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ABSTRACT

Accurate measurements of cell morphology and behaviour are

fundamentally important for understanding how disease, molecules

and drugs affect cell function in vivo. Here, by using muscle stem cell

(muSC) responses to injury in zebrafish as our biological paradigm,

we established a ‘ground truth’ for muSC behaviour. This revealed

that segmentation and tracking algorithms from commonly used

programs are error-prone, leading us to develop a fast semi-

automated image analysis pipeline that allows user-defined

parameters for segmentation and correction of cell tracking. Cell

Tracking Profiler (CTP) is a package that runs two existing programs,

HK Means and Phagosight within the Icy image analysis suite, to

enable user-managed cell tracking from 3D time-lapse datasets to

provide measures of cell shape and movement. We demonstrate how

CTP can be used to reveal changes to cell behaviour of muSCs in

response to manipulation of the cell cytoskeleton by small-molecule

inhibitors. CTP and the associated tools we have developed for

analysis of outputs thus provide a powerful framework for analysing

complex cell behaviour in vivo from 4D datasets that are not

amenable to straightforward analysis.
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INTRODUCTION

Analysis of cell shape and behaviour are becoming increasingly

important for understanding how cells respond to drugs or

molecules. As a consequence it is crucial to be able to measure

parameters of cell shape and movement, and then to interpret the

meaning of such changes. Much progress has been made in creating

workflows optimised for analysing cells cultured in vitro in 2D

environments. It is becoming increasingly clear, however, that cells

behave quite differently in 3D environments or in vivo. Many of the

image analysis tools designed for investigating cell behaviour in 2D

are not suitable for analysing such complex data. To characterise cell

behaviour from such datasets without extensive distortion of the

primary data represents a fundamental problem in image analysis, as

cells in vivo often show extensive changes in their shape, move

rapidly and can be hard to discriminate from adjacent cells if in close

proximity (Driscoll and Danuser, 2015).

A number of programs are available for automated analysis of cell

behaviour from 3D datasets. These include commercial programs

such as Imaris (Bitplane AG) and AMIRA (FEI, Inc.) and open

source programs such as ImageJ/Fiji (Collins, 2007; Schindelin

et al., 2012), Icy (de Chaumont et al., 2012), Phagosight (Henry

et al., 2013) and tTy/qTfy (Hilsenbeck et al., 2016). These programs

use a variety of algorithms to segment and track cells, ranging from

user-driven annotation to automated processes with minimal user

intervention.

All image analysis programs display similar limitations when

attempting to segment 3D datasets in which cells display a uniform

labelling including: (1) an inability to accurately identify the

boundaries of cells, (2) problems in coping with diverse cell sizes

and shapes and (3) being able to identify discrete boundaries

between adjacent cells. These issues become important when

tracking cells, as the segmentation efficiency will dictate how well a

cell can be tracked (Nketia et al., 2017). Furthermore, commercially

available software packages do not make their code available,

limiting options for users to modify how images are processed.

Several studies have compared software packages for their

effectiveness in cell segmentation or tracking (Maška et al., 2014;

Ulman et al., 2017). Performance of most software packages has

been poor when analysing complex in vivo 3D imaging data, as

these rely on specific labels (nuclear or membrane), do not

accurately segment cells in 3D or require computationally

expensive methods for segmenting. Given the importance of cell

behaviour for effective regeneration, we performed a benchmark

study of several available programs (Imaris, Icy and Phagosight) to

evaluate their ability to accurately describe migratory muscle stem

cells (muSCs) in the myotome of regenerating zebrafish (Knappe

et al., 2015; Roy et al., 2017). We found that a fundamental

limitation of the programs we tested was the segmentation efficiency

and ease of correcting inappropriate tracking. To facilitate analysis

of 3D time-lapse data we have therefore designed Cell Tracking

Profiler (CTP), an image analysis tool that functions within the

freely available Icy package (de Chaumont et al., 2012). A key

strength of this tool is that it allows user input to control

segmentation and correct tracking of cells. Using a variety of

statistical tools, we evaluated how outputs from CTP can be

analysed to identify parameters of cell shape and movement. Our

comparisons against other image analysis packages reveal that CTP

offers a powerful and intuitive user-led tool that can provide

accurate measures of complex cell behaviour. As an example, we
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used CTP to identify specific changes to muSC shape and

movement in response to inhibition of RhoA kinase proteins

(ROCK) and myosin II.

Our development of this workflow provides the basis for a

medium-throughput approach to analyse time-lapsed datasets from

a variety of biological systems.

RESULTS

Morphological changes in muSCs during migration to

sites of injury

We wished to measure cell shape and behaviour of muSCs, a

complex and migratory cell type, in order to determine how they are

regulated during tissue repair. Using a zebrafish injury model in

which muSCs are labelled with green fluorescent protein (GFP)

driven by the pax7a promoter ( pax7a:egfp) (Knappe et al., 2015),

we aimed to segment and track cells from time-lapse datasets as

accurately as possible. Larvae expressing the pax7a:egfp transgene

were injured in the ventral 12th myotome at 5 days post fertilisation

(dpf) using a sharpened tungsten needle. Larvae were immobilised

in agarose and the response of GFP+ muSCs to injury was

visualised by time-lapse confocal microscopy. As is common for

many transgenic animals, GFP is distributed throughout the

cytoplasm of muSCs in pax7a:egfp larvae, making it difficult to

automatically detect cell boundaries using standard thresholding

approaches. To therefore establish a ‘ground truth’ for cell shape, a

manual segmentation of selected cells was performed by hand from

three ‘baseline’ datasets (datasets 1–3). These differ in that images

for datasets 1 and 2 were acquired from 5 h after injury, whereas

dataset 2 commenced 0.5 h after injury and the z-interval for

datasets 1 and 2 was 1 µm, and for dataset 3 was 5 µm.

Segmentation of 10 representative cells from each dataset at three

time-points from the time-lapse (representing 30 datapoints)

revealed a diversity of muSC sizes and shapes within each

individual dataset (Fig. 1A). By examining the temporal profile of

muSCs in the injured myotome, it was apparent that shape and size

for each cell changed over time in a non-uniform manner.

