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Abstract: 

 

Most expression quantitative trait loci (eQTL) studies to date have been performed in 

heterogeneous brain tissues as opposed to specific cell types. To investigate the genetics of 

gene expression in adult human cell types from the central nervous system (CNS), we 

performed an eQTL analysis using single nuclei RNA-seq from 196 individuals in eight CNS 

cell types. We identified 6108 eGenes, a substantial fraction (43%, 2620 out of 6108) of which 

show cell-type specific effects, with strongest effects in microglia. Integration of CNS cell-

type eQTLs with GWAS revealed novel relationships between expression and disease risk for 

neuropsychiatric and neurodegenerative diseases. For most GWAS loci, a single gene 

colocalized in a single cell type providing new clues into disease etiology. Our findings 

demonstrate substantial contrast in genetic regulation of gene expression among CNS cell types 

and reveal genetic mechanisms by which disease risk genes influence neurological disorders. 
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Introduction: 

 

Most genetic associations from genome-wide association studies (GWAS) of brain disorders 

lie within non-coding regions of the genome, challenging the identification of risk genes 1, and 

CNS cell types in which these risk variants regulate gene expression. Expression quantitative 

trait loci (eQTLs) (i.e. genomic regions that explain variation in gene expression levels) have 

become a powerful tool to uncover the molecular underpinnings of variants associated with 

complex traits and diseases in non-coding regions of the genome 2–4. 

 

Importantly, eQTL relationships are highly dependent upon cell type 5, cell states and 

developmental stage of the human brain 6–8, consistent with recent transcriptomic studies that 

show prominent temporal and cell type specific changes in expression 9,10. However, most prior 

eQTL studies were done using bulk human brain tissues and have been partially successful in 

prioritizing disease risk genes by integrating GWAS results with tissue-level eQTLs. A few 

recent studies have investigated eQTLs in specific CNS cell types, for example, cis-eQTLs in 

dopaminergic neurons derived from induced pluripotent stem cells 11, and in sorted primary 

human microglia 12,13. To dissect the functional genetic variation of late-onset neuropsychiatric 

and neurological diseases, we leveraged single-nucleus gene expression analysis from 196 

adult human brain tissues (both cortical grey matter and deep white matter) to perform a 

systematic eQTL analysis in all major adult human CNS cell types. 

 

Here, we present the first single-cell based map of eQTLs in eight human CNS cell-types. We 

show substantial cell-type specific effects in the genetic control of gene expression. Integration 

of cell-type eQTLs with GWAS shows that, at most GWAS loci, a single gene colocalizes in a 

single CNS cell-type thereby not only providing insights into disease-relevant genes but also 

identifying new putative mechanisms of risk genes that have been missed by bulk tissue-level 

analyses.  

 

 

 

Figure 1: Study summary 
We performed single nuclei RNA-seq on brain samples from 196 genotyped donors. We mapped cis-eQTLs for 8 

major brain cell types and identified a total of 6108 cis-eQTL genes. We identified cell type specific genetic effects 

and leveraged our results to identify risk genes for brain disorders. 
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Results 

 

Robust identification, fine mapping and functional characterization of brain cell type cis-

eQTLs 

 

Our goal was to identify genetic variants regulating gene expression in CNS cell types. 

Therefore, we performed single nuclei RNA-seq and genotyping in 246 human brain samples 

from 123 independent individuals (Table S1). We integrated our dataset with 127 human brain 

samples from published single-cell transcriptomic studies that were previously genotyped 14–

16, resulting in a total of 373 brain samples from 215 individuals. After quality control, 

normalization, sample integration and genotype imputation (Online Methods), we obtained 

gene expression data for 7208-10846 genes (protein coding and non-coding) and genotypes for 

5.3 million SNPs in 196 individuals for 8 major CNS cell types (Figure 1) expressing clear 

canonical markers of cell type identity (Figure S1). 

 

We identified cis-eQTLs by testing all SNPs within a 1 megabase (MB) window surrounding 

the transcription start site (TSS) of each expressed gene while adjusting for known covariates 

(study, disease status) and inferred covariates (genotype first principal components (PCs), 

expression first PCs) (Online Methods). We discovered 6108 genes with a cis-eQTL at a 5% 

false discovery rate (FDR) across the 8 different CNS cell types (Figure 2A, Table S2). This 

number represents only a small fraction of the potential cis-eQTL discoveries as we estimate 

that at least 10-50% of the tested genes have an eQTL across the different cell types (Figure 

S2, Online Methods). Most cis-eQTLs replicated in a large tissue-level cortical eQTL study 

(Metabrain 17) with 72.1-82.3% of the SNP-gene pairs having a pvalue <0.05 in this larger 

study (Figure S3A). Cis-eQTLs that did not replicate (p>0.05) affected more constrained genes 

(Figure S3B) and were located further from the TSS than replicating cis-eQTLs (Figure S3C). 

Neuron cis-eQTLs replicated at a higher rate (80.1%, pi1=86%) than glia cis-eQTL (75%, 

pi1=77%) (Figure 2C), possibly because some glial cell types are less prevalent than neurons 

in the cortex. The number of detected eQTLs varied significantly between cell types (Figure 

2A) (e.g. 2114 eQTL in excitatory neurons but only 23 in pericytes) and showed high 

correlation with the total number of nuclei belonging to the cell type (Figure 2B). This suggests 

that more nuclei allow for a better quantification of gene expression and, ultimately, the 

discovery of more eQTLs. 
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Figure 2: Cis-eQTL discoveries 

A) Number of cis-eQTLs per cell types (5% FDR). B) Number of cis-eQTLs (5% FDR) versus number of single 

nuclei belonging to the cell types. C) Replication pvalues for each SNP-gene pairs of our cis-eQTL discoveries 

(aggregated for glia and neurons) in a large cortical eQTL study 17. D) Enrichment of the discovered cis-eQTLs 

around the TSS. E) LOEUF scores 18 for genes with a cis-eQTL (5% FDR) and genes without a cis-eQTL 

(constrained genes have low LOEUF score, not constrained genes have high LOEUF score). The black horizontal 

bars indicate the medians. F) Examples of cis-eQTLs in astrocytes and microglia. G) Examples of cis-eQTLs with 

a fine-mapped SNPs (causal probability of 0.94 for GRIN2A and 0.87 for GLUD1). 

 

As expected, cis-eQTLs were enriched around the TSS (Figure 2D) and more frequently found 

upstream of the gene or within the gene body than downstream of the gene (Figure S4) (2679 

in gene body, 2156 upstream, 1273 downstream). We found that 48-59% of the top cis-eQTL 

SNP affected the closest gene (depending on the cell type) (Figure S5, Online Methods). 

Genes with a cis-eQTL were found to be less constrained than genes without a cis-eQTL 

(Figure 2E), suggesting that less constrained genes are also more tolerant to variability in gene 

expression levels. Genes with an eQTL in glial classes had on average higher expression levels 

than genes without an eQTL (Wilcoxon pvalue=5*10-9), while the opposite was true for 

neurons (Wilcoxon pvalue=1*10-5) (Figure S6). Altogether, these results suggest that cell type 

level cis-eQTLs have similar properties as tissue level cis-eQTLs 2. 

 

We next investigated whether any of the genes with a cis-eQTL had additional independent 

cis-eQTLs. We found that 126 genes had a secondary cis-eQTL, with the majority being 

discovered in excitatory neurons and oligodendrocytes (112 genes) (Figure S7A,B). 

Independent cis-eQTLs were enriched around the TSS of the target gene but located at a larger 

distance from the TSS than the main cis-eQTLs (mean distance = 243kb vs 113kb, Wilcoxon 
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p=2*10-9) (Figure S7C,D). Larger sample sizes will be necessary to identify more 

independent cis-eQTLs for cell types from the CNS. 

 

We also performed fine-mapping to identify putative causal SNPs for our cis-eQTLs (Table 

S3, Online Methods). As expected, fine-mapped SNPs with higher probability of being causal 

were more likely to overlap epigenomic marks 19,20 (Figure S8A). Overall, we fine-mapped 

413 cis-eQTLs (causal probability>50%) (Figure S8B). Examples of fine-mapped SNPs with 

high causal probabilities include rs12932206 as the likely causal SNPs for the oligodendrocyte 

GRIN2A eQTL (probability=0.94) (Figure 2G), a gene associated with schizophrenia 21, and 

rs17096421 as the likely causal SNP for the GLUD1 excitatory neuron eQTL 

(probability=0.87) (Figure 2G), a gene with an important role in inhibitory synapse formation 
22. 

