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ABSTRACT 

Because regulation of gene expression is heritable and context-dependent, we 

investigated AD-related gene expression patterns in cell-types in blood and brain. Cis-

expression quantitative trait locus (eQTL) mapping was performed genome-wide in 

blood from 5,257 Framingham Heart Study (FHS) participants and in brain donated by 

475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The 

association of gene expression with genotypes for all cis SNPs within 1Mb of genes was 

evaluated using linear regression models for unrelated subjects and linear mixed 

models for related subjects. Cell type-specific eQTL (ct-eQTL) models included an 

interaction term for expression of “proxy” genes that discriminate particular cell type. Ct-

eQTL analysis identified 11,649 and 2,533 additional significant gene-SNP eQTL pairs 

in brain and blood, respectively, that were not detected in generic eQTL analysis. Of 

note, 386 unique target eGenes of significant eQTLs shared between blood and brain 

were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are 

established AD loci. The potential importance and relevance to AD of significant results 

in myeloid cell-types is supported by the observation that a large portion of GWS ct-

eQTLs map within 1Mb of established AD loci and 58% (23/40) of the most significant 

eGenes in these eQTLs have previously been implicated in AD. This study identified 

cell-type specific expression patterns for established and potentially novel AD genes, 

found additional evidence for the role of myeloid cells in AD risk, and discovered 

potential novel blood and brain AD biomarkers that highlight the importance of cell-type 

specific analysis. 
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INTRODUCTION 

Recent expression quantitative trait locus (eQTL) analysis studies suggest that changes 

in gene expression have a role in the pathogenesis of AD 1, 2. However, regulation of 

gene expression, as well as many biological functions, has been shown to be context-

specific (e.g., tissue and cell-types, developmental time point, sex, disease status, and 

response to treatment or stimulus) 3-6. One study of 500 healthy subjects found over-

representation of T cell-specific eQTLs in susceptibility alleles for autoimmune disease 

and AD risk alleles polarized for monocyte-specific eQTL effects 7. In addition, disease 

and trait-associated cis-eQTLs were more cell type specific than average cis-eQTLs 7. 

Another study classified 12% of more than 23000 eQTLs in blood as cell-type specific 5. 

Large eQTL studies across multiple human tissues have been conducted by the GTEx 

consortium, with a study on genetic effects on gene expression levels across 44 human 

tissues collected from the same donors characterizing patterns of tissue specificity 

recently published 8.  

Microglia, monocytes and macrophages share a similar developmental lineage and are 

all considered to be myeloid cells 9. It is believed that a large proportion of AD genetic 

risk can be explained by genes expressed in myeloid cells and not other cell-types 10. 

Several established AD genes are highly expressed in microglia 9, 11 and a variant in the 

AD-associated locus CELF1 has been associated with lower expression of SPI1 in 

monocytes and macrophages 10. AD risk alleles have been shown to be enriched in 

myeloid specific epigenomic annotations and in active enhancers of monocytes, 

macrophages, and microglia 12, and to be polarized for cis-eQTL effects in monocytes 7. 

These findings suggest that a cell-type specific analysis in blood and brain tissue may 
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identify novel and more precise AD associations that may help elucidate regulatory 

networks. In this study, we performed a genome-wide cis ct-eQTL analysis in blood and 

brain, respectively, then compared eQTLs and cell-type specific eQTLs (ct-eQTLs) 

between brain and blood with a focus on genes, loci, and cell-types previously 

implicated in AD risk by genetic approaches.  

 

MATERIALS, SUBJECTS AND METHODS 

Study cohorts  

Framingham Heart Study (FHS).  The FHS is a multigenerational study of health and 

disease in a prospectively followed community-based and primarily non-Hispanic white 

sample. Procedures for assessing dementia and determining AD status in this cohort 

are described elsewhere 13. Clinical, demographic, and pedigree information, as well as 

1000 Genomes Project Phase 1 imputed SNP genotypes and Affymetrix Human Exon 

1.0 ST array gene expression data from whole blood, were obtained from dbGaP 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000007.v31.p12) . Requisite information for this study was 

available for 5,257 participants. Characteristics of these subjects are provided in Table 

S1.  

Religious Orders Study (ROS)/ Memory and Aging Project (MAP). ROS enrolled older 

nuns and priests from across the US, without known dementia for longitudinal clinical 

analysis and brain donation and MAP enrolled older subjects without dementia from 

retirement homes who agreed to brain donation at the time of death 14, 15. RNA-

sequencing brain gene expression and whole-genome sequencing (WGS) genotype 
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data were obtained from the AMP-AD knowledge portal 

(https://www.synapse.org/#!Synapse:syn3219045) 16. 

Data processing  

Generation and initial quality control (QC) procedures of the FHS GWAS and 

expression data are described elsewhere and include all genotype QC and pre-

adjustment of gene expression levels for batch effects and other technical covariates 13. 

ROSMAP gene expression data were log-normalized and adjusted for known and 

hidden variables detected by surrogate variable analysis (SVA) 17 in order to determine 

which of these variables should be included as covariates in analysis models for eQTL 

discovery. Additional filtering steps of FHS and ROSMAP GWAS and gene expression 

data included eliminating subjects with missing data, restricting gene expression data to 

protein coding genes, and retaining common variants (MAF�≥ 0.05) with good 

imputation quality (R2�≥�0.3).  

