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Abstract 
Induced pluripotent stem cells (iPSCs) have been derived from various 
somatic cell populations through ectopic expression of defined factors1-10. 
It remains unclear whether iPSCs generated from different cell types are 
molecularly and functionally similar. Here, we show that iPSCs obtained 
from fibroblasts, hematopoietic and myogenic cells exhibit distinct 
transcriptional and epigenetic patterns. Moreover, we demonstrate that 
cellular origin influences the in vitro differentiation potentials of iPSCs into 
embryoid bodies (EBs) and different hematopoietic cells. Importantly, 
continuous passaging of iPSCs largely attenuates these differences. Our 
results suggest that low-passage iPSCs retain a transient epigenetic 
memory of their somatic cells of origin, which manifests as differential 
gene expression and altered differentiation capacity. These observations 
might affect ongoing attempts to use iPSCs for disease modeling and also 
could be exploited for potential therapeutic applications to enhance 
differentiation into desired cell lineages. 
 

iPSCs are usually obtained from fibroblasts after infection with viral constructs 

expressing the four transcription factors Oct4, Sox2, Klf4 and cMyc8, 9. In 

addition, other cell types, including blood2, 4, 11, stomach and liver cells1, 

keratinocytes12, 13, melanocytes14, pancreatic β cells7 and neural progenitors3, 15-

17 have been reprogrammed into iPSCs. While these iPSC lines have been 

shown to be pluripotent and transcriptionally and epigenetically highly similar, 

recent studies detected substantial molecular and functional differences among 

iPSCs derived from distinctive cell types. For example, Yamanaka and 

colleagues showed that iPSCs produced from various fibroblasts, stomach and 

liver cells exhibit different propensities to form tumors in mice although the 

underlying molecular mechanisms remain elusive18. Another study identified 

persistent donor cell-specific gene expression patterns in iPSCs produced from 

different cell types, suggesting an influence of the somatic cell of origin on the 

molecular properties of resultant iPSCs19. Whether cellular origin also affected 
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the functional properties of iPSCs remained unexplored in that report. Of note, 

some of these studies may be confounded by the presence of different viral 

insertions in individual iPSC lines and by the fact that the analyzed iPSC lines 

were of different genetic background, which can affect both gene expression 

patterns20 and the functionality9, 21 of cells. Indeed, we have recently shown that 

many mouse iPSC lines derived from fibroblasts show aberrant silencing of a 

surprisingly small set of transcripts compared with genetically matched ESCs22. 

However, our study did not investigate whether additional cell of origin-specific 

differences may exist in iPSC lines derived from different cell types. 

Patient-specific iPSCs are a valuable tool for the study and possibly 

treatment of numerous diseases20, 23-26. Thus, resolving the question of whether 

iPSCs produced from different cell types are molecularly and functionally 

equivalent is crucial for using these cells to model disease, which entails 

detecting subtle differences in the differentiation potentials or survival of patient-

derived iPSCs24, 27. Furthermore, the identification of somatic cells that influence 

the differentiation capacities of resultant iPSCs into desired cell lineages could be 

useful in a therapeutic setting.  

In order to assess if iPSCs derived from different somatic cell types are 

distinguishable, we compared here the transcriptional and epigenetic patterns, as 

well as the in vitro differentiation potentials, of iPSCs produced from four 

genetically identical adult mouse cell types that differed only in the lineage from 

which they were derived. 

 

Results 
Genetically matched iPSCs derived from different cell types. 
Because the genetic background of ESCs can influence their transcriptional and 

functional behaviors, we employed a previously described “secondary system” to 

generate genetically identical iPSCs2, 28 (Figure 1a). Briefly, iPSCs were 

generated from somatic cells using doxycycline-inducible lentiviruses expressing 

Oct4, Sox2, Klf4 and cMyc29, and then clonally injected into blastocysts to 

produce isogenic chimeric mice. Thus, isolation of different cell types from these 
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chimeras and their subsequent exposure to doxycycline gave rise to iPSCs with 

the exact genetic makeup. In this study, we focused on iPSCs derived from tail 

tip-derived fibroblasts (TTFs), splenic B cells (B), bone marrow-derived 

granulocytes (Gra) and skeletal muscle precursors (SMPs)30, which were 

continuously cultured for 2-3 weeks (passage 4 to 6) after picking. The 

pluripotency of some of these cell lines has been previously documented2, or 

was analyzed in this study (Supplementary Table 1 and Supplementary Figure 

1). Briefly, all cell lines grew at similar rates and independently of viral transgene 

expression (Supplementary Figure 2), upregulated the endogenous pluripotency 

genes Nanog, Sox2 and Oct4, indicating successful epigenetic and 

transcriptional reprogramming (Supplementary Table 1). Moreover, all lines gave 

rise to differentiated teratomas and all tested lines supported the development of 

chimeric animals upon blastocyst injection, demonstrating their pluripotency 

(Supplementary Table 1). We therefore conclude that the cell lines analyzed here 

qualify as bona fide iPSC lines. 