 

We reasoned that CNS cell-type eQTLs could overlap with CNS cell-type specific regulatory 

regions defined by snATAC-seq 20 and sought to test this as an external validation (Figure 3A, 

Online Methods). We found that ATAC-seq peaks specific to glial cell types (astrocytes, 

microglia, oligodendrocytes and OPCs / COPs) were enriched around the cis-eQTLs 

discovered in the same cell types but not in the other cell types, suggesting that the discovered 

glial eQTLs fall in regions of the genome functionally relevant to cell-type specific gene 

regulation. Surprisingly, we did not observe enrichment of neuronal cis-eQTLs in neuron-

specific ATAC-seq peaks, neuron-specific CHIP-seq marks 19 (H3K4me3 and H3K27ac) 

(Figure S9) and sorted nuclei bulk ATAC-seq 23 (Figure S10). The lack of enrichment of 

neuronal specific regulatory regions around neuronal cis-eQTLs was robust to multiple 

attempts at falsification (Online Methods), suggesting that the discovered neuronal cis-eQTLs 

might be less cell-type specific than glial cis-eQTLs.  

 

Cell-type specific eQTL effects 

 

We used a negative binomial mixed model to investigate how many of the 6108 cis-eQTLs had 

a significantly different effect size in the test cell type compared to a) the average effect size 

across the 7 other cell types,  b) at least one of the 7 cell types, and c) all other 7 cell types 

(Online Methods). We found 1932, 2620 and 192 genes (5% FDR) respectively for the above-

mentioned comparisons (Figure 3B, Table S4). eGenes from a) and b) were positionally 

enriched around TSS compared to shared eQTLs (Figure S11A, B). Among all cell-type 

specific eGenes, excitatory neuron specific eGenes were significantly less constrained 

compared to the shared neuronal eQTL genes (Figure S12A, B). Interestingly, the 192 cell-

type specific eGenes whose effect size is different than all other cell types are more constrained 

(Figure S12C), with the strongest evidence for microglia specific cis-eQTLs genes (which 

were also enriched in Alzheimer’s genetic associations (Figure S13)). Examples of these genes 

include CHRM5, GRIN2A and MSRA in oligodendrocytes (Figure 3D, Figure S14), or 

RNF150 in microglia and CPQ in OPCs / COPs (Figure 3E,F). GRIN2A is associated with 

schizophrenia 21, and MSRA was shown to protect dopaminergic neurons from cell death 24. 
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Figure 3: Cell type specific genetic effects on gene expression 
A) Enrichment of cell type specific ATAC-seq peaks (derived from snATAC-seq 20) around our cis-eQTLs. B) 

Number of significant cell type specific genetic effects (5% FDR). “Cell type specific (at least one)” shows the 

number of cis-eQTLs that have a different genetic effect for the same SNP-gene pair in at least one cell type. “Cell 

type specific (all)” shows the number of cis-eQTLs that have a different genetic for the same SNP-gene pair in all 

cell types, while “Cell type specific (aggregate)” shows the number of genes that have a different genetic effect 

in the discovered cell types than the aggregate genetic effect of all other cell types. C) Estimates of the proportions 

of cis-eQTLs that have a different genetic effect in another cell type. Estimates were computed on the interaction 

pvalue distributions using the pi1 statistic25. D) Example of a cell type specific cis-eQTL for CHRM5 in 

oligodendrocytes, E) RNF150 in microglia, F) CPQ in OPCs / COPs. Each dot represents an individual. The 

displayed pvalues are the adjusted interaction pvalues testing whether the genetic effect in the discovered cell 

type (top left cell type) is different from the genetic effects in all other cell types. 

 

We used the pi1 statistic 25 to estimate the proportion of eQTLs with cell type specific effects 

for all pairwise comparisons across cell types. We found that cell-type specific genetic effects 

ranged from 0-92% depending on the cell types compared. For example, all eQTLs detected in 

excitatory neurons have similar effect sizes in inhibitory neurons (pi1=0), while 92% of the 

microglia eQTLs have a different effect size in excitatory neurons (pi1=0.92) (Figure 3C and 

Figure S15). Oligodendrocytes, OPCs / COPs, and astrocytes clustered together based on the 

estimated proportion of genetic effects that are cell type specific (Figure 3C). Similarly, 

neurons clustered together with an estimate that only 0-16% of the eQTLs have a different 

genetic effect in the other neuronal type. Microglia showed strongest evidence for cell-type 

specific genetic effects with an estimate that 60-92% of the discovered cis-eQTLs have a 
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different genetic effect in the other cell types, reflecting its unique developmental origin. 

Altogether, these results suggest that there are substantial differences in the genetic regulation 

of gene expression across brain cell types, which might be relevant for brain disorders. 

 

CNS cell type eQTLs mediate neurological disease association   

 

We used Coloc 3 to investigate whether genetic variants associated with risk of Alzheimer’s 

disease 4, Parkinson’s disease 26,27, schizophrenia 28 and multiple sclerosis 29 potentially act 

through CNS cell-type cis-eQTLs (Table S5). Colocalization analysis identified risk genes in 

CNS cell types at 13-38% of the GWAS loci (at a posterior probability (PP) > 0.7) across the 

four different disorders (Figure S16). Notably, we found that 75-93% of colocalized loci 

contained a single colocalized gene (Figure 4A) that usually occurred in a single cell type 

(Figure 4A,B). This suggests that disease risk at a given GWAS locus is usually mediated by 

a single gene acting in a specific cell type. 

 

For Alzheimer’s disease (AD) (Figure 4C), we found most colocalization signals in microglia 

(BIN1, CASS4, CD2AP, INPP5D, PICALM, RAPEB1, RIND1, SIGLEC9, TREM2, USP6NL 

and ZYX), which is consistent with the known pathophysiological role of microglia in AD 30. 

Several of these genes localize to the endolysosomal network (BIN1, RIN3, CD2AP, PICALM, 

SIGLEC9 31, ZYX) 32, and some are known to interact (e.g. CD2AP and RIN3 33 or RIN3 and 

BIN1 34). Interestingly, two genes colocalized solely in oligodendrocytes (APH1B and CR1). 

APH1B is part of the γ-secretase complex, which is known to cleave APP resulting in the 

production of amyloid beta (Aβ), the main component of amyloid plaques (which characterize 

AD), while CR1 encodes the complement receptor 1, which is a regulator of complement 

activation. In addition, CLU, which plays a key role in Aβ clearance, aggregation and toxicity 

35, colocalized solely in endothelial cells. We note that colocalization of a gene in a specific 

cell-type is not influenced by its expression levels. For example, APH1B is expressed at similar 

levels in all cell types (Figure S17) but only colocalizes with AD in oligodendrocytes, while 

CLU has higher expression in astrocytes than in endothelial cells but does not colocalize in 

astrocytes. We then leveraged allelic information from both our eQTL analysis and GWAS 

data to predict the effect of increasing gene expression on disease risk (Table S5). We found 

that increased expression of a number of genes was associated with an increase in AD risk (e.g. 

APH1B, BIN1, USP6NL) (Figure 4C), while an increase in expression of other genes lead to 

a decrease in AD risk (e.g. CASS4, PICALM or TREM2). More quantitatively, we estimated 

that, for example, a decrease in BIN1 expression by two standard deviations should result in 

an odds ratio of being diagnosed with AD of only 0.34 (Table S5). 
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Figure 4: Colocalization results 

A) Number of colocalized genes per loci. At most loci a single gene colocalizes in a single cell type. B) Posterior 

probability (PP) of colocalization for colocalized genes (PP>0.7) in the top cell type (rank=1) and other cell 

types (ranked). The pvalues were obtained using a Wilcoxon sum-rank test. Each dot represents a colocalized 
gene, CLU, CTSB, NR1H3 and RERE are highlighted as examples. C) Posterior probabilities of shared genetic 

signal between GWAS and eQTLs for Alzheimer’s disease, D) Parkinson’s disease, E) multiple sclerosis and F) 

schizophrenia. The closest gene to the top GWAS signal is indicated on the left, the colocalized genes is indicated 

on the right. The beta (Effect or OR) column indicates the effect size of the top GWAS SNP at the locus. The risk 

column indicates whether an increase in gene expression leads to an increase in disease risk (red) or a decrease 

in disease risk (blue). The LOEUF 18 column indicates whether the gene is constrained (low score) or not (high 

score). 

 

Parkinson’s disease (PD) had a more complex pattern of colocalization signals (Figure 4D). 

