 0.035 ± 0.031 0.039 ± 0.040 0.001 ± 0.001 0.052 ± 0.045 0.005 ± 0.002

8 12286 12164 0.002 ± 0.001 0.059 ± 0.059 0.045 ± 0.049 0.002 ± 0.001 0.080 ± 0.070 0.004 ± 0.001

Total 63077 62379 0.028 ± 0.053 0.128 ± 0.181 0.223 ± 0.312 0.004 ± 0.007 0.206 ± 0.218 0.003 ± 0.003

doi:10.1371/journal.pone.0144959.t002
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Sensitivity to the choice of weights

We investigated the behavior of the AOGMmeasure with respect to the choice of weights in Eq

(12). As a reference weight configuration, we adopted the weights used in the first Cell Track-

ing Challenge, which reflected the effort needed to correct a particular error manually: wNS = 5

for vertex splitting, wFN = 10 for vertex adding, wFP = 1 for vertex deleting, wED = 1 for edge

Fig 3. The distribution of errors committed by the four tested algorithms for individual datasets. Each
group of four horizontal bars corresponds to the tested algorithms depicted in the same order for each
dataset.

doi:10.1371/journal.pone.0144959.g003
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deleting, wEA = 1.5 for edge adding, and wEC = 1 for altering the edge semantics. Note that such

weight configuration satisfies the minimality condition given by Eq (13) for anym?.

We wanted to know how a change in the setting of weights would have affected the refer-

ence rankings of the four tested algorithms in terms of tracking ability. To this end, we com-

puted sectors in weight space leading to the same rankings. The analysis was carried out with

respect to the pair of the two most influential weights, wNS and wFN. The other weights were

fixed at their original values, serving as normalization factors. By solving systems of linear

inequalities in two unknown weights, w�
NS and w

�
FN , within the rectangular domain h0, 10i ×

h0, 20i, we studied how many transpositions in the obtained rankings occurred, compared to

those compiled for the reference configuration ðw�
NS;w

�
FNÞ ¼ ð5; 10Þ. The domain was chosen

to range from 0 up to a double magnitude of the reference weight in each axis, being centered

at the reference weight configuration. Due to the linearity of Eq (12), the solutions of these sys-

tems form polygonal sectors, each consisting of the configurations leading to the same ranking.

The results for all datasets are shown in Fig 4. The borderlines between the sectors correspond

to the configurations, for which at least two algorithms gained the same AOGM value. Almost

all tested configurations led to no more than one transposition in the reference rankings, and

Fig 4. Pairwise disjoint sectors of all possible configurations ðw�
NS
;w�

FN
Þwithin the rectangular domain

h0, 10i × h0, 20i, which simultaneously preserve a particular ranking for each individual dataset. The
red crosses mark the reference configuration ðw�

NS
;w�

FN
Þ ¼ ð5; 10Þ used for compiling the reference rankings.

The upper-right corners outlined by the white lines consist of the configurations, which break the minimality
condition given by Eq (13). The colors encode the numbers of transpositions in the particular rankings
compared to the reference ones. No transposition occurs in the pink regions, one transposition occurs in the
blue regions, and two transpositions occur in the tiny yellow region.

doi:10.1371/journal.pone.0144959.g004
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even in the half of the datasets, we observed practically no changes in the reference rankings.

We also carried out a similar study for another two pairs of weights, namely (wFP, wFN) and

(wEA, wFN), which turned out to be the weights of most frequent errors across all the datasets.

The number of sectors and their relative areas are listed in Table 3. Note that in all of the cases

the largest sector was formed of the configurations leading to the reference ranking. The sectors

with no more than one transposition occupied the whole studied domain in all but three cases.

However, in these three cases, they covered more than 99% of the domain.

Based on the information depicted in Fig 4 and Table 3, it can be concluded that rankings of

the tested algorithms compiled using the AOGMmeasure are highly robust against small

changes in the choice of weights. This demonstrates that the reference configuration

ðw�
NS;w

�
FNÞ ¼ ð5; 10Þ compiles the predominant rankings of the tested algorithms for diverse

datasets (Table 1) because it belongs to the sectors of the largest area (the pink sectors in Fig 4,

and the column 0 in Table 3).

Comparison with human expert appraisal

To validate the AOGMmeasure against human expert appraisal, we asked three independent

human experts to rank the algorithms according to two criteria, which were formulated as (1)

Table 3. The number of sectors with different rankings and their relative areas within the rectangular
domain centered at the reference weight configuration for individual datasets. The results for three dif-
ferent pairs of weights, (wNS,wFN), (wFP,wFN), and (wEA, wFN), are presented. The columns 0, 1, and 2 con-
tain the relative areas of the sectors with the particular number of transpositions given by the column label.