  

iPSCs produced from different cell types are transcriptionally 
distinguishable. 
We first evaluated if iPSCs derived from defined somatic cell types retain gene 

expression patterns indicative of their cells of origin. Specifically, we assessed 

the expression of cell lineage-specific candidate genes in iPSCs derived from 

granulocytes (Gra-iPSCs) and SMPs (SMP-iPSCs). As expected, the SMP 

markers Cxcr4 and Integrin B1 and the granulocyte markers lysozyme and Gr-1 

were expressed at significantly higher levels in the somatic cells of origin than in 

resultant iPSCs (Supplementary Figure 3). Moreover, SMP-iPSCs expressed 

substantially higher levels of Cxcr4 and Itgb1 than Gra-iPSCs (Figure 1b) and 

Gra-iPSCs showed higher expression levels of lysozyme and Gr-1 compared 

with SMP-iPSCs (Figure 1b). Together, these data suggest that iPSCs retain a 

transcriptional memory of their somatic cell of origin.  

To test this notion globally, we compared and contrasted the 

transcriptional profiles of iPSC lines originating from SMPs (n=3) with those 
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derived from granulocytes (n=3), as well as expression profiles of iPSC lines 

originating from B cells (n=3) with those produced from TTFs (n=3). Of note, 

iPSCs were only compared with each other if they originated from the same 

chimeric mouse (B-iPSCs vs. TTF-iPSCs and Gra-iPSCs vs. SMP-iPSCs) 

(Figure 1a) in order to eliminate potential variability between different 

experiments and individual animals. All iPSC lines analyzed were between 

passage (p) 4 and 6. 1388 genes were differentially expressed (2 fold, corrected 

p=0.05) between SMP-iPSCs and Gra-iPSCs and 1090 genes between TTF-

iPSCs and B-iPSCs (Supplementary Table 2). An analysis of the one hundred 

most differentially expressed genes across all samples indicated that iPSCs with 

the same cell of origin clustered together (Figure 1c). Consistent with this 

observation, unsupervised hierarchical clustering (Figure 1d) as well as principal 

component analysis (Supplementary Figure 4) of all genes, separated SMP-

iPSCs and Gra-iPSCs, as well as TTF-iPSCs and B-iPSCs into different groups 

according to their cells of origin. Interestingly, Gene Ontology (GO) analysis of 

the one hundred most differentially expressed genes between SMP-iPSCs and 

Gra-iPSCs indicated an enrichment for genes belonging to the categories 

“myofibril” (7.6-fold enrichment), “contractile fiber” (7.3-fold enrichment) and 

“muscle development” (5.9-fold enrichment) as well as “B cell activation” (6.8-fold 

enrichment) and “leukocyte activation” (3.7-fold enrichment). Together, these 

results show that genetically identical iPSCs obtained from four different somatic 

cell types are distinguishable from each other using genome-wide transcriptional 

analyses, further supporting the notion that the donor cell type influences the 

overall gene expression pattern of resultant iPSCs. 

In order to determine the effect on gene expression patterns of deriving 

iPSCs from different animals in independent experiments, we next compared the 

expression profiles of Gra-iPSCs derived from chimera #1 (n=3) with additional 

Gra-iPSCs derived from chimera #2 (n=3), as well as with SMP-iPSCs produced 

from chimera #1 and TTF-iPSCs produced from chimera #2 (see Figure 1a). 

Hierarchical clustering separated Gra-iPSCs according to their origin from 

different animals, suggesting a significant contribution of this experimental 
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variable to gene expression patterns (Supplementary Figure 5). However, when 

adding the expression data from TTF-iPSCs and SMP-iPSCs into the analysis, 

we found that differences due to cell of origin were stronger than differences 

caused by variations in experimental conditions or animals. These data reinforce 

the observation that iPSCs derived from different somatic cell types are 

transcriptionally discernible, even when they originate from different animals. 

To exclude the possibility that the observed gene expression differences 

were due to the specific secondary system used, we derived iPSCs from SMPs, 

granulocytes, B cells and peritoneal fibroblasts (PF) from reprogrammable mice31  

under identical culture conditions. Analysis of gene expression profiles of these 

lines at p4 showed clustering according to their cells of origin, with the exception 

of PF-derived iPSCs, which may be a consequence of the heterogeneity of the 

starting population. Collectively, these results corroborate the notion that iPSCs 

generated form different cell types exhibit distinct transcriptional patterns 

(Supplementary Figure 6). 

  

iPSCs derived from different cell types exhibit discernible epigenetic 
patterns. 
We next asked if the differential gene expression patterns we observed correlate 

with differences in epigenetic marks. To this end, we performed a genome-wide, 

restriction enzyme-based methylation analysis termed “HpaII tiny fragment 

Enrichment by Ligation-mediated PCR” (HELP) on the same samples we used 

for expression analysis. Unsupervised hierarchical clustering showed that Gra-

iPSCs and SMP-iPSCs as well as B-iPSCs and TTF-iPSCs, which clustered 

separately in the transcriptional assays, were also distinguishable based on their 

methylation patterns (Figure 2a). Correspondence analysis of the same samples 

corroborated this finding (Figure 2b), indicating that the donor cell type not only 

affects the overall transcriptional pattern, but also, the promoter methylation 

pattern of resultant iPSCs.  

