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Abstract

Background: The importance of cell type-specific epigenetic variation of non-coding regions in neuropsychiatric

disorders is increasingly appreciated, yet data from disease brains are conspicuously lacking. We generate cell type-

specific whole-genome methylomes (N = 95) and transcriptomes (N = 89) from neurons and oligodendrocytes obtained

from brain tissue of patients with schizophrenia and matched controls.

Results: The methylomes of the two cell types are highly distinct, with the majority of differential DNA methylation

occurring in non-coding regions. DNA methylation differences between cases and controls are subtle compared to cell

type differences, yet robust against permuted data and validated in targeted deep-sequencing analyses. Differential DNA

methylation between control and schizophrenia tends to occur in cell type differentially methylated sites, highlighting

the significance of cell type-specific epigenetic dysregulation in a complex neuropsychiatric disorder.

Conclusions: Our results provide novel and comprehensive methylome and transcriptome data from distinct cell

populations within patient-derived brain tissues. This data clearly demonstrate that cell type epigenetic-

differentiated sites are preferentially targeted by disease-associated epigenetic dysregulation. We further show

reduced cell type epigenetic distinction in schizophrenia.
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Background

Schizophrenia is a lifelong neuropsychiatric psychotic dis-

order affecting 1% of the world’s population [1]. Genetic

dissection of schizophrenia risk has revealed the polygenic

nature of the disorder [2–4]. Many of the schizophrenia

risk loci are located in the non-coding regions of the

genome, suggesting gene regulation plays a role in disease

pathology. Indeed, a large number of these risk loci are

associated with alterations in the gene expression in

schizophrenia [2, 5, 6]. These observations implicate epi-

genetic mechanisms as potential mediators of genetic risk

in schizophrenia pathophysiology. Epigenetic mechanisms,

such as DNA methylation, may have particular relevance

for human brain development and neuropsychiatric

diseases [7–9]. Previous studies found that changes in

DNA methylation associated with schizophrenia are

significantly enriched with DNA methylation changes

from prenatal to postnatal life [7]. Moreover, genome-

wide association studies (GWAS) of schizophrenia risk

loci were over-represented in variants that affect DNA

methylation in fetal brains [10].

Prior studies of the genetic and epigenetic risks for

schizophrenia have some limitations, however, including

the use of pre-defined microarrays, which traditionally

focused on CpG islands and promoters, for methylation

profiling. Unbiased, genome-wide analyses of DNA

methylation are revealing that variation in DNA methy-

lation outside of promoters and CpG islands define the

critical epigenetic difference between diverse cell types
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[11, 12]. Additionally, previous genomic studies of schizo-

phrenia have used brain tissue samples containing a

heterogeneous mixture of cell types, although gene

expression patterns vary considerably across cell types

in the human brain [13–17]. To address these concerns,

we carried out whole-genome methylome and tran-

scriptome analyses using postmortem human brain

tissue that underwent fluorescence-activated nuclei

sorting (FANS) [18] into neuronal (NeuN+) and oligo-

dendrocyte (OLIG2+) cell populations. Both neurons and

myelin-forming oligodendrocytes have been implicated in

schizophrenia pathophysiology [19, 20] and may be

functionally dependent on one another for proper signal-

ing in the brain [21]. Tissue was dissected from Brodmann

area 46 (BA46) of the dorsolateral prefrontal cortex, a key

brain region at risk in schizophrenia [1, 22]. We used

whole-genome bisulfite sequencing (WGBS) to obtain an

unbiased assessment of epigenetic modifications asso-

ciated with schizophrenia and additionally carried out

whole-genome sequencing (WGS) and RNA sequencing

(RNA-seq) of the same samples to document transcrip-

tomic consequences while accounting for the genetic

background differences.

Integrating these data, we demonstrate extensive diffe-

rential DNA methylation between neurons and oligoden-

drocytes. Comparisons to previous studies using bulk

tissues indicate that they were generally biased toward

neuronal populations. Our resource thus offers com-

prehensive and balanced analyses of molecular variation

in control and disease brains, including novel information

from a major yet relatively underexplored brain cell popu-

lation (oligodendrocytes). This comprehensive and novel

dataset allows us to demonstrate subtle yet robust DNA

methylation differences between control and schizophre-

nia samples, which are highly enriched in sites that are

epigenetically differentiated between the two cell types.

Moreover, we show that schizophrenia-associated DNA

methylation changes reduce the cell type methylation dif-

ference. Together, these data indicate that the integration

of multiple levels of data in a cell type-specific manner

can provide novel insights into complex genetic disorders

such as schizophrenia.

Results

Divergent patterns of DNA methylation in human brain

cell types

We performed FANS [18] using postmortem tissue

dissected from BA46 of the dorsolateral prefrontal cortex

using NeuN andOLIG2 antibodies (Fig. 1a; Additional file 1:

Table S1; see the “Methods” section). Immunofluorescent

labeling indicates that NeuN-positive nuclei and OLIG2-

positive nuclei following FANS (hereinafter “NeuN+
” or

“OLIG2+”) represent neurons within the cerebral cortex

and oligodendrocytes and their precursors, respectively

(Fig. 1b–d). We analyzed genomic DNA (gDNA) and total

RNA from the same nuclei preparations in NeuN+ or

OLIG2+ by WGBS and RNA-seq. We additionally carried

out WGS of the brain samples to explicitly account for the

effect of genetic background differences.

Whole-genome DNA methylation maps of NeuN+

(N = 25) and OLIG2+ (N = 20) from control individuals

(Additional file 1: Table S1) show a clear separation of

the two populations (Fig. 2a). Previously published

whole-genome methylation maps of neurons [27] co-

segregate with NeuN+. On the other hand, previously

generated NeuN− methylomes [27] cluster as outliers of

OLIG2+ samples, potentially due to the inclusion of

other cell types compared to our cell-sorted samples.

We identified differentially methylated CpGs between

cell types, which we refer to as “differentially methylated

positions (DMPs),” using a statistical method that allows

us to explicitly take into account the effect of covariates

(Additional file 1: Table S2; see the “Methods” section),

while handling variance across biological replicates as

well as the beta-binomial nature of read count distri-

bution from WGBS [29]. Despite the large number of

CpGs (~ 25 million out of the total 26 million CpGs in

the human genome have been analyzed), we identify

numerous DMPs between NeuN+ and OLIG2+ after cor-

recting for multiple testing. At a conservative Bonferroni

P < 0.05, over 4 million CpGs are differentially methyl-

ated between these two cell types, revealing highly

distinct cell type difference in gDNA methylation (Fig. 2a,

b). On average, DMPs between NeuN+ and OLIG2+

exhibit a 32.6% methylation difference. NeuN+ tends to

be more hypermethylated than OLIG2+ (Fig. 2b; 64% of

DMPs, binomial test, P < 10−16). This observation is

consistent with NeuN+ being more hypermethylated

than non-neuronal populations [27].

As expected from regional correlation of DNA methy-

lation between adjacent sites [30–32], many DMPs occur

near each other, allowing us to identify “differentially

methylated regions” or “DMRs” (defined as ≥ 5 signifi-

cant DMPs in a 50-bp region) spanning 103MB in the

human genome, exhibiting mean methylation difference

of 38.3% between cell types (Fig. 2c, Additional file 2:

Table S3). Many DMRs reside in introns and distal inter-

genic regions (Fig. 2d), which are traditionally viewed as

“non-coding.” Chromatin state maps based on six chro-

matin marks [28] indicate that many DMRs, especially

those located in introns and distal intergenic regions,

exhibit enhancer chromatin marks, in particular, brain

enhancers (OR between 2.6- and 4.6-fold, P < 0.01,

Fig. 2e, Additional file 1: Table S4). In fact, over 60% of

all DMRs show enhancer-like chromatin features in the

brain (Additional file 3: Figure S1). These results high-

light the regulatory significance of non-coding regions of

the genome. Notably, currently available arrays such as
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the Illumina 450K do poorly in terms of targeting

putative epigenetic regulatory loci (Fig. 2d).

NeuN+-specific hypo-methylated regions are signifi-

cantly enriched in recently identified NeuN+-specific

H3K4me3 and H3K27ac peaks [9] (Fig. 2f; Fisher’s exact

test OR = 7.8, P < 10−15). H3K4me3 and H3K27ac peaks

in the NeuN− populations also show significant enrich-

ment of OLIG2+-specific hypo-methylation, although the

degree of enrichment is less strong than NeuN+ corres-

pondence (Fisher’s exact test OR = 4.8, P < 10−15), again

Fig. 1 (See legend on next page.)
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potentially due to the inclusion of other types of cells.

WGBS data is complementary to ChIP-seq data in terms

of resolution and coverage. While ChIP-seq provides

resolution in the scale of several thousand base pairs (for

example, peak sizes in previous study [9] are on average

several kilobases and extend up to several hundred

kilobases), WGBS data offers base pair resolution. Even

though DMPs are generally concentrated around the

center of ChIP-seq peaks, some peaks show more diffuse

patterns, indicating that incorporating DMP information

could offer fine-scale resolution of histone modification

in individual genomic regions (Fig. 2g, Additional file 3:

Figure S2).