Some genes colocalized in multiple cell types (e.g. LSM7, BIN3 or GPNMB), and some loci 

had colocalizations signals with multiple genes (e.g. WNT3 locus with colocalization signal 

for MAPT, LRRC37A2, KANSL1, ARL17B and AC0056702.2). We note that the 

colocalization signals at the WNT3 locus are likely due to a common inversion in the European 

population that is associated with PD 36. However, the majority of colocalized genes still 

colocalized in a single cell type. For example, CTSB, TOMM7 and ATP5ME colocalized only 

in endothelial cells. CTSB plays an essential role in lysosomal degradation of α-synuclein 37, 

while TOMM7 is a small subunit of the TOM complex that is essential for the binding of 

PINK1 (a gene associated with monogenic forms of the disease) to the TOM complex. For the 

three genes colocalized solely in endothelial cells, our results suggest that increased expression 

leads to a decrease in PD risk (Figure 4D). CD38 colocalized only in astrocytes and was shown 

to play an essential role in the astrocytic release of extracellular mitochondrial particles 38, 

while UBAP1 and STX4 colocalized only in oligodendrocytes. GPNMB, a gene upregulated 

4.6e−07

5.8e−07

0.0023

2.2e−14

Multiple Sclerosis Schizophrenia

Alzheimer Parkinson

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Cell type rank

P
o

s
te

ri
o

r
p

ro
b

a
b

ili
ty

CLU CTSB NR1H3 RERE

0.06 0.76 0.07 0.06 0.08 0.11 0.06 0.11

0.08 0.07 0.08 0.73 0.13 0.09 0.08 0.10

0.15 0.89 0.06 0.08 0.06 0.06 0.06 0.06

0.00 0.91 0.06 0.06 0.06 0.07 0.06 0.06

0.76 0.64 0.32 0.27 0.17 0.27 0.12 0.14

0.22 0.08 0.72 0.10 0.07 0.39 0.07 0.07

0.79 0.00 0.08 0.00 0.00 0.00 0.00 0.00

0.89

0.93

0.39

0.00

0.67

0.56

0.09

0.00

0.17

0.00

0.06

0.00

0.06

0.00

0.09

0.00

0.07 0.06 0.06 0.07 0.72 0.06 0.13 0.06

0.77 0.52 0.10 0.60 0.10 0.07 0.05 0.06

0.79 0.17 0.12 0.16 0.06 0.06 0.11 0.07

0.76 0.07 0.06 0.05 0.81 0.06 0.06 0.09

0.87 0.11 0.90 0.63 0.86 0.07 0.07 0.00

0.61 0.42 0.27 0.14 0.84 0.13 0.06 0.08

0.82 0.00 0.09 0.00 0.00 0.00 0.00 0.00

0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.61 0.10 0.76 0.09 0.06 0.06 0.27

0.03 0.24 0.24 0.28 0.27 0.80 0.20 0.00

0.96 0.71 0.28 0.11 0.23 0.31 0.17 0.09

0.79

0.00

0.93

0.00

0.54

0.00

0.14

0.91

0.19

0.00

0.12

0.00

0.10

0.00

0.83

0.06

0.78 0.93 0.62 0.41 0.60 0.08 0.17 0.43

0.89

0.84

0.98

0.19

0.98

0.09

0.80

0.28

0.23

0.13

0.00

0.12

0.00

0.14

0.11

0.09

0.98 0.00 0.55 0.00 0.00 0.06 0.05 0.00

0.11 0.08 0.12 0.10 0.09 0.06 0.89 0.06

0.92 0.19 0.09 0.06 0.06 0.05 0.05 0.08

0.09

0.08

0.90

0.06

0.14

0.06

0.29

0.11

0.42

0.70

0.13

0.07

0.11

0.07

0.06

0.21

0.06

0.11

0.07

0.17

0.06

0.07

0.59

0.86

0.74

0.20

0.06

0.09

0.06

0.26

0.06

0.06

0.93 0.00 0.49 0.11 0.00 0.00 0.00 0.00

0.74 0.00 0.11 0.00 0.00 0.00 0.00 0.00

0.88 0.08 0.16 0.24 0.20 0.09 0.08 0.07

0.90

0.83

0.00

0.83

0.94

0.84

0.00

0.83

0.00

0.83

0.00

0.75

0.00

0.78

0.00

0.83

0.72 0.06 0.07 0.19 0.06 0.06 0.08 0.07

0.06

0.71

0.85

0.82

0.07

0.63

0.09

0.30

0.06

0.13

0.08

0.10

0.06

0.06

0.16

0.20

0.07 0.06 0.12 0.09 0.06 0.76 0.06 0.06

0.84

0.24

0.00

0.67

0.43

0.79

0.13

0.84

0.08

0.78

0.15

0.08

0.47

0.06

0.00

0.12

0.91

0.07

0.07

0.73

0.77

0.09

0.17

0.09

0.26

0.15

0.07

0.10

0.13

0.14

0.00

0.09

0.08 0.00 0.08 0.06 0.07 0.80 0.07 0.00

0.80 0.07 0.41 0.08 0.33 0.07 0.09 0.06

0.93 0.07 0.24 0.06 0.11 0.07 0.19 0.08

0.06

0.92

0.06

0.00

0.06

0.27

0.11

0.00

0.96

0.00

0.10

0.00

0.07

0.00

0.06

0.00

0.90 0.11 0.88 0.88 0.90 0.00 0.00 0.07

0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.13 0.06 0.00 0.05 0.06 0.74 0.00

0.70 0.06 0.10 0.10 0.06 0.06 0.06 0.10

0.07 0.94 0.11 0.74 0.79 0.14 0.07 0.07

0.67 0.80 0.41 0.10 0.12 0.05 0.05 0.15

0.88

0.16

0.45

0.74

0.16

0.06

0.09

0.08

0.80

0.12

0.18

0.05

0.07

0.13

0.14

0.08

0.97 0.00 0.68 0.68 0.09 0.07 0.09 0.23

0.15 0.00 0.06 0.00 0.73 0.06 0.09 0.07

0.81 0.00 0.21 0.00 0.00 0.00 0.00 0.00

0.92 0.78 0.85 0.32 0.39 0.10 0.09 0.06

0.06 0.81 0.24 0.80 0.31 0.10 0.10 0.07

0.06

0.07

0.88

0.00

0.45

0.07

0.82

0.86

0.30

0.28

0.92

0.00

0.92

0.00

0.90

0.00

0.84 0.00 0.00 0.00 0.13 0.00 0.07 0.00

ABCB1

AC137834.1 − R3HDM2

ADAM10

AL139142.2 − ANKRD45

ALMS1

B3GAT1

CACNA1I

CNOT1

CNOT7

COQ10B

CRTC2

CUL3

CYP7B1

DNAJA3

DRD2

EFNA5

EIF5

ENOX1

FAHD2B

FAM120A

FSHB

FTCDNL1

FURIN

GAS8

GATAD2A

HEATR5B

HSPA9

IGSF9B

IQANK1

IRF3 − BCL2L12

KANSL1

KCNB1

LETM2

LRRC4B

MFAP3

MPHOSPH9

MRPL33 − RBKS

OLA1

PCNX3

RERE

SEPTIN3

SLCO6A1

SNORC

SORCS3

SPECC1

STAG1

TAOK2

TRANK1

VPS45

ZEB2

ZNF184

ZNF281

ZNF664 − RFLNA

ZNF823

KIAA1324L

PAN2

ADAM10

RABGAP1L

ALMS1

NCAPD3

CACNA1I

CNOT1
SETD6

VPS37A

SF3B1

DENND4B

CUL3

CYP7B1

NMRAL1

NNMT

LINC01950

CKB

CCDC122

ACTR1B

FAM120AOS
FGD3

ARL14EP

FTCDNL1
TYW5

FURIN

FAM157C

GATAD2A

CEBPZ
FEZ2

CTNNA1
SIL1

IGSF9B

BOP1

IRF3

LRRC37A
NSF

ARFGEF2

BAG4
DDHD2

NOSIP

FAM114A2
MFAP3

C12orf65
MPHOSPH9

EIF2B4

SCRN3

RNASEH2C

RERE
SLC45A1

WBP2NL

SLCO4C1

EFHD1

GSTO1

SPECC1

PCCB

INO80E
KCTD13

TRANK1

ANP32E

TEX41

HLA−C

LINC00862

CCDC92
RFLNA

ZNF823

Exc
ita

to
ry

 n
eu

ro
ns

O
lig

od
en

dr
oc

yt
es

In
hi
bi
to

ry
 n

eu
ro

ns

O
PC

s 
/ C

O
Ps

Ast
ro

cy
te

s

Per
ic
yt
es

End
ot

he
lia

l c
el
ls

M
ic
ro

gl
iaO

R
ris

k

LO
EU

F

OR

1.05

1.1

1.15

1.2

1.25

PP

0

0.5

1

risk

Down
Up

LOEUF

0

5

10

B
B

0.09 0.79 0.12 0.11 0.45 0.29 0.09 0.07

1.00 0.05 0.05 0.13 0.06 0.06 0.09 0.07

0.73 0.00 0.13 0.00 0.00 0.00 0.00 0.00

0.90 0.06 0.06 0.14 0.38 0.08 0.05 0.05

0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.11 0.01 0.92 0.06 0.05 0.05 0.06 0.06