Cis eQTL mapping  

Cis-eQTL mapping was performed using a genome-wide design (Fig. S1). The 

association of gene expression with SNP genotypes for all cis SNPs within1 Mb of 

protein-coding genes was evaluated using linear mixed models adjusting for family 

structure in FHS and linear regression models for unrelated individuals in ROSMAP. In 

FHS, lmekin function in the R kinship package (version 1.1.3) 18 was applied assuming 

an additive genetic model with covariates for age and sex, and family structure modeled 

as a random-effects term for kinship - a matrix of kinship coefficients calculated from 

pedigree structures. The linear model for analysis of FHS can data be expressed as 

follows:  
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Yi =I + β1Gj + β2Aij + β3Sij + Uij + �ij 

where Yi is the expression value for gene i, Gj is the genotype dosage for cis SNP j, Aij 

and Sij are the covariates for age and sex respectively, Uij is the random effect for family 

structure, and β1, β2, and β3 are regression coefficients.  

ROSMAP data were analyzed using the lm function in the base stats package in R 19. 

The regression model, which included covariates for age, sex, post-mortem interval 

(PMI), study (ROS or MAP), and a term for a surrogate variable (SV1) derived from 

analysis of high dimensional data, can be expressed as:  

Yi =I + β1Gj + β2Aij + β3Sij + β3Sij + β4PMij + β5ijS2 + β6ijSV1 + �ij 

where Yi is the expression value for gene i, Gj is the genotype dosage for cis SNP j, Aij, 

Sij, PMij, S2ij, and SV1ij are the covariates for age, sex, PMI, study and SV1 

respectively, �ij is the residual error, and the βs are regression coefficients. 

Cis ct-eQTL mapping  

Models testing associations with cell type-specific eQTLs (ct-eQTLs) included an 

interaction term for expression levels of “proxy” genes that represent cell types. Proxy 

genes representing 10 cell types in whole blood 5 and five cell types in brain 20-22 were 

incorporated in cell type-specific models (Table S2). These proxy genes for cell types in 

blood were established previously using BLUEPRINT expression data to validate cell-

type-specific expression in each cell-type module 5 and the proxy genes for brain cell 

types have been incorporated in several studies 20-22. Cell type-specific expression 

analyses in blood of FHS participants were conducted using the following model:   
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Yi =I + β1Gj + β2P + β3(P*Gj) + β4Aij + β5Sij + Uij + �ij 

where in each eQTLij pair, Yi is the eQTL expression value for gene i, Gj is the genotype 

dosage for cis SNP j, P is the proxy gene, P*Gj is the interaction term representing the 

effect of genotype in a particular cell type, Aij and Sij are covariates for age and sex 

respectively, Uij is the random effect for family structure, and βs are regression 

coefficients. Models with significant interaction terms indicate cell type specific eQTLs.  

The following model was used to evaluate cell type-specific expression in brain in 

ROSMAP:  

Yi =I + β1Gj + β2P + β3(P*Gj) + β4Aij + β5Sij + β6PMij + β7ijS2 + β8ijSV1 + �ij 

where in each eQTLij pair, variables Yi, Gj, P, Aij, Sij, Pij, �ij and βs are as described 

above, and PMij, S2ij, and SV1ij are covariates for PMI, study, and SV1 respectively.  

A Bonferroni correction was applied to determine the significance threshold for each 

analysis (Table S3).  

Selection of eQTLs in established AD loci and gene-set pathway enrichment 

analysis 

eGenes (genes whose expression levels are associated with variation at a particular 

eSNP) were matched to 88 genes located near 80 distinct uncorrelated SNPs that have 

been associated with AD or AD-related traits by genetic association or experimental 

approaches (Table S4) and eSNPs (SNPs that significantly influence gene expression) 

under the 80 significant association peaks. Gene-set enrichment analysis was 

performed using the PANTHER (Protein ANalysis THrough Evolutionary Relationships) 

software tool 23 to determine if the unique genes in the significant eQTL/ct-eQTL pairs 
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shared by both brain and blood datasets are associated with a specific biological 

process or molecular function. Significance of the pathways was determined by the 

Fisher's Exact test with False discovery rate (FDR) multiple test correction. 

Colocalization analyses 

Assessment of causal variants shared by adjacent GWAS and eQTL signals was 

performed using a Bayesian colocalization approach implemented in the R package 

coloc 24. This analysis incorporated information about significantly associated variants 

for AD risk obtained from a recent large GWAS 25 and lead eQTL variants each defined 

as the eSNP showing the strongest association with gene expression. Following 

recommended guidelines, the variants were deemed to be colocalized by a high 

posterior probability that a single shared variant is responsible for both signals (PP4 > 

0.8) 24, 26. A lower threshold for statistical significance with a false discovery rate (FDR) 

< 0.05 for eQTL significant results was applied to maximize detection of colocalized 

pairs. Regional plots were constructed with LocusZoom 27. 

