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Common genetic variants confer susceptibility to a large number of complex brain

disorders. Given that such variants predominantly localize in non-coding regions of

the human genome, there is a significant challenge to predict and characterize their

functional consequences. More importantly, most available computational methods,

generally defined as context-free methods, output prediction scores regarding the

functionality of genetic variants irrespective of the context, i.e., the tissue or cell-type

affected by a disease, limiting the ability to predict the functional consequences of

common variants on brain disorders. In this study, we introduce a comparative multi-

step pipeline to investigate the relative effectiveness of context-specific and context-free

approaches to prioritize disease causal variants. As an experimental case, we focused

on schizophrenia (SCZ), a debilitating neuropsychiatric disease for which a large number

of susceptibility variants is identified from genome-wide association studies. We tested

over two dozen available methods and examined potential associations between the

cell/tissue-specific mapping scores and open chromatin accessibility, and provided

a prioritized map of SCZ risk loci for in vitro or in-vivo functional analysis. We found

extensive differences between context-free and tissue-specific approaches and showed

how they may play complementary roles. As a proof of concept, we found a few sets

of genes, through a consensus mapping of both categories, including FURIN to be

among the top hits. We showed that the genetic variants in this gene and related

genes collectively dysregulate gene expression patterns in stem cell-derived neurons

and characterize SCZ phenotypic manifestations, while genes which were not shared

among highly prioritized candidates in both approaches did not demonstrate such

characteristics. In conclusion, by combining context-free and tissue-specific predictions,

our pipeline enables prioritization of the most likely disease-causal common variants in

complex brain disorders.

Keywords: genome-wide association study, schizophreina, fine mapping, variant annotation, brain disorders

INTRODUCTION

With the advent of technologies such as SNP genotyping arrays or next-generation sequencing
in genome-wide association studies (Levinson et al., 2012), common variants can be reliably
identified and have been associated with a large number of complex diseases (Buniello et al.,
2019). However, GWAS usually detect proxy markers that are associated with diseases or
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phenotypic traits, and the causal functional variants may differ
from the proxy markers found in GWAS (Visscher et al., 2017;
Tam et al., 2019). Genotype-phenotype relationships gleaned
from resources such as large-scale population genetics studies
including the Genotype-Tissue Expression (GTEx) project
(Consortium, 2013), empirical observations to understand
genetic mechanisms underlying gene expression (Gamazon et al.,
2015), and statistical models (Edwards et al., 2013; Li et al.,
2017) to predict functional consequences of genetic variations
have provided valuable knowledge to pinpoint putative disease
causal mutations. The majority of complex diseases are context-
specific in that not every tissue is equally vulnerable to the genetic
variation, while most of the available predictive measures do
not take into account such information. For example, in the
case of neuropsychiatric diseases such as schizophrenia (SCZ),
genetic variants with transcriptional effects in the central nervous
system may have small or no effects in other tissues, so tissue-
specific information can facilitate the identification of variants
that play causal roles in disease pathogenesis (Skene et al.,
2018; Mendizabal et al., 2019; Doostparast Torshizi et al., 2020).
Moreover, genetic variations are known to play a central role
in conferring susceptibilityof autism spectrum disorders (ASDs)
and other neurodevelopmental disabilities (Sanders et al., 2015;
Doostparast Torshizi et al., 2018; Grove et al., 2019). Prior
studies on ASDs implicate enrichment of disease risk genes in
excitatory glutamatergic neurons in the cortex as well as certain
neurons in the striatum (Parikshak et al., 2013; Chang et al.,
2015). Notably, a recent study (Satterstrom et al., 2020) indicates
that within the heterogeneous population of cells in the human
cortex, early excitatory neurons express most of the ASD risk
genes, whereas microglia and choroid plexus express the fewest
number of genes among the constituent cell-types. Of note,
oligodendrocyte progenitor cells and astrocytes were found as
the only non-neuronal cell-types to enrich for ASD risk genes.
Beyond neuropsychiatric and neurodevelopmental disorders,
other major debilitating brain diseases such as Alzheimer’s
disease (AD) are found to be highly cell-specific. Mild memory
loss is the onset of ASD culminating in severe cognitive
impairments (Hardy and Selkoe, 2002; Masters et al., 2015).
A recent study (Mathys et al., 2019) on transcriptional patterns
of AD patients has revealed excessive enrichment of differentially
expressed genes in excitatory and inhibitory neurons while
demonstrating meager enrichment in microglia in prefrontal
cortex. In addition, common genetic variants in AD are found
to enrich in genes involved in endocytic pathways (Lambert et al.,
2013; Huang et al., 2017; Grubman et al., 2019). Collectively, these
observations illustrate how genetic variants predispose specific
cell-types in the human brain to the disease risk which makes
it necessary to further focus on context-specific measures to
analyze genetic variants as opposed to conventional context-
free frameworks. Convergence of context-free vs. tissue-specific
fine mapping of genetic variations is a challenging task, which
requires comprehensive evaluation of state-of-the-art methods
to illustrate the differences and similarities in ranking mutations
regarding their functional consequences.