We further examined DNA methylation of cytosines

that are not in the CpG context, as nucleotide resolution

whole-genome DNA methylation maps have begun to

reveal the potential importance of non-CG methylation

(CH methylation, where H = A, C, or T) particularly in

neuronal function [27]. We observed that low levels of

CH methylation were present in NeuN+ but nearly

absent in OLIG2+ (Additional file 3: Figure S3), consis-

tent with previous reports [27]. CH methylation is

primarily associated with CA nucleotides (69.4%),

followed by CT (26%) and CC (4.6%) (Additional file 3:

Figure S3). In addition, gene body mCH values negatively

correlate with gene expression in NeuN+ (Spearman’s rho

− 0.16, P < 10−10; Additional file 3: Figure S3). Therefore,

CH patterns at gene bodies provide an additional layer of

gene expression regulation that is specific to neurons

while absent in oligodendrocytes in the human brain.

Strong association between cell type-specific DNA

methylation and expression

We next performed RNA-seq using RNAs extracted from

the nuclei-sorted populations (see the “Methods” section).

NeuN+ and OLIG2+ transcriptomes form distinctive

clusters (Fig. 3a). Transcriptomic data from cell-sorted

populations clustered closer to bulk RNA-seq data from

the cortical regions but were distinct from those from the

cerebellum and whole blood (Additional file 3: Figure S4).

We further show that previously generated bulk RNA-seq

data [5, 6] have higher proportion of NeuN+ compared

with OLIG2+ (Fig. 3b), indicating that these previously

generated bulk RNA-seq data are biased toward neurons.

The higher neuronal proportion in bulk RNA-seq is

highlighted also using an independent single-nuclei data

(Additional file 3: Figure S5).

We show that 55% of genes show significant change in

expression between NeuN+ and OLIG2+ (|log2(fold change)

| > 0.5 and Bonferroni correction < 0.05; Additional file 1:

Table S5). NeuN+- and OLIG2+-specific genes (defined as

significantly upregulated in NeuN+ compared to OLIG2+

and vice versa) are enriched for known markers of specific

cell types of the brain. Specifically, NeuN+-specific genes

are enriched for excitatory and inhibitory neurons, whereas

OLIG2+-specific genes show strong enrichment for oligo-

dendrocytes and lower enrichment for oligodendrocyte

precursor cells and astrocytes (Fig. 3c). Divergent DNA

methylation between cell types can explain a large amount

of gene expression variation between cell types (Fig. 3d,

Spearman’s rho = − 0.53, P < 10−15). Significant correlation

extends beyond the promoter regions (Additional file 3:

Figure S6),

Differential DNA methylation associated with

schizophrenia

We next analyzed whole-genome methylation maps

from brain tissue from patients with schizophrenia (28

NeuN+ and 22 OLIG2+) and contrasted these data with

data from matched controls (25 NeuN+ and 20 OLIG2+;

see the “Methods” section) described in the previous

section. Compared to the robust signal of cell type dif-

ference, DNA methylation changes associated with

schizophrenia are subtler. At a moderately stringent

FDR < 0.2, we identify 261 individual CpGs (60 in NeuN+

and 201 in OLIG2+) that are differentially methylated

between control and schizophrenia. Applying additional

filtering for high-coverage sites (20× in at least 80% of

samples per disease-control group), we identify a total of

97 CpGs (14 NeuN+ and 83 OLIG2+ specific) at FDR < 0.2

(Additional file 1: Tables S6–S7). Results of differential

DNA methylation analyses in the rest of the paper all refer

to those from the filtered dataset, and differentially me-

thylated sites between case and control are referred to as

(See figure on previous page.)

Fig. 1 Experimental design and FANS workflow example. a Postmortem brain tissue from BA46 was matched between cases with schizophrenia

and unaffected individuals. Tissue pieces were processed to isolate nuclei and incubated with antibodies directed toward NeuN or OLIG2. The

nuclei were sorted using fluorescence-activated nuclei sorting (FANS) to obtain purified populations of cell types. The nuclei were processed to

obtain genomic DNA (gDNA) and nuclear RNA from the same pools. Nucleic acids then underwent whole-genome sequencing (WGS), whole-

genome bisulfite sequencing (WGBS), or RNA sequencing (RNA-seq). b NeuN-positive (NeuN+) nuclei represent neurons within the cerebral cortex

as few human NeuN-negative (NeuN−) cells in the cortex are neurons [23, 24] (e.g., Cajal-Retzius neurons). OLIG2-positive (OLIG2+) nuclei represent

oligodendrocytes and their precursors [25, 26]. Isolation of nuclei expressing either NeuN conjugated to Alexa 488 or OLIG2 conjugated to Alexa 555.

The nuclei were first sorted for size and complexity, followed by gating to exclude doublets that indicate aggregates of nuclei and then further sorted

to isolate nuclei based on fluorescence. “Neg” nuclei are those that are neither NeuN+ nor OLIG2+. c Example percentage nuclei at each selection step

during FANS. Note that while in this example more nuclei were OLIG2+, in other samples, the proportions might be reversed. d Immunocytochemistry

of nuclei post-sorting. The nuclei express either NeuN or OLIG2 or are negative for both after FANS. DAPI labels all nuclei
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Fig. 2 (See legend on next page.)
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“szDMPs.” The average methylation difference between

schizophrenia and control at FDR < 0.2 szDMPs is ~ 6%

(Additional file 1: Tables S6–S7), which is within the range

of case/control differences our sample sizes are em-

powered to detect according to our power analyses (see

the “Methods” section; Additional file 3: Figure S7). The

majority of the szDMPs (FDR < 0.2) are intronic (50.5%)

and distal intergenic CpGs (45.4%), whereas only two of

them are located within 3 kb from the transcriptional start

sites (Additional file 1: Tables S6–S7). Interestingly, two

szDMPs (FDR < 0.2) in OLIG2+ are located within the

regions reported to be associated with schizophrenia by

GWAS [4] including a CpG located in the intron of

NT5C2 gene, involved in purine metabolism.

In addition to the power analysis (see the “Methods”

section, Additional file 3: Figure S7), we assessed the

robustness of the results as well as the effects of cova-

riates or potential hidden structures in the data by permu-

tation analysis, by randomly assigning case/control labels

100 times per cell type. The observed DNA methylation

difference between control and schizophrenia samples is

significantly greater than those observed in the permuted

samples (Additional file 3: Figure S8). Even though our

statistical cutoff is moderate, considering that we are cor-

recting for an extremely large number of (~ 25 million) in-

dependent tests, the results from permutation analyses

provide support that these sites represent schizophrenia-

associated signals of differential DNA methylation. Indeed,

a b

c

d

Fig. 3 Gene expression signatures in NeuN+ and OLIG2+ nuclei. a Heatmap of cell type DEGs with covariates indicated. b Cell deconvolution of

bulk RNA-seq data from the CommonMind Consortium and BrainSeq compared with NeuN+ and OLIG2+ (control samples). Y-axes show the

weighed proportion of cells that explain the expression of bulk RNA-seq. c Gene set enrichment for cell type markers from single-nuclei RNA-seq.

Enrichment analyses were performed using Fisher’s exact test. Odds ratios and FDRs (within parentheses) are shown. d Correspondence between

the expression change and methylation change in cell types. The X-axis represents differential DNA methylation statistics for genes harboring

DMRs in promoters. The Y-axis indicates the log2(fold change) of expression between the two cell types. The negative correlation supports the

well-established impact of promoter hypomethylation on the upregulation of gene expression

(See figure on previous page.)

Fig. 2 Divergent patterns of DNA methylation in NeuN+ and OLIG2+ cell types in the human brain. a Clustering analysis based on whole-genome

CpG methylation values completely discriminated between NeuN+ (N = 25) and OLIG2+ (N = 20) methylomes. Additional NeuN+ (colored in turquoise)

and those labeled as NeuN− (pink) are from [27]. b Density plots showing the distribution of fractional methylation differences between OLIG2+ and

NeuN+ at differentially methylated positions (DMPs) and other CpGs (non-DMPs). We observed a significant excess of NeuN+-hypermethylated DMPs

compared to OLIG2+ (binomial test with expected probability = 0.5, P < 10−15). c Heatmap of the top 1000 most significant DMRs between OLIG2+ and

NeuN+. Fractional methylation values per individual (column) and DMR (row) show substantial differences in DNA methylation and clear cell type

clustering. d Genic annotation of DMRs and coverage with Illumina 450K Methylation Arrays. Counts of different genic positions of DMRs are shown.

DMRs containing at least one CpG covered by a probe in the array are indicated. Only 20.8% of the DMRs contain one or more CpG targeted by

Illumina 450K Array probes. e DMRs are enriched for brain enhancers. Enrichment of enhancer states at DMRs compared to the 100 matched control

DMR sets from 127 tissues [28]. Random sets are regions with similar characteristics as, including the total number of regions, length, chromosome,

and CG content. f Correspondence between cell type-specific methylation sites in NeuN+ and OLIG2+ with NeuN+ and NeuN− ChIP-seq datasets [9].

Neuron-specific ChIP-seq peaks show an excess of sites with NeuN+-specific hypomethylated sites (positive DSS statistic, see the “Methods” section)

whereas non-neuron peaks showed significant enrichment for sites specifically hypomethylated in OLIG2+ (negative DSS statistic). g Distribution of cell

type-specific methylation differences at CpGs within H3K27ac ChIP-seq peaks in NeuN+ and NeuN− nuclei. Positive values of DSS statistic

indicate hypomethylation in NeuN+ compared to OLIG2+, whereas negative values indicate hypermethylation (see the “Methods” section).