Despite the separation of Gra-iPSCs from SMP-iPSCs and of TTF-iPSCs 

from B-iPSCs (Figure 2a, b) by hierarchical clustering, we detected few loci that 
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were differentially methylated with statistical significance using supervised 

analysis (69 genes between Gra-iPSCs and SMP-iPSCs and 0 genes between 

B-iPSCs and TTF-iPSCs), (Supplementary Table 3). To confirm this, we 

interrogated the DNA methylation status at the promoter regions of the previously 

analyzed markers Cxcr4, Itgb1, Lysozyme and Gr-1 (Figure 1b) by employing 

EpiTYPER DNA methylation analyses, which quantifies gene-specific CpG 

methylation. As suggested by the HELP analysis, we failed to detect differences 

in the methylation levels of these candidate genes between SMP-iPSCs and Gra-

iPSCs (Figure 2c), indicating that methylation differences are more subtle than 

the observed gene expression differences and raising the possibility that other 

chromatin marks may be responsible for the observed expression differences.  

Indeed, we observed high levels of the activating marks H3Ac and 

H3K4me3 and low levels of the repressive marks H3K27me3 at the promoters of 

Cxcr4 and Itgb1 in SMPs and at the promoters of lysozyme and Gr-1 in 

granulocytes, respectively, consistent with their abundant expression in these cell 

types (Figure 2d). Interestingly, SMP-iPSCs, which showed higher expression 

levels of Cxcr4 and Itgb1 than Gra-iPSCs (Figure 1b), were enriched for 

H3K4me3 compared with Gra-iPSCs at these two genes. A similar pattern was 

observed for the granulocyte specific genes in Gra-iPSCs compared with SMP-

iPSCs, with Gr-1 and lysozyme being elevated for H3K4me3 (Figure 2d). These 

data show that the observed expression differences among iPSCs derived from 

different cell types may be predominantly the consequence of differences in 

histone marks, further suggesting that iPSCs retain an epigenetic memory of 

their cells of origin. 
  

iPSCs derived from different cell types have distinctive in vitro 
differentiation potentials. 
Because the gene expression differences we observed among different iPSC 

lines affected genes known to be involved in the lineage-specific differentiation 

and function of the somatic cell types from which they were derived, we reasoned 

that these differences might affect their capacity to differentiate into defined cell 
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lineages. Thus, we evaluated the autonomous potential of the four types of iPSC 

lines by assessing their abilities to produce EBs, and subsequently erythrocyte 

progenitors, macrophages and mixed hematopoietic colonies, using established 

semi-quantitative differentiation protocols (Figure 3a). Most notably, TTF-iPSCs 

produced significantly smaller and fewer EBs compared with all the other iPSC 

lines (Figure 3b, c). Moreover, the EBs derived from TTF-iPSC generated 

relatively few erythrocyte, macrophage and mixed colony progenitors compared 

with B-iPSCs derived from the same animal, indicating striking differences in the 

differentiation potentials of these iPSCs (Figure 3d-g). In contrast, SMP-iPSCs 

and Gra-iPSCs showed equivalent abilities to produce EBs (Figure 3d-g). 

However, Gra-iPSCs gave rise to erythrocyte, macrophages and mixed colonies 

at higher efficiencies than SMP-iPSCs, suggesting a pattern of differentiation that 

reflects their cells of origin. Together, these data show that the cell type of origin 

may bias the differentiation potential of resultant iPSC lines.   

 

Continuous passaging of iPSCs abrogates transcriptional, epigenetic and 
functional differences. 
Previously published data suggest that early passage human iPSCs derived from 

fibroblasts are transcriptionally distinct from late passage iPSCs32. However, the 

effect of passaging on the functionality of iPSC was not examined in that study. 

We therefore wondered if continuous passaging of the various iPSC lines would 

eliminate the observed differences in gene expression and differentiation 

potential. For this analysis, we added to the B-iPSC/TTF-iPSC group, studied 

before, a new set of T cell- and granulocyte-derived iPSCs, which were all 

derived from chimera #2. These 12 iPSC lines were subjected to several 

additional rounds of passaging under identical culture conditions, and RNA was 

harvested at p10 and p16 for expression profiling. While unsupervised 

hierarchical clustering of these cell lines at low passage (p4) clearly separated 

each of the different iPSC lines according to their cells of origin (Figure 4a, left 

panel), unsupervised clustering of these iPSC lines at p10 showed that B-iPSC, 

TTF-iPSC and T-iPSC were indistinguishable from each other, whereas the Gra-
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iPSC still clustered together (Figure 4a, middle panel). Further passaging of 

these cells until p16 entirely eliminated these differences (Figure 4a, right panel). 

Together, these data indicate that continuous cell division resolves transcriptional 

differences among iPSC lines. Consistent with this observation, the total number 

of differentially expressed genes between various pairs of iPSC lines derived 

from different cellular origins was reduced from around 500-2,000 in low passage 

cultures to only about 50 or even 0 in high passage cultures, further 

demonstrating that after extensive in vitro propagation, these iPSC lines have 

become very similar to each other (Figure 4b).  