Availability of tremendous amount of genomic data mandates
creating computational pipelines to reliably extract useful

knowledge with the goal of understanding how genetic mutations
impact human health and phenotypic traits. Although many
predictive approaches have been proposed over the past few
years, it is still essential to create a standardized framework to
assess and compare how context-specific fine mapping methods
compare to more traditional context-free measures. In this paper,
we introduce an evaluation pipeline to study the performance
of general and tissue/cell-specific methods to measure the
functional consequences of common genetic variants. Given
the rich resources of available common variants on SCZ, we
will leverage these resources to demonstrate the utility of
the proposed pipeline tomake more confident prioritization of
genetic variants for further downstream analyses.

RESULTS

Analytical Framework on Using
Context-Free and Context-Specific
Methods to Find Causal Variants
The genetic basis of SCZ has been investigated extensively in
recent years, leading to a large collection of common genetic
variations that explain a significant fraction of the disease
heritability (Purcell et al., 2014; Skene et al., 2018). Although these
associations can be informative, it has proven difficult to identify
“actionable” genes (Doostparast Torshizi et al., 2019) as they tend
to reside in noncoding regions and act as proxy variants in linkage
disequilibrium (LD) with the true causal variants. Therefore,
mapping the actual disease-associated common variations to the
disrupted cell-type or tissue in the context of the underlying
disease, i.e., fine mapping, is crucial to prioritize causal mutations
and causal genes that are relevant to the disease pathogenesis.
Such an investigation guides subsequent experimentations for
functional assessments and therapeutic development based on
the causal genes and pathways.

Aimed at creating a general framework to evaluate and
compare computational approaches for predicting functional
consequences of common variants, we designed a multi-stage
pipeline (Figure 1) for fine mapping of common variants across
tens of cell types and tissues, leveraging a wide range of context-
free and tissue-specific methods for functional annotation of
GWAS loci. Although we focus on SCZ as the disease model
for investigation in the study, this framework is general and can
be effectively utilized in other diseases as well. The proposed
pipeline starts with identifying all proxy SNPs for each of the
queried common variants which are in linkage disequilibrium
(LD) in the European ancestry (by default). We used correlation
threshold of R2 > 0.5 by default, however users may change
the threshold as desired and change to a different population
group (based on Phase 3 of the 1000 Genomes Project). In the
next step, we apply a filtering stage during annotation of the
loci. Using annotation tools such as ANNOVAR (Wang et al.,
2010), we classify variants into separate subgroups based on their
predicted functional consequences such as missense, nonsense,
intronic, splice-site, UTRs, exonic, and intergenic variants. Upon
narrowing down the list of candidate loci, we take three separate
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FIGURE 1 | Schematic of methods for characterizing functional consequences of common genetic variants. (A) Overview of context-free vs. context-specific

measures. (B) The overall structure of the present study on SCZ GWAS loci and their proxy SNPs.