Dashed lines indicate the significance level for DSS analyses
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quantile-quantile plots suggest that our data exhibit a

modest but significant excess of good P values (Fig. 4a).

We also performed targeted experiments of 66 CpGs

(16 szDMPs at FDR < 0.2 andNucleic Acids ResNucleic

Acids Re 50 adjacent sites) through deep coverage

sequencing using 24 samples from the discovery cohort

as well as an additional 20 new independent samples.

This validation analysis achieved an average read depth

coverage of > 14,500×. Technical replicates are highly

correlated with the fractional methylation values obtained

Fig. 4 Cell type DNA methylation patterns associated with schizophrenia. a DMPs associated with schizophrenia. Quantile-quantile plots of genome-

wide P values for differential methylation between schizophrenia and control based on NeuN+ (left) and OLIG2+ (right) WGBS data. b Concordance

between WGBS data and microarray-based data. Y-axis shows the ratio of sites showing the concordant direction in schizophrenia vs. control in our

study at each P value bin compared with the Jaffe et al. study [7] (X-axis). Concordance was tested using a binomial test (stars indicate P < 0.05).

Boxplots correspond to the directional concordance in 100 sets of association results after case-control label permutations. NeuN+ (left) and OLIG2+

(right). c szDMPs show altered cell type differences. Barplot shows the percentage of sites with larger cell type differences in controls than in

schizophrenia and vice versa at different CpG classes. Absolute OLIG2+ vs. NeuN+ methylation differences are larger in controls than cases in szDMPs

compared to cell type DMPs and non-DMP or background CpGs. szDMPs were detected as differentially methylated between cases and controls at

FDR < 0.2 in NeuN+ (14 sites) and OLIG2+ samples (83 sites). Top 1000 szDMPs were selected as the top 1000 loci according to best P values in each

cell type (N = 2000). Cell type DMPs were detected by comparing OLIG2+ vs. NeuN+ methylomes at Bonferroni P < 0.05. Background CpGs were

sampled from CpGs showing non-significant P values for both case-control and OLIG2+ vs. NeuN+ comparisons. Stars represent P values for binomial

tests with all comparisons showing P < 10−7. d Top 1000 szDMPs are enriched for SZ GWAS signals. szDMPs identified in our methylation study in both

cell types consistently co-localize with genetic variants with moderate to large effect sizes for schizophrenia risk than expected. The table shows the

empirical P values of szDMPs at each odds ratio (OR) percentile of different traits from genome-wide association studies (GWAS). The actual ORs

corresponding to the schizophrenia percentiles are indicated at the top. Specifically, for each szDMP, we identified all SNPs reported by the GWAS

study within a 1-kb window and counted the number of SNPs at different quantiles of odds ratio (OR). We used quantiles of OR so that we can

compare the different diseases and traits among them. We repeated this step using the same number of random non-szDMPs 100 times. To obtain

empirical P values, we calculated the number of times non-szDMP sets showed more SNPs in each OR quantile than szDMPs. SNPs with moderate-to-

high OR in schizophrenia GWAS consistently showed low empirical P values for both cell type DMPs, implying that SNPs with large effect sizes in

GWAS studies are closer to szDMPs than expected. Interestingly, this pattern was not observed for other traits, implying the co-localization is exclusive

to the disease
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from the WGBS (Spearman’s rho = 0.96, P < 10−15, Add-

itional file 3: Figure S9), indicating the reliability of the

fractional methylation estimates obtained in the discovery

WGBS data. In addition, the WGBS data and validation

data are highly consistent for case-control comparisons in

both sign direction and correlation in effect size (Spear-

man’s rho = 0.87, P < 10−16 and 81.25% sign concord-

ance, Additional file 3: Figure S10). These results

support the validity of szDMPs discovered in our study.

There is no direct overlap between these DMPs (FDR <

0.2) and those previously identified from a microarray

study [7]. However, despite the lack of direct overlap, the

direction of methylation change between control and

schizophrenia between the two studies is largely consistent

in the NeuN+, especially with increasing significance

(decreasing P values) (Fig. 4b). This pattern is highly

significant compared to the permuted data (Fig. 4b). In

comparison, the OLIG2+ dataset does not exhibit such a

pattern (Fig. 4b), potentially because the bulk tissue

samples consisted largely of neurons. Deconvolution ana-

lyses of transcriptomes using our cell-sorted population

support this idea (Fig. 3b).

Enrichment of szDMPs in cell type distinct sites imply cell

type dysregulation

Remarkably, szDMPs (FDR < 0.2) are highly enriched in

cell type-specific DMPs (OR = 4.1, P < 10−10, Fisher’s

exact test). This enrichment persists when we examine a

larger number of sites (Additional file 3: Figure S11),

indicating that the enrichment is not due to the small

number of szDMPs. Moreover, szDMPs (FDR < 0.2)

show distinct directionality in the distinct brain cell

types. Specifically, NeuN+ szDMPs (FRD < 0.2) show an

excess of hypomethylation in schizophrenia samples

compared to the control samples (93%, 13 out of 14,

P = 0.0018 by binomial test, Additional file 3: Figure S8)

. An opposite pattern is observed for OLIG2+ szDMPs

(FDR < 0.2), where schizophrenia samples are mostly

hypermethylated compared to the control samples

(75.9%, 63 out of 83, P = 2.4 × 10−6 by a binomial test).

In contrast, this bias is not observed in the permuted

data (NeuN+ empirical P = 0.07 and OLIG2+ empirical

P = 0.02, Additional file 3: Figure S8). Considering that

NeuN+ tend to be more hypermethylated compared to

OLIG2+ (Fig. 2b), we investigated whether disease patterns

in schizophrenia contribute to reduced cell type difference

in DNA methylation. Indeed, szDMPs consistently show

decreased cell type methylation difference compared

to the control samples (Fig. 4c). In other words,

schizophrenia-associated modification of DNA me-

thylation effectively diminishes cell type distinctive

epigenetic profiles in our data.

These results also suggest that sites that did not

pass the FDR cutoff but have been detected in the

differential methylation analyses may harbor meaning-

ful candidates for future studies. Indeed, our power

study supports this idea (see the “Methods” section,

Additional file 3: Figure S7). Consequently, we further

analyzed sites that are ranked top 1000 in the differ-

ential DNA methylation analysis between the brains

of control vs. those from patients with schizophrenia

(referred to as “top 1000” DMPs). We find that genes

harboring the top 1000 szDMPs show enrichment for

brain-related functions and diseases, as well as tran-

scription factors, particularly those involved in chro-

matin remodeling (Additional file 3: Figure S12).

Given that the majority of the schizophrenia herita-

bility is found below the significance thresholds of

GWAS [4], we explored the association patterns at

genome-wide SNPs. Top 1000 szDMPs tend to co-

localize with genetic variants associated with schizo-

phrenia but not with other mental or non-mental

traits, mostly with genetic variants below the strict

GWAS significance threshold but with moderate-to-

high effect sizes (Fig. 4d). This result supports the

role of brain DNA methylation in the genetic etiology

of schizophrenia.

Cell type expression differences associated with

schizophrenia

Compared to subtle DNA methylation differences, gene

expression shows good separation between schizophre-

nia and control (Fig. 5a), and diagnosis has a strong

effect on the variance compared to other covariates

(Fig. 5b). We identified 140 and 167 differentially

expressed genes between control and schizophrenia

(referred to as “szDEGs” henceforth) for NeuN+ and

OLIG2+, respectively, at FDR < 0.01 (Fig. 5c; Additional file 1:

Tables S8–S9; see the “Methods” section). We compared

our results to the previous results obtained from bulk

tissues [5, 6] and identified common and distinct sets

of differentially expressed genes across the datasets

(Additional file 1: Tables S10–S11; see the “Methods”

section). Comparing the effect sizes of commonly differen-

tially expressed genes (P < 0.05) among the three datasets

analyzed, we find significant correlations to the CMC and

BrainSeq datasets [5, 6] in NeuN+, but not when we

compare OLIG2+ (Fig. 5d). These results are consistent

with the aforementioned deconvolution analysis, in-

dicating that bulk tissue brain studies were limited in

terms of non-neuronal signals, such as those coming

from oligodendrocytes.