Analysis of the genes that changed upon passaging from p4 to p16 in Gra-

iPSC, B-iPSC, TTF-iPSC  showed 25% overlap with at least one of the other two 

groups of iPSC lines, suggesting that iPSCs seem to undergo some common 

changes during passaging, irrespective of their cell of origin  (Figure 4c). GO 

analysis of these changes indicated a strong enrichment for developmental 

regulators. Moreover, the only GO cluster common to all three groups was ”organ 

development”, indicating that the passaging of iPSCs results in a change of 

differentiation-associated gene expression patterns (Figure 4c). The expression 

levels of the pluripotency genes Sox2 and Oct4, which are high already at low 

passage (Table 1), increased even further during the passaging process, 

supporting the notion that the pluripotency network becomes increasingly 

solidified during culture (Supplementary Figure 7), consistent with a previous 

report showing gradual upregulation of pluripotency-associated genes upon 

passaging of human iPSC lines32.  

To evaluate if the passaging of iPSCs attenuates the observed epigenetic 

differences, we performed HELP analysis on B-iPSCs and TTF-iPSCs at high 

passage. In contrast to low passage iPSCs, hierarchical unsupervised clustering 

analysis was no longer able to separate the iPSCs based on their cells of origin 

(Figure 4d).  Accordingly, the methylation levels of histones at candidate genes 

became indistinguishable between Gra-iPSCs and SMP-iPSCs (Supplementary 

Figure 8). Notably, several of the analyzed loci showed an enrichment for both 

H3K4me3 and H3K27me3, indicative of bivalent domains that are characteristic 



 10

of pluripotent stem cells33. Thus, continuous passaging leads to an equilibration 

of the epigenetic differences detected in low-passage iPSCs.  

Two possible mechanisms could account for the observed loss of 

epigenetic and transcriptional memory with increased passage number, (i) 

passive replication-dependent loss of somatic marks in the majority of iPSCs or 

(ii) selection of rare pre-existing fully reprogrammed cells over time. Since the 

selection model predicts that these rare clones have a growth or survival 

advantage, we would expect to see an impairment in growth rates of bulk iPSC 

cultures at low passage compared with iPSC cultures at high passage, which we 

did not observe (Supplementary Figure 9a). We also failed to detect significant 

differences when examining the growth rates of single cell clones established 

from low and high passage iPSC lines by using a colorimetric assay (XTT assay) 

that detects metabolic activity (Supplementary Figure 10) as well as by 

measuring the increase in cell numbers on three consecutive days 

(Supplementary Figure 11 and 12). Likewise, an analysis of the colony formation 

efficiency of single cell sorted iPSCs at low and high passage did not yield 

detectable differences (Supplementary Figure 9b). Collectively, these data argue 

against the presence of rare subclones that become selected over time but are 

rather consistent with the notion that all iPSC lines gradually resolve 

transcriptional and epigenetic differences with increased passaging. However, 

our results do not exclude a combined model involving passive resolution of 

epigenetic marks as well as selection of multiple clones.  

Lastly, we sought to test if the similar transcriptional and epigenetic 

patterns of high passage iPSCs derived from distinct cells of origin would 

translate into an equalization of their differentiation potentials. We first performed 

an EB formation assays at different passages for TTF-iPSCs and B-iPSCs, which 

showed a strong difference at low passage. TTF-iPSC gave rise to similarly-sized 

EBs as B-iPSC around p10-p12 (Supplementary Figure 13a,b) and were 

indistinguishable at p16 (Supplementary Figure 13c,d). Moreover, EBs derived 

from TTF-iPSCs and B-iPSCs at p16 differentiated into comparable numbers of 

erythrocyte (Figure 4e), macrophage (Figure 4f) and mixed colony progenitors 
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(Figure 4g), thus proving that continuous cellular passaging eliminates 

differences in the differentiation potentials of these iPSCs.  

 
Discussion. 
Our study shows that genetically matched iPSCs retain a transient transcriptional 

and epigenetic memory of their cell of origin at low passage, which can 

substantially affect their differentiation capacities into EBs and different 

hematopoietic cell types (Figure 5). These molecular and functional differences 

are lost upon continuous passaging, however, indicating that complete 

reprogramming is a gradual process that continues beyond the acquisition of a 

bona fide iPSC state as measured by the activation of endogenous pluripotency 

genes, viral transgene-independent growth and the ability of iPSCs to 

differentiate into cell types of all three germlayers. Of note, the low passage 

iPSCs described here are different from “partially reprogrammed iPSCs”34, 35, 

which depend on the continuous expression of viral transgenes and fail to 

activate and demethylate pluripotency genes or contribute to the formation of 

viable chimeras (Figure 5).  