strategies in parallel to identify disparities between context-
free and cell/tissue-specific methods including: (i) context-free
prioritization of the annotated loci using 11 different methods;
(ii) context-specific prioritization of the annotated loci which
encompasses two machine learning algorithms including (a)
functional prediction and prioritization of SCZ variants in 127

tissues/cell-types from Roadmap Epigenomics Project (Bernstein
et al., 2010) using a semi-supervised machine learning algorithm
(He et al., 2018), (b) deep learning-based functional prediction of
the variants in 205 tissues/cell-types from Roadmap Epigenomics
Project (Bernstein et al., 2010), encyclopedia of DNA elements
(ENCODE) (Consortium, 2012), and genotype-tissue expression,
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GTEx project (Consortium, 2013); (iii) consensus prioritization
of the variants in the tissue of interest to prioritize the queried
variants or their potential disease causing proxies.

Traditional context-free measures rank genetic loci without
taking into account what tissues or organs the disease affects. To
gain a better insight into the (dis) similarities of such approaches,
we have used 11 distinct methods. Additionally, we have used
two machine learning algorithms which estimate functional
consequences of genetic loci in tens of different tissues and cell
types. The methods used in this study for benchmarking are
among the widely used measures in the scientific community.
These methods cover conventional context-free measures as
well as state-of-the-art machine learning-based context-specific
methods to predict the functional consequences of genetic
variants. Next, we will rank the analyzed variants through a
maximum consensus procedure and create an overall ranking
for each locus. Upon completion of this stage, we will have a
repertoire of rankings for each locus which will then be used
for comparison. Upon obtaining a final ranking of the loci,
we conduct a position-specific analysis of the queried variants
and their proxies to gain further knowledge which may not
have been captured by any of the methods. In 2018, Pardinas
et al. (2018) reported a new genome-wide association study
of schizophrenia (CLOZUK GWAS; 11,260 cases and 24,542
controls), and through meta-analysis with independent PGC
datasets they identified 50 novel associated loci and 145 loci
in total associated with schizophrenia. In the present study, we
used SCZ GWAS data from the CLOZUK. We also included the
data from PGC study, though it has a significant overlap with
the CLOZUK data. We acknowledge that the same approach
may be applied to PGC2 study on SCZ, once the results become
publicly available.

Cell-Specific Fine Mapping of SCZ
GWAS Loci
We obtained the SCZ GWAS data from CLOZUK (Pardinas
et al., 2018) and PGC (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014) studies, currently the
largest SCZ GWAS consortiums. We annotated these variants
using ANNOVAR (Wang et al., 2010) to characterize the exact
position of each SNP. Among these variants, 67 SNPs were
intergenic and 63 were intronic while the rest were UTR5′,
UTR3′ and ncRNA-intronic. Only two SNPs were exonic. For
cell-specific in-silico fine mapping of the SCZ GWAS loci, we
utilized two state-of-the-artmethods which predict the functional
consequences of genetic variants across a wide range of cell-
types and organ tissues including GenoNet (He et al., 2018)
and ExPecto (Zhou et al., 2018). Since these SNPs are likely not
the causal variants, but in LD with the causal variants, we also
annotated the proxy SNPs, identified using LDproxy (Machiela
and Chanock, 2015). In total, we identified 1,258 proxy loci
(Supplementary Table S1).

We used GenoNet (He et al., 2018) (see section “Materials
andMethods”), a semi-supervised approach which jointly utilizes
confirmed regulatory variants and millions of unlabeled variants
for in-silico functional prediction of the SCZ GWAS SNPs in 127