 

RESULTS 

A total of 847,429 eQTLs and 30,405 ct-eQTLs in blood, and 173,857 eQTLs and 

51,098 ct-eQTLs in brain were significant after Bonferroni correction (Table S3 and 

Supplemental Resources). Among these results, 11,649 ct-eQTLs in brain 2,533 ct-

eQTLs in blood involved SNP-eGene pairs that were not detected in eQTL analysis 

(Fig. 1A). Of note, 24,028 significant eQTLs were shared between blood and brain. The 

386 distinct eGenes among these shared eQTLs (Table S5) are most enriched in the 

apoptosis signaling (P=0.023) and Wnt signaling (P=0.036) pathways (Table S6). Five 
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of these eGenes (HLA-DRB5, HLA-DRB1, ECHDC3, CR1, and WWOX) were 

previously associated with AD 25, 28. Three eSNPs in eQTLs involving HLA-DRB1/HLA-

DRB5 (rs9271058) and ARL17A/LRRC37A2 (rs2732703 and rs113986870, which are 

near KANSL1 and MAPT) were previously associated with AD risk at the genome-wide 

significance level 25, 29.  

eQTLs involving CR1, ECHDC3 and WWOX were much more significant in brain than 

blood, whereas HLA-DRB5 and HLA-DRB1 were more significant in blood when 

comparing the effect sizes (Table 1). ECHDC3 was a significant eGene in blood and 

brain eQTLs (specifically in neurons). HLA-DRB5 and HLA-DRB1 were the only eGenes 

ascribed to significant ct-eQTLs in both blood and brain noting that of the 10 distinct 

lead eSNPs, five are unique to each tissue. Although the eQTLs involving these genes 

with the largest effect were observed in blood across multiple cell types, the total 

number of significant eSNP-eGene combinations was far greater in brain (particularly in 

microglia and neurons). The only instance in which the lead eSNP is also associated 

with AD risk at the GWS level was observed in the blood eQTL pair of HLA-DRB1 with 

eSNP rs9271058 (Table 1A). Among the AD-associated SNPs at the GWS level, 

rs9271058 is a significant eSNP for HLA-DRB1 in both blood and brain cell types (the 

most significant association by p-value was observed in anti-bacterial cells and 

microglia) and rs9271192 is a significant ct-eQTL for the gene in multiple brain cell 

types (Table 1). Both of these SNPs are also eSNPs for HLA-DB5 in the brain in 

neurons only.  

There were 657 gene-SNP eQTL pairs comprising 16 unique eGenes that were 

significant in blood and brain overall as well as in specific cell types in both blood and 
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brain (Table S7). None of these eGenes were observed in significant pathways enriched 

for AD genes, however, they included AD-associated genes HLA-DRB1 and HLA-

DRB5.  

Slightly more than half (42/80 = 52.5%) of the established AD associations (Table S3) 

are eGene targets for significant eQTLs in blood (Table S8). By comparison, only seven 

established AD loci were eGene targets for significant eQTLs in brain, among which 

OARD1 was significant in endothelial cells only (Table S8). Many GWS SNPs for AD 

risk are eSNPs affecting expression of the nearest gene, which is usually recognized as 

the causative gene, but several GWS SNPs target other genes (Table S9). For 

example, AD-associated eSNPs rs113986870 and rs2732703 in the MAPT/KANSL1 

region target ARL17A in blood, but are paired in seven of eight eQTLs and ct-eQTLs 

with LRRC37A2 in brain (Table S9). HLA-DRB1 is the only AD gene with a significant 

ct-eQTL in blood, whereas many AD genes have significant blood eQTLs. In brain, only 

four AD loci (CR1, HLA-DRB1/DRB5, IQCK and MAPT/KANSL1) have significant brain 

eQTLs of which HLA-DRB1/DRB5 and MAPT/KANSL1 are the only brain ct-eQTLs, 

noting that all are significant in microglia, neurons and endothelial cells. 

Next, we evaluated whether the most significant eSNPs and SNPs genome-wide 

significantly associated with AD status (i.e. AD-SNPs) co-localize and thus to identify a 

single shared variant responsible for both signals (posterior probability of shared signals 

(PP4) > 0.8). This analysis revealed eight eQTL/ct-eQTL signals that colocalized with 

seven AD GWAS signals and half of the co-localized signals involved a ct-eQTL (Table 

2 and Fig. S2). Two different eSNPs for CD2AP, rs4711880 (eQTL P=1.4x10-104) and 

rs13201473 (ct-eQTL P= 1.47x10-9), flank CD2AP GWAS SNP rs10948363 which is 
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also the second most significant eQTL (P=2.32x10-104) and the second most significant 

ct-eQTL in NK cells / CD8+ T-Cells (P=2.66x10-9). These three SNPs span a 9.0 kb 

region in intron 2 and are in complete linkage disequilibrium (LD, r2�=1.0), indicating 

that any one or more of them could affect the function of target gene CD2AP. 