To define how muSCs migrate towards a muscle injury, we

established a ground truth by tracking the selected 10 muSCs using

the ImageJ manual tracker plugin MTrackJ (Fig. 1B; Movies 1 and

2). Each cell was tracked and parameters for duration, point speed

and directionality were measured (Fig. 1C; Table 1). To determine

whether muSCs responding to injury showed rapid movement, we

evaluated instantaneous speed. This is a calculation of the speed of

cell movement in-between time-points, and can be used to infer how

fast cells move regardless of their directionality. Cells showed

considerable variability in their behaviour, and no clear trend was

discernible. We then tested whether muSCs showed persistence in

their movement after injury by plotting the directionality ratio

relative to time (Gorelik and Gautreau, 2014). A feature of this

measure is that values decay from 1 as a function of their trajectory

relative to their initial trajectory, such that cells showing a more-

persistent movement will show values closer to 1 over time.

Variability in cell behaviour of all three datasets was apparent, with

some cells showing high persistence lasting for some time (e.g. cells

6 and 9 in dataset 1, and cell 3 in dataset 3), whereas others showed a

rapid drop in persistence, for example, cell 1 in dataset 1 (Fig. 1D).

We calculated the directional autocorrelation of cells to assess

whether cell shape was related to the direction of cell migration

(Gorelik and Gautreau, 2014), but observed no clear trend over time.

An analysis of cell trajectories by determining the mean square

displacement (MSD) indicated cell movement was sub-diffusive

with alpha parameter values calculated as <1 and a diffusion

constant (D)>1 (Fig. 1E). MSD assumes cell movement fits a model

of persistent random walk (PRW), but recent descriptions of cell

behaviour in 3D have suggested that cells move in an anisotropic

mode (Wu et al., 2015). We therefore evaluated whether the angular

velocity of muSCs fitted better to a model of PRW compared to an

anisotropic persistent random walk (APRW, Fig. 1F). In all 3

datasets, we observed that the velocity of the tracked cells showed a

better fit to the APRW model than to a PRW model (Table 1).

Cell shape affects automated segmentation efficiency

To explore the potential and limits of automated segmentation to

identify andmeasure muSCs, we compared three programs that have

been used to analyse migratory cell behaviour: Imaris (Bitplane AG),

Icy (de Chaumont et al., 2012) and Phagosight (Henry et al., 2013).

Our criteria for choosing these programs was that they are commonly

used for analysing time-lapse imaging data and all employ preset

criteria to some degree that can affect the image segmentation and

tracking. We first evaluated how well each program could segment

muSCs cells from datasets 1–3 relative to the ground truth obtained

by manual segmentation. The criteria used to compare efficiency of

these segmentation processes were: (1) how many cells were

identified at three specified time points, (2) how many of a pre-

defined population of selected cells of interest at each time point

could be identified, and (3) a comparison of the segmented cell

volume to the ground truth volume expressed as a ratio.

Cell segmentation was performed using Imaris, Icy and

Phagosight with default settings as described in the Materials

and Methods section. Dataset 1 had 276 objects cumulatively over

the three time-points; Icy identified 324 objects, Phagosight

identified 224 and Imaris identified 144 objects. Dataset 2 had 254

objects; Icy identified 290, Phagosight identified 190 and Imaris

identified 648 objects. Dataset 3 had 410 objects; Icy identified

499 objects, Phagosight identified 249 objects and Imaris

identified 636 objects (Fig. 2A). Relative to the number of

objects identified from the ground truth across all three datasets Icy

identified ∼18% more objects, Phagosight identified ∼30% fewer

objects and Imaris identified ∼52% more objects. Icy therefore

identified the number of objects from all the datasets that was

closest to that in the ground truth.

A comparison of the volumes of the segmented objects revealed

that Phagosight segmented cells with a wider spread of volumes

compared to Icy and Imaris (Fig. 2B). We noted that Phagosight

often identified cells in close proximity as single objects when

compared against the ground truth, which suggests this is why fewer

objects are identified when compared to Icy or Imaris.

We then assessed how well each program could identify the 10

cells of interest that we had defined by manual annotation from each

dataset at each of three time points (30 objects). Datasets 1–3 were

segmented using optimal parameters (Fig. S1). These parameters

were defined by comparing the number of objects segmented

relative to the number of objects in the ground truth and whether

detection was good (a single cell), false detection (cell detected, but

not resolved as a single object or merged with another cell) or not

detected. Key criteria for selecting optimal segmentation parameters

were: (1) the number of objects segmented should be as close to the

ground truth as possible, (2) that there should be a minimal number of

false detections of the selected 30 objects, and (3) as many cells as

possible should be detected from the 30 selected objects (Table S1).

Based on these criteria, we identified parameters of segmentation that

minimised the difference between actual number of objects (the

ground truth) and the detected number of objects. The difference in

the number of detected objects compared to the ground truth with
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these optimal parameters was 204 objects for Imaris, 58 for Icy and

92 for Phagosight, although each program showed distinct

differences in their ability to segment the cells from the individual

datasets (Fig. 2C–E). Using optimal segmentation parameter values

Icy had a slightly higher false detection rate than Imaris (2/90

compared to 1/90) but was better than Phagosight (15/90). Imaris had

the lowest number ofmissing detections (4/90) and highest number of

good detections overall (85/90) compared to Icy (missing, 11/90;

good, 77/90) or Phagosight (missing, 13/90; good, 62/90).

To evaluate the accuracy of segmentation by Icy, Imaris and

Phagosight, we compared volumes of objects against volumes

obtained from the manually defined ground truth. Focusing on the

10 cells of interest at one time point, we noted that overall, all three

programs failed to segment the entire cell volume relative to

manual segmentation (Fig. 2F–H). We compared the calculated

cell volume relative to the ground truth using a mixed effects

multiple level linear regression analysis. Comparing the

cumulative values of the segmented objects revealed that all

three methods significantly underestimated cell volume compared

to the ground truth (Fig. S2). Differences in the cumulative

volumes for objects segmented by each program were apparent for

each dataset.