tissues and cell-types from the Roadmap Epigenomics Project
(Bernstein et al., 2010).We observed that not all of the SNPs show
the highest GenoNet score in brain or neuronal cell-types. We
identified 31 SNPs among which 20 showed the highest GenoNet
score uniquely in the brain while 11 shared the highest score
across several other tissues in addition to the brain (Figure 2).
The SNPs localized in intergenic regions showed the highest
GenoNet scores in the brain while majority of intronic variants
shared the highest scores with the other cell-types or tissues in
addition to brain. None of the remaining SCZ SNPs showed
higher functional score in the brain. Applying GenoNet to all
of the obtained proxy SNPs, we did not observe any proxy
SNPs with a higher score in brain cell types than the original
SNPs. To present a clearer picture on how cell-specificity can
affect functionality of common variants, we selected three loci
rs36104021, rs1473594, and rs2053079 where the first two are
intergenic SNPs closest to the transcript start site (TSS) of the
genes ASCL1 and TOX, respectively, while the third variant is an
intronic locus to the gene ZNF536 (Figures 3A–C). An important
observation is that although some of the SCZ variants bear the
highest GenoNet score across various cell-types, they do not
necessarily gain the highest impact score of 1. For example in
Figure 3, the highest GenoNet score for two loci ZNF536 and
ASCL1 in 50kb window flanking the SCZ loci is 1 while being
∼0.36 in TOX. This implies that the functional consequences of
SCZ variants may not be the same in every cell type and tissue.
We replicated our experiments on the rest of the SCZ loci which
did not yield highest GenoNet scores in the brain followed by
obtaining all of their GenoNet scores. No proxy SNPs were found
to have a higher impact score compared to their queried SNPs.

We additionally used ExPecto (Zhou et al., 2018), a deep
learning sequence-based ab initiomethod for predicting effects of
variant on the disease risk (see section “Materials and Methods”).
In addition tothe SCZ loci, we searched a 100kb window flanking
each SNP to account for proxy variants in case the queried
SNPs were not available in ExPecto. Out of 145 SNPs, ExPecto
returned no results for 90 SNPS (as well as their proxies) while
36 SNPs showed low impact on brain-specific expression levels.
Of the top GenoNet hits, ZNF536 and CA8 loci were found
in ExPecto; however, BCL11B and ZNF823 yielded medium to
high impact scores on brain-specific expression scores. BCL11B
is a zinc finger transcription factor with significant roles in
differentiation of neuronal subtypes in the central nervous system
(Lennon et al., 2017). BCL11B harbors the intronic GWAS
SNP rs35604463 associated with SCZ. This gene has also been
implicated in patients with neurodevelopmental disorders (Lessel
et al., 2018). On the other hand, ZNF823, harbors the SCZ GWAS
SNP rs72986630 in its 5′-UTR. ZNF536 is a transcription factor
which plays an essential role in the development of forebrain
neurons and have been implicated in social behaviors (Thyme
et al., 2019). In contrast with the other significant genes discussed
here, all of loci associated with CA8 are intergenic and closest
to this gene. However, CA8 has been implicated to share rare
copy number variation (CNV) in unrelated probands with SCZ
(Costain et al., 2013).

In conclusion, we did not observe general concordance
between context-specific machine learning-based techniques
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FIGURE 2 | Distribution of the highest GenoNet scores on GWAS loci in which 20 loci bear the highest score uniquely in the brain and 11 loci share the highest

score between the brain tissues and other tissues or cell-types. For each SNP, the corresponding gene and the genomic position of each mutation is provided. Gray

bars represent the proxy SNPs of the queried variants. ESC, embryonic stem cell; iPSC, induced pluripotent stem cell; ES-deriv, embryonic stem cell-derived

cultured cells; HSC, hematopoietic stem cells; Mesench, mesenchymal stem cells; Myosat, muscle satellite cultured cells; Epith, epithelial cells; Neurosph,

brain-derived primary cultured neurospheres; Adiopse, adiopse nuclei; Sm Muscle, smooth muscle.

(GenoNet and ExPecto) in this application. Such disparities
may arise due toseveral reasons, related to training datasets
and underlying methodological differences. As another example,
we tested the MIR137 SCZ risk locus, a well-known risk
gene which plays an important role in neuronal development
(Mahmoudi and Cairns, 2017) and a well-studied SCZ GWAS
locus (Pardinas et al., 2018). GenoNet yielded the highest
risk score in the brain while ExPecto does not cover this
locus. Although it is not surprising to get inconsistent results
across methods, we can use the consistent results from the
complementary methods to identify genes that are more likely to
be relevant for SCZ.