Pair Dataset No. of sectors 0 1 2

(wNS, wFN) 1 2 97.15 2.85 0.00

2 2 85.94 14.06 0.00

3 3 73.08 26.57 0.35

4 1 100.00 0.00 0.00

5 2 60.25 39.75 0.00

6 2 78.11 21.89 0.00

7 1 100.00 0.00 0.00

8 2 95.54 4.46 0.00

(wFP, wFN) 1 2 97.09 2.91 0.00

2 2 85.94 14.06 0.00

3 2 76.04 23.96 0.00

4 1 100.00 0.00 0.00

5 2 60.25 39.75 0.00

6 4 74.91 24.64 0.45

7 2 99.97 0.03 0.00

8 2 95.54 4.46 0.00

(wEA, wFN) 1 2 97.01 2.99 0.00

2 2 85.94 14.06 0.00

3 2 76.04 23.96 0.00

4 2 99.69 0.31 0.00

5 2 60.25 39.75 0.00

6 3 78.11 21.22 0.67

7 2 99.43 0.57 0.00

8 2 95.54 4.46 0.00

doi:10.1371/journal.pone.0144959.t003
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“the ability of the algorithm to detect all important objects”, shortly detection performance,

and (2) “the ability of the algorithm to follow objects in time”, shortly association performance.

We did not provide any special instructions on how the experts were supposed to rank the

algorithms and we let their decision completely on their opinion. In particular, we did not pro-

vide them with the ground truth and did not require any quantification, because it would tend

toward the manual counting of errors in the results, which is basically what the AOGMmea-

sure does automatically, provided the ground truth exists. The experts allocated points to the

algorithms from 0 to 3 (3 means the best) for detection and association separately and the total

score in each category was computed by summing up the points. The overall score was

obtained by pure addition of the total score in each category.

The rankings compiled using AOGM-D and AOGM-A variants of the AOGMmeasure were

compared with human expert rankings on all the six real 2-D sequences. The results are sum-

marized in Tables 4, 5 and 6. They indicate high correlation, with the Kendall rank correlation

coefficient τ ranging from 0.78 up to 0.83, between the rankings on the basis of the proposed

method and human expert opinions. The perfect agreement occurred for three analyzed

sequences (Dataset 1/Sequence 1, Dataset 1/Sequence 2, and Dataset 4/Sequence 2).

The difference in the rankings for Dataset 4/Sequence 1 exists because the human experts

preponderated the existence of non-split objects and false positive objects over the existence of

false negative objects during the evaluation process. Tables 7 and 8 show that the AOGMmea-

sure could have compiled the same ranking as that compiled by the human experts if their

Table 4. The detection ranking comparison of the four tested algorithms (A1–A4) with human expert
appraisal on real 2-D dataset sequences using AOGM-Dwith weightswNS = 5,wFN = 10,wFP = 1;wED =
wEA =wEC = 0. The black bullets mark the matches in the rankings.

Dataset/
Sequence

AOGM-D Ranking Expert points Ranking

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

1/1 1415 6376 4977 2879 1 4 3 2 9 0 4 5 •1 •4 •3 •2

1/2 420 2599 1748 963 1 4 3 2 8 0 3 7 •1 •4 •3 •2

4/1 2101 10125 2998 3870 1 4 2 3 4 0 9 5 3 •4 1 2

4/2 1311 16342 1589 1806 1 4 2 3 9 0 6 3 •1 •4 •2 •3

5/1 2281 57113 4785 1587 2 4 3 1 9 0 4 5 1 •4 •3 2

5/2 1813 52985 3244 2095 1 4 3 2 8 0 6 4 •1 •4 2 3

doi:10.1371/journal.pone.0144959.t004

Table 5. The association ranking comparison of the four tested algorithms (A1–A4) with human expert
appraisal on real 2-D dataset sequences using AOGM-Awith weightswNS =wFN =wFP = 0;wED = 1,
wEA = 1.5,wEC = 1. The black bullets mark the matches in the rankings.