Newly identified szDEGs are enriched for variants for

specific disorders or cognitive traits (Fig. 5e; see the

“Methods” section). Notably, NeuN+ szDEGs are enriched

for GWAS signal from schizophrenia and ADHD as well

as educational attainment. Interestingly, OLIG2+ szDEGs

are enriched for genetic variants associated with bipolar
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a b

d e

f

c

Fig. 5 Gene expression associated with schizophrenia in NeuN+ and OLIG2+. a Heatmap of szDEGs for each cell type with covariates indicated. b

The first principal component of the DEGs was associated with diagnosis. Red dotted line corresponds to P = 0.05. c Volcano plot showing szDEGs. X-

axis indicates the log2(fold change), and Y-axis indicates log10(FDR). szDEGs (FDR < 0.01) are colored. d Comparisons of differentially expressed genes in

schizophrenia from the current study with the BrainSeq and CMC data. We used genes that are classified as differentially expressed in all three datasets

(each dot represents a gene, 63 genes are common to NeuN+, CMC, and BrainSeq, and 49 to OLIG2+, CMC, and BrainSeq). The X-axes represent the

fold change between control and schizophrenia in CMC or BrainSeq datasets, and the Y-axes represent the log2(fold change) between control and

schizophrenia in the current datasets, for either NeuN+-specific or OLIG2+-specific genes. Regression line and confidence interval are shown for each

comparison. e Barplot highlighting the enrichment for trait-associated genetic variants. Bars correspond to NeuN+ (cyan) and OLIG2+ (magenta)

szDEGs. Red dashed line corresponds to the FDR threshold of 0.05. X-axis shows the acronyms for the GWAS data utilized for this analysis (ADHD,

attention deficit hyperactivity disorder; ASD, autism spectrum disorders; BIP, bipolar disorder; ALZ, Alzheimer’s disease; MDD, major depressive disorder;

SZ, schizophrenia; CognFun, cognitive function; EduAtt, educational attainment; Intelligence, intelligence; BMI, body mass index; CAD, coronary artery

disease; DIAB, diabetes; HGT, height; OSTEO, osteoporosis). f Enrichment map for szDEGs (up-/downregulated) and the top 1000 szDMPs (X-axis shows

genic annotation). Enrichment analyses were performed using Fisher’s exact test. Reported odds ratios and FDRs within parentheses for NeuN+ (top)

and OLIG2+ (bottom)
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disorder and autism spectrum disorders (Fig. 5e), indi-

cating potential cell type-specific relationship between

genetic variants and disease-associated variation of

gene expression.

Finally, we investigated the relationship between

schizophrenia-associated differential DNA methylation

and differential gene expression. Remarkably, similar to

what we have observed in DNA methylation, szDEGs are

preferentially found in genes that are significantly diffe-

rentially expressed between cell types for both NeuN+

(OR = 7.7, FDR = 8 × 10−8) and OLIG2+ (OR = 13, FDR =

7 × 10−13), furthering the functional implication of cell

type-specific regulation in schizophrenia. Due to the small

number of szDMPs identified at FDR < 0.2, there was little

direct overlap between szDMPs and szDEGs. However,

when we examined the top 1000 szDMPs, we begin to ob-

serve significant enrichments of szDMPs in szDEGs

(Fig. 5f). Notably, the top 1000 szDMPs are enriched in

genic (3′UTR and exon) and intergenic CpGs in NeuN+,

while OLIG2+ show specific enrichment for intronic

and promoter CpGs (Fig. 5f ) (Fisher’s exact test, all

comparisons FDR < 0.05). These results underscore the

promise of cell type-specific approaches to elucidate

the relationships between genetic variants, epigenetic

modifications, and gene expression in a complex neuro-

psychiatric disorder.

Discussion
The etiology of schizophrenia remains largely unresolved

even though significant efforts have gone into under-

standing the genetic and molecular mechanisms of the

disease [1]. These efforts have been challenged by both

the genetic heterogeneity of the disorder as well as the

inherent cellular heterogeneity of the brain. To address

these issues, we integrated whole-genome sequencing,

transcriptome, and epigenetic profiles from two major

cell types in the brain. Whole-genome patterns of DNA

methylation and gene expression are highly distinct be-

tween cell types, complementing other analyses of cell

type-specific epigenetic variation [9, 33]. In particular,

our data offer novel resource from oligodendrocytes, a

major yet relatively underexplored cell type in the

human brains. Indeed, we show evidence that previous

analyses of bulk tissue gene expression were under-

powered to detect oligodendrocyte-specific signals,

underscoring the strength of a cell-specific approach and

the fact that most bulk tissue brain studies tend to focus

on or specifically isolate gray matter.

A caveat to our study is that methylome and expression

studies using human brain tissue could be confounded by

the multitude of environmental factors that can impact

these measurements such as the use of medications or

other drugs, smoking, alcohol use, and other lifestyle

factors. We provide such information for the subjects used

in this study in Additional file 1: Table S1; however, these

data are rarely quantitative and are frequently unknown

for many individuals. We therefore compared CpGs pre-

viously associated with tobacco smoking [34–36] and

did not find a significant overlap with our identified

szDMPs (see the “Methods” section). This result sug-

gests that our data are likely not confounded by at least

tobacco smoking.

To our knowledge, this is the first study to identify the

cell-specific correspondence between whole-genome

methylation and expression in brain tissue from patients

with schizophrenia. Compared to substantial cell type

differences, methylation differences between control and

schizophrenia are small. Considering 20% false positives

and coverage, we identified 97 szDMPs, compared to

over 4 million cell type-specific DMPs identified at a

more stringent cutoff of Bonferroni P < 0.05. Never-

theless, schizophrenia-associated epigenetic and transcrip-

tomic alteration is highly cell type-specific, thus offering

the first direct support to the idea that cell type-specific

regulation may be implicated in schizophrenia pathophy-

siology [9, 33]. Notably, our resource provides novel

whole-genome methylation data from affected brain

samples rather than making these connections based on

genetic associations. By doing so, we demonstrate that cell

type epigenetic difference is reduced in affected indivi-

duals, offering a potential mechanistic link between dys-

regulation of cell type-specific epigenetic distinction and

disease etiology. The decrease in cell type differences in

schizophrenia could be due to a number of pathophysio-

logical mechanisms including a change in cell type dif-

ferentiation, an alteration in cell type heterogeneity, or a

reflection of other unknown altered developmental pro-

grams. Patient-derived neurons from iPSCs have not

yielded robust observable differences in gene expression

[37]. While issues of power have been suggested as the

cause of the lack of observable differential expression

between cases and controls, it is also plausible that such

negative results are due to a critical interplay of multiple

nervous system cell types such as oligodendrocytes that

are not present in such human culture systems. Future

studies that integrate human oligodendrocytes into cellu-

lar and other model systems might be able to tease apart

the mechanisms by which neuronal and non-neuronal cell

types become more similar in schizophrenia. In addition,

the use of single-cell methylome and expression profiling

in brain tissue from patients should elucidate the

spectrum of heterogeneity of cell types in schizophrenia.

Recent work has demonstrated that chromatin remodeling

in neurons but not astrocytes is relevant to schizophrenia

[38]; however, this study did not examine oligodendro-

cytes. Thus, there are intrinsic molecular differences

within each of these major cell classes that can independ-

ently be contributing to disease. Based upon our findings,
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further investigations into the contributions of oligoden-

drocytes to schizophrenia are warranted.

A large portion of differential DNA methylation be-

tween control and schizophrenia occur in non-coding

regions. This observation further highlights the role of

regulatory variation in disease etiology, similar to the

findings from GWAS studies, especially the distribution

of schizophrenia genetic risk loci [4, 39, 40]. Notably,

the majority of sites that show signals of differential

DNA methylation are not accessed by most DNA

methylation arrays. Our study demonstrates that schizo-

phrenia pathophysiology is unlikely to be further delin-

eated via the study of differential methylation or

expression in the brain given currently used technolo-

gies. What we have found is that non-neuronal cells

such as oligodendrocytes are just as likely to play a role

in disease as neurons. Therefore, the use of emerging

technologies to profile individual cells might be able to

assess the contribution of even more cell types such as

astrocytes or microglia. Moreover, for human brain tis-

sue studies of schizophrenia, we are limited to adult tis-

sues whereas the critical windows of altered methylation

and/or expression might be occurring earlier in the de-

velopment prior to the onset of symptoms and diagnosis.

Finally, the heterogeneity of schizophrenia might chal-

lenge the interpretation of data from this sample size.

Future studies that compare individuals based on spe-

cific aspects of disease (e.g., presence of psychosis) might

yield greater differences. Nevertheless, what our study

has uncovered are a number of cell type changes in ex-

pression and methylation that correspond to disease sta-

tus. In particular, the oligodendrocyte changes are

compelling as previous studies were underpowered to

detect these changes. With these identified genes in

hand, the importance of these specific genes in brain

development and function can now be studied in cel-

lular and animal models. These gene lists can also be

integrated with future whole-genome sequencing

studies.

Conclusions

We provide the first detailed interrogation of DNA

methylation differences between neurons and oligoden-

drocytes and between brain tissues from patients with

schizophrenia compared to controls. These data demon-

strate an extensive epigenetic distinction between two

major cell types in the brain and that cell type-specific

methylation is dysregulated in a specific way in the

brains from patients with schizophrenia. These data can

be used for prioritizing targets for further experimental

analyses. With rapidly decreasing sequencing costs,

candidates and hypotheses generated from our study

should lead to future analyses at the individual cell level

from specific populations of patients (e.g., patients with

psychosis or not) to further elucidate the biological

alterations associated with schizophrenia.

Methods

Sampling strategy

Frozen brain specimens from Brodmann area 46 were

obtained from several brain banks (Additional file 1:

Tables S1–S2). Cases and controls were matched by age

group, and additional demographics such as gender were

matched when possible (Additional file 1: Table S1).

Information on comorbidities and cause of death when

known are included in Additional file 1: Table S1.