Fig. 1. Characterisation of muSC behaviour from ground truth datasets. Muscle stem cells in transgenic pax7a:egfp zebrafish larvae show dynamic shape

changes as they respond to muscle injury in a time-lapsed movie (dataset 1, acquisition interval 30 min). Manual segmentation of 10 cells (numbered in

A) in an injured myotome (*) was performed at three time-points (time-point 0, 9, 19). Cell 1 changes shape over time (A′,A″,A‴). Selected cells were manually

tracked over time using MTrackJ (B). Tracks were mapped to a common origin (C) for 10 selected cells from datasets 1–3 and the directionality ratio

plotted (D). The MSD was used to calculate D (diffusion constant of cells) and plotted as a logged value against the log of time (E). A line of best fit (red) was

generated, from which the α parameter was calculated. Cell movement was fitted against models of persistent random walk (PRW) and anisotropic PRW

(APRW), with goodness of fit of the data to either model described by an R-squared value (F). Scale bars: 50 µm.
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Analysing cell migration

In order to accurately describe cell behaviour during tissue repair, it

is necessary to track them accurately through a 4D space. Given the

time-intensive nature of manually annotating and tracking cells an

automated method is necessary. Icy, Imaris and Phagosight use

different approaches to track cells – the Spot Tracking tool in Icy

evaluates past and futures frames to predict the position of a cell over

time; Phagosight employs a keyhole algorithm that makes

predictions about cell movement from past and future frames in a

restricted model of directional movement (Reyes-Aldasoro et al.,

2008); and Imaris offers several proprietary algorithms for tracking

cells through the Surfaces tool.

To evaluate the accuracy of Imaris, Icy and Phagosight in tracking

muSCs, we first compared outputs from these programs to the

Table 1. Evaluation of models of cell movement to explain behaviour of the 10 selected ground truth cells in datasets 1–3

Dataset

Test Parameter Unit 1 2 3 Descriptor

Summed movement of cells MSD D µ mh−1 9.4 7.3 8.7 Movement of cells over an area

log(MSD) D µ mh−1 1.6 2.9 4.4 Log of MSD

log(MSD) alpha 0.99 0.77 0.73 Slope of line of best fit to log(MSD)

Models of cell movement APRW Pearson co-efficient 0.79 0.9 0.8 Fit to model for anisotropic persistent random walk

R2 0.59 0.79 0.51

PRW Pearson co-efficient 0.76 0.81 0.52 Fit to model for persistent random walk

R2 −0.52 −0.45 −0.15

Ground truth cells were tracked manually and tracks used to determine measures of cell displacement over time. Values were used to test models of Mean

squared displacement (MSD), persistent random walk (PRW) and anisotropic persistent random walk (APRW). MDS is represented by parameter D (diffusion)

and the alpha parameter (a) calculated from the slope of a line of best fit to plots of logged MSD relative to logged time. Fits of cell movement relative to models of

PRW and APRW are represented by Pearson co-efficient values and R2 values.

Fig. 2. Evaluation of segmentation accuracy by

Imaris, Icy and Phagosight relative to a ground

truth. The number of segmented objects by Imaris

(purple), Icy (green) and Phagosight (cyan) were

compared to a manually defined ground truth (dark

blue) from datasets 1–3 (A). The volumes of the 10

segmented objects from dataset 1 were compared

relative to a ground truth by plotting average values

with standard deviation at 5, 9.5 and 14.5 h post

injury (hpi) for each method (B). The effectiveness

of each method for detecting the 10 cells at three

time points (representing 30 data points) were

scored as good (blue), none (red) or false (green)

for each dataset (C–E). The volumes of the

selected 30 objects segmented by each method

were compared by star plots in which the outputs of

the three programs were normalised to the ground

truth (blue) for each dataset (F–H).
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ground state obtained by manually tracking cells. Tracking for all

three programs was performed using an optimally segmented

labelled image for each dataset generated by the plugin Hierarchical

K clustering of Means (HKMeans) in Icy (Fig. 3A–C). These acted

as the reference dataset to launch the tracking process with the

different software programs and so allow a direct comparison

between them. Tracking by Icywas performed using ‘Spot Tracker’,

by Imaris using ‘Surfaces with the option ‘track over time’ and by

Phagosight using the ‘keyholetracker.m’ script using default values.

Tracking efficiency by Imaris, Icy and Phagosight was then

assessed by a manual scoring of how well they could identify tracks

for the 10 cells of interest segmented by HK Means at each time-

point. Effectiveness of tracking was scored by whether a segmented

cell was linked between time points (+1), if this was inappropriate

(i.e. to another cell, −2) or was broken between subsequent time

points (−1). Our rationale for allocating a high penalty for

inappropriate tracking was that this would introduce more

variability to values of cell movement compared to that caused by

missing tracks. Comparing the programs for their ability to track

cells reveals that on average, Icy was able to generate longer and

fewer tracks than Imaris or Phagosight. The performance of Imaris

was nearly as good as Icy and was better than Phagosight (Fig. 3D).

As an alternative method for calculating accuracy of cell tracking

by each program, we also used the Track Performance Tool. This

compares tracking of cells from the same dataset by performing a

pairwise comparison to a reference dataset (Chenouard et al., 2014).

Using the manually tracked data as the reference, alpha, beta and

Jaccard similarity coefficients of fit were obtained for each dataset

(Fig. 3E). These coefficients describe localisation and tracking errors

when tracks are compared against the ground truth (alpha) and

factoring in non-paired (spurious) tracks (beta); the Jaccard similarity

coefficient describes the fit of the tracking data only. Using these

coefficients, Imaris was observed to be the most effective at tracking

cells relative to the ground truth for dataset 1 (Movie 1) and 2,

whereas Icy performed better for dataset 3 (Movie 2).

Cell Tracking Profiler – a semi-automated package for

segmenting and tracking cells

In order to optimally segment and track cells in a semi-automated

manner, we built a Java-based package that allowed tuneable

segmentation and fast, accurate tracking together with an ability to

manipulate and correct tracks. Outputs from Cell Tracking Profiler

(CTP) include parameters of cell shape (volume, surface, sphericity

and convexity) and movement (displacement, distance,

directionality and instantaneous speed) for each cell over time

(Fig. 4). To facilitate post-processing of data we wrote a MATLAB

script, CTP2R, to process outputs from CTP and to select regions of

interest (ROIs) to analyse. CTP2R calculates mean squared

displacement and directional autocorrelation of cells for one or

two user-defined regions of interest (ROIs) and writes values for

each cell into a spreadsheet that can be opened and plotted in R

software.