0.00

0.06

0.99

0.86

0.00

0.00

0.00

0.08

0.00

0.06

0.00

0.06

0.00

0.00

0.00

0.00

0.97 0.00 0.06 0.06 0.24 0.05 0.12 0.09

0.70 0.00 0.21 0.08 0.08 0.09 0.09 0.00

0.82 0.00 0.07 0.00 0.00 0.00 0.09 0.00

1.00 0.64 0.06 0.08 0.06 0.06 0.16 0.07

0.81 0.23 0.06 0.06 0.14 0.15 0.07 0.09

0.77 0.00 0.09 0.72 0.06 0.06 0.00 0.20

0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00

APH1B

BIN1

CASS4

CD2AP

CD33

CLU

CR1

ECHDC3

EPHA1

INPP5D

PICALM

SCIMP

SLC24A4

UNC5CL

APH1B

BIN1

CASS4

CD2AP

SIGLEC9

CLU

CR1

PFKFB2

USP6NL

ZYX

INPP5D

PICALM

RABEP1

RIN3

TREM2

M
ic
ro

gl
ia

O
lig

od
en

dr
oc

yt
es

End
ot

he
lia

l c
el
ls

Ast
ro

cy
te

s

Exc
ita

to
ry

 n
eu

ro
ns

In
hi
bi
to

ry
 n

eu
ro

ns

Per
ic
yt
es

O
PC

s 
/ C

O
Ps

be
ta

ris
k

LO
EU

F

beta

−0.2

0

0.2

0.4

0.6

0.8

PP

0

0.5

1

risk

Down
Up

LOEUF

0

5

10

Locus Coloc

Alzheimer’s disease
C

0.10

0.06

0.12

0.74

0.98

0.00

0.49

0.15

0.09

0.12

0.37

0.09

0.21

0.00

0.13

0.00

0.73 0.11 0.00 0.00 0.06 0.00 0.00 0.00

0.98 0.94 0.00 0.00 0.00 0.00 0.00 0.00

0.13 0.10 0.08 0.75 0.06 0.07 0.06 0.07

0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00

0.75 0.06 0.17 0.57 0.10 0.13 0.16 0.06

0.91 0.92 0.92 0.92 0.92 0.63 0.91 0.48

0.72 0.22 0.00 0.41 0.13 0.07 0.00 0.00

0.92 0.50 0.00 0.00 0.50 0.42 0.00 0.00

0.06

0.05

0.10

0.09

0.06

0.00

0.06

0.00

0.86

0.92

0.01

0.00

0.06

0.06

0.06

0.08

0.58 0.41 0.05 0.14 0.05 0.76 0.86 0.29

0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00

0.06 0.20 0.00 0.37 0.07 0.74 0.06 0.10

0.00 0.00 0.00 0.70 0.06 0.06 0.00 0.00

0.81 0.78 0.87 0.06 0.47 0.30 0.06 0.16

0.66 0.73 0.83 0.00 0.08 0.03 0.04 0.04

0.30

0.03

0.16

0.03

0.78

0.82

0.00

0.00

0.00

0.07

0.00

0.09

0.03

0.03

0.05

0.03

0.12 0.05 0.06 0.76 0.10 0.05 0.07 0.12

0.06

0.06

0.91

0.71

0.85

0.00

0.06

0.06

0.00

0.09

0.19

0.00

0.00

0.05

0.00

0.06

0.07

0.00

0.07

0.07

0.00

0.06

0.08

0.00

0.73 0.11 0.00 0.00 0.00 0.00 0.00 0.03

0.06

0.10

0.23

0.06

0.00

0.07

0.96

0.95

0.11

0.96

0.07

0.08

0.00

0.09

0.00

0.06

0.43 0.86 0.13 0.06 0.07 0.13 0.04 0.03

0.96 0.95 0.11 0.09 0.83 0.06 0.06 0.06

0.17 0.86 0.06 0.12 0.06 0.08 0.06 0.06

0.75 0.25 0.00 0.00 0.00 0.00 0.00 0.00

AHI1

CD37

CD40

CLEC16A

CLECL1

EPS15L1

IQCB1

MAP3K14

MAPK1

MYBPC3

NPEPPS

ODF3B

OS9

PHGDH

PKIA

PLEC

PRDX5

PRXL2B

RGS14

STAT4

TBX6

TNFAIP8

TRAF3

ZMIZ1

ZNHIT3

AHI1

LINC00271

DBP

SLC12A5

CLEC16A

CLECL1

EPS15L1

IQCB1

DBF4B

TOP3B

MTCH2

NR1H3

EFCAB13

TYMP

DTX3

PHGDH

ZC2HC1A

PLEC

RPS6KA4

VEGFB

SSU72

HNRNPAB

LMAN2

RGS14

STAT4

ASPHD1

KCTD13

HSD17B4

TRAF3

ZMIZ1

DHRS11

Exc
ita

to
ry

 n
eu

ro
ns

In
hi
bi
to

ry
 n

eu
ro

ns

M
ic
ro

gl
ia

O
lig

od
en

dr
oc

yt
es

Ast
ro

cy
te

s

O
PC

s 
/ C

O
Ps

End
ot

he
lia

l c
el
ls

Per
ic
yt
esO

R
ris

k

LO
EU

F

OR

1.05

1.1

1.15

1.2

PP

0

0.5

1

risk

Down
Up

LOEUF

0

5

10

Multiple sclerosis

BB

Schizophrenia
ColocLocus

FA

E

D Parkinson’s disease

0.86 0.60 0.78 0.83 0.10 0.17 0.01 0.01

0.47

0.48

0.71

0.75

0.74

0.15

0.01

0.00

0.35

0.04

0.46

0.42

0.01

0.02

0.05

0.38

0.97 0.00 0.00 0.00 0.00 0.00 0.06 0.00

0.07 0.31 0.05 0.09 0.12 0.06 0.06 0.86

0.00

0.55

0.09

0.00

0.48

0.05

0.00

0.72

0.06

0.95

0.49

0.16

0.96

0.48

0.11

0.00

0.61

0.05

0.00

0.27

0.08

0.00

0.16

0.76

0.07 0.20 0.79 0.07 0.04 0.06 0.09 0.04

0.50 0.71 0.09 0.07 0.19 0.28 0.06 0.07

0.49 0.11 0.00 0.99 0.07 0.19 0.00 0.00

0.06 0.09 0.06 0.07 0.06 0.12 0.08 0.79

0.05 0.16 0.80 0.05 0.06 0.07 0.04 0.05

0.98

0.98

0.97

0.98

0.97

0.97

0.98

0.98

0.82

0.50

0.93

0.98

0.97

0.97

0.10

0.11

0.98

0.96

0.96

0.06

0.92

0.97

0.97

0.96

0.11

0.20

0.98

0.97

0.75

0.06

0.00

0.98

0.97

0.92

0.06

0.00

0.98

0.97

0.77

0.06

C005258.1 − SPPL2B

BIN3

BST1

CTSB

GPNMB

SETD1A

SPTSSB

TMEM163

TMEM175

UBAP2

WNT3

LSM7

BIN3

CCAR2

CD38

CTSB

GPNMB

NUPL2

TOMM7

STX4

NMD3

TMEM163

ATP5ME

UBAP1

AC005670.2

ARL17B

KANSL1

LRRC37A2

MAPT

Ast
ro

cy
te

s

Exc
ita

to
ry

 n
eu

ro
ns

O
lig

od
en

dr
oc

yt
es

M
ic
ro

gl
ia

O
PC

s 
/ C

O
Ps

In
hi
bi
to

ry
 n

eu
ro

ns

Per
ic
yt
es

End
ot

he
lia

l c
el
ls

Effe
ct

ris
k

LO
EU

F

Effect

0.05

0.1

0.15

0.2

0.25

PP

0

0.5

1

risk

Down
Up

LOEUF

0

5

10

B

Locus Coloc

Locus Coloc

B

Multiple Sclerosis Schizophrenia

Alzheimer Parkinson

1 2 3 4 1 2 3

1 2 3 1 2 3 4 5 6
0

2

4

6

8

0

10

20

30

40

0

5

10

0

5

10

15

20

Number of coloc genes

N
u

m
b

e
r 

o
f 

lo
c
i

Astrocytes
Endothelial cells

Excitatory neurons
Inhibitory neurons

Microglia
Multiple

Oligodendrocytes
OPCs / COPs

Pericytes

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.09.21264604doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.09.21264604
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

in PD and after lysosomal stress 39 colocalized in both OPCs / COPs and microglia. Finally, 

while not reaching our colocalization threshold, we found evidence that LRRK2, a gene 

associated with familial forms of the disorder colocalized in microglia (PP=0.56, increased 

expression leading to an increase in disease risk). Our results suggest that genetic risk for PD 

involves a complex interaction of multiple genes acting in multiple CNS cell types. 