The mechanism by which passaging eliminates the molecular and 

functional differences between iPSCs of different origins remains to be 

determined. Three key observations argue against the possibility of selective 

expansion of a rare subset of fully-resolved  iPSCs: (i) both low passage and 

high passage iPSCs had similar proliferation rates; (ii) there was little variability in 

the growth rate of single cell iPSC clones; and (iii) the number of passages 

required to resolve cell-of-origin differences was dependent upon the starting cell 

type. These observations thus suggest that the consolidation of the pluripotent 

transcriptional network upon passaging is a slow process, potentially facilitated 

by a positive feedback mechanism that gradually resolves the residual cell of 

origin-specific epigenetic marks and transcriptional patterns. In accordance with 

this idea is the finding that telomeres become gradually elongated with increased 

passage number of iPSCs36. Our results are also consistent with the previous 

observation that cloned embryos often retain donor cell-specific transcriptional 
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patterns and fail to efficiently activate embryonic genes over many cell divisions 
37-40, suggesting possible similarities in the mechanisms of reprogramming by 

nuclear transfer and induced pluripotency.  

The present results may help to explain some of the previously reported 

differences between ESCs and iPSCs41, 42. Most of these studies compared high 

passage ESC lines with iPSC lines of undefined, but presumably lower, passage 

that may not yet have reached an ESC-equivalent ground state. It should be 

informative to revisit these studies with genetically matched, transgene-free high 

passage iPSCs to see if this abrogates the seen gene expression and 

differentiation differences.  

The observed trend of early-passage iPSC lines to differentiate 

preferentially into the cell lineage of origin could be used in potential clinical 

settings to produce certain somatic cell types that have thus far been difficult to 

obtain from ESCs. However, these data also serve as a cautionary note for 

ongoing attempts to recapitulate disease phenotypes in vitro using patient-

specific low-passage iPSC lines, as the continued epigenetic, transcriptional and 

functional "maturation" of these iPSCs could confound the data obtained from 

these cells.  Further elucidation of the molecular indicators of fully reprogrammed 

iPSCs should help in the establishment of standardized iPSC lines that can be 

compared with confidence in ongoing basic biological and drug discovery 

approaches. 
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Figure legends 
 
Figure 1. iPSCs derived from different cell types are transcriptionally 
distinguishable. 
(a) Flow-chart explaining the derivation and analysis of genetically matched 

iPSCs from different cell types. Secondary iPSCs were first injected into 

blastocyts to generate chimeric mice, from which the indicated somatic cell types 

were isolated. Exposure of these cells to doxycycline (dox) then gave rise to 

iPSCs. (b) Quantification of the expression levels of Cxcr4, Itgb1, GR-1 and 

Lysozyme, by quantitative PCR in iPSCs derived from SMPs (SMP-iPSCs), in 

red, and granulocytes (Gra-iPSCs), in grey. The values were normalized to 

GAPDH expression, the error bars depict the S.E.M. (n=3). (c) Heatmap showing 

top 104 genes with highest variance in their expression levels. Left panel, SMP-

iPSCs and Gra-iPSCs derived from chimera #1. Right panel, TTF-iPSCs and B-

iPSCs derived from chimera #2. (d) Hierarchical unsupervised clustering of iPSC 

expression profiles using the correlation distance and the Ward method. SMP-

iPSCs  and Gra-iPSCs  were derived from chimera #1 (left panel), TTF-iPSCs 

and B-iPSCs originate from chimera #2 (right panel). Chi #1, chimera #1; chi #2, 

chimera #2. 

 

Figure 2. iPSCs derived from different cell types exhibit discernible 
epigenetic signatures. 
 (a) Hierarchical unsupervised clustering analysis of HELP genome-wide 

methylation data from indicated iPSC lines. (b) Correspondence analysis of 

SMP-iPSCs and Gra-iPSCs (left panel) from chimera #1, TTF-iPSCs and B-

iPSCs (right panel) from chimera #2. (c) Graphic representation of DNA 

methylation quantification of specific CpGs (circles) in the promoter regions of the 

indicated candidate genes using EpiTYPER DNA methylation analyses. Yellow 

indicates 0% methylation and blue 100% methylation. (d) Chromatin 

inmunoprecipitation (ChIP) for H3 pan-acetylated (H3Ac, in blue), H3K4 

trimethylated (H3K4me3, in green), H3K27 trimethylated (H3K27me3, in red) and 
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isotype control (IgG, in light blue) of Granulocytes (Gra), SMPs, Gra-iPSCs and 

SMP-iPSCs. Chi #1, chimera #1; chi #2, chimera #2. The error bars depict the 

S.E.M. (n=3) 

 

Figure 3. iPSCs derived from different cell types have distinctive in vitro 
differentiation potentials. 
(a) Experimental outline. iPSCs were first differentiated into embryoid bodies 

(EBs). At day 6, EBs were dissociated and plated in conditions to favor 

differentiation into erythrocyte progenitors (eryP), macrophage and mixed 

hematopoietic colonies. (b) Images showing EBs derived from B-iPSCs, TTF-

iPSCs, Gra-iPSCs and SMP-iPSCs at same magnification. (c) Quantification of 

EBs sizes derived from B-iPSCs (green bar), TTF-iPSCs (blue bar), Gra-iPSCs 

(grey bar) and SMP-iPSCs (red bar); the diameter of the EBs was measured 

using arbitrary units (AU). The error bars depict the S.E.M. (n=30) (d) 
Representative images of erythrocyte progenitors (eryPs), macrophage colonies 

and mixed hematopoietic colonies. (e-g) Quantification of in vitro differentiation 

potentials of the different iPSCs into (e) EryPs (f) macrophage colonies and (g) 
mixed hematopoietic colonies. Chi #1, chimera #1; chi #2, chimera #2. The error 

bars depict the S.E.M. (n=12) 
 