Dataset/
Sequence

AOGM-A Ranking Expert points Ranking

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

1/1 274.5 889.0 738.5 551.0 1 4 3 2 9 1 2 6 •1 •4 •3 •2

1/2 98.5 280.0 257.0 177.5 1 4 3 2 9 0 4 5 •1 •4 •3 •2

4/1 364.5 1629.0 511.0 612.0 1 4 2 3 5 0 9 4 2 •4 1 •3

4/2 255.0 2105.5 258.5 319.5 1 4 2 3 8 0 7 3 •1 •4 •2 •3

5/1 479.5 9517.5 1141.0 452.5 2 4 3 1 9 0 4 5 1 •4 •3 2

5/2 499.0 9703.5 1334.0 753.5 1 4 3 2 8 0 6 4 •1 •4 2 3

doi:10.1371/journal.pone.0144959.t005
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preference on the type of errors was reflected in the weights. The same observation holds for

Dataset 5/Sequence 1. Similarly, the swap in AOGM-A for Dataset 4/Sequence 1 exists because

AOGM-A puts more emphasis on the missing edges rather than on their semantics. If the

weights were accordingly altered, we could have obtained the human expert ranking. In Dataset

5/Sequence 2, A3 was slightly worse than A4 with respect to all types of errors. However, the

human experts ranked this algorithm higher. We suppose it is because the human expert com-

parison was sometimes very difficult and subjective, especially if the algorithms behaved

Table 6. The overall ranking comparison of the four tested algorithms (A1–A4) with human expert appraisal in terms of detection on real 2-D data-
set sequences using AOGMwith weightswNS = 5,wFN = 10,wFP = 1;wED = 1,wEA = 1.5,wEC = 1. The overall AOGM values and expert points were
obtained by pure addition of the respective quantities for the detection (Table 4) and association (Table 5) parts. The black bullets mark the matches in the
rankings.

Dataset/Sequence AOGM Ranking Expert points Ranking

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

1/1 1689.5 7265.0 5715.5 3430.0 1 4 3 2 18 1 6 11 •1 •4 •3 •2

1/2 518.5 2879.0 2005.0 1140.5 1 4 3 2 17 0 7 12 •1 •4 •3 •2

4/1 2465.5 11754.0 3509.0 4482.0 1 4 2 3 9 0 18 9 2 •4 1 •3

4/2 1566.0 18447.5 1847.5 2125.5 1 4 2 3 17 0 13 6 •1 •4 •2 •3

5/1 2760.5 66630.5 5926.0 2039.5 2 4 3 1 18 0 8 10 1 •4 •3 2

5/2 2312.0 62688.5 4578.0 2848.5 1 4 3 2 16 0 12 8 •1 •4 2 3

doi:10.1371/journal.pone.0144959.t006

Table 7. The ranking comparison of the four tested algorithms (A1–A4) with human expert appraisal in terms of detection on real 2-D dataset
sequences using AOGM-Dwith weightswNS = 10,wFN = 1,wFP = 10;wED =wEA =wEC = 0. The black bullets mark the matches in the rankings.

Dataset/Sequence AOGM-D Ranking Expert points Ranking

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

1/1 1354 5548 2448 5273 1 4 2 3 9 0 4 5 •1 •4 3 2

1/2 335 8467 1541 1352 1 4 3 2 8 0 3 7 •1 •4 •3 •2

4/1 4867 29954 4339 4743 3 4 1 2 4 0 9 5 •3 •4 •1 •2

4/2 1759 36279 3711 2873 1 4 3 2 9 0 6 3 •1 •4 2 3

5/1 2926 20456 9519 5035 1 4 3 2 9 0 4 5 •1 •4 •3 •2

5/2 10100 24655 11619 10381 1 4 3 2 8 0 6 4 •1 •4 2 3

doi:10.1371/journal.pone.0144959.t007

Table 8. The overall ranking comparison of the four tested algorithms (A1–A4) with human expert appraisal on real 2-D dataset sequences using
AOGMwith weightswNS = 10,wFN = 1,wFP = 10;wED = 1,wEA = 1.5,wEC = 1. The overall AOGM values and expert points were obtained by pure addition
of the respective quantities for the detection (Table 7) and association (Table 5) parts. The black bullets mark the matches in the rankings.

Dataset/Sequence AOGM Ranking Expert points Ranking

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

1/1 1628.5 6437.0 3186.5 5824.0 1 4 2 3 18 1 6 11 •1 •4 3 2

1/2 433.5 8747.0 1798.0 1529.5 1 4 3 2 17 0 7 12 •1 •4 •3 •2

4/1 5231.5 31583.0 4850.0 5355.0 2 4 1 3 9 0 18 9 •2 •4 •1 •3

4/2 2014.0 38384.5 3969.5 3192.5 1 4 3 2 17 0 13 6 •1 •4 2 3

5/1 3405.5 29973.5 10660.0 5487.5 1 4 3 2 18 0 8 10 •1 •4 •3 •2

5/2 10599.0 34358.5 12953.0 11134.5 1 4 3 2 16 0 12 8 •1 •4 2 3

doi:10.1371/journal.pone.0144959.t008
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similarly, and it was impracticable to manually compute the precise number of errors due to

image data complexity (e.g., Dataset 5 contains hundreds of cells per frame).