Rs6557994 is the most significant eSNP for and located in PTK2B (blood ct-eQTL 

P=2.58x10-9) and is moderately correlated with the PTK2B GWAS SNP (rs28834970, 

r2=0.78, P=1.58x10-9). Thus, it is not surprising that rs6557994 is also significantly 

associated with AD risk (P=8.19x10-7). Rs6557994 is also correlated with a GWAS SNP 

in CLU, located approximately 150 kb from PTK2B, that is not significantly associated 

with expression of any gene. Because PTK2B and CLU are independent AD risk loci 28, 

it is possible that this eSNP has an effect on AD pathogenesis through independent 

pathways (Fig. S2). The most significant eSNP in MADD (rs35233100, P=2.88x10-10) 

was predicted to have functional consequences because it is a stop-gained mutation. 

This brain eQTL is colocalized (PP4=0.95) and weakly correlated with a GWAS SNP 

(P=1.91x10-5) in CELF1 rs10838725 (r2=0.12). 

Examination of the distribution of the significant ct-eQTL results genome-wide showed 

that nearly two-thirds of the ct-eQTLs in blood occurred in interferon response/anti-

bacterial cells in blood, whereas brain ct-eQTLs are highly represented in endothelial 

cells, neurons and microglia (Fig. 1B, Table S10). Further examination of significant 

results within myeloid cell lineages (i.e., microglia and monocytes/ macrophages) which 

account for a large proportion of the genetic risk for late-onset AD 10 revealed that 3,234 

or 10.6% of all significant ct-eQTLs in blood were in monocytes/macrophages. This 

subset includes 128 unique eGenes which are significantly enriched in the AD amyloid 
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secretase pathway (FDR P=0.013, Table S11). A total of 974 or 30.1% of ct-eQTLs 

including 4 of the 20 most significant eGenes in monocytes/macrophages are located 

within 1 Mb of established AD loci (Table 4A). One of the eGenes in this top-ranked 

group (HLA-DRB5) is an established AD locus, and three others that are near 

established AD loci (DLG2 near PICALM 30, C4BPA near CR1 31, and MYO1E near 

ADAM10 32) are reasonable AD gene candidates based on evidence using non-genetic 

approaches.  Microglia accounted for 15,560 (30.5%) of significant ct-eQTLs in the brain 

(Table S10) which involved 304 unique eGenes. Approximately 52% of significant ct-

eQTLs in microglia are located in AD regions including five of the 20 most significant ct-

eQTLs in this group (Table 4B). One of these five eGenes is an established AD locus 

(HLA-DRB1) and two others (ALCC 33 and WNT3 34) have been linked to AD in previous 

studies.  

Considering significant eGene-eSNP pairs in myeloid cell types, 251 pairs including five 

distinct eGenes (BTNL3, FAM118A, HLA-DOB, HLA-DRB1, and HLA-DRB5) are shared 

between microglia and monocytes/macrophages (Table 4A and Fig. 2A). Three of these 

pairs involving eSNPs rs3763355, rs3763354, and rs1183595100 have the same target 

gene HLA-DOB and occur only in microglia and monocytes/macrophages (Table 4B). 

Among the significant ct-eQTLs in brain, the cell types with the largest proportion that 

were also significant in monocytes/macrophages were microglia (1.6%) and neurons 

(1.3%) (Table 4C). Conversely, among the significant ct-eQTLs in blood, the cell types 

with the largest proportion that were also significant in microglia were NK/CD+ T-cells 

(12.9%) and monocytes/macrophages (7.8%). Among ct-eQTLs which are significant 

only for one cell-type each in blood and one in brain, monocytes/ macrophages shared 
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three ct-eQTLs with microglia but with no other brain cell-types (Fig. 2B, Table 4C). By 

comparison, microglia shared 63 ct-eQTLs with interferons/ anti-bacterial cells, but with 

no other blood cell types. The much larger number of ct-eQTLs in microglia that were 

common with interferons/bacterial cells than monocytes/ macrophages may reflect the 

substantially greater proportion of significant eQTLs in blood involving interferons/ 

antibacterial cells (64%) than monocytes/macrophages (10.6%) (Table S10). The only 

other ct-eQTLs that were unique to a pair of cell types in brain and blood cell type 

involved neurons paired with neutrophils (n=3) and with interferons/anti-bacterial cells 

(n=65) (Fig. 2B).  

 

DISCUSSION 

We identified several novel AD-related eQTLs that highlight the importance of cell-type 

dependent context. It is noteworthy that there were more significant ct-eQTLs in brain 

(n=51,098) than blood (n=30,405) even though the dataset containing expression data 

from blood (FHS) is several times larger than the brain expression dataset (ROSMAP). 

This could be due to greater cell type heterogeneity in brain, the enrichment of AD 

cases in the ROSMAP dataset who may show different patterns of gene expression 

compared to persons without AD, or highly variable gene expression across cell-types 

in the nervous system 35. Because expression studies in brain are often constrained by 

the small number specimens compared to studies in other tissues, post-mortem 

changes that may affect gene expression in brain 36, and the growing recognition that 

AD is a systemic disease 37-39 , incorporating expression data from multiple tissues can 

enhance discovery of additional genetic influences on AD risk and pathogenesis.  
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Although most significant findings were tissue-specific, the 386 distinct eGenes among 

more than 24,000 significant gene-SNP eQTL pairs that were shared between blood 

and brain were enriched in the apoptosis signaling pathway that contributes to much of 

the underlying pathology associated with AD 40, 41. Five established AD genes (CR1, 