Our criteria for building CTP were the need for: (1) speed of

segmentation and tracking, (2) ability to modify cell tracks, (3)

linking of cell shape and movement parameters, and (4) to be freely

available code on a robust platform. We used HK Means from Icy

for segmentation, as we observed that the number of objects

segmented was most similar to the ground truth in our evaluation of

the three test datasets (Fig. 2A). Although Imaris and Icy were

effective at cell tracking, the code for Imaris is not available and the

Icy tool, Spot Tracker, cannot take the files generated by HKMeans

as input. Based on our requirements for an imaging pipeline that

allowed user input for defining segmentation and for correction of

tracks, we therefore decided to build CTP to run from Icy in a Java

Fig. 3. Evaluation of the tracking accuracy of Imaris, Icy

and Phagosight for ground truth datasets. Tracking

efficiency of Imaris (A), Icy (B) and Phagosight (C) was

evaluated by analysing cell movement of cells that were

segmented by HK Means to ensure consistency. Tracks for

cells are shown relative to cell position at the beginning of the

time-lapse (A–C). Tracks for the 10 selected cells used for

assessing segmentation efficiency were compared against a

ground truth generated by manual tracking. Scoring of

tracking was performed by counting the number of track

breaks, loss or inappropriate links for each program for all

three datasets (D). Accuracy of tracking for each program

was determined by calculating alpha, beta and Jaccard

coefficients of fit (E) relative to the ground truth. Scale bars:

50 µm.
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environment and use the keyhole tracking algorithm from

Phagosight for cell tracking. CTP was built by modifying existing

modules already present in Icy (HK Means, ROI with Labels and

Track Manager), by writing new plugins (ROIwithLabelstoExcel,

Timesaver and Milkshake) and modifying the MATLAB program

Phagosight to run ‘Keyhole Tracker’ in Java using MATLAB

Runtime. It incorporates a version of HKMeans (myHKMeans) that

was modified to rapidly segment objects cells from three separate

channels with user input to define optimal values suitable for the

range of cell shape. Outputs are a spreadsheet with measures of

segmented object shape corresponding to a label (generated by

ROIwithLabelstoExcel) and .TIF files for each time point

(generated by Timesaver). Segmented images are imported by

Timesaver into a modified version of Phagosight utilising

MATLAB Runtime to run within Java by Keyhole Tracker.

Outputs are imported into the Icy plugin Track Manager tool and

corrected manually. Cell positions and labels from corrected files in

Track Manager are generated by a Detection class, and the

Milkshake plugin will then combine these together with measures

of cell shape into a spreadsheet that contains all values of cell shape

and movement for each cell (Fig. 4).

Analysis of muSC behaviour using CTP

We investigated the ability of CTP to segment and track all cells in

datasets 1-3 relative to an uninjured control animal (dataset 0). In

order to determine whether there were significant changes to cell

behaviour and shape in response to injury we selected regions of

interest using CTP2R. This allowed us to compare values for cells in

injured myotomes relative to those in uninjured myotomes

(Fig. 5A–D). There were significant differences in parameters of

shape (surface area, sphericity, convexity) between cells in injured

myotomes from datasets 2 and 3, but not dataset 1 relative to the

uninjured control animal (Fig. 5E–H). However, the differences of

cell shape observed between datasets 2 and 3 relative to dataset 0

were opposite, with cells in dataset 2 showing a larger surface area,

but lower convexity and sphericity, whereas cells in dataset 3 had a

smaller surface area but were more convex and spherical. Dataset 1

showed no significant differences in cell shape between cells in

injured myotomes relative to dataset 0. Cells in datasets 2 and 3

showed no difference in their measures of movement (displacement,

instantaneous speed, directionality and autocorrelation) relative to

dataset 0. In contrast, cells in dataset 1 showed a lower instantaneous

speed but more directional movement than cells in dataset 0

(Fig. 5I–L).

In order to determine whether CTP was able to extract sufficient

detail of cell shape and movement to reveal the effect of a

perturbation, we analysed the behaviour of cells exposed to RhoA

kinase (ROCK) inhibitors in 5 dpf larvae (Fig. 6A–C). At this stage,

muscle progenitor cells expressing the pax7a:egfp transgene

undergo extensive rearrangement as the myotome develops

(Hollway et al., 2007; Roy et al., 2017). A comparison of cell

shape and movement revealed clear differences between animals

treated with DMSO vehicle control (dataset 4; Movie 3) relative to

those treated with 15 µM Y-27632 (dataset 5; Movie 4) or 10 µM

ROCKOUT (dataset 6; Table S2). Measures of cell shape (volume,

sphericity, convexity and roundness) were significantly altered by

inhibition of ROCK (P<0.01, Fig. 6D; Table S2). Cells with

inhibited ROCK activity had a lower volume and surface area

compared to DMSO-treated control animals, and were also more

spherical and had higher convexity. Several parameters of

movement (instantaneous speed, displacement, directionality and

directional autocorrelation; P<0.001) were strongly affected by

inhibition of ROCK using Y-27632 (P<0.02). Movement was less

affected by exposure to ROCKOUT, as only directionality and

directional autocorrelation were significantly altered compared to

control animals (P<0.05, Fig. 6E; Table S2). This likely reflects the

lower efficacy of ROCKOUT for inhibiting ROCK (Yarrow et al.,

2005). ROCK inhibition by Y-27632 therefore resulted in a lower

migratory speed and reduced directional movement of muSCs.

RhoA signalling is a known regulator of myosin II contractility

and hence can control cell migration. We wanted to understand

which aspects of cell migration are myosin II dependent in the

context of injury, and so compared muSC behaviour between

injured and uninjured myotomes in the presence or absence of

10 µM blebbistatin (datasets 7–12, Fig. 7A,B; Movie 5). Larvae at

7 dpf were injured in the ventral 12th myotome, and muSCs in the

injured and adjacent uninjured myotome imaged by time-lapsed

microscopy. We found that muSC shape (volume, surface area,

convexity and sphericity) in uninjured myotomes was mostly

unaffected by blebbistatin treatment (datasets 10–12) compared to

muSCs in untreated control larvae (datasets 7–9,P>0.05), except for

roundness, which was slightly increased (P<0.05, compare blue

plots in Fig. 7C; Table S3, comparison of conditions 0–2). Distance

travelled and instantaneous speed of muSCs were reduced by

blebbistatin in uninjured myotomes compared to untreated control

larvae (P<0.05), but directionality and directional autocorrelation

were unaffected (Fig. 7D; Table S3, comparison of conditions 0–2).