Nuclei isolation from human postmortem brain

Nuclei isolation was performed as described previously

[18, 41] with some modifications. Approximately 700 mg

of frozen postmortem brain was homogenized with lysis

buffer (0.32 M sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2,

0.1 mM EDTA, 10 mM Tris-HCl pH 8.0, 0.1 mM PMSF,

0.1% (w/o) Triton X-100, 0.1% (w/o) NP-40, protease

inhibitors (1:100) (#P8340, Sigma, St. Louis, MO), RNase

inhibitors (1:200) (#AM2696, ThermoFisher, Waltham,

MA)) using a Dounce homogenizer. Brain lysate was

placed on a sucrose solution (1.8 M sucrose, 3 mM

Mg(Ac)2, 10 mM Tris-HCl pH 8.0) to create a concen-

tration gradient. After ultracentrifuge at 24,400 rpm for

2.5 h at 4 °C, the upper layer of the supernatant was

collected as the cytoplasmic fraction. The pellet, which

included the nuclei, was resuspended with ice-cold PBS

containing RNase inhibitors and incubated with mouse

alexa488 conjugated anti-NeuN (1:200) (#MAB377X,

Millipore, Billerica, MA) and rabbit alexa555-conjugated

anti-OLIG2 (1:75) (#AB9610-AF555, Millipore) antibodies

with 0.5% BSA for 45 min at 4 °C. Immuno-labeled nuclei

were collected as NeuN-positive or OLIG2-positive popu-

lations by fluorescence-activated nuclei sorting (FANS).

After sorting, gDNA and total RNA were purified from

each nuclei population using a ZR-Duet DNA/RNA

MiniPrep (Plus) kit (#D7003, Zymo Research, Irvine, CA)

according to the manufacturer’s instruction. Total RNA

was treated with DNase I after separation from gDNA.

Two hundred nanograms total RNA from each sample

was treated for ribosomal RNA removal using the Low

Input RiboMinus Eukaryote System v2 (#A15027, Ther-

moFisher) according to the manufacturer’s instruction.

After these purification steps, gDNA and total RNA were

quantified by Qubit dsDNA HS (#Q32851, ThermoFisher)

and RNA HS assay (#Q32852, ThermoFisher) kits, re-

spectively. Immunostaining was visualized using a Zeiss

LSM 880 with Airyscan confocal laser scanning micro-

scope. One hundred microliters of sorted nuclei was

placed onto microscope slides, and 300 μl of ProLong Dia-

mond Antifade Mountant with DAPI (#P36971,
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ThermoFisher) was added and covered with glass cover-

slips before imaging.

Whole-genome bisulfite sequencing library generation

and data processing

As a control for bisulfite conversion, 10 ng of unmethy-

lated lambda phage DNA (#D1501, Promega) was added

to the 1 μg of input DNA. Libraries were made with an

in-house Illumina sequencer-compatible protocol. The

extracted DNA was fragmented by S-series Focused-

ultrasonicator (Covaris, Woburn, MA) using the “200-bp

target peak size protocol.” Fragmented DNA was then

size selected (200–600 bp) with an Agencourt AMPure

XP bead-based (#A63880, Beckman Coulter, Brea, CA)

size selection protocol [42]. The DNA end repair step was

performed with End-It DNA End-Repair Kit (#ER81050,

Epicentre, Madison, WI). After the end-repair step, A-

tailing (#M0202, New England Biolabs, Ipswich, MA) and

ligation steps were performed to ligate the methylated

adaptors.

Bisulfite treatment of gDNA was performed using the

MethylCode Bisulfite Conversion Kit (#MECOV50, Ther-

moFisher). Purified gDNA was treated with CT conversion

reagent in a thermocycler for 10 min at 98 °C, followed by

2.5 h at 640 °C. Bisulfite-treated DNA fragments remain

single-stranded as they are no longer complementary.

Low-cycle (4–8) PCR amplification was performed with

Kapa HiFi Uracil Hotstart polymerase enzyme (#KK2801,

KAPA Biosystems, Wilmington, MA) which can tolerate

uracil residues. The final library fragments contain thy-

mines and cytosines in place of the original unmethylated

cytosine and methylated cytosines, respectively.

The methylome libraries were diluted and loaded onto

an Illumina HiSeq 2500 or HiSeqX system for sequen-

cing using 150 bp paired-end reads. We generated over

900 million reads per sample and performed quality and

adapter trimming using TrimGalore v.0.4.1 (Babraham

Institute) with default parameters. Reads were mapped

first to the PhiX genome to remove the spike-in control,

and the remaining reads were mapped to the human

GRCh37 (build 37.3) reference genome using Bismark v

0.14.5 [43] and bowtie v1.1.2 [44]. We removed reads

with exact start and end positions using Bismkar dedu-

plication script. After de-duplication, we calculated the

fractional methylation levels at individual cytosines [32].

Overall, we generated a total of 72.6 billion reads

(equivalent to 10.9 T base pairs of raw sequence data)

and obtained per-sample average coverage depths > 25×

covering 98% of the 28 million CpGs in the human

genome (Additional file 1: Table S12). Bisulfite con-

version rates were estimated by mapping the reads to the

lambda phage genome (NC_001416.1), see Additional file3:

Figure S13 for a general overview of the WGBS data

quality and processing.

Whole-genome sequencing data processing

Quality and adapter trimming was performed using

TrimGalore v.0.4.1 (Babraham Institute) with default pa-

rameters. Reads were mapped to the human GRCh37

reference genome using BWA v0.7.4 [45], and duplicates

were removed using picard v2.8.3 (https://broadinstitute.

github.io/picard/index.html). We identified genetic poly-

morphisms from re-sequencing data following GATK

v3.7 best practices workflow [46]. Specifically, we used

HapMap 3.3, Omni 2.5 M, 1000 Genomes Phase I, and

dbSNP 138 as training datasets for variant recalibration.

We filtered variant calls with high genotype quality

(GQ ≥ 20.0). Overall, we generated a total of 225 million

reads and identified 15,331,100 SNPs with mean depth

above > 16.5× (Additional file 1: Table S13). We removed

the polymorphic cytosines from downstream differential

methylation analyses keeping a total of 24,942,405

autosomal CpGs (Additional file 1: Table S14), see

Additional file 3: Figure S13 for a general overview of

the WGS data quality and processing.

For quality control of the SNP calling, we performed

principal component analyses using an additional 210 sam-

ples from 4 different populations from the HapMap Project

(60 CEU, 90 CBH/JPT, and 60 YRI) to explore the genetic

ancestry of the individuals. After LD pruning (r2 > 0.2)

with SNPRelate R package, we used 66,667 autosomal

polymorphic SNPs in the analysis. The PC plot shows

that the reported ancestry of the individuals was

mostly concordant to that inferred from the SNPs

(Additional file 3: Figure S14), validating the genotype

calling. The first 10 genetic PCs were included in the dif-

ferential methylation analyses to control for population

structure (Additional file 1: Table S14).

Hierarchical clustering of methylomes from diverse

human cell types

We added WGBS data from additional tissues [12] (see

original references for the datasets therein) and Lister et

al. [27], and the corresponding genome coordinates (hg38

and hg18) were converted to hg19 using UCSC Batch Co-

ordinate Conversion tool (liftOver executable) [47]. The

sample indicated with the star in Fig. 2a was also re-

mapped to hg38 from raw data following the same proto-

col as other non-brain tissues (from Mendizabal and Yi

[12]) and lifted over to hg19. The clustering of the two

methylomes from the same individual “NeuN+_ind2”

suggests no significant effect of mapping/lift over in the

clustering results. A total of 14,115,607 CpG positions

with at least 5× coverage in all individuals were used to

draw a hierarchical clustering tree (using R stats package’s

hclust function with method = average (= UPGMA) based

on Euclidean distances using fractional methylation values

using dist function). The tree was plotted using dendex-

tend and circlize packages.

Mendizabal et al. Genome Biology          (2019) 20:135 Page 12 of 21

https://broadinstitute.github.io/picard/index.html)
https://broadinstitute.github.io/picard/index.html)


Identification of differentially methylated positions and

regions between OLIG2+ and NeuN+

We identified DMPs between 25 NeuN+ and 20 OLIG2+

individuals by using DSS [29]. DSS handles variance

across biological replicates as well as model read counts

from WGBS experiments. Importantly, DSS also con-

siders other biological covariates that may affect DNA

methylation patterns. Specifically, we considered age,

gender, brain hemisphere, postmortem interval (PMI),

conversion rates, brain bank, and genetic ancestry (using

the first 10 genetic PCs obtained from WGS of the same

individuals) as covariates (Additional file 1: Tables S1–S2

and S14; Additional file 3: Figure S15). Age and PMI

were converted to categorical variables (“AgeClass”

and “PMIClass” in Additional file 1: Table S2).

Since C>T and G>A polymorphisms at CpGs could

generate spurious differentially methylated sites on bisul-

fite conversion experiments, we excluded polymorphic

CpGs (identified from re-sequencing the same panel of

individuals, Additional file 1: Table S15) from DMP

analyses. For DMP identification between OLIG2+ and

NeuN+ samples, we used a Bonferroni cutoff on P < 0.05

and identified 4,058,898 DMPs out of 24,596,850 CpGs

tested. For DMR identification, we considered a mini-

mum region of 50 bp with at least 5 significant DMPs

and identified 145,073 regions (Additional file 2: Table S3).