ECHDC3, HLA-DRB1, HLA-DRB5, and WWOX 25, 28) were shared eGenes in brain and 

blood and could be playing a key role in the systemic AD mechanisms. The complement 

receptor 1 (CR1) gene encodes a transmembrane glycoprotein functioning in the innate 

immune system by promoting phagocytosis of immune complexes, cellular debris, and 

Aβ 42. CR1 is an eGene for several eSNPs, including AD GWAS peak SNP rs6656401 

located within the gene, in brain and blood eQTLs and the effects on CR1 expression 

are opposite in blood and brain. There are multiple possible explanations for the effect 

direction differences across tissues. The effect of eSNP rs6656401 on CR1 expression 

may be developmental, noting that the average age of the FHS subjects (group with 

expression data in blood) is more than 30 years younger than the ROSMAP subjects 

(group with expression data in brain). The difference between brain and blood may also 

reflect post-mortem changes in brain that are not indicative of expression in vivo. 

Alternatively, these effects may be related to AD because few FHS subjects were AD 

cases at the time of blood draw whereas 60% of subjects in the ROSMAP sample are 

AD cases. This idea is supported by the observation of a larger and positive effect of 

rs6656401 on CR1 expression in AD (β=0.020) compared to control brains (β=-0.0086). 

Opposite effect directions of expression in brain and blood from AD patients compared 

to controls has been observed for several ribosomal genes 43. GWS variants located in 

the region spanning ECHDC3 and USP6NL have previously been associated with AD 
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44. We found that ECHDC3 is the target gene for eSNP rs866770710 located in its 

promoter region, and this eQTL was significant in brain and specifically in neurons. 

Altered ECHDC3 expression in AD brains 45 supports the idea that this gene has a role 

in AD. Knockout of WWOX in mice leads to aggregation of amyloid-β (Aβ) and Tau, and 

subsequent cell death 46, 47. 

The human leukocyte antigen (HLA) region is the key susceptibility locus in many 

immunological diseases and many associations have been reported between 

neurodegenerative diseases and HLA haplotypes 48. In addition, the most widely used 

marker to examine activated microglia in normal and diseased human brains is HLA-DR 

and microglia activation increases with the progression of AD 49, 50. HLA-DRB5 and 

HLA-DRB1 have been implicated in numerous GWAS studies as significantly 

associated with AD risk 25, 28 and appeared frequently among significant results in blood 

and brain in this study. Rs9271058, which is located approximately 17.8 kb upstream of 

HLA-DRB1, is significantly associated with AD risk (p=5.1 × 10−8 25) and when paired 

with HLA-DRB1 is a significant eQTL and ct-eQTL in multiple cell types in blood and 

brain including myeloid lineage cells (i.e., monocytes/macrophages and microglia). This 

eSNP is also a significant eQTL in brain and specifically in neurons when paired with 

HLA-DRB5. Rs9271192, which is adjacent to rs9271058 and also significantly 

associated with AD risk (P=2.9 × 10−12) 28, is a significant eQTL and ct-QTL with multiple 

cell types in brain but not blood when paired with HLA-DRB5 and HLA-DRB1.  

Significant associations for AD have been reported with variants spanning a large 

portion of the major histocompatibility (MHC) region in HLA class I, II and III loci 48, 51, 52. 

While the strongest statistical evidence for association in this region is with variants in 
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HLA-DRB1 25, fine mapping in this region suggests that a class I haplotype (spanning 

the HLA-A and HLA-B loci) and a class II haplotype (including variants in HLA-DRB1, 

HLA-DQA1 and HLA-DQB1) are more precise markers of AD risk. Given the complexity 

of the MHC region and extensive LD, further work is needed to confirm whether this is a 

true eQTL or a signal generated from a specific HLA allele or HLA haplotype. Although 

functional studies may be required to discern which HLA variants have AD-relevant 

consequences relevant to AD and develop methods to detect the differential expression 

of the HLA alleles, our findings support a role for the immune system in AD 37, 53 and the 

hypothesis that a large proportion of AD risk can be explained by genes expressed in 

myeloid cells 10.  

The potential importance and relevance to AD of eQTLs and ct-eQTLs in myeloid cell-

types is supported by the observation that a large portion of GWS ct-eQTLs we 

identified map within 1 Mb of established AD loci, and 58% (12/20 in monocytes/ 

macrophages and 11/20 in microglia) of the most significant eGenes have been 

previously implicated in AD. DLG2 encodes a synaptic protein whose expression was 

previously reported as down-regulated in an AD proteome and transcriptome network 54 

and inversely associated with AD Braak stage 30. Genome-wide significant associations 

of AD risk with PTPRG was observed in a family-based GWAS 55 and with CLNK in a 

recent large GWAS for which the evidence was derived almost entirely with a proxy AD 

phenotype in the UK Biobank 56. NFXL1 is a novel putative substrate for BACE1, an 

important AD therapeutic target 57. FCRL5 may interact with the APOE*E2 allele and 

also modifies AD age of onset 58. C4BPA was shown to be a consistently down-

regulated in MCI and AD patients, and the protein encoded by this gene accumulates in 
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Aβ plaques in AD brains 31, 59. Lower levels of the PAM have been observed in the 

brains and CSF of AD patients compared to healthy controls 60 and MYO1E is 

expressed by anti-inflammatory disease associated microglia 32. As a calcium channel 

protein, CACNB2 may affect AD risk by altering calcium levels which could cause 

mitochondrial damage and then induce apoptosis 61, 62.  