No significant difference in cell shape was identified when

Fig. 4. CTP forms a practical workflow for managing cell segmentation

and tracking and can feed outputs into a variety of tools for statistical

analysis. CTP runs in Icy under ‘plugins’. Users define segmentation

parameters for processing of datasets by HK-Means. Outputs, including

images and measurements of cells were saved by ‘Time-Saver’ into two files.

Objects are tracked by the Keyhole Tracker program in MATLAB Runtime then

imported into the Icy plugin Track Manager for editing. The Milkshake plugin

then collates information from tracking with values of cell shape (from file

ROI+Labels) to produce a tabulated sheet of data. This can be analysed using

a MATLAB script, CTP2R, which can normalise data to time-point 0 (t0),

generate values of directional autocorrelation, mean squared displacement

(MSD) and select a region of interest (ROI), and average parameter values

over time. Output files in CTP are shown in italics, modified Icy plugins are

shown in a grey box, new scripts and plugins are shown in boxes, and plugins

shown in bold indicate user input is required.
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comparing segmented cells from injured myotomes relative to

uninjured myotomes in untreated control animals (P>0.05,

Table S3, comparison of conditions 0–1, datasets 7–9). However,

there was an increased speed, displacement and directionality of

muSCs in injured myotomes relative to uninjured control

myotomes, as expected (P<0.01, Table S3).

When comparing muSCs responding to injury in the presence

(datasets 10–12) or absence of blebbistatin (datasets 7–9), the only

parameter of cell shape that was affected was sphericity, which was

reduced compared to that in untreated control larvae (P<0.05,

Table S3, comparison of conditions 1–3). Displacement of cells in

injured myotomes was reduced by blebbistatin treatment (P<0.05,

Table S3, comparison of conditions 1–3) although values of

directional autocorrelation were higher in the presence of

blebbistatin (P<0.01, Table S3).

DISCUSSION

A fundamental limitation for analysing cell behaviour from in vivo

or 3D tissue engineering constructs is the software used for

extracting measures of cell shape and movement. Although a

variety of packages exist for this purpose, they either rely on

features for cell segmentation and tracking that may not always be

available (such as nuclear or membrane labelling) or require the

user to adjust a number of different parameters to find the ‘best

segmentation’, which is based on the perception of the user. We

required a solution for analysing complex 4D datasets using the

expression of GFP in muscle stem cells during regeneration in

zebrafish larvae. These cells make numerous contacts with each

other, have differing levels of fluorescence and show highly

variable changes in shape over time. Our evaluation of several

commonly used packages for cell tracking (Icy, Imaris and

Phagosight) revealed differing abilities of the segmentation and

tracking algorithms utilised by each package to analyse time lapses

of muSCs responding to injury. In order to analyse these datasets

and allow user defined guidance for cell segmentation and

tracking, we have therefore developed a package that runs in the

freely available Java based Icy platform. Cell Tracking Profiler

(CTP) allows the user to identify the best conditions for accurate

segmentation of cells, to track them over time and then manually

correct this tracking data.

Fig. 5. Tracking and processing of datasets 0, 1, 2 and 3 from injured larvae using CTP. Time-lapse images from injured (datasets 1–3) and an uninjured

larva (control, dataset 0) (A–D) were processed by CTP using optimal parameters for segmentation and tracks corrected using TrackManager. Cells in the injured

myotome (dataset 0, n=84; dataset 1, n=97; dataset 2, n=90; dataset 3, n=137) were selected using CTP2R (coloured tracks) and measures of shape (cell

volume, surface area, sphericity and convexity; E–H) and movement (total displacement, instantaneous speed and directionality; I–K) are plotted as Violin plots

(with median and interquartile range indicated). Directional autocorrelation was compared between datasets by measuring the area from beneath the

curve of plotted values (L). Significance of difference between datasets for each parameter was calculated using a one-way ANOVA and pairwise comparisons

performed using a Tukey posthoc test with significance denoted as P<0.05 (*) or P<0.01 (**). Scale bars: 50 μm.
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CTP was designed as a flexible package for analysing cell

behaviour from complex 4D datasets in which the ability to

discriminate between adjacent objects is limited, such as in

transgenic animals expressing GFP or brightfield images.

Extracting information about cell shape and tracking them

from such datasets is often problematic with existing analysis

tools due to the number of variables that can be adjusted to

modify outcomes. Our solution was to create a semi-automated

solution. CTP is a robust package that offers the user the ability

to adjust the segmentation process in a reproducible manner,

and then adjust and validate the tracking information manually

after the tracking process is complete. A MATLAB script then

selects regions of interest to focus on and extract multiple

measures of cell shape and movement for subsequent statistical

analysis.

Several packages have been described for analysing 3D live-cell

imaging data, including plugins that run in ImageJ/Fiji or that are

written in a variety of programming languages (Driscoll and

Danuser, 2015; Hilsenbeck et al., 2016; Rajasekaran et al., 2016).

The accuracy of many automated cell tracking packages can be

evaluated by comparing automatically segmented and tracked data

against a ground truth. We did this by generating a ground truth for a

number of datasets in which we counted the number of cells and

segmented a selection of these by hand at defined intervals. We

found that there is high variability in how well cells are segmented

and their volume when comparing several different packages. This

was compounded by differences between datasets, which were

acquired with different z-intervals and time, further increasing

variability.

The human eye is a powerful tool for determining whether

segmentation of cells is accurate. One important requirement of

CTP was for it to identify objects from different datasets using the

same optimal segmentation parameters and so reduce variability

when comparing across conditions. We have therefore designed

CTP to permit the user to set the optimal parameters for segmenting

cells using Hierarchical K clustering of Means (HK Means). HK

Means uses an unsupervised clustering method for identifying

objects based on a defined number of objects classes and the

minimum and maximum size of the objects, thus allowing

considerable flexibility for defining how segmentation occurs

(Dufour et al., 2008).