We explored the effect of coverage on cell type DMP iden-

tification and found that low-coverage sites had a limited

contribution to the significant DMPs; indeed, relatively

more sites were detected at more stringent coverage

thresholds. For example, removing sites < 5× in 80% of

individuals within each cell type led to a total of 4,037,979

significant DMPs at Bonferroni 0.05 cutoff (out of 23,788,

847 CpGs, 16.97%), whereas the removal of sites < 10× lead

to 3,903,652 DMPs (out of 21,399,153 CpGs tested, 18.2%),

and < 20× lead to 2,509,489 DMPs (out of 10,960,268

CpGs considered, 23.8%). Enrichments between cell type

DMPs and szDMP and between cell type DMPs and ChIP-

seq peaks were similar when using the > 20× coverage

datasets instead of using all sites.

Of note, as our differential methylation analyses are

run under a multifactor design in DSS, the estimated

coefficients in the regression are based on a genera-

lized linear model framework using arcsine link func-

tion to reduce the dependence of variance on the

fractional methylation levels [29, 48]. Thus, whereas

the direction of change is indicated by the sign of the

test statistic, its values cannot be interpreted directly

as fractional methylation level differences. The distri-

bution of the statistic depends on the differences in

methylation levels and biological variations, as well as

technical factors such as coverage depth. For DMRs,

the method provides “areaStat” values which are

defined as the sum of the test statistic of all CpG

sites within the DMR. To obtain a more interpretable

estimate of fractional methylation differences, we also

provide results for a linear model using the same

formula as for DSS.

Functional characterization of DMRs

For different enrichment analyses, we generated matched

control regions. We generated 100 sets of regions with

similar genomic properties as the DMRs: number of total

regions, region length distribution, chromosome, and

matched GC content within 1%. Empirical P values were

computed by counting the number of matched control

sets showing values as extreme as the observed one.

Enrichments were computed as the ratio between the

observed value and the mean of the matched control sets.

We used ChIPSeeker [49] and bioconductor’s UCSC gene

annotation library TxDb.Hsapiens.UCSC.hg19.knownGene

to annotate DMRs to genes. We explored the 25 chro-

matin state model maps based on ChIP-Seq experi-

ments on 6 chromatin marks (H3K4me3, H3K4me1,

H3K36me3, H3K27me3, H3K9me3, and H3K27ac) from

the Roadmap Epigenomics Project [28]. We joined several

categories related to enhancer states, including TxReg,

TxEnh5’, TxEnh3’, TxEnhW, EnhA1, EnhA2, EnhW1,

EnhW2, and EnhAc.

Overlap with neuronal and non-neuronal ChIP-seq

datasets

We analyzed the overlap between our cell type-specific

DMPs and DMRs with neuron and non-neuron histone

mark data on H3K4me3 and H3k27ac ChIP-seq experi-

ments [9]. We only considered peaks that were assigned

as “neuronal” and “non-neuronal” and discarded “NS”

peaks from Additional file 1: Table S11 in the cited paper.

To test directionality with our OLIG2+ vs. NeuN+ diffe-

rentially methylated sites, we further discarded peaks that

overlapped between cell types (i.e., neuronal H3K4me3

peaks overlapping with non-neuronal H3K27ac, and

non-neuronal H3K4me3 peaks overlapping with neuronal

H3K27ac peaks).

Non-CpG methylation patterns in brain cell types

We studied DNA methylation patterns of NeuN+ and

OLIG2+ outside CpG dinucleotides (CH context). Given

the low fractional patterns of DNA methylation outside

CpG sites, and to minimize the influence of any add-

itional covariates, only individuals with conversion rates

≥ 0.995 were considered (15 NeuN+ and 14 OLIG2+).

We filtered cytosines that showed less than 5× coverage

in 90% of individuals per cell type, as well as removed

the positions with genetic polymorphisms (C>T and

T>C SNPs to account for SNPs at both strands). A total

of 333 and 457 million cytosines remained in NeuN+
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and OLIG2+, respectively. Cytosines in gene bodies were

filtered using BEDtools [50].

Identification of DMPs between schizophrenia and control

individuals

We used DSS to identify DMPs between schizophrenia

and control samples. Again, we considered biological

covariates in the differential methylation analyses,

namely age, gender, brain hemisphere, PMI, conversion

rates, brain bank, and genetic ancestry (using the first 10

genetic PCs obtained from WGS of the same individuals,

see File S3 for specific commands used). For an FDR

cutoff of 0.2 for significance, we identified a total of 201

and 60 DMPs in OLIG2+ and NeuN+, respectively. We

further filtered sites with less than 20× in at < 80% of

individuals per group. We identified 14 and 83 signi-

ficant DMPs in NeuN+ and OLIG2+, respectively, when

applying a FDR < 0.2.

As a comparison, we also ran differential methylation

analyses for disease using a linear model based on frac-

tional methylation values for every CpGs site and con-

sidered the same covariates as in the DSS analyses. We

plotted quantile-quantile plots for the expected and

observed P values obtained from DSS and linear model

analyses between schizophrenia and control, as well as to

evaluate how coverage affects these two methods. We

observed that DSS provides correction for low-coverage

sites, note the systematic depletion of good P values at

low-coverage sites in DSS (Additional file 3: Figure S16),

compared to high-coverage sites. In contrast, a linear

model shows a similar genome-wide distribution of

P values at low- and high-coverage sites. We identi-

fied a total of 60 and 210 CpGs in NeuN+ and OLIG2+,

respectively, at FDR < 0.2. However, to obtain a more

conservative set of hits, we additionally filter for high-

coverage sites (20× in at least 80% of samples per disease-

control group) and recalculated FDR, obtaining 14 and 83

significant sites at FDR < 0.2. In order to test the robust-

ness of the results and the effect of covariates as well as

the potential hidden structures in the data, we performed

a permuting analysis by randomly assigning case/control

labels and re-ran DSS 100 times.

Power analyses for DMP identification between

schizophrenia and control individuals

In this first power analysis, we determined the range of

effect sizes that can be detected at different P value

thresholds in our genome-wide scan focused on detect-

ing individual DMPs. The main aim of this analysis was

to determine the power of our study to detect individual

DMPs at different significance thresholds, using realistic

parameters that mimic the fractional methylation values

seen in cases and controls. Specifically, we simulated

10 million CpGs following these steps:

1- In the first step, for each simulated CpG, we sample

the parametric mean of fractional methylation

values in controls from a truncated normal

distribution (mirroring the skew in genome-wide

fractional methylation values): rtnorm(simula-

tions,0.7,0.05, lower = 0.1,upper = 0.9)

2- We next obtain the parametric standard deviation

(SD) of fractional methylation values for the CpG in

controls (by sampling from a uniform distribution

that mimics the genome-wide distribution of SD

seen in our data): runif(simulations,0.0000001,0.2)

3- After having determined the parametric mean and

SD in controls, we used these to obtain the

fractional methylation values in as many simulated

control individuals as we used in our study

(n = 25 as in the NeuN analysis).

rtnorm(control.sample.size, control.mean,

control.sd, lower = 0,upper = 1)

4- We next select a case-control difference value

(effect size, or parametric β) at each simulated CpG

by drawing values from a uniform distribution.

runif(simulations,0,0.20).

5- After obtaining the effect size at each simulated

CpG, the mean fractional methylation value in

cases can be obtained by adding the case-control

difference (from step 4) to the control mean methy-

lation values (step 3). Then, we sample the number

of cases from a truncated normal distribution using

the mean of cases and the standard deviation for

cases (same as for controls, as we do not observe

differences in SD in the real data between the

groups).

6- rtnorm(case.sample.size, case.mean, case.sd,

lower = 0,upper = 1)

7- We perform a linear regression of case/control

labels on methylation. lm(methylation~diagnosis)

Additional file 3: Figure S7a shows the heatmap of the

average power for the full grid of parameters used to

simulate the 10 million DMPs (CpGs that present diffe-

rential methylation between the simulated cases and

controls). The population effect sizes (absolute case-

control differences) and the P value achieved at each

simulated DMP are shown in the X-axis and Y-axis,

respectively.

We extract two important conclusions from the heat-

map figure. First, our study is certainly not particularly

well-powered to detect small differences in average frac-

tional methylation values between cases and controls.

For instance, less than 20% of DMP effects in the range

of 1 to 4% achieve P < 10−5 to P < 10−7 in our simulated

study (blue vertical band at the left side of the heatmap).

It is important to note that the total number of such

effects in schizophrenia remains unknown; however, it is
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certainly possible given the polygenic nature of schizo-

phrenia observed in most omics datasets [5, 39]. There-

fore, an apparently low positive power (10 to 20%) may

still imply that hundreds of genome-wide real effects

achieve approximately P < 10−5 in our study.

The second implication of this analysis carries a more

positive message in regard to the power of a genome-wide

with the sample size from our study. Specifically, starting

from 5% differences in average, a large fraction (about a

third) of simulated DMPs pass a significance threshold of

P < 10–5, and ~ 50% of those with effects > 8% achieve

P < 10−5 and deeper significance thresholds. Notably,

these are precisely the range of effects that we report

at the P value cutoffs that correspond to the FDR

20% we use in our study (P values ranging from

3.6 × 10−7 to 8.54 × 10−9 in NeuN+ and 1.36 × 10−6 to

8.18 × 10−14 in OLIG2+), being the effect size around

6.4% in average (ranging from 3.3 to 12.8% in NeuN+

and from 1.12 to 22.4% in OLIG2+).