Likewise, several eGenes of top-ranked ct-eQTLs in microglia that are not established 

AD loci may have a role in the disease. It was shown that copy number variants (CNVs) 

near HNRNPCL1 overlapped the coding portion of the gene in AD cases but not 

controls 63. A region of epigenetic variation in ALLC was associated with AD 

neuropathology 33. FAM21B, a retromer gene in the endosome-to-Golgi retrieval 

pathway, was associated with AD in a candidate gene study 64. Vacuolar sorting 

proteins genes in this pathway including SORL1 have been functionally linked to AD 

through trafficking of Aβ 65. One study demonstrated that WNT3 expression in the 

hippocampus was increased by exercise and alleviated AD-associated memory loss by 

increasing neurogenesis 34. Expression of RPL9 is downregulated in severe AD 66  and 

significantly differs by sex among persons with the APOE �4 allele 67. Significant 

evidence of association with a TRIM49B SNP was found in a genome-wide pleiotropy 

GWAS of AD and major depressive disorder (MDD) 68.  

HLA-DOB, which is one of the five distinct eGenes (BTNL3, FAM118A, HLA-DOB, HLA-

DRB1, and HLA-DRB5) for significant ct-eQTLs shared between microglia and 

monocytes/macrophages, and is the target gene for three eSNPs (rs3763355, 

rs3763354, and rs1183595100) that were evident only in these myeloid cell types. 

These eSNPs have similar eQTL p-values in both cell types, but have slightly larger 
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effect sizes in monocytes (Fig. 2). The effect of rs3763355 on expression is in opposite 

directions in monocytes and microglia which suggests HLA-DOB may be acting in 

different immune capacitates in AD in blood and brain. Though the functions of the 

genes BTNL3 and FAM118A are unknown, a BTNL8-BTNL3 deletion has been 

correlated with TNF and ERK1/AKT pathways, which have an important role in immune 

regulation inducing inflammation, apoptosis, and proliferation, suggesting the deletion 

could be correlated to inflammatory disease 69. This suggests that the majority of the 

shared myeloid cell types genes- the HLA genes and possibly BTNL3, are all immune-

related. Ct-eQTLs involving microglia and monocytes/macrophages had a larger 

proportion of total intersection, an isolated set interaction and a statistically significant 

overlap (P<1.0E-314), demonstrating a stronger connection than other brain/blood cell 

types in this study and thus providing further evidence for importance of the immune 

system in AD.   

The proportions of significant ct-eQTLs in NK cells/CD8+T cells, monocytes/ 

macrophages, and eosinophils are comparable to those observed in reference blood 

tissue 70, 71. Similarly, significant eQTL distributions in endothelial cells, neurons, and 

glia are consistent with reference brain tissue 72. The majority of significant blood eQTLs 

were type I interferon response cells which cross-regulate with pro-inflammatory 

cytokines that drive pathogenesis of autoimmune diseases including AD and certain 

heart diseases 73-75and the enrichment of interferon ct-eQTLs in this study could 

possibly be due to the high proportion of subjects these diseases in the FHS dataset. In 

contrast, the proportion of significant ct-eQTLs among glial cells is much lower in 

astrocytes and oligodendrocytes and three-fold higher in microglia than in reference 
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brain tissue 72. Because many AD risk genes are expressed in myeloid cells including 

microglia 10, the large number of microglia ct-eQTLs is consistent with the high 

proportion of AD subjects in the ROSMAP dataset.  

Several SNPs previously reported to be associated with AD at the GWS level were 

associated with eGenes that differ from genes ascribed to AD loci and thus may have a 

role in AD. Karch et al. observed that the expression of PILRB, which is involved in 

immune response and is the activator receptor to its inhibitory counterpart PILRA, an 

established AD gene 76, 77, was highest in microglia 11. CNN2, the eGene for eSNP 

rs4147929 located near the end of ABCA7, significantly alters extracellular Aβ levels in 

human induced pluripotent stem cell-derived neurons and astrocytes 78. Rs4147929 

also targeted HMHA1 which plays several roles in the immune system in an HLA-

dependent manner 79. The eSNP/GWAS SNP rs3740688 located in SPI1 also affects 

expression of MYBPC3 and MADD. MYBPC3 was recently identified as a target gene 

for eSNPs located in CELF1 and MS64A6A in a study of eQTLs in blood for GWS AD 

loci 80. MADD is expressed in neurons 11, is involved in neuronal cell death in the 

hippocampus 81, and was shown to be a tau toxicity modulator 82.  Although eSNP 

rs113986870 in KANSL1 when paired with the nearby eGene LRRC37A2 was a 

significant brain eQTL and ct-eQTL, LRRC37A2 encodes a leucine rich repeat protein 

that is expressed primarily in testis and has no apparent connection to AD. However, 

rs113986870 also significantly influenced expression of another gene in this region, 