Context-Free Fine Mapping of SCZ
Susceptibility Loci
A number of context-free methods are available that infer
functional importance of genetic variants without considering the
cell specificity. Here, we applied 11 widely used predictive scoring
metrics on the SCZ loci including: the regulatory Mendelian
mutation framework (REMM) (Smedley et al., 2016), genome-
wide annotation of variants (GWAVA) (Ritchie et al., 2014)
in three different modes, FunSeq2 (Fu et al., 2014), fitCons
(Gulko et al., 2015), FATHMM (Shihab et al., 2015), EIGEN
and EIGEN_PC (Ionita-Laza et al., 2016), DeepSea (Zhou and
Troyanskaya, 2015), and CADD_PHRED (Kircher et al., 2014).
A list of the methods used in this study are provided in
Table 1, but we acknowledge that these do not cover all available
computational methods that were published in the past few

years. Notably, we found moderate to weak correlations between
the predicted functional impacts of SCZ loci in these context-
free methods with the brain-specific GenoNet predicted scores
(Figure 3D). EIGEN_PC and GWAVA_unmatched score showed
0.65 Spearman’s rank correlation with the GenoNet scores while
the rest of the methods had rank correlations lower than 0.5.
As a large portion of the queried loci were not available in
ExPecto, we could not calculate the correlations between the
context-free measures with ExPecto. With respect to the context-
free measures, we found a reasonable agreement among their
predictions. Specifically, we found that four measures, including
REMM, FunSeq2, GWAVA_region and GWAVA_TSS, deviate
from the other functional scores, while the remaining scores
showed an average correlation above 0.6.

For illustration, we considertwo loci where the first one shows
good concordance between context-specific and context-free
measures while the second one shows a substantial discordance.
For this, we re-iterate SCZ SNP rs2660304, a common variant
annotated to MIR137 SCZ risk gene. This SNP shows the
highest GenoNet score in the brain. Notably, this SNP is
ranked among the top 10% of all the SCZ queried GWAS
SNPs in a majority of context-free measures. On the other
hand, rs1353545 annotated to the gene FHIT shows a reverse
pattern where context-free measures predominantly rank it as a
consequential locus while GenoNet does not predict significant
functional consequence for this locus in the brain. These
observations suggest that care should be taken when applying
these methods in diseases that affect very specific tissues (such
as SCZ) and we believe that these approaches can play a
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FIGURE 3 | An example of GenoNet scores for three SCZ loci and their flanking regions of 25kb to the SCZ variant in the two tissues of the brain and blood and the

correlations between non-context-specific rankings. Red bar represents the position of the SCZ variant. (A) Functional consequence scores for ZNF536; (B)

functional consequence scores for TOX; (C) functional consequence scores for ASCL1; (D) correlations between 11 non-context-specific functional prediction

scores and GenoNet; (E) correlations between the obtained rankings from context-free functional predication measures.

complementary role in pinpointing functional consequences of
common variants.

Evaluating Consensus Between
Computational Methods vs. in vitro

Models
In an important recent study by Schrode et al. (2019), one
putative SCZ GWAS (FURIN) hit and four top-ranked SCZ
expression quantitative trait loci (eQTLs) for genes FURIN,
SNAP91, TSNARE1, and CLCN3 were studied using CRISPR-
mediated gene editing in isogenic human induced pluripotent

stem cells. While FURIN individually led to significant
phenotypic abnormalities in the derived neurons, the other
four eQTLs showed significant phenotypic synergy on synaptic
functions compared to their individual functional consequences.
Our analysis reveals a similar pattern. While the putative causal
variant in FURIN was ranked among the top 5% of highly
functional loci in the brain by GenoNet, it was among the
top 5% of the prioritized loci at least in half the context-free
measures, while this was not the case for the rest of the loci.
For instance, TSNARE1 was ranked high in the majority of the
context-free measures butit ranked quite low in the brain-specific
scores from GenoNet. Although their study is among the first
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TABLE 1 | A list of the methods used in the study.