 

For multiple sclerosis (MS) (Figure 4E), we found colocalization signals at 29 loci. AHI1, 

CLECL1 (recently colocalized using a large cortical eQTL data set 17), IQCB1, ZC2HC1A, 

PLEC, RPS6KA4, and TYMP colocalized in microglia. In addition, we observed 

colocalization signal in multiple other cell types (e.g. NR1H3 in astrocytes). As MS is primarily 

a disorder driven by the immune system, we caution that CNS cell type colocalization signals 

could be driven by pleiotropy 40 (i.e. a single variant or linked variants regulating different 

genes in different cell types). Indeed, when we tested MS genetic enrichment in cell type 

specific genes (derived from our control samples), we found the strongest enrichment for CNS 

infiltrating immune cells followed by microglia (Figure S18). Therefore, in order to assess the 

extent of pleiotropy at MS loci, we performed colocalization analysis with two immune tissues 

from GTEx 2 (blood and spleen) and 15 immune cell types  from Dice 41 (Figure S19) (Table 

S6). We observed that pleiotropy between CNS cell types and immune cell types is common 

at MS loci. Of the 25 loci with colocalization signals in CNS cell types, we also found 

colocalization in immune cell types at 23 loci. The two loci that were exclusively colocalized 

in CNS cell types were the CD40 locus (SLC12A5 in excitatory and inhibitory neurons) and 

the TNFAIP8 locus (HSD17B4 in inhibitory neurons). We caution that CD40 was previously 

colocalized with rheumatoid arthritis at the CD40 locus in immune B cells and could be a false 

negative in our analysis 42. For the 23 loci with colocalization in both CNS cell types and 

immune cells, we found consistent colocalized genes at 16 loci (e.g. AHI1, CLECL1, IQCB1, 

PLEC, STAT4, TRAF3, TYMP, VEGFB) with, typically, additional colocalized genes in 

immune cell types (e.g. only IQCB1 colocalizes at the IQCB1 locus in CNS cell types, while 

IQCB1, EAF2 and SLC15A2 colocalize in immune cell types). In summary, we identified 

putative risk genes for MS in CNS cell types but caution that these results should be interpreted 

in light of colocalization results in immune cell types. 

 

Schizophrenia had the most colocalization signals (Figure 4F) with at least one colocalized 

gene at 56 loci. Most colocalization signals were observed in excitatory neurons, which is 

consistent with the genetic enrichment of excitatory neuron specific genes in schizophrenia 43,44 

(Figure S18). For 44 loci, we found a single colocalized gene, such as FURIN in excitatory 

neurons (previously colocalized using bulk cortical eQTL data 45) or CACNA1I (a voltage 

gated calcium channel). Other interesting colocalized genes include CUL3 (in excitatory 

neurons and astrocytes), which was shown to play an important role in excitation-inhibition 

balance 46, IGSF9B (in excitatory neurons), a key regulator of inhibition in the amygdala 47, 

SF3B1 (in excitatory neurons), a splicing factor subunit, which is supported by an animal 

model of psychosis 48 or TRANK1 (in excitatory neurons), which was previously shown to 

colocalize with bipolar disorder 49 and to be upregulated by valproate 50.  

 

Fine mapping of neurological disease genes risk variants to cell type regulatory elements 

 

We next assessed whether GWAS SNPs (r2>0.8 with index SNP) overlapped regulatory 

regions 19,20 in close proximity of the colocalized gene (<100kb) in the colocalized cell types. 

We identified putative risk SNPs at more than half of the colocalized loci (56/106, Table S7). 

Notably, two AD GWAS SNPs (rs10792832 and rs3851179) overlapped a microglia specific 

enhancer connected to PICALM through PLAC-seq 19 (Figure 5A), while two other AD 
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GWAS SNPs (rs10933431 and rs10933431) were located in a microglia specific enhancer 

connected to INPP5D through PLAC-seq (Figure 5B). Interestingly, INPP5D is a phosphatase 

which hydrolyze phosphatidylinositol-3,4,5-trisphosphate into phosphatidylinositol 3,4-

diphosphate, which specifically binds to PLEKHA1 51, a gene recently associated with AD 

through proteome-wide association study 52. In addition, an AD GWAS SNP (rs117618017) 

overlapped the APH1B promoter in oligodendrocytes (Figure 5C), while another (rs7515905) 

was located in an enhancer located within the CR1 gene body (Figure 5D). Similarly, we found 

that 2 PD GWAS SNPs (rs4698412 and rs4698413) overlapped an astrocytic enhancer located 

in close proximity of CD38 (Figure 5E), and that five PD GWAS SNPs overlapped an 

enhancer close to the TSS of GPNMB (4-12kb downstream). Finally, three SNPs (rs8140771, 

rs926334 and rs732381) overlapped a neuronal enhancer located within the CACNA1I gene 

body (Figure 5G), while five MS GWAS SNPs overlapped an astrocytic enhancer located 

downstream of NR1H3 (Figure 5H).  

 

We then used SNP2TFBS 53 to identify fine-mapped SNPs that could disrupt the binding of 

specific transcription factors (Table S7). Of 506 fine-mapped SNPs, we predict that 168 disrupt 

transcription factor binding sites. Notably, rs4663105, which is located in a microglia enhancer 

24kb upstream of BIN1 (colocalized with AD), is predicted to disrupt the binding of KLF4, a 

transcription factor which was shown to regulate microglia activation 54, while rs77892763, 

which is located in a microglia enhancer connected to USP6NL through PLAC-seq (also 

colocalized with AD) is predicted to disrupt the binding of KLF5. Another example is 

rs2905435, the SCZ GWAS index SNP at the GATAD2A locus, which is located in the 

promoter region of GATAD2A, and predicted to disrupt the binding site of REST, a key 

transcriptional factor in neurogenesis 55. 

 

In summary, our integrative analysis allowed us to fine-map disease-associated genetic variants 

to cell-type specific regulatory elements, highlighting potential functional mechanisms of 

action for disease-associated variants. 

  

 
 

Figure 5: Epigenomic overlap of GWAS SNPs around colocalized genes. 

A) Genomic map indicating the location of Alzheimer GWAS SNPs (r2>0.8 with index SNP) overlapping a 

microglia specific enhancer, connected to the PICALM promoter through PLAC-seq. B) Genomic map indicating 

the location of Alzheimer GWAS SNPs (r2>0.8 with index SNP) overlapping a microglia specific enhancer, 
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connected to the INPP5D promoter through PLAC-seq. C) Genomic map indicating the location of an Alzheimer 

GWAS SNP (r2>0.8 with index SNP) overlapping the promoter of APH1B in oligodendrocytes. D) Genomic map 

indicating the location of an Alzheimer GWAS SNP (r2>0.8 with index SNP) overlapping an oligodendrocyte 

enhancer located within the CR1 gene.  E) Genomic map indicating the location of Parkinson’s disease GWAS 

SNPs (r2>0.8 with index SNP) overlapping an astrocyte enhancer upstream of CD38. F) Genomic map indicating 
the location of Parkinson’s disease GWAS SNPs (r2>0.8 with index SNP) overlapping a microglia enhancer 

located within GPNMB. G) Genomic map indicating the location of schizophrenia GWAS SNPs (r2>0.8 with index 

SNP) overlapping a neuronal enhancer located within the CACNA1I gene body. H) Genomic map indicating the 

location of multiple sclerosis GWAS SNPs (r2>0.8 with index SNP) overlapping an astrocytic enhancer located 

downstream of NR1H3. 
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Discussion: 

 

Here, we present the first eQTL study of all major cell types in the adult human brain by 

leveraging single-nucleus RNA-seq data from a large number of individuals. Integration of 

eQTLs with GWAS and cell-type specific regulatory elements allowed us to identify high-

confidence risk genes, the cell types in which these risk genes are active, and putative genetic 

variants underlying risk loci for four major brain disorders. Furthermore, we leveraged allelic 

effects to estimate whether an increase in gene expression is associated with an increase or 

decrease in disease risk, an information that is crucial for drug development and often not 

reported. 

 

One striking result of this study is that, at most GWAS loci, a single gene colocalized in a 

single cell type, allowing us to substantially refine the mechanistic hypothesis for the etiology 

of the different brain disorders. For example, in Alzheimer’s disease, we found most 

colocalization signals in microglia (e.g. BIN1 12,13, PICALM 12,13, USP6NL 13), as expected. 

However, we also found that APH1B, a key protein from the γ-secretase complex, and CR1 

colocalized only in oligodendrocytes, suggesting that oligodendrocytes play an important 

underrecognized role in Alzheimer’s disease etiology. Similarly, we found colocalization 

signals in endothelial cells only for CTSB and ATP5ME in Parkinson’s disease, or UBAP1 and 

STX4 in oligodendrocytes, suggesting an important role of oligodendrocytes and endothelial 

cells in the etiology of Parkinson’s disease. 