Cell tracking is a challenging problem that operates best when

cells are clearly segmented and individual cells show a spatial

overlap between adjacent time frames. Rapid movement of cells in

random directions, overlap with neighbouring cells or large shape

changes can all affect the ability of commonly applied methods for

tracking cells. The keyhole method algorithm we have used for

tracking muSCs in CTP relates movement of cells between adjacent

time frames using a model of constrained movement relative to the

previous position (Reyes-Aldasoro et al., 2008). This method does

not require overlap between objects in adjacent time points and has

been used successfully for tracking rapidly migrating neutrophils

and macrophages in zebrafish (Henry et al., 2013; Paredes et al.,

2018). By moving outputs to the Track Manager of Icy, CTP allows

the user to correct inappropriate tracking by examining tracks by

eye. Outputs are then fed to the post-processing tool CTP2R, which

extracts multiple measures of cell shape and movement as well as

calculating the mean squared displacement and directional

autocorrelation of cell movement.

Our major criteria for creating this analysis pipeline was that it

worked relatively rapidly and allowed user-driven segmentation and

tracking. We acknowledge that there are methods that enable

superior segmentation or tracking as recently highlighted in the

latest Cell Tracking Challenge (Maška et al., 2014; Ulman et al.,

2017). However, comparisons between CTP and such programs are

Fig. 6. Outputs from CTP from analyses of datasets generated from

animals exposed to DMSO and small-molecule inhibitors of ROCK

activity. GFP+ cells (dataset 4, n=283; dataset 5, n=39; dataset 6, n=78) were

tracked (coloured lines) from time-lapses of pax7a:egfp larvae exposed to

DMSO (A, dataset 4), Y-27632 (B, dataset 5) or ROCKOUT (C, dataset 6). Violin

plots (with median and interquartile range indicated) of cell shape (D) and

movement (E) were generated from CTP outputs after correction of tracking and

significance of differences tested by Kruskal–Wallis tests and pairwise

comparisons performed with a Dunn post-hoc test. Significant differences

between conditions are shown with P<0.05 (*) and P<0.01 (**) indicated. Scale

bars: 50 µm.
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problematic as the ground truth datasets used for the Cell Tracking

Challenge did not have cells with such complex morphology or

behaviour as were present in our example datasets. Additionally,

CTP represents a flexible, user-driven package, unlike many other

available tools, and can easily be adjusted as needed to run within

Icy, thus providing a relatively easy to use tool for biologists. Recent

developments in machine learning tools for cell segmentation and

tracking have greatly expanded the opportunity for biologists to

analyse 4D imaging data (Kan, 2017). Examples include Ilastik, the

trainable Weka running in Fiji and variations of U-Net (Arganda-

Carreras et al., 2017; Berg et al., 2019; Hesamian et al., 2019).

Training of machine learning algorithms or networks by flagging

features for classification is a powerful method for improving the

accuracy of segmentation and tracking. Caveats with such methods

include a dependence on the datasets or features used for training,

which may not capture heterogeneity or be non-representative for the

structures of interest. This can bias the trained algorithm or network,

and so result in poor or inappropriate segmentation for datasets that

show high variability in cell shape relative to the training datasets

(Hesamian et al., 2019; Kan, 2017). One advantage of using

intensity-based methods and defining a range of cell sizes for image

segmentation, as employed by HKMeans, is that the user can define

these parameters without needing to select the most appropriate

datasets for training. It also is much less computationally intensive to

run HK Means-based segmentation compared to machine learning-

based methods, making it attractive for users who do not have access

to powerful image analysis workstations.

Our purpose for creating CTP was to allow us to characterise the

dynamics of resident stem cells in response to muscle injury in

vivo. Our analyses of muSC behaviour revealed that alpha values

for Mean Squared Displacement were less than one. This has been

described as indicative of a sub-diffusive movement found in cells

within confined environments (Luzhansky et al., 2018).

Additionally, we noted that a model of anisotropic persistent

random walk (APRW) was better for explaining muSCs

movement than a persistent random walk model (PRW)

commonly used for explaining cell movement in vitro (Gorelik

and Gautreau, 2014). This implies that the mode of muSC

movement is constrained during regeneration. Muscle is a densely

packed tissue, composed of myofibres, connective cells, blood

vessels and axons. In the myotome of zebrafish larvae, there is a

dense packing of myofibres in a stereotyped orientation that

would restrict movement of the muSCs as they respond to injury.

MuSCs migrate along and between myofibres in mammals

(Baghdadi et al., 2018; Webster et al., 2016). We and others

have noted that migration of muSCs in zebrafish occurs in a

similarly restricted manner, with migratory cells using myofibres

as a guide (Gurevich et al., 2016; Knappe et al., 2015; Pipalia

et al., 2016; Seger et al., 2011). Although this has been described

from observations, our results are the first quantitative measures

describing this behaviour. Our finding that the movement of

muSCs is constrained by the architecture of the muscle tissue is

relevant for considering how changes to this architecture can

affect cell migration, such as in fibrosis or changes to the

extracellular matrix.

Fig. 7. Outputs from CTP from analyses of datasets generated from 7 dpf

pax7a:egfp larvae exposed to themyosin II inhibitor blebbistatin. Tracking

of GFP+ cells in injured (red box) and uninjured (blue box) myotomes of pax7a:

egfp larvae in the absence (A, dataset 7, n=34; dataset 8, n=47; dataset 9,

n=48) or presence of 10 µM blebbistatin (B, dataset 10, n=38; dataset 11,

n=31; dataset 12, n=36) was performed (n=3 animals for each condition with

injured and uninjured myotomes in each animal). Violin plots (with median and

interquartile range indicated) of shape (C) and movement (D) were generated

from CTP outputs for cells in injured myotomes (red) and adjacent uninjured

myotomes (blue) in larvae exposed to blebbistatin or water. Significance of

differences in parameters of shape and movement were evaluated using

Kruskal–Wallis tests and pairwise comparisons tested by Dunn post-hoc tests.