The experiments demonstrate that AOGMmeasure can compile expected ranking, being

strongly correlated with human expert one, provided the weights reflect the importance of a

particular type of error.

Size of ground truth

Typical cell tracking experiments produce hundreds to thousands of 2-D or 3-D images. A

decision on what algorithm to use and how to optimally set its parameters is often not an easy

task.

A widely adopted approach is to run several algorithms with different parameter settings

and visually compare their results. The size of image data often makes such evaluation practica-

ble on its limited subset only, although being tricky, especially for 3-D experiments, and subjec-

tive due to inter-operator variability and a graphical user interface used.

An alternative approach is to create ground truth for a part of image data and use the

AOGMmeasure for objective and accurate evaluation of the algorithms. In general, the crea-

tion of ground truth is laborious, although the amount of work can be reduced by adopting an

edit-based framework [23]. Nevertheless, such effort pays off soon when multiple algorithms

need to be evaluated and their parameters optimally tuned.

However, any general recommendation on the size of ground truth to get unbiased evalua-

tion of the algorithm performance can be hardly stated. It depends on the complexity of image

data and particular application. Instead, we computed the temporal evolution of the AOGM

measure for each algorithm and each real dataset (Fig 5). It can be observed that the number of

frames after which the rankings of the tested algorithms stabilized varied across the datasets. It

can also be observed often a linear increase in the AOGM value, indicating the tested algo-

rithms committed approximately the same number of errors over time.

Conclusions

In this paper, the AOGMmeasure, an accuracy measure for objective and systematic compari-

son of cell tracking algorithms that are capable of providing segmentation of individual cells

rather than simplifying them as single-point objects, has been defined and analyzed. Treating

tracking results as an acyclic oriented graph, the proposed measure assesses how difficult it is

to transform a computed graph into a given ground-truth graph. The cost of such a transfor-

mation is defined as the weighted sum of the lowest number of graph operations needed to

make the graphs identical. The behavior of the AOGMmeasure was analyzed on tracking

results provided by four state-of-the-art cell tracking algorithms that participated in the first

Cell Tracking Challenge. The performed analyses verified its robustness and stability against

small changes in the choice of weights for diverse fluorescence microscopy datasets.

As the weights chosen in Eq (12) are not biologically motivated, they reflect the effort

needed for performing a particular graph operation, the AOGMmeasure is application-inde-

pendent. A different choice of weights can serve purposes other than objectively and systemati-

cally comparing the performance of multiple cell tracking algorithms as presented in this

paper. For example, the AOGMmeasure might also be useful to tune the parameters of each

single module involved in a cell tracking algorithm under development for a specific dataset.

Its AOGM-D variant allows one to determine the optimal parameters of a cell detection mod-

ule. Furthermore, setting the weight wNS to 1 and the others to 0 allows one to optimize a clus-

ter separation module.
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Fig 5. The temporal evolution of the AOGMmeasure, averaged over the two sequences per each real dataset, for the four tested algorithms (A1–
A4). The dashed vertical lines indicate the frames at which the algorithm ranking compiled using the AOGMmeasure has changed.

doi:10.1371/journal.pone.0144959.g005

Cell Tracking Accuracy Measurement Using Acyclic Oriented Graphs

PLOS ONE | DOI:10.1371/journal.pone.0144959 December 18, 2015 17 / 19



In addition to being robust, stable, and flexible, the AOGMmeasure is also universal. The

measure penalizes all possible errors in tracking results, not concentrating on only a single,

often application-limited aspect of cell tracking as the existing approaches do [4, 16, 17]. It can

be applied to datasets with various characteristics, even nearly degenerated cases such as those

showing no division or containing only a single cell. Furthermore, it can be used for evaluating

the performance of any cell tracking algorithm irrespective of its nature because it evaluates its

final output. Therefore, developers can use the AOGMmeasure to easily compare the perfor-

mance of a cell tracking algorithm under development to that of existing algorithms, whereas

analysts can use it to determine the optimal parameters of a chosen algorithm for a dataset to

be analyzed. The software for computing the AOGMmeasure is made publicly available at

http://cbia.fi.muni.cz/aogm/ or as a supplementary material S1 Software, free of charge for

noncommercial and research purposes.

Supporting Information

S1 Software. AOGMMeasure. This package contains a routine for computing the AOGM

measure.

(ZIP)

S1 File. Supporting Information File. This supporting information file contains all relevant

data used for generating the results described in the manuscript.

(XLSX)
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