ARL17A, that was previously linked to progressive supranuclear palsy by analysis of 

gene expression and methylation 83.  
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Our study has several noteworthy limitations. The proxy genes individually or 

collectively may not accurately depict cell-type specific context. In addition, the 

comparisons of gene expression in blood and brain may yield false results because they 

are based on independent groups ascertained from a community-based longitudinal 

study of health (FHS – blood) and multiple sources for studies of AD (ROSMAP – brain) 

which were not matched for age, sex, ethnicity and other factors which may affect gene 

expression. Moreover, the FHS cohort contains many elderly but relatively few AD 

cases, whereas nearly 60% of the ROSMAP participants in this autopsy sample are AD 

cases. Although the dataset for eQTL analysis in blood was much larger than the 

dataset derived from brain, the effect sizes associated with many of the eQTLs common 

to both tissues were similar. Also, findings in brain may reflect post-mortem changes 

unrelated to disease or cell-type different expression 36. Another limitation of our 

findings is that some cell types are vastly under-represented compared to others. 

Because myeloid cell types are represented in only a small proportion of the total cell 

populations in brain and blood (generally ~10%), it is difficult to identify myeloid-specific 

signals 12. Despite this limitation, many of the most significant and noteworthy results of 

this study involved monocytes/macrophages and microglia. Finally, some of the findings 

may not be AD-related because expression was not compared between AD cases and 

controls. 

Conclusion 

Our observation of cell-type specific expression patterns for established and potentially 

novel AD genes, finding of additional evidence for the role of myeloid cells in AD risk, 

and discovery of potential novel blood and brain AD biomarkers highlight the importance 
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of cell-type specific analysis. Future studies that compare cell type specific differential 

gene expression among AD cases and controls using single cell RNA-sequencing or 

cell count data, as well as functional experiments, are needed to validate and extend 

our findings. 
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 Figure Legends 

 

Figure 1. Significant gene-SNP eQTLs and ct-eQTLs in blood and brain tissue genome-wide.  

A) Venn diagram shows the number of overlapping eQTLs and ct-eQTLs in blood and brain. Gold 

color indicates significant eQTLs that are cell-type specific. Orange color indicates significant eQTLs 

that are shared between blood and brain. B) Cell-type distributions of significant genome-wide ct-

eQTL results in blood and brain.  

 

Figure 2. Intersection of significant gene-SNP eQTL pairs between cell-types in blood and 

brain tissue.  A) Venn diagram showing overlap of ct-eQTL pairs in myeloid cell types (microglia and 

monocytes/macrophages). B) Number of significant eQTLs unique to and that overlap cell-types in 

blood and brain. Bar chart on the left side indicates the number of significant eQTLs involving each 

cell-type and bar chart above the matrix indicates the number of significant eQTLs that are unique to 

each cell type and set of cell-types. Pink colored bar indicates the number of eQTLs pairs that are 

unique to microglia and monocytes/macrophages.
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Table 1: eQTLs and ct-eQTLs in established AD loci appearing in both blood and brain 

 

A. eQTLs and ct-eQTLS in established AD genes in both blood and brain 

eGene Tissue Cell-type Lead eSNP Position MAF Beta 
Std 

Error 
P-value 

# of total significant 

eSNPs in gene/cell-type 

AD GWAS 

peaks 

CR1 Blood NA rs7533408 1:207673631 0.25 0.059 0.006 3.60E-22 169 NA 

HLA-DRB5 Blood NA rs9269008 6:32436217 0.17 -2.580 0.057 <1.0E-314 72 NA 

HLA-DRB1 Blood NA rs9271058 6:32575406 0.14 -2.950 0.028 <1.0E-314 630 Lead eSNP 

ECHDC3 Blood NA rs11257290 10:11780324 0.28 0.041 0.005 2.91E-19 115 NA 

WWOX Blood NA rs7202722 16:78282458 0.40 0.023 0.003 2.60E-14 45 NA 

HLA-DRB5 Blood 

Interferon response(+)/ 

Anti-bacterial(-) rs9269047 6:32438783 0.12 -7.120 0.335 3.04E-100 9 [all (-)] NA 

HLA-DRB5 Blood Monocytes/ Macrophages rs9269047 6:32438783 0.12 

-

11.600 1.030 2.02E-29 1 NA 

HLA-DRB5 Blood NK cells / CD8+ T-Cells rs9269047 6:32438783 0.12 -7.660 0.994 1.30E-14 1 NA 

HLA-DRB1 Blood NK cells / CD8+ T-Cells rs9270928 6:32572461 0.15 -4.070 0.377 3.60E-27 287 rs9271058 

HLA-DRB1 Blood Eosinophils rs9270994 6:32574250 0.14 -2.700 0.415 7.72E-11 42 NA 

HLA-DRB1 Blood 

Interferon response(+)/ 

Anti-bacterial(-) rs9271147 6:32577385 0.14 -5.510 0.250 1.19E-107 346 [260(-)/86(+)] rs9271058 

HLA-DRB1 Blood Monocytes/ Macrophages rs9271148 6:32577442 0.13 -6.110 0.709 6.83E-18 222 rs9271058 