Significant differences between conditions are shown with P<0.05 (*) and

P<0.01(**) indicated. Scale bars: 50 µm.
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RhoA signalling is an important regulator of cell shape and

migration for a wide variety of cell types. We found that inhibition of

the RhoA kinase ROCKby use of the potent inhibitor Y-27632 results

in muSCs assuming a more rounded shape, and showing a reduced

directionality and speed. Although significant, ROCK inhibitor-

induced changes to cell speed were not extreme, which suggests the

speed of migrating muSC was not strongly affected due to loss of

RhoA signalling. Inhibition of actinomyosin function is associated

with cell rounding due a loss of resistance to osmotic pressure (Stewart

et al., 2011). As RhoA signalling is required for myosin II

phosphorylation and actin bundling, the inhibition of ROCK could

therefore have caused impaired cortical myosin contraction and cell

protrusivity in muSCs. ROCK phosphorylates myosin II, and myosin

II-dependent functions have been described to include regulation of

actin flow and stabilisation of focal adhesions, which is critical for

mesenchymal cell migration (Aguilar-Cuenca et al., 2014). We noted

that migration speed and cell displacement is impaired by blebbistatin

treatment, but could not see obvious changes to shape except for a

small reduction in sphericity. There are several potential reasons why

we did not see changes to cell shape upon blebbistatin treatment but

did in in response to ROCK inhibitors. This could reflect differential

requirements for ROCK in controlling cell behaviour by modifying

localised actinomyosin contractility, regulating formin during actin

bundling, or controlling myosin and actin flow (Königs et al., 2014;

Ridley, 2015; Ruprecht et al., 2015). Alternatively, it could be due to

myosin II-independent cell movements based on actin flow (Lomakin

et al., 2015).Many cells are able to switch their mode of cell migration

to myosin II-independent modes in both 3D artificial and in vivo

environments (Liu et al., 2015; Ruprecht et al., 2015), and potentially

muSCs showa similar plasticity. Finally, it is possible that wewere not

able to discriminate changes to cell movement as the effects of

blebbistatin treatment were only transient. Blebbistatin can form

aggregates when diluted in water and is photolabile, so it is possible

that over the course of the time-lapse, inhibition of myosin II was

variable, so affecting our ability to discriminate changes to cell shape

and movement (Várkuti et al., 2016).

The above caveat highlights an important consideration when

analysing descriptions of cell shape and movement using standard

statistical methods, such as ANOVA or Kruskal–Wallis tests. As

each measurement of a cell is related to other measurements

taken of that same cell over time, any statistical model

attempting to discriminate differences due to an independent

variable, such as a drug, should consider the time dependence of

changes to a parameter. Furthermore, many parameters of shape

and movement will be related to each other, implying that any

change to one parameter should involve change to others.

Ideally this relationship would be included in a statistical model

that can then discriminate between changes to multiple

parameters of cell shape and movement in a time-dependent

manner.

In summary, we show that by creating a user-defined semi-

automated process for dataset segmentation and cell tracking, we

can obtain biological signatures for cell responses to specific

molecular manipulations. CTP runs in Icy, an open source platform,

providing great scope for further development and integration with

other analysis suites and provides an easy to use tool for biologists

aiming to quantify cell behaviour from 4D datasets.

MATERIALS AND METHODS

Zebrafish husbandry and imaging

Transgenic 5 or 7 days post fertilisation (dpf) Tg[pax7a:egfp]; pfeffer

zebrafish (Danio rerio) larvae were injured as previously described (Knappe

et al., 2015) and/or treated with small-molecule inhibitors. Images were

acquired at 1 µm (datasets 0–2, 4, 6 and 7–12) or 5 µm (datasets 3 and 5)

intervals every 20 min using a Nikon C1 confocal microscope equipped

with an Argon-ion 488 nm laser and a 20×water-dipping objective (NA 0.7)

under a constant temperature of 28.5°C.

All animal work was performed according to local and Home Office

regulations under project license PBC5F9B13 with reference to the

ARRIVE guidelines for use of animals in scientific experiments

(Kilkenny et al., 2010).

Image analysis

Time-lapse image sequences were processed by ImageJ to remove

movement artefacts using the plugin ‘Correct for 3D drift’ (http://fiji.sc/

Correct_3D_drift) and, if necessary, cropped to focus only on relevant

regions. No other manipulations were performed to the images prior to

analysis. Datasets that were considered representative were selected for

analysis and were obtained from larvae showing no obvious signs of ill

health. Parameters used for Imaris 8.0 (Bitplane AG), Icy 1.7.3 (de

Chaumont et al., 2012) and Phagosight (Henry et al., 2013) were defined by

comparing to the ground truth. The ground truth dataset was obtained by: (1)

cells were counted by Cell Counter (Image J/Fiji) at three time points for

each time-lapse; (2) ROIs were defined for 10 cells per dataset by drawing

around the cell in each slice of the z-stack, then merging to generate a 3D

object; (3) the selected 10 cells were tracked over time using MTrackJ

(Image J/Fiji). Optimal values for segmentation were identified by: (1)

counting the number of objects identified, (2) scoring the identified

objects against the manually defined subset of 10 cells at three different

points in the time-lapse, and (3) evaluating the size of the segmented

objects relative to the manually annotated ground truth. Parameter values

that best identified cells from the ground truth as discrete objects were

selected as optimal.

Cell movement was scored by comparing automatically generated values

relative to the manual ground truth. A ground truth was established by

tracking the selected 10 cells for each dataset using MTrackJ (Image J/Fiji).

Cell tracking was performed using Surfaces in Imaris, Spot Tracker in Icy

and by employing a keyhole tracking algorithm in Phagosight. Measures of

tracking used for calculating efficiency were: (1) the number of tracks

identified, (2) the length of continuous tracks, and (3) the number of times a

track was interrupted, lost or falsely connected. Optimal parameter values

were defined as those that: (1) resulted in the longest contiguous tracks for

cells defined in the ground truth, and (2) resulted in the fewest number of

false connections.

Determination of the segmentation and tracking efficiency of Imaris, Icy

and Phagosight were performed by calculating alpha, beta and Jaccard co-

efficients using the Track Analysis tool in Track Manager (Chenouard et al.,

2014).