Method Mode Platform

REMM Context-free Web

GWAVA (in 3 modes) Context-free Web

FunSeq2 Context-free Web

fitCons Context-free Web

FATHMM Context-free Web

EIGEN Context-free Web

EIGEN_PC Context-free Web

DeepSea Context-free Web

CADD_PHRED Context-free Web

GenoNet Context-specific Web

ExPecto Context-specific Web

combinatorial approaches to study how common variants can
serve as cis-eQTLs, it provides critical insights intothe additive
effects of common variants on pre/post-synaptic functions as well
as collective disease-associated gene expression paradigms. With
this particular case analysis, we believe that context-specific and
context-free measures can act in a complementary fashion. To
illustrate this, we showed that the loci with a high tissue-specific
functional impact score which also have a high impact score using
context-free measures can be considered for further investigation
with a higher confidence. Although further experimental tests
are required to investigate a larger fraction of the known GWAS
loci, our hypothesis is supported by the aforementioned loci
tested by Schrode et al. (2019).

DISCUSSION

Evaluating the functional consequences of common genetic
variants by computational methodsis a challenging task, as
most of them are non-coding variants. It can be more
challenging given that many available computational methods
are context-free, i.e., they do not take into account the
functional impacts of genetic variants in distinct cell-types or
tissues. Novel data-driven approaches have made significant
strides to make more accurate predictions based on the tissues
being impacted by the disease. To gain insights into the
similarities or disparities of these two types of approaches,
we have laid the frame work of an analytical pipeline to
shortlist high-confidence GWAS loci, or potentially disease-
causing SNPs. Evaluating this pipeline on SCZ, as a disease
with rich resources of common associated variants, followed by
benchmarking the findings with in-vitro experiments creates a
robust framework for downstream analyses such as CRISPR-
mediated experiments.

This framework starts with annotating the lead SNPs and
their proxy SNPs and extracting missense, nonsense, intronic,
splice-sites, UTRs, and intergenic variants. Then, we applied over
two-dozen conventional and context-specific methods on these
variants as well as their proxies. As an illustration, we have
focused on SCZ where common genetic variants share a large
portion of the disease heritability. We took a consensus-based

strategy to rank the variants in which we hypothesized that the
SNPs with the highest brain-specific scores in context-specific
methods which also have a high context-free score are more likely
to be disease causal. Overall, we did not find significant overlap
between these two sets of approaches for ranking common
variants regarding their functional consequences. Yet, we found
that variants with high scores in both approaches in the tissue of
interest (here brain) manifest strong implications in SCZ.