Figure 4. Continuous passaging of iPSCs abrogates transcriptional, 
epigenetic and functional differences. 
(a) Hierarchical unsupervised clustering of expression profiles from B-iPSCs, T-

iPSCs, TTF-iPSCs and Gra-iPSCs from chimera #2. Left panel shows clustering 

analysis of all iPSC samples at passage (p) 4; middle panel at p10 and right 

panel depicts same samples at p16. (b) Number of differentially expressed genes 

between pairs of iPSC samples used in (a); iPSCs at p4 are shown in blue bars, 

iPSCs at p10 are shown in orange bars and iPSCs at p16 are shown in red bars. 

The number of differently expressed genes between iPSCs was calculated using 

a pairwise analysis (2 fold), with t-test p value = 0.05 with Bejamini and Hochberg 

correction (n=3). (c) Venn diagram and gene ontology (GO) analysis showing 
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overlap of genes that change from p4 to p16 in Gra-IPSCs, TTF-iPSCs and B-

iPSCs. Red line marks functional GO cluster of genes shared between all three 

iPSC groups. Black line marks functional GO cluster of genes shared by at least 

two of the iPSC groups. Functional ontology cluster analysis was performed 

using DAVIS algorithm. (d) Hierarchical unsupervised clustering using HELP 

genome-wide methylation profiles of B-iPSCs and TTF-iPSs at p16. (e-g) 
Quantification of in vitro differentiation potentials of B-iPSCs and TTF-iPSCs at 

p16 into (e) EryPs, (f) macrophage colonies, and (g) mixed hematopoietic 

colonies. The error bars depict the S.E.M. (n=9)  

 

Figure 5. Model explaining the presented data. 
iPSCs derived from different somatic cell types retain a transient epigenetic and 

transcriptional memory of their cell type of origin at low passage, despite 

acquiring pluripotent gene expression, transgene-independent growth and the 

ability to contribute to tissues in chimeras. Continuous passaging resolves these 

differences, giving rise to iPSCs that are molecularly and functionally 

indistinguishable. Note the difference between low passage iPSCs and partially 

reprogrammed cells, which require continuous viral transgene expression, and 

fail to activate endogenous pluripotency genes or support the development of 

viable mice. 
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Materials and Methods  
 

Generation of iPSC lines 

iPSC lines were generated as described previously2. Briefly, iPSC-derived 

somatic cells were isolated from chimeras by FACS, plated on feeders in the 

presence of cytokines in ESC culture conditions. Resultant iPSC colonies were 

picked and expanded in the absence of doxycycline and used for subsequent 

analyses.  

 

SMP isolation 

Myofiber-associated cells were prepared from intact limb muscles (EDL, 

gastrocnemius, quadriceps, soleus, TA, and triceps brachii) as described 

previously43 44. Briefly, intact mouse limb muscles were digested with 

collagenase II to dissociate individual myofibers. These were triturated and 

digested with collagenase II and dispase to release myofiber-associated cells. 

The myofiber-associated cells were next  ubfractionated by FACS, using the 

following marker profiles for each population: 1) SMPs: CD45−Sca-1−Mac-

1−CXCR4+β1-integrin+ ; 2) Myoblast-containing 

population: CD45−Sca-1−Mac-1−CXCR4- ; 3) Sca1+ mesenchymal cells:  

D45−Sca-1+Mac-1-. After the initial sort, cells were resorted by FACS using the 

same gating profile to increase the purity of the obtained population45. 

 

Blastocyst injections  
For blastocyst injections female BDF1 mice were superovulated by 

intraperitoneal injection of PMS and hCG and mated to BDF1 stud males. 

Zygotes were isolated from females with a vaginal plug 24 hour after hCG 

injection. Zygotes for 2n injections were in vitro cultured for 3 days in vitro in 

KSOM media, blastocysts were identified, injected with ESCs or iPSCs and 

transferred into pseudopregnant recipient females.  

 

Teratoma formation 
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iPS cells were harvested by trypsinization, preplated onto untreated culture 

plates to remove feeders as well as differentiating cells and injected into flanks of 

NOD/SCID mice, using ~ 5 million cells per injections. The mice were sacrificed 

3-5 weeks after injection, teratomas dissected out and processed for histological 

analysis.   

 

Cellular growth assays 
To measure clonal growth potential of iPSCs, SSEA1 positve cells from the 

different iPSC lines were sorted into 96 wells-plates by FACS (BD). After 7 days 

the presence of iPSC colonies was scored based on morphology. To establish 

growth rates, the different bulk iPSCs lines or derivative subclones were plated in 

6 gelatinized wells of a 12-well plates and each day the number of cells was 

counted in duplicate using a Countess cell counter (Invitrogen). For colorimetric 

measurement of growth, iPSCs lines were subcloned into 96 well-plates and after 

7 days, the cells were exposed to XTT (TOX-2) (Sigma) reagent overnight and 

the absorbance at 450nm measured with a multiwell plate reader (Molecular 

Devices). 