 

The colocalization results appeared simplest, i.e greater number of risk genes prominently 

acting in few cell types, for Alzheimer’s disease compared to Parkinson’s disease, 

schizophrenia and multiple sclerosis, which showed more complex colocalization patterns (e.g. 

GPNMB locus in Parkinson’s disease, where we find colocalization with GPNMB in microglia 

and OPCs/COPs, NUPL2 in oligodendrocytes and TOMM7 in endothelial cells). The 

simplicity of Alzheimer’s colocalization patterns is consistent with the oligogenic nature of 

Alzheimer’s disease 56, and contrasts with the more polygenic architecture of schizophrenia 

and Parkinson’s disease 56,57. 

 

For multiple sclerosis, we often found colocalization signals with different genes between CNS 

cell types and immune cell types, suggesting that disease-associated haplotypes regulate 

different genes in different cellular contexts. Future high-resolution maps of functional 

regulatory elements of CNS cell types from MS brain tissues might help resolve the context-

specificity of genetic regulation of MS associated risk genes.  

 

There are a number of limitations in this study: 1) the sample size is relatively small compared 

to eQTL studies from bulk brain tissues 2,17, limiting the statistical power to discover cis-

eQTLs; 2) we did not measure splicing which might play an important role in disease 58, 

potentially missing a subset of colocalization signals; 3) the number of eQTL discoveries is 

limited for rare cell types (e.g. 23 cis-eQTL genes in pericytes), suggesting that targeted 

enrichments may be essential to increase the number of cis-eQTLs discoveries in rare cell 

populations; and 4) the GWAS used were all related to disease risk and not disease progression. 

Hence, colocalized genes might not be therapeutically relevant at the time of diagnosis.  

 

In summary, our study provides a systematic investigation of eQTLs in cell-types of the adult 

human brain, defines a reference data set of CNS cell-type specific eQTLs and provides a 

foundational resource of high-confidence colocalized genes in disease-relevant cell types for 
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robust future functional studies of neurodegenerative disease mechanisms using appropriate 

iPSC-based human cell models. 
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Online Methods: 

 

Nuclei isolation and single nuclei RNA sequencing 

 

We generated brain single nuclei RNA-seq data for two datasets (Roche_MS, Roche_AD, 

described below), that we complemented with raw sequencing data from three published 

datasets (Columbia_AD 16, Mathys_AD 14 and Zhou_AD 15) (Table S1). Samples originated 

from the prefrontal cortex (Roche_MS, Columbia_AD 16, Mathys_AD 14 and Zhou_AD 15), 

temporal cortex (Roche_AD) and deep white matter (Roche_MS, Roche_AD and 

Columbia_AD). A description of the nuclei isolation and single nuclei RNA-sequencing for 

the unpublished datasets is provided below: 

 

The Roche multiple sclerosis dataset (Roche_MS) consists of 166 samples from 83 unique 

individuals (29 controls and 54 cases). For cases, samples were taken from multiple different 

lesion types (if available) assessed by a neuropathologist (normal appearing white matter 

(NAWM), active lesions (AL), chronic active lesions (CAL), chronic inactive lesions (CIL), 

remyelinating lesions (RL), normal appearing grey matter (NAGM), grey matter lesions 

(GML)). 

 

The Roche Alzheimer’s disease dataset (Roche_AD) consists of 80 samples from 40 unique 

individuals (one sample from the temporal cortex and one from deep white matter for each 

individual).  

 

For both datasets, nuclei were isolated from fresh-frozen 10μm sections, using Nuclei Pure 

Prep Nuclei Isolation Kit (Sigma Aldrich) with the following modifications. The regions of 

interest were macro-dissected with a scalpel blade, lysed in Nuclei Pure Lysis Solution with 

0.1% Triton X, 1mM DTT and 0.4U/ul SUPERase-In™ RNase Inhibitor (ThermoFisher 

Scientific) freshly added before use, and homogenized with the help first of a 23G and then of 

a 29G syringe. Cold 1.8M Sucrose Cushion Solution, prepared immediately before use with 

the addition of 1mM DTTand 0.4U/ul SUPERase-In™ RNase Inhibitor, was added to the 

suspensions before they were filtered through a 30μm strainer. The lysates were then carefully 

and slowly layered on top of 1.8M Sucrose Cushion Solution previously added in new 

Eppendorf tubes. Samples were centrifuged for 45 minutes at 16000xg at 4°C. Pellets were re-

suspended in Nuclei Storage Buffer with 0.4U/ul SUPERase-In™ RNase Inhibitor, transferred 

in new Eppendorf tubes and centrifuged for 5 minutes at 500xg at 4°C. Pellets were again re-

suspended in Nuclei Storage Buffer with 0.4U/ul SUPERase-In™ RNase Inhibitor, and 

centrifuged for 5 minutes at 500xg at 4°C. Finally, purified nuclei were re-suspended in Nuclei 

Storage Buffer with 0.4U/ul SUPERase-In™ RNase Inhibitor, stained with trypan blue and 

counted using Countess II (Life technology). A total of 12,000 estimated cells from each 

sample were loaded on the 10x Single Cell Next GEM G Chip. cDNA libraries were prepared 

using the Chromium Single Cell 3’ Library and Gel Bead v3 kit according to the manufacturer’s 

instructions. cDNA libraries were sequenced using the Illumina NovaSeq 6000 System and 

NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles), aiming at a sequencing depth of minimum 

30K reads/nucleus. 

 

Single nuclei RNA-seq analysis 

 

All samples from the Roche_MS datasets were processed with CellRanger (v3.1.0), using the 

GRCh38 reference human genome and the ensembl Homo_sapiens GRCh38.96 reference 
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annotation (modified to count intronic reads). Gene expression quantifications for each nucleus 

were obtained from the ‘filtered_feature_bc_matrix’ CellRanger (v3.1.0) output folder. We 

identified doublets using scDblFinder 59 (version 1.4.0), applied to each sample separately. 

After removing doublets, we also removed nuclei with less than 300 features and 500 counts, 

as well as samples with less than 500 cells. We did quality control with SampleQC with default 

parameters (version 0.4.5) 60. SampleQC allowed us to identify a subset of cells in many 

samples with both high splice ratios and high mitochondrial proportions (90% of reads being 

spliced), which were excluded. After excluding outliers, we again excluded any samples with 

fewer than 500 cells remaining, resulting in 750,614 nuclei across 166 samples passing QC. 

Samples were integrated using conos 61 (50 PCs, resolution=8) and broad clusters were 

annotated based on the expression of canonical markers (SLC17A7 for excitatory neurons, 

GAD2 for inhibitory neurons, AQP4 for astrocytes, MOG for oligodendrocytes, PDGFRA for 

oligodendrocytes precursors cells and committed oligodendrocytes precursors (OPCs / COPs), 

C1QA for Microglia, CLDN5 for endothelial cells and RGS5 for Pericytes). 

 

All samples from the AD datasets (Roche_AD, Columbia_AD, Mathys_AD 14 and Zhou_AD 
15) were processed  with CellRanger (v3.1.0), using the GRCh38 reference human genome and 

the ensembl Homo_sapiens GRCh38.91 reference annotation (modified to count intronic 

reads). Nuclei were defined as barcodes with at least 500 unique molecular identifiers (UMI) 

(excluding mitochondrial RNA) and less than 5% of mitochondrial RNA. If a sample had more 

than 10k nuclei, we kept the 10k nuclei with the highest number of UMI. Doublet were 

identified using scDblFinder 59 (version 1.4.0). Data from the different samples were integrated 

using both Conos 61 (50 PCs, resolution=8) and Harmony 62 (30 PCs, resolution=0.8) and 

labelled independently using the canonical markers described above. A subset of small clusters 

from the Conos integration expressed multiple canonical markers and were labeled as “mixed”. 

Nuclei that were not labeled as “mixed” were annotated with the Conos cell type labels. The 

remaining nuclei were labeled with the Harmony cell type label. 

 

Pseudo-bulk gene expression matrices were then generated by summing all counts for each 

gene in each patient in each cell type and normalized by scaling the total counts per patient for 

each cell type to 1 million. 

 

Genotyping QC 

 

We genotyped samples from the Roche_AD and Roche_MS datasets using the GSAv3 illumina 

CHIP. Genotypes were then imputed using the Haplotype Reference Consortium (HRC) 

reference panel (version r1.1) 63 and lifted over to GRCh38.  Genotype processing and quality 

control was performed using Plink v1.956. SNPs with imputation score <0.4 or with 

missingness greater than 5% were excluded, as well as individuals with more than 2% of 

missing genotypes. In addition, we obtained whole genome sequencing results for the 

ROSMAP datasets (Columbia_AD 16, Mathys_AD 14, Zhou_AD 15) 64. Similarly, SNPs with 

missingness greater than 5% were excluded, as well as individuals with more than 2% of 

missing genotypes. Genetic variants that were common to imputed genotypes and whole 

genome sequencing were then merged. Post-merging, SNPs with minor allele frequency 

(MAF)<5% or deviating from Hardy-Weinberg equilibrium (Pvalue <1e-6) were excluded. We 

identified related individuals (pi_hat>0.2) and only kept one individual from related pairs. In 

addition, individuals deviating from more than three standard deviations from 1000 genomes 

European populations57 on the first and second components of a multidimensional scaling 

(MDS) reduction were excluded (Figure S20). Finally, only individuals with both genotype 
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and single nuclei RNA-seq were retained for the eQTL analysis. After QC, we obtained high 

quality genotypes for ~5.3 million SNPs (MAF>5%) in 196 individuals. 