As mentioned above, the balance between true and

false positives at different P value thresholds depends on

the underlying (and currently unknown) distribution of

effect sizes of DMPs and the total number of them that

are present genome-wide. For this reason, in our

genome-wide scan, we favored a strict control of mul-

tiple testing to avoid the detection of false effects. Still,

akin to the first generation of GWAS and as shown by the

robust departure from the random expectation shown by

the quantile-quantile plots, we report in Fig. 2a a large

fraction of our top signals are likely true positives.

We would like to note here that previously obtained

effect sizes for schizophrenia-associated CpGs in brain

samples were generally small, for instance, around 1.48%

(ranging from 0.41 to 4.42%, in Jaffe et al. [7]). However,

these estimates correspond to the analyses based on

methylation profiling of bulk tissue and focusing on a

more limited set of the CpGs available genome-wide (~

0.4 million CpGs). If schizophrenia-associated CpG sites

showed cell type-specific patterns and/or were located

outside the targeted CpGs in methylation array chips,

these effect sizes could be underestimates of the actual

case/control differences. Thus, unbiased whole-genome

scanning of 25 million CpGs in purified cell types could

potentially identify bigger case/control differences, and

the sample sizes we present in this study would be mod-

erately empowered.

In summary, this first power simulation study suggests

that even with our small sample sizes, we can detect

CpGs with moderate-to-large effect sizes. Although less

powered to detect the bulk of small effects (~ 0.01 diffe-

rences), this should not offset the inherent interest of a

first genome-wide study that spans millions of CpGs in

purified cell types, since we are powered to detect effects

that would not be detected in previous case-control

attempts for schizophrenia. Importantly, most of these

sites appear in regions currently not included in widely

used methylation arrays.

In the second power analysis, we explored realistic

parameters in regard to the total number of differentially

methylated DMPs and the true distribution of effect

sizes between cases and controls, in order to make

robust inferences into the lists of DMPs and effect sizes

that would make it into the top 1000 list of most signi-

ficant effects. To obtain estimates of the true- and false-

positive rates in the top 1000 szDMPs, we first need to

obtain plausible genetic architectures of methylation

differences in schizophrenia (i.e., the total number of

real DMPs, and their effect sizes). According to genome-

wide association studies, schizophrenia is a polygenic

disease in which each variant exerts a small effect on the

phenotype [39]. Thus, we assumed in our analyses that

the epigenetic architecture for schizophrenia follows a

similar pattern.

Specifically, we modeled the real distribution of effect

sizes in our simulations using a beta distribution that

permits to assign values between 0 and 1. This proba-

bility distribution is parameterized by two shape para-

meters, denoted as α and β (also referred to as parameters

1 and 2 here). Assuming 5000 DMPs (CpGs with differen-

tial methylation between schizophrenia cases and healthy

controls), we explored a range of effect size distributions

obtained by the two parameters. Specifically, we explored

[0.1,1.5] and [20,51] for each parameter, as these are the

ranges that give long-tailed distributions of effect sizes

with a peak at 0.01 to 0.1 and a maximum DMP effect of

~ 0.4 (40%).

In each simulation (n = 50,000), after obtaining the dis-

tribution of effect sizes of the 5000 causal DMPs, we

performed a genome-wide scan with all 10 million CpG

(P values of non-causal CpGs are obtained from a uni-

form distribution [0,1]). We then ranked the 10 million

sites per P value and checked how many of the causal

CpGs make it in the top 1000 values. As shown in

Additional file 3: Figure S7b, we found the area that

yielded 0.5 of FDR at the top 1000 szDMPs, as we ob-

serve in our data.

Using the range of parameter 1 and parameter 2

values that give FDRs around 50% (the green band in

Additional file 3: Figure S7b), we then asked which

case-control differences and P values are observed at

the true szDMPs found at the top 1000 loci. As

shown in the histogram plot in Additional file 3: Fig-

ure S7c, we find that the effect sizes of true szDMPs

are indeed substantial. Of note, the best 1000 P

values in the szDMPs per cell type observed in our

study show an average of 4.85% case/control differ-

ence at the following P value thresholds: 7.31 × 10−5

in NeuN+ and 4.16 × 10−5 in OLIG2+.
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In summary, this second simulation study shows that

even though the top 1000 CpGs certainly contain a frac-

tion of false positives (~ 50% as measured by the FDR

corresponding to the 1000th CpG in our study), the

other ~ 50% of CpGs consist of true positives enriched

for moderate-to-large effect sizes. This enrichment justi-

fies using this relaxed set of loci to obtain some bio-

logical insights given the restricted loci with FDR < 0.2.

szDMP gene annotation and functional enrichment

We used ChIPSeeker [49] and bioconductor’s UCSC gene

annotation library TxDb.Hsapiens.UCSC.hg19.knownGene

to annotate the top 1000 szDMPs to genes (ordered

by P values). We used genes associated with genic

szDMPs only (all annotation categories excluding dis-

tal intergenic, defined as > 1.5 kb from the start or

end of genes) for functional enrichment using Topp-

Gene [52]. We also explored the potential of szDMPs to

bind transcription factors by intersecting the top 1000

szDMPs (ordered by P value) from each cell type with the

ENCODE transcription factor ChIP-Seq datasets. We

downloaded the “wgEncodeRegTfbsClusteredV3” table

from UCSC and counted the number of szDMPs showing

TF binding. We compared these numbers to 100 sets of

random 1000 CpGs with large P values for schizophrenia-

control comparison (P > 0.1). We also calculated the

enrichment of specific transcription factors by comparing

the frequency of each of the 161 transcription factors be-

tween szDMPs and non-szDMPs. The enrichments were

obtained by dividing the observed number to the average

of 100 sets, and the P values show the number of times

the number for szDMPs was larger than the 100 sets.

szDMP enrichment at GWAS

Genome-wide P values and odds ratios for GWAS for

schizophrenia [4], smoking [53], clozapine-induced agran-

ulocytosis [54], coronary artery disease, bipolar disorder

[51], autism spectrum disorder, and anorexia nervosa were

downloaded from the Psychiatric Genomics Consortium

at https://www.med.unc.edu/pgc/results-and-downloads/.

Data for rheumatoid arthritis [55] were downloaded from

ftp://ftp.broadinstitute.org/pub/rheumatoid_arthritis/

Stahl_etal_2010NG/. In order to explore the potential

contribution and/or mediation of DNA methylation to the

genetic basis of schizophrenia, we explored the co-

localization of the top 1000 szDMPs with GWAS results.

Given that the majority of the schizophrenia heritability is

found below the significance thresholds of GWAS, we ex-

plored the patterns at genome-wide SNPs as follows. For

each szDMP, we identified all SNPs reported by the

GWAS study within a 1-kb window and counted the

number of SNPs at different quantiles of odds ratio (OR).

We used quantiles of OR so that we can compare the dif-

ferent diseases and traits among them. We repeated this

step using the same number of random non-szDMPs 100

times. To obtain empirical P values, we calculated the

number of times non-szDMP sets showed more SNPs in

each OR quantile than szDMPs. SNPs with moderate-

to-high OR in schizophrenia GWAS consistently

showed low empirical P values for both cell type DMPs,

implying that SNPs with large effect sizes in GWAS stud-

ies are closer to szDMPs than expected. Interestingly, this

pattern was not observed for other traits, implying the co-

localization is exclusive to the disease.

Hydroxymethylation at szDMPs

We compared our results to a single-base resolution

hydroxymethylome maps [56]. Specifically, TAB-seq data

from an adult human brain sample was obtained from

GEO (GSE46710). We used the sites presenting high

hmC as defined in the original paper (hmC >mC; n = 5,

692,354). We plotted quantile-quantile plots of DSS

statistic P values at high hmC loci and random loci.

These analyses showed no significant presence of hmC

in the szDMPs (Additional file 3: Figure S17).

Smoking DMPs at szDMP

We explored the co-localization of szDMPs with CpGs

associated with tobacco smoking [34–36]. None of the

analyzed smoking DMPs (n = 206) was found among our

szDMPs at FDR < 0.2 nor at the top 1000 CpGs with

best P values per cell type. These analyses suggest that

szDMPs might not be confounded by smoking.

Targeted validation experiments

We designed high-coverage bisulfite experiments to

sequence 18 regions (Additional file 1: Table S16) from

44 samples (including 24 new individuals not included

in the WGBS experiments, Additional file 1: Table S17).

We conducted bisulfite conversions of gDNA from

OLIG2+ and NeuN+ cells using EZ DNA Methylation-

Gold Kit (#D5006, Zymo Research) according to the

manufacturer’s instructions. Sodium bisulfite converted

unmethylated cytosines to uracil while methylated cyto-

sines remained unconverted. Upon subsequent PCR

amplification, uracil was ultimately converted to thymine.