 

Cell culture 
ESCs and iPSCs were cultured in ESC medium (DMEM with 15% FBS, L-

Glutamin, penicillin-streptomycin, non-essential amino acids, b-mercaptoethanol 

and 1000 U/ml LIF) on irradiated feeder cells. Tail-tip fibroblast (TTF) cultures 

were established by trypsin digestion of tail-tip biopsies taken from newborn (3-8 

days of age) chimeric mice produced by blastocyst injection of iPSCs.  

 

RNA isolation 
ESCs and iPSCs grown on 35mm dishes were harvested when they reached 

about 50% confluency and preplated on non-gelatinized T25 flasks for 45 

minutes to remove feeder cells. Cells were spun down and the pellet used for 

isolation of total RNA using the miRNeasy Mini Kit (QIAGEN) without DNase 

digestion. RNA was eluted from the columns using 50 ml RNase-free water or TE 
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buffer, pH7.5 (10 mM Tris-HCl and 0.1 mM EDTA) and quantified using a 

Nanodrop (Nanodrop Technologies).  

 

Quantitative PCR 
cDNA was produced with the First Strand cDNA Synthesis Kit (Roche) using 1 

mg of total RNA input. Real-time quantitative PCR reactions were set up in 

triplicate using 5 ml of cDNA (1:100 dilution) with the Brilliant II SYBR Green 

QPCR Master Mix (Stratagene) and run on a Mx3000P QPCR System 

(Stratagene). Primer sequences are listed in Supplementary Table 4. 

 

mRNA profiling 
Total RNA samples (RIN > 9) were subjected to transcriptomal analyses using 

Affymetrix HTMG- 430A mRNA expression microarray as previously described. 

All microarray data is available from the GEO repository (GSE22043). 

 

Statistical analyses 
Hierarchical clustering was performed using the GeneSifter software (Geospiza, 

Seattle). We used correlation distance and subsequent clustering using Ward’s 

method. The differentially expressed genes (2 fold) were calculated using a t-test 

(p=0.05) with Benjamini and Hochberg correction. Principal component analysis 

was performed using the GeneSifter software. Gene ontology analisis ws 

performed using the DAVID software22. Using the classification stringency set to 

“High”.  

 

Embryoid body (EB) formation 
Prior to plating EBs, the iPSCs were depleted of MEFs by splitting the cells 1:3 

onto gelatin-coated plates on each day, for 2 consecutive days. On the 3rd day 

(designated day 0), iPSCs were trypsinized and plated at a density of 5,000 

cells/ml in Isocove’s Modified Dulbecco’s Medium (IMDM) with 15% FCS (Atlanta 

Biologicals), 10% protein-free hybridoma medium (PFHM-II; Gibco), 2 mM L-

glutamine (Gibco), 200 µg/mL transferrin (Roche), 0.5 mM ascorbic acid (Sigma), 
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and 4.5 x 10–4 M monothioglycerol (MTG; Sigma).  Differentiation was carried 

out in 60-mm ethylene oxide-treated Petri grade dishes (Parter Medical). The 

EBs were left to differentiate until day 6, upon which the cells were harvested to 

assay for hematopoietic colonies.  

 

Hematopoietic colony formation assays 
Day 6 EBs were collected by gravity, dissociated with trypsin and then passed 

several times through a 20 gauge needle to ensure dissociation. For the growth 

of hematopoietic progenitors, the cells were then seeded at a density of 100,000 

cells/ml in IMDM containing 1% methylcellulose (Fluka Biochemika), 15% 

plasma-derived serum (PDS; Animal Technologies), 5% PFHM-II, and specific 

cytokines as follows: primitive erythrocytes (erythropoietin [EPO, 2 U/mL]); 

macrophages (IL-3 [10ng/ml], M-CSF [5 ng/mL]); megakaryocytes (IL-3 

[10ng/ml], IL-11 [5 ng/mL], thrombopoietin [TPO, 5 ng/mL]); mixed colonies (SCF 

[5ng/ml], IL-3 [10 ng/mL], G-CSF [30 ng/mL], GM-CSF [10 ng/mL], IL-11 [5 

ng/mL], IL-6 [5 ng/mL], TPO [5 ng/mL], and M-CSF [5 ng/mL]). All cytokines were 

purchased from R&D Systems. Primitive erythroctye colonies (eryPs) were 

counted on day 10 (4 days after EB harvest). Macrophage colonies were counted 

on day 13 (7 days after EB harvest). Mixed colonies were counted on day 14 (8 

days after EB harvest) and consist of a layer of macrophages, a layer of 

granulocytes, and a central core of red erythroid cells. Statistical analysis was 

performed using the Krward software. P values were calculating using the non-

parametric Wilkinson test.   

 

HELP DNA methylation analysis  
High-molecular-weight DNA was isolated from iPSCs using the PureGene kit 

from Qiagen (Valencia, CA) and the HELP (HpaII tiny fragment enrichment by 

ligation mediated PCR) assay was carried out as previously described1, 2. 