 

eQTL mapping 

 

We mapped cis-eQTL within a 1 megabase (MB) window of the TSS of each gene expressed 

in at least 5% of the nuclei (belonging to a broad cell type) using fastQTL 65 (7208-10846 genes 

across the 8 cell types). We used the following covariates: 3 first genotyping principal 

components (PCs), disease status (MS, AD, control or other), study (Roche_MS, Roche_AD, 

Columbia_AD 16, Mathys_AD 14 and Zhou_AD 15) and the 90 first expression PCs. This 

number of expression PCs maximized the number of cis-eQTL detected (Figure S21). While 

the number of expression PCs is high in comparison to bulk RNA-seq eQTL studies, the results 

appear robust for multiple reasons: 1) eQTL strongly replicated in the metabrain 17 bulk RNA-

seq eQTL study (Figure 2C and S3A), 2) were enriched close to the TSS (Figure 2D), 3) 

affected less constrained genes (Figure 2D), 4) were enriched around cell type specific 

epigenomic marks (Figure 3A), 5) the pvalue distribution were sensible (Figure S2),  and, 6), 

random permutation of the gene expression labels lead to only two genes with a significant 

eQTL (5% FDR). Multiple testing correction was performed using the qvalue R package 25 on 

the gene-level pvalues (bpval). Estimates of the proportion of true alternative hypothesis (i.e. 

proportion of genes with a cis-eQTL, Figure S2) was performed using the pi1 statistic from 

the qvalue R package 25. Independent cis-eQTL mapping was done using QTLtools 66, with the 

same covariates and window size as the original cis-eQTL analysis. 

 

Sharing of brain cell type eQTL with metabrain cortex eQTL 

 

We obtained p-values from cortical samples (N=2970) from the metabrain study 17 

corresponding to the most significant SNP-gene pairs for each cis-eQTL gene (N=6108 at 

5%FDR). Sharing of eQTL was computed using the pi1 statistic from the qvalue R package 25 

or as the proportion of metabrain SNP-gene pairs with a p-value <0.05. 

 

Epigenome enrichments 

 

We used QTLtools 66(fdensity) to test whether cell type specific regulatory elements were 

enriched around our cell type cis-eQTL (N=6108). For each 10kb bin in a 2MB window around 

the cis-eQTL, fdensity computes the number of functional elements overlapping the bin. The 

epigenomic data were obtained from three different studies (Nott et al. 19, Corces et al. 20 and 

the DLPFC region for Fullard et al. 23), and consists of ATAC-seq (bulk 23 or single nuclei 20) 

and CHIP-seq 19(H3K4me3 and H3K27ac) from diverse brain cell types. For each dataset, we 

defined cell type specific epigenomic marks as epigenomic marks observed in a single cell 

type. Epigenomic regions were lifted over to hg38 (if not provided for this genome build by 

the authors). We repeated the enrichment analysis (fdensity) for neuronal cis-eQTL using 

different filters. None of the filters (listed below) showed an enrichment of neuron specific 

regulatory elements around neuron cis-eQTL: 1) Restricting to most significant eQTL in 

neurons (0.1% FDR), 2) eQTL detected in neurons with 20 PCs (instead of 90) (5%FDR), 3) 

eQTLs for genes expressed in at least 20% of the nuclei (instead of 5%), 4) eQTLs only 

significant in neurons (5% FDR), 5) cell type specific eQTLs using our negative binomial 

model (5% FDR), and 6) eQTLs obtained using stringent QC criteria at nuclei level (at least 

1200 UMI or at least 1500 UMI).  

 

Interaction model: 
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We tested whether the effect size of our cis-eQTL (N=6108, 5% FDR) were cell type specific 

using a negative binomial mixed model (as implemented in the R package glmmTMB 67). First, 

we tested whether the effect sizes of the eQTL in the detected cell types were different from 

the average effect sizes in all other cell types. For each gene, the model used was the following:  

raw counts ~ genotype (0,1,2) + cell_type + genotype:cell_type_eqtl (cell type in which the 

eQTL was discovered, coded as 0,1) + PC 1-3 genotype matrix + PC 1-5 expression matrix + 

study + disease_status + (1|individual) (random effect), using as offset the log of the library 

size. The pvalue of the interaction effect was then corrected for multiple testing using the 

Benjamini and Hochberg procedure61. Second, we tested whether the effect sizes of the eQTL 

in the detected cell types were different from at least one other cell type. We used a similar 

model as described above, except that the specified interaction term was “genotype*cell_type” 

instead of “genotype:cell_type_eqtl”. Interaction pvalues were Bonferroni corrected across cell 

types (for each gene) and the minimum corrected pvalue was retained. These corrected pvalues 

were then further corrected for multiple testing using the Benjamini and Hochberg procedure 
68. Finally, we used the same results but retained the maximum pvalue of the interaction terms 

(for each gene) in order to assess whether the cis-eQTL in the discovered cell type had a 

different effect than all other cell types. These pvalues were then corrected for multiple testing 

with the Benjamini and Hochberg procedure 68. 

 

Fine-mapping of cis-eQTLs 

 

We used CaveMan 69 to fine-map our cis-eQTLs. Briefly, CaveMan performs 10,000 eQTL 

analysis after bootstrapping the data (i.e. new datasets are created with randomly picked 

individuals with replacement). CaveMan then records the proportion of times that a given SNP 

is ranked among the top 10 most associated SNPs. These proportions are used to compute the 

CaVEMaN score, which is then calibrated to estimate the causal probability for each SNP. 

 

GWAS summary statistics 

 

We obtained publicly available GWAS summary statistics for Alzheimer’s disease 4, multiple 

sclerosis 29 and schizophrenia 28. For Parkinson’s disease, we performed an inverse-variance-

weighted meta-analysis 70 using summary statistics from Nalls et al. 2014 26 and Nalls et al. 

2019 27.  

 

Heritability enrichment 

 

We used the normalized (CPM) pseudo-bulk gene expression matrix from control individuals 

from our MS_Roche dataset for this analysis (N=83). For each gene, we computed the average 

CPM across samples resulting in one expression value for each gene in each cell type. We only 

retained genes with a mean CPM value greater than 1 and genes for which we had a gene-level 

genetic enrichment estimate from MAGMA 71. We then computed the proportion of the total 

expression of each gene across the different cell types (i.e. mean_cpm/sum(mean_cpm)). This 

captures how specific a gene is to a given cell type (e.g. 92% of AQP4 expression was observed 

in astrocytes). Finally, we tested the top 1000 most specific genes (for each cell type) for 

enrichment in GWAS associations using MAGMA 71. 

 

Colocalization 
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For the Alzheimer 4, Parkinson 26,27 and multiple sclerosis 29 GWAS, we defined loci as the 

coordinates of the most extreme coordinates of SNPs in LD (r2>0.1 in 1000 genomes 72 EUR 

individual) with the reported index SNPs using LDlinkR 73. For the schizophrenia GWAS 28, 

we used the reported loci coordinates (r2>0.1 with index SNP). For each loci, we then tested 

colocalization between the GWAS and eQTL signals for genes with at least 10 SNPs using the 

“coloc.abf” function of the Coloc R package8 (with default prior). Minor allele frequencies 

were derived from our eQTL data set for colocalization analysis with the CNS eQTLs. For 

GTEx7, we used the reported MAF from the GTEx consortium. For DICE 41, we used the MAF 

of the 1000 genomes European reference population 72. Allelic directions and estimates of the 

effect of increasing gene expression by one standard deviation on disease risk were derived 

from the effect sizes of the SNP with the most significant eQTL pvalue (and most significant 

GWAS pvalue for ties). 

 

Transcription factor SNP-motif association 

 

SNP2TFBS 53 is a resource indicating whether common genetic variants disrupt transcription 

factor binding sites. We used the webtool available at: 

https://ccg.epfl.ch/snp2tfbs/snpselect.php to test whether our list of GWAS linked SNPs 

(r2>0.8 with index SNP) overlapping an epigenomic mark in close proximity to a colocalized 

gene (<100kb) could potentially disrupt a transcription factor binding site. Briefly, SNP2TFBS 

scores motifs from transcription factors (using position weight matrices) for both alleles at each 

SNP position and outputs whether SNPs are predicted to abolish, create or change the affinity 

of one or several transcription factor (TF) binding sites. 
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Data availability 

 

A shinyApp to browse the result of this study is available at: 

https://malhotralab.shinyapps.io/brain_cell_type_eqtl/ 

 

The full eQTL summary statistics are available on zenodo at: 

https://doi.org/10.5281/zenodo.5543734 
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Supplementary figures legends 

 

Figure S1: Mean expression across sample 

The mean count per million (CPM) per cluster are shown for canonical markers of cell type 

identity (z-scaled for each cell type). 