Bisulfite sequencing PCR primers were designed using

MethPrimer 2.0 and BiSearch to target a panel of 12 loci

in OLIG2+ and 6 loci in NeuN+ (Additional file 1: Table

S16). The primers were designed with an Illumina

adaptor overhang. The sites of interest were amplified

using JumpStart Taq DNA polymerase (#D9307, Sigma)

and quantified using gel electrophoresis to verify the

size and Qubit fluorometric quantitation to determine the

concentration. Equimolar quantities of each of the target

amplicons were pooled for each individual, and NGS

libraries were prepared in a second PCR reaction accord-

ing to Nextera XT DNA Sample Preparation protocol.
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The libraries were barcoded with a unique pair of Nextera

XT primers. The libraries were sequenced with Illumina

MiSeq using the 500-cycle kit (250 paired-end sequen-

cing). We sequenced the samples at high coverage using a

MiSeq machine and 250 bp paired-end reads at the

Georgia Institute of Technology High Throughput DNA

Sequencing Core. We mapped the reads to the human

GRCh37 (build 37.3) reference genome using Bismark

v0.20.2 and Bowtie v2.3.4. We trimmed the reads for low

quality and adapters using TrimGalore v.0.5.0 (Babraham

Institute) with default parameters. Only the sites with at

least 200× coverage were considered (mean = 14,580,

median = 10,810). One region showed low read counts

and was excluded (Additional file 1: Table S16). A total of

16 DMPs and an additional 50 adjacent CpGs were con-

sidered in the validation analyses. Fractional methylation

values were adjusted for covariates using the following

linear model: lm (methylation ~ diagnosis + sex + age_

class + PMI_class).

Concordance with previous methylation studies on

schizophrenia

We evaluated the concordance between our disease DMP

signals with Jaffe et al. [7] which used bulk brain tissue

and Illumina 450 K chips. We binned Jaffe et al. study’s

whole-genome P values and calculated the fraction of

CpGs in our study showing the same directionality in both

studies (i.e., hypomethylated or hypermethylated in dis-

ease vs. control). For each cell type, we tested the sig-

nificance at each P value bin using a Binomial test with

P = 0.5 expectation. We additionally compared the dis-

tribution of concordance rates from the 100 control

datasets obtained using case/control permuted labels and

re-running DSS on them.

RNA sequencing

RNA-seq was performed as described previously [57].

Total RNA from the cytoplasmic fraction was extracted

with the miRNeasy Mini kit (#217004, Qiagen, Hilden,

Germany) according to the manufacturer’s instruction.

The RNA integrity number (RIN) of total RNA was

quantified by Agilent 2100 Bioanalyzer using Agilent

RNA 6000 Nano Kit (#5067-1511, Agilent, Santa Clara,

CA). Total RNAs with an average RIN value of 7.5 ±

0.16 were used for RNA-seq library preparation. Fifty

nanograms of total RNA after rRNA removal was sub-

jected to fragmentation, first and second strand synthe-

ses, and clean up by EpiNext beads (#P1063, EpiGentek,

Farmingdale, NY). Second-strand cDNA was adenylated,

ligated, and cleaned up twice by EpiNext beads. cDNA

libraries were amplified by PCR and cleaned up twice by

EpiNext beads. cDNA library quality was quantified by a

2100 Bioanalyzer using an Agilent High Sensitivity DNA

Kit (#5067-4626, Agilent). Barcoded libraries were

pooled and underwent 75 bp single-end sequencing on

an Illumina NextSeq 500.

RNA-seq mapping, QC, and expression quantification

Reads were aligned to the human hg19 (GRCh37) reference

genome using STAR 2.5.2b [58] with the following parame-

ters: --outFilterMultimapNmax 10 --alignSJoverhangMin

10 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 3

--twopassMode Basic. Ensemble annotation for hg19

(version GRCh37.87) was used as a reference to build STAR

indexes and alignment annotation. For each sample, a

BAM file including mapped and unmapped reads with

spanning splice junctions was produced. Secondary align-

ment and multi-mapped reads were further removed using

in-house scripts. Only uniquely mapped reads were

retained for further analyses. Quality control metrics were

performed using RseqQC using the hg19 gene model pro-

vided [59]. These steps include: number of reads after

multiple-step filtering, ribosomal RNA reads depletion, and

defining reads mapped to exons, UTRs, and intronic

regions. Picard tool was implemented to refine the QC

metrics (http://broadinstitute.github.io/picard/). Gene-level

expression was calculated using HTseq version 0.9.1 using

intersection-strict mode by exons [60]. Counts were

calculated based on protein-coding gene annotation

from the Ensemble GRCh37.87 annotation file, see

quality control metrics in Additional file 3: Figures

S18–S19 and Additional file 1: Table S18.

Covariate adjustment and differential expression

Counts were normalized using counts per million reads

(CPM). Genes with no reads in either schizophrenia (SZ)

or control (CTL) samples were removed. Normalized

data were assessed for effects from known biological co-

variates (diagnosis, age, gender, hemisphere), technical

variables related to sample processing (RIN, brain bank,

PMI), and technical variables related to surrogate vari-

ation (SV) (Additional file 3: Figure S20). SVs were cal-

culated using SVA [61] based on “be” method with 100

iterations. The data were adjusted for technical covari-

ates using a linear model:

lmðgene expression � ageclass þ genderþ hemisphere

þPMIClassþ RINþ BrainBankþ nSVsÞ

Adjusted CPM values were used for co-expression

analysis and visualization. For differential expression, we

used the lmTest (“robust”) and ebayes functions in the

limma [62] fitting all of the statistical models to estimate

log2 fold changes, P values, and FDR/Bonferroni correc-

tion. This method was used for (1) cell type differences

(|log2(fold change)| > 0.5 and Bonferroni FDR < 0.05), (2)

NeuN+ SZ-CTL analysis (|log2(fold change)| > 0.3 and
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FDR < 0.01), and (3) OLIG2+ SZ-CTL analysis (|log2(fold

change)| > 0.3 and FDR < 0.01). Bonferroni was used in 1

to provide higher stringency on the data analysis.

Cross-validation

Cross-validation analyses were applied to ensure the ro-

bustness of the DEG analysis:

1) Permutation method based on gene expression

randomization (nPerm = 200).

2) Leave-one-out method based on subsampling the

data (nLOO = 200).

Functional gene annotation

The functional annotation of differentially expressed and

co-expressed genes was performed using ToppGene

[52]. A Benjamini-Hochberg FDR (P < 0.05) was applied

as a multiple comparisons adjustment.

GWAS data and enrichment

We manually compiled a set of GWAS studies for several

neuropsychiatric disorders, cognitive traits, and non-brain

disorders/traits. Summary statistics from the genetic data

were downloaded from Psychiatric Genomics Consortium

(http://www.med.unc.edu/pgc/results-and-downloads)

and GIANT consortium (https://portals.broadinstitute.

org/collaboration/giant/). Gene-level analysis was per-

formed using MAGMA [63] v1.04, which considers

linkage disequilibrium between SNPs. 1000 Genomes

(EU) dataset was used as a reference for linkage dis-

equilibrium. SNP annotation was based on the hg19 gen-

ome annotation (gencode.v19.annotation.gtf). MAGMA

statistics and –log10(FDR) are reported in Additional file 1:

Table S19 for each of the GWAS data analyzed. Brain

GWAS: ADHD, attention deficit hyperactivity disorder

[64]; ASD, autism spectrum disorders (https://www.bior-

xiv.org/content/early/2017/11/27/224774); BIP, bipolar

disorder [65]; ALZ, Alzheimer’s disease [66]; MDD, major

depressive disorder [67]; SZ, schizophrenia [4, 65].

Cognitive traits GWAS: CognFun = cognitive function

[64], EduAtt = educational attainment [68], Intelligence =

intelligence [69]. Non-brain GWAS: BMI, body mass

index [70]; CAD, coronary artery disease [71]; DIAB,

diabetes [72]; HGT, height (https://www.biorxiv.org/con-

tent/early/2018/07/09/355057); OSTEO, osteoporosis [73].

Cell type enrichment and deconvolution analyses

MTG single-nuclei RNA-seq was downloaded from Allen

Brain Institute web portal [74]. Normalized data and

cluster annotation were used to define cell markers using

FindAllMarkers in Seurat [75] with the following parame-

ters: logfc.threshold = 0.25, test.use = “wilcox”, min.pct =

0.25, only.pos = TRUE, return.thresh = 0.01, min.cells.-

gene = 3, and min.cells.group = 3. Enrichment analyses

were performed using Fisher’s exact test. Cell type de-

convolution was performed using MuSiC [76] with

the following parameters: iter.max = 1000, nu = 1e-10,

eps = 0.01, and normalize = F.

Public data analyses

GTEx tissue expression was downloaded from the GTEx

web portal. Raw data was normalized using log2(CPM+

1) [77]. Gene expression data from SZ and healthy CTL

brain tissue was downloaded from the Common Mind

Consortium [5]. Gene expression data from SZ and

healthy CTL developmental brain tissue was down-

loaded from Brain Phase1 [6]. We applied differential

expression analysis using the lmTest (“robust”) and

ebayes functions in the limma [62] fitting all of the

technical/biological covariates and surrogate variables

to estimate log2 fold changes, P values, and FDR/

Bonferroni correction. Surrogate variables were calculated

with SVA package [61].
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