As the outcome of our analysis, among context-free measures,
we ranked each SCZ locus and obtained the average ranking
(see “Materials and Methods”) for each locus as well as
their significance P-values (Supplementary Table S2). Then,
we calculated the Pearson correlation between the obtained
rankings for each variant across the entire benchmarkedmethods
(Figure 3E). Two methods funSeq2 and REMM are almost
uncorrelated with the rankings of the other methods while
fitCons generated less correlated rankings. However, there is
strong correlation between the rankings from the remaining
context-free functional scores. Focusing on the concordant
results from the context-free measures and the state-of-the-
art machine learning-based tissue-specific methods, we found
several loci including ZNF823 and BCL11B to show the highest
functional consequences specifically in the brain given their
GenoNet scores. Previously we had found multiple lines of
evidence discussed in the previous sections on pathogenicity
of these two genes. For example, ZNF823 and BCL11B were
the only two loci to be picked up by ExPecto as the most
deleterious GWAS hits contributing tothe disease risk in the
brain. In a study using genotypes and gene expression levels
from CMC, Dobbyn et al. (2018) had re-identified ZNF823
to be among the GWAS loci to have strong evidence for co-
localization with expression quantitative trait loci (eQTL) in
brain. In addition to ZNF823, four other loci were found in
the list provided by Dobbyn et al. (2018) including FURIN,
FTCDNL1, DCLK3, and SNAP91. These loci showed a GenoNet
ranking score in the brain as 1, 1, 40, and 120, respectively
(Supplementary Table S2). They showed an average ranking
in the context-free methods as 16, 28, 42, and 86, respectively
(Supplementary Table S2). Therefore, except for FTCDNL1 and
FURIN which show strong consistency between the GenoNet
and context-free scores, the other two showed no significant
consistency. Signatures of ZNF823 has also been reported in
Down syndrome (Hibaoui et al., 2014) and perturbation of
immunological pathways upon vaccination (Stein et al., 2016).
On the other hand, BCL11B expression has been identified to
confirm the T cell-lineage identity of multipotent progenitor
cells in the CD4−CD8− double-negative pro-T cell DN2 stages
(Hosokawa et al., 2018) as well as being identified as an epigenetic
regulator of gene expression in SCZ (Whitton et al., 2016). As
a result, despite relative consistency between the outcomes of
context-free measures, they do not necessarily match the tissue-
specific methods. However, shared loci with the highest scores
in both context-free and context-specific methods may be the
most promising loci.

In conclusion, in this paper we introduced an analytical
pipeline to identify disease associated common genetic variants.
This pipeline considers disease-associated loci as well as their
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proxy SNPs to widen the search space to increase the chance of
pinpointing the potential causal variants. This pipeline leverages
tissue-specific and context-free measures in an ensemble fashion
tomake an accurate ranking of the potential causal variants. As an
illustration, collecting SCZGWAS loci and flowing them through
the pipeline led to a shortlist of loci to generate hypothesis for
further functional studies. Using the most recent experimental
findings on these loci, we showed that the pipeline can be
employed by researchers to prioritize available common variants
for downstream analyses.

MATERIALS AND METHODS

List of SCZ Common Variants
We used SCZ GWAS data from the CLOZUK study (Pardinas
et al., 2018) which includes 145 variants as well as the PGC study
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). The CLOZUK study is the largest available
GWAS of SCZ covering 40,675 cases and 64,643 controls.

Cell Type-Specific Fine Mapping of SCZ
Loci Using GenoNet
We used GenoNet (He et al., 2018), a semi-supervised
approach which utilizes logistic elastic-net on thousands
of experimentally labeled variants, and incorporates this
information with unsupervised predictions on millions of
unlabeled variants to improve the prediction accuracy of

functional effects. In GenoNet, f̂ represents the estimated
prediction function:

f̂ = argmin
f

m
∑

i = 1

lp
(

Yi, f (Xi)
)

+ γI

l
∑

i = 1

(

Ŷu
i − f (Xi)

)2
(1)

in which lp denotes the penalized log-likelihood for the labeled
data, Yi ∈ {0, 1} are the labels form variants with validated labels,
Ŷu
i ∈ [0, 1] represent the predicted values for a large number (l)

of mutations from a prior unsupervised method, Xi denotes the
functional annotations, γI is a tuning parameter which is used
to maximize the area under receiver operating characteristics
curve (AUROC). FUN-LDA score (Backenroth et al., 2018) is
used in GenoNet given that it is one of the most reliable tissue
specific genome-wide functional scores. GenoNet adopts Elastic-
net as its supervised algorithm given its superior performance
when the features are correlated with sparse non-zero coefficients
(He et al., 2018).