 

Figure S2: Distribution of cis-eQTL pvalues 

Histograms of the cis-eQTL pvalues for each gene for the different cell types. The pi1 statistic 

estimates the proportion of true alternative hypothesis (i.e. the proportion of genes with a cis-

eQTL). 

 

Figure S3: Replication of cis-eQTLs in a large cortical eQTL study 

A) Histograms of cortical SNP-gene pvalues matching our cis-eQTLs. The ‘prop’ label 

indicates the proportion of pvalues that are below 0.05, while the ‘pi1’ label indicates an 

estimate of the proportion of cis-eQTLs that replicate. B) LOEUF score (a measure of whether 

genes are constrained) for replicating cis-eQTLs (p<0.05) and non-replicating cis-eQTLs 

(p>0.05). Lower scores indicate that genes are more constrained. C) Absolute distance to the 

TSS for replicating (p<0.05) and non-replicating cis-eQTLs (p>0.05). 

 

Figure S4: Location of cis-eQTLs 

The number of cis-eQTLs that are located upstream, downstream or within the gene body of 

the affected gene are shown. 

 

Figure S5: Rank of affected cis-eQTL genes. 

The proportion of cis-eQTLs affecting the closest gene (rank =1), second closest gene (rank=2), 

third closest gene (rank=3), fourth closest gene (rank=4), fifth closest gene (rank=5), or further 

(rank>5) are shown for each cell type. 

 

Figure S6: Expression level of cis-eQTL genes. 

A) Median CPM (log2 +1) are shown for genes with a cis-eQTL and genes without a cis-eQTLs 

(for all glial or neuronal cell types. B) Median CPM (log2 +1) are shown for genes with a cis-

eQTL and genes without a cis-eQTLs (for all cell types). Pvalues were obtained using a 

Wilcoxon rank-sum test and are not corrected for multiple testing. 

 

Figure S7: Independent cis-eQTL discoveries and properties. 

A) Schematic representation of the effect of an additional independent SNP on gene expression. 

B) Number of independent cis-eQTLs (5% FDR) for each cell type. C) Distribution of 

independent cis-eQTLs around the TSS. D) Absolute distance to the TSS for the main cis-

eQTL and the secondary cis-eQTL. 

 

Figure S8: Fine-mapping of cis-eQTLs. 

A) Proportion of fine-mapped SNPs overlapping and epigenomic mark for different causal 

probability thresholds. B) Distribution of causal probabilities for cis-eQTLs in the different cell 

types. 

 

Figure S9: Enrichment of cell type specific epigenomic marks around cis-eQTLs (Nott) 

Enrichment of cell type specific epigenomic marks (CHIP-seq of H3K4me3 and H3K27ac) 

around cis-eQTLs for each cell type. The number of cell type specific epigenomic marks was 

computed for each 10kb around the cis-eQTLs in a 2MB window. 
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Figure S10: Enrichment of cell type specific epigenomic marks around cis-eQTLs (Fullard) 

Enrichment of cell type specific epigenomic marks (ATAC-seq on NeuN+ and NeuN- sorted 

nuclei) around cis-eQTLs for each cell type. The number of cell type specific epigenomic 

marks was computed for each 10kb around the cis-eQTLs in a 2MB window. 

 

Figure S11: Absolute distance to the TSS for genes with a cell type specific genetic effect 

A) Absolute distance to the TSS for cis-eQTL genes with (and without) a different genetic 

effect in the discovered cell type than the aggregate genetic effect in all other cell types 

(5%FDR). B) Absolute distance to the TSS for cis-eQTL genes with (and without) a different 

genetic effect in the discovered cell type than at least one other cell type (5%FDR). C) Absolute 

distance to the TSS for cis-eQTL genes with (and without) a different genetic effect in the 

discovered cell type than all other cell types (5%FDR). 

 

Figure S12: Constraint scores for cell type specific cis-eQTLs 

A) LOEUF scores for genes with (and without) a cis-eQTL with a different genetic effect in 

the discovered cell type than the aggregate genetic effect in all other cell types (5%FDR). B) 

LOEUF scores for genes with and without a cis-eQTL with a different genetic effect in the 

discovered cell type than at least one other cell type (5%FDR). C) LOEUF scores for genes 

with and without a cis-eQTL with a different genetic effect in the discovered cell type than all 

other cell types (5%FDR). 

 

Figure S13: Genetic enrichment of cell type specific cis-eQTLs 

Genetic enrichment pvalue obtained using MAGMA for genes with a cis-eQTLs that have a 

different effect size in the discovered cell types than all other cell types (192 genes in total at 

5% FDR). 

 

Figure S14: Examples of cell type specific cis-eQTLs. 

The level of expression for different genotypes is shown for four different genes. Each dot 

represents one individual. The displayed pvalue is the interaction pvalue testing whether the 

genetic effect in the discovered cell type is different than the aggregate genetic effects across 

all other cell types. 

 

Figure S15: Distribution of interaction pvalues for cell type specific cis-eQTLs 

Histograms of interaction pvalues testing for cell type specific effects. For cis-eQTLs (5% 

FDR) discovered in each cell type (rows), we tested whether the genetic effect for the same 

SNP-gene were significantly different in the other cell types (columns). The pi1 statistic25 

estimated the proportion of true alternative hypothesis (i.e. the proportion of SNP-gene pairs 

with a different genetic effect in the tested cell type). 

 

Figure S16: Number of colocalized loci 

Number of colocalized loci (blue, posterior probability >0.7) and total number of loci tested 

(red). 

 

Figure S17: Expression of Alzheimer colocalized genes 

Median log2(CPM+1) for each colocalized genes in each cell type across the 196 individuals. 

 

Figure S18: Genetic enrichment of cell type specific genes 

Enrichment strength (-log10P) of the top 1000 most specific genes in each cell type in genetic 

associations from the GWAS of the different traits. 
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Figure S19: Colocalization results for multiple sclerosis in immune tissues and cell types 

Posterior probabilities of shared genetic signal between the multiple sclerosis GWAS and 

eQTL discovered in immune tissues from GTEx7 (blood, spleen) and immune cell types. The 

OR column indicates the odds ratio of the top GWAS SNP at the locus. The closest gene to the 

top GWAS signal is indicated on the left, the colocalized genes is indicated on the right. The 

risk column indicates whether an increase in gene expression leads to an increase in disease 

risk (red), a decrease in disease risk (blue) or whether the colocalization signal is due to a 

splicing QTL (orange). The LOEUF column indicates whether the gene is constrained (low 

score) or not (high score). 

 

Figure S20: Multidimensional scaling of genotyping data 

MDS1 and MDS2 of our genotyped samples (in pink) with individuals from the 1000 genomes 

project. The red squares indicate 3 standard deviations on MDS1 and MDS2 derived from EUR 

individuals from the 1000 genomes project. 

 

Figure S21: Number of cis-eQTLs discovered in function of number of principal components 

Number of cis-eQTLs discovered (5% FDR) in function of the number of gene expression 

principal components used as covariate for the 8 major brain cell types. 
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Supplementary tables legends 

 

Table S1: Number of samples/individuals per dataset 

Number of samples and individuals from the 5 different datasets we used in this study. 

 

Table S2: cis-eQTLs results 

Cis-eQTL analysis results for all genes tested in 8 major brain cell types. Only the best SNP 

per gene is reported (even if not significant). 

 

Table S3: Fine-mapping results 

Fine-mapping results for cis-eQTL genes (5% FDR). 

 

Table S4: Cell type specific cis-eQTLs results 

Results from our interaction models testing for a cell type specific genetic effect. 

 

Table S5: Colocalization results  

Colocalization results for Alzheimer’s disease, Parkinson’s disease, schizophrenia and multiple 

sclerosis in cell types from the central nervous system. 

 

Table S6: Colocalization results for multiple sclerosis in immune tissues/cell types  

Colocalization results for multiple sclerosis in GTEx immune tissues (blood and spleen) and 

immune cell types from Dice. 

 

Table S7: Epigenomic overlap of GWAS SNPS around colocalized genes 

Epigenomic marks overlapping a GWAS SNP (r2>0.8 with index SNP) within 100kb from a 

colocalized gene in the colocalized cell type for Alzheimer’s disease, Parkinson’s disease, 

schizophrenia and multiple sclerosis. 
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