Software development

Cell Tracking Profiler (CTP) was generated using the Protocols tool in Icy. It

is a semi-automated tool allowing segmentation and tracking of cells from

4D datasets. Compiled versions of CTP for Mac OS X andWindows XP are

available from GitHub that allow easy installation within Icy (https://github.

com/KnightLabKCL/CellTrackingProfiler). Icy-specific tools are also

available from the plugins menu in Icy through option ‘caroff’.

CTP incorporates a modified version of the Icy segmentation plugin HK-

Means Keyhole Tracker [the tracking algorithm from Phagosight was

modified to run in Java through a MATLAB Runtime (Henry et al., 2013)]

and scripts for extracting information about cell shape, position and

movement.

Manual correction of tracked cells is then achieved using the Icy Track

Manager plugin before the corrected cell tracks are linked to information

about cell shape by theMilkshake tool. The output is a tabulated file that can

be opened by spreadsheet managers, such as Excel (Microsoft Corporation)

or imported into other image analysis programs. This file describes several

parameters of cell shape and movement, including volume, surface area,

convexity, sphericity, x, y and z position, distance, displacement, speed for

each segmented cell in the dataset for each channel.
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Specifics of how CTP was generated

Segmentation

HK-means was modified to access a temporal sequence in Protocols, which is

used during the building of the Cell Tracking Profiler protocol. Functions ‘ROI

Statistics’, ‘Workbook to File’ and ‘Select file’ were implemented from within

Protocols to generate an Excel file, ‘ROI.xls’, in which ROI measurements are

generated that correspond to each cell. In the samemanner, the labelled sequence

fromHK-Means is used to extract the labels for each cell into file ‘labels.xls’. To

merge ROI.xls and labels.xls an Icy plugin was written in Java called ‘ROI with

Labels to Excel’. This plugin looks for the coordinates of cells to obtain the label

of each cell, represented by a ROI and generates an output file called

‘ROI+labels.xls’, containing all the information about the ROIs.

To save the labelled image generated by HK-Means in a format readable

by the reading functions of Phagosight, the function Time Saver was

written. This is a JavaScript file that generates a folder of TIFs with each TIF

representing a single labelled time point. In each saved image, the

background is identified with the value of 0 and each segmented cell

corresponds to a unique label value that also acts as an identifier.

Tracking

The MATLAB program Phagosight (Henry et al., 2013) was modified to

accept the input from Time Saver as follows:

1. The initialisation process was adapted to read the TIF files of the folder

obtained from Time Saver and to generate all the necessary folders and

files required by Phagosight to perform the tracking. This initialisation

process was implemented in aMATLAB function called createFolders.

2. The segmentation process using the Otsu algorithm was removed so

the modified version of Phagosight will perform the tracking directly

on the labelled TIFs imported by Time Saver and adapted to

MATLAB format using createFolders.

3. A new function, trackingProcess, was written to perform the tracking

process of Phagosight. This was modified from the previously

published Phagosight code by removing the initial segmentation step.

4. The function exportTracksToICY was written to save the tracks in a

format readable by the Icy plugin Track Manager. This function has

been modified to read and write the cell labels from the segmentation

process with its corresponding track in an XML file.

5. To automate the tracking process a function called keyholeTracker

was implemented to launch the creation of the folders, the tracking

process, and the generation of the output file simultaneously.

6. To be able to run this workflow through Icy, a compiled version of the

keyholeTracker was generated using the MATLAB Compiler tool.

The compiled keyholeTracker was implemented as an Icy plugin,

called Keyhole Tracker, thus allowing the launch of the modified

version of Phagosight from within Icy (see Fig. 4)

7. A Detection class was written to import information from the

Keyhole Tracker plugin output, in particular, the file of tracks

including the coordinates of each cell over time and its label into the

Icy plugin TrackManager. This makes it possible to read and save the

values for distinct labels (representing cells) from Track Manager

after modification/correction of the tracks by the user.

8. To obtain all available measurements of cell shape and movement from

the analysed dataset an Icy plugin calledMilkshakewas created. This is a

Java plugin that generates an Excel file (Microsoft) with individual

worksheets describing parameters of cell shape, intensity, displacement

and speed and a folder of .csv files with each file representing an

individual cell. To generate these files, Milkshake requires two input

files: the files of measurements of each ROI with associated labels

generated by CellTrackingProfiler (Channel0_ROI+labels.xls), and the

files of tracks generated at the end of the tracking process or saved by

users after correction of tracks (Channel0_tracks.xml file). Milkshake

can be launched manually, or using the DataMilkshake protocol created

to run as an Icy plugin in Protocols.

Post-analysis processing

CTP2R is a post-processing application for selection of data to reformat for

statistical analysis. CTP2R was written in MATLAB and compiled as a

standalone executable using the MATLAB compiler. The script allows for

selection of specific ROIs and additionally calculates directional

autocorrelation and the mean squared displacement for each cell

(equations from Gorelik and Gautreau, 2014). This post-processed data is

then reformatted into a long, single sheet format for easy plotting using the

ggplot2 library in R software. Normalisation of data was performed by

comparing each value to the value for that parameter at t=0 for the time-lapse

in question.

To generate a single value to represent the directional autocorrelation for

each cell, the area under the curve was calculated within CTP2R using the

trapezoidal rule. Tests of fit to models of isotropic or anisotropic persistent

random walk (PRW or APRW, respectively) were performed using a

MATLAB script as previously described in Wu et al. (2015).

Statistical analysis

Cell volumes identified by Phagosight, Icy and Imaris were compared

against the ground truth for each of the selected 10 cells at each time-point.

Amulti-level mixed effects linear regression analysis was used to predict the

average cell volume. The 95% confidence intervals give an idea of the

certainty around the calculated averages of cell volume and their overlap can

be used to determine significance of difference between conditions.

Analysis of cell shape and movement produced by CTP2R were

performed using R software and plotted using the ggplot2 library.

Distribution of data was evaluated for normality by Shapiro–Wilks tests.

Statistical tests for differences of cell shape and movement were performed

by one-way ANOVA, Wilcoxon-Mann–Whitney tests or Kruskal–Wallis

tests as appropriate, dependent on distribution of the data.
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