ExPecto for ab initio Prediction of Variant
Effects on Expression and Disease Risk
We utilized ExPecto web portal1 to predict the effects of the
SCZ SNPs across tissues and cell-types. In addition to the
SCZ loci, we queried a 100kb flanking each SNP. 52 tissues
from Epigenome Roadmap Data in ExPecto were used for
fine mapping. ExPectois a sequence-based expression prediction

1https://hb.flatironinstitute.org/expecto/

framework with three sequentially acting components including:
(a) a deep neural network to model epigenomic effects being
trained by the sequencing data to predict the probabilities for
some epigenetic markers such as histone marks at each position
etc.; (b) a series of spatial transformation functions to summarize
the predicted pattern within the chromatin profiles aimed at
finding a reduced set of features; (c) using the set of spatially
transformed features to predict tissue-specific gene expression
predictions using regularized linear models.

Annotation of the Common Variants and
Their Proxy Loci
We used LDproxy (Machiela and Chanock, 2015) to find proxy
SNPs to the SCZ GWAS loci. Correlation threshold of R2 > 0.5
is used for specifying the proxy SNPs. LDproxy utilizes reference
haplotypes from 26 different population groups from Phase 3
of the 1000 Genomes Project (Genomes Project et al., 2012).
European populationhas been used throughout the study. We
used ANNOVAR (Wang et al., 2010), to annotate the SCZ
variants to the human reference genome hg19.

Context-Free Functional Prediction
Methods
Functional prediction measures of multiple different methods
were calculated using SNPnexus IW-Scoring (Wang et al., 2018).
SNPnexus is collection of multiple context-free methods that
we used to run most of the context-free methods in this study.
Batch query option using GRCh37/hg19 reference genome was
employed on all of the SCZ SNPs and their proxies on all of
the Non-coding Scoring schemes. The regulatory Mendelian
Mutation (REMM) framework (Smedley et al., 2016) is a machine
learning-based method to predict the causality of arbitrary
positions in the non-coding regions of the human genome in
developing Mendelian diseases if mutated. DeepSEA (Zhou and
Troyanskaya, 2015) is a deep learning algorithmic framework
to predict the chromatin effects of sequence alterations with
single nucleotide sensitivity. DeepSEA is designed to predict
the epigenetic states of a sequence and utilize this capability
to prioritize genetic variants. GWAVA (Ritchie et al., 2014)
is a prediction model which uses a modified version of the
random forest algorithm to prioritize non-coding variants by
integrating various genomic and epigenomic annotations. Eigen
and Eigen_PC (Ionita-Laza et al., 2016) are unsupervised
approaches to integrate different annotations intoone measure of
functional score without using any labeled data. Eigen generates
a meta-score using benign and putatively disease-associated
variant from published studies. FATHMM (Shihab et al., 2015)
is a framework for functional prediction of coding and non-
coding sequence variants. FATHMM uses various published
genomic annotations followed by using kernel integration to
weight the significance of each annotation score. FunSeq2 (Fu
et al., 2014), a computational framework to annotate and
prioritize non-coding variants, integrates genomic resources
with a streamlined variant-prioritization pipeline which contains
a weighted scoring scheme to combine loss/gain of function
events, network centrality, inter/intra-species conservation, and
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per-element recurrence across samples. fitCons “fitness
consequence” (Gulko et al., 2015) is a scoring method to estimate
the probability of a point mutation at each position in the
genome to influence fitness. CADD_PHRED (Kircher et al.,
2014) is a method for objective integration of diverse annotations
into a single score for each variant. This method has been
based on training a support vector machine to differentiate
millions of human-derived high-frequency alleles from millions
of simulated variants.

Average Ranking of SCZ GWAS Loci in
Context-Free Measures
For each of the context-free functional prediction methods
(m = 11), we obtained the prediction scores and ranked the
loci based on the outcome of each method. Next, we averaged the
ranking of the methods to create an ultimate ranking measure for
each loci as follows:

Average Rankingi =

∑m
j = 1 Rij

m
(2)

where Rij denotes the ranking of the SNP i by the method j,
i = {1, . . . , 145} denotes the GWAS loci i andm = {1, . . . , 11}

represents the functional predictionmethodm. Note that we only
take the average ranking of context-free methods for each locus.
Upon obtaining the average ranking for each loci, we made a
final ranking and compared them directly with the rankings of
the same loci from tissue-specific measures.
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