Briefly, One microgram of genomic DNA was digested overnight with either HpaII 

or MspI (NEB, Ipswich, MA). On the following day the reactions were extracted 

once with phenol-chloroform and resuspended in 11 μL of 10 mM Tris-HCl pH 
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8.0 and the digested DNA was used to set up an overnight ligation of the JHpaII 

adapter using T4 DNA ligase. The adapter-ligated DNA was used to carry out the 

PCR amplification of the HpaII and MspI-digested DNA as previously 

described46. All samples for microarray hybridization were processed at the 

Roche-NimbleGen Service Laboratory. Samples were labeled using Cy-labeled 

random primers (9mers) and then hybridized onto a mouse custom-designed 

oligonucleotide array (50-mers) covering 25,720 HpaII amplifiable fragments 

(HAF) (>50,000 CpGs), annotated to 15,465 unique gene symbols (Roche 

NimbleGen, Design name: 2006-10-26_MM5_HELP_Promoter Design ID=4803). 

HpaII amplifiable fragments are defined as genomic sequences contained 

between two flanking HpaII sites found within 200-2,000 bp from each other and 

is represented on the array by 15 individual probes, randomly distributed across 

the microarray slide. HAF were first re-aligned to the MM9 July 2007 build of the 

mouse genome and then annotated to the nearest transcription start site (TSS), 

allowing for a maximum distance of 5 kb from the TSS. Scanning was performed 

using a GenePix 4000B scanner (Axon Instruments) as previously described47. 

Quality control and data analysis of HELP microarrays was performed as 

described in Thompson et al48.  

Signal intensities at each HpaII amplifiable fragment were calculated as a 

robust (25% trimmed) mean of their component probe-level signal intensities. 

Any fragments found within the level of background MspI signal intensity, 

measured as 2.5 mean-absolute-differences (MAD) above the median of random 

probe signals, were categorized as “failed.” These “failed” loci therefore 

represent the population of fragments that did not amplify by PCR, whatever the 

biological (e.g. genomic deletions and other sequence errors) or experimental 

cause. On the other hand, “Methylated” loci were so designated when the level of 

HpaII signal intensity was similarly indistinguishable from background. PCR-

amplifying fragments (those not flagged as either “methylated” or “failed”) were 

normalized using an intra-array quantile approach wherein HpaII/MspI ratios are 

aligned across density-dependent sliding windows of fragment size-sorted data. 

DNA methylation was therefore measured as the log2(HpaII/MspI) ratio, where 
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HpaII reflects the hypomethylated fraction of the genome and MspI represents 

the whole genome reference. Analysis of normalized data revealed the presence 

of a bimodal distribution. For each sample a cutoff was selected at the point that 

more clearly separated these two populations and the data were centered around 

this point. Each fragment was then categorized as either methylated, if the 

centered log HpaII/MspI ratio was less than zero, or hypomethylated if on the 

other hand the log ratio was greater than zero. All microarray data will be 

available from the GEO repository49. 

 

HELP data analysis 
Statistical analysis was performed using R 2.9 and BioConductor50. 

Unsupervised hierarchical clustering of HELP data was performed using the 

subset of probe sets (n=3745) with standard deviation > 1 across all cases. We 

used 1- Pearson correlation distance, followed by a Lingoes transformation of the 

distance matrix to a Euclidean one and subsequent clustering using Ward’s 

method. Correspondence analysis was performed using the BioConductor 

package MADE4. The top 100 genes whose methylation status varied the most 

across the different groups were identified as those with the greatest standard 

deviation across all samples.  

 

Quantitative DNA methylation analysis by MassARRAY EpiTyping 
Validation of HELP findings was performed by MALDI-TOF mass spectrometry 

using EpiTyper by MassARRAY (Sequenom, CA) on bisulfite-converted DNA 

following manufacturer’s instructions51, but using the Fast Start High Fidelity Taq 

polymerase from Roche for the PCR amplification of the bisulfite converted DNA. 

MassArray primers were designed to cover the promoter regions of the indicated 

genes. (Primer sequences available as Supplementary Table 5).  

 

Chromatin immunoprecipitation (ChIP) 
Cells were fixed in 1% formaldehyde for 10 minutes, quenched with glycine and 

washed 3 times with PBS. Cells were then resuspended in lysis buffer and 
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sonicated 10 x 30 sec in a Bioruptor (Diagenode, Philadelphia, PA) to shear 

the chromatin to an average length of 600 bp. Supernatants were precleared 

using protein-A agarose beads (Roche, Mannheim, Germany) and 10% input 

was collected.  Immunoprecipitations were performed using polyclonal antibodies 

to H3K4trimethylated, H3K27trimethylated , H3 pan-acetylation and normal rabbit 

serum (Upstate, Temucula, CA). DNA-protein complexes were pulled-down using 

Protein-A agarose beads and washed. DNA was recoverd by overnight 

incubation at 65°C to reverse cross-links and purified using QIAquick PCR 

purification columns (Qiagen, Maryland). Enrichment of the modified histones in 

different genes was detected by quantitative real time PCR using the primers in 

the Supplementary Table 4. 
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