CR1 Brain NA rs12037841 1:207684192 0.17 -0.096 0.007 9.25E-44 64 rs6656401 

HLA-DRB5 Brain NA rs3117116 6:32367017 0.12 -2.780 0.070 <1.0E-314 10537 

rs9271058, 

rs9271192 

HLA-DRB1 Brain NA rs73399473 6:32538959 0.26 -2.050 0.058 8.78E-272 10792 

rs9271058, 

rs9271192 

ECHDC3 Brain NA rs866770710 10:11784320 0.0002 -0.252 0.018 4.61E-44 45 NA 

WWOX Brain NA rs12933282 16:78124987 0.45 -0.133 0.017 1.13E-15 75 NA 

HLA-DRB5 Brain Microglia rs67987819 6:32497655 0.14 -1.900 0.137 9.82E-44 754 NA 

HLA-DRB5 Brain Endothelial Cells rs67987819 6:32497655 0.14 -2.410 0.220 6.32E-28 343 NA 

HLA-DRB1 Brain Microglia rs72847627 6:32538512 0.28 -2.130 0.125 4.15E-65 2305 

rs9271058, 

rs9271192 

HLA-DRB1 Brain Neurons rs115480576 6:32538570 0.26 -2.210 0.153 2.72E-47 3263 

rs9271058, 

rs9271192 

HLA-DRB1 Brain Endothelial Cells rs9269492 6:32542924 0.30 -2.250 0.243 2.06E-20 351 rs9271192 

HLA-DRB5 Brain Neurons rs9270035 6:32553446 0.14 -2.520 0.137 1.46E-75 2540 

rs9271058, 

rs9271192 

ECHDC3 Brain Neurons rs866770710 10:11784320 0.0002 0.328 0.045 3.13E-13 2 NA 

  

A
ll rig

h
ts

 re
s
e
rv

e
d
. N

o
 re

u
s
e
 a

llo
w

e
d
 w

ith
o
u
t p

e
rm

is
s
io

n
. 

p
re

p
rin

t (w
h
ic

h
 w

a
s
 n

o
t c

e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 m

e
d
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. 

T
h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

th
is

 v
e
rs

io
n
 p

o
s
te

d
 N

o
v
e
m

b
e
r 2

4
, 2

0
2
0
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/2

0
2
0
.1

1
.2

3
.2

0
2
3
7
0
0
8

d
o
i: 

m
e
d
R

x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/2020.11.23.20237008


 

 

 

B. eQTLs and ct-eQTLs involving AD GWAS association peak SNPs in both brain and blood 

eGene Tissue Cell-type eSNP+GWAS SNP Position
1 

MAF Beta 

Std 

Error P-value 

HLA-DRB1 Blood NA rs9271058 6:32575406 0.27 -2.950 0.028 <1.0E-314 

ARL17A Blood NA rs2732703 17:44353222 0.21 0.147 0.023 5.95E-11 

ARL17A Blood NA rs113986870 17:44355683 0.09 0.166 0.025 2.30E-11 

HLA-DRB1 Blood 

Interferon response(+)/ 

Anti-bacterial(-) rs9271058 6:32575406 0.27 -3.010 0.159 6.36E-80 

HLA-DRB1 Blood NK cells / CD8+ T-Cells rs9271058 6:32575406 0.27 -4.090 0.464 1.20E-18 

HLA-DRB1 Blood Monocytes / Macrophages rs9271058 6:32575406 0.27 -3.540 0.497 1.06E-12 

HLA-DRB1 Brain NA rs9271058 6:32575406 0.27 -1.690 0.054 1.94E-213 

HLA-DRB5 Brain NA rs9271058 6:32575406 0.27 -1.770 0.081 2.28E-106 

LRRC37A2 Brain NA rs2732703 17:44353222 0.21 1.370 0.053 4.13E-150 

LRRC37A2 Brain NA rs113986870 17:44355683 0.09 1.260 0.068 1.98E-76 

ARL17A Brain NA rs113986870 17:44355683 0.09 -0.326 0.047 4.96E-12 

HLA-DRB1 Brain Microglia rs9271058 6:32575406 0.27 -1.400 0.111 1.80E-36 

HLA-DRB1 Brain Neurons rs9271058 6:32575406 0.27 -1.650 0.135 2.37E-34 

HLA-DRB5 Brain Neurons rs9271058 6:32575406 0.27 -1.550 0.201 1.24E-14 

LRRC37A2 Brain Neurons rs2732703 17:44353222 0.21 1.520 0.140 1.84E-27 

LRRC37A2 Brain Microglia rs2732703 17:44353222 0.21 1.480 0.147 7.65E-24 

LRRC37A2 Brain Endothelial Cells rs2732703 17:44353222 0.21 1.750 0.233 5.88E-14 

LRRC37A2 Brain Microglia rs113986870 17:44355683 0.09 1.530 0.195 4.29E-15 

LRRC37A2 Brain Neurons rs113986870 17:44355683 0.09 1.400 0.184 2.77E-14 

 

 
1 Position according to GRCh37 assembly;  

MAF = minor allele frequency of variant in 1000 Genomes Combined European Population  
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 Table 2: Colocalized AD GWAS/lead eQTL SNP pairs 

 

1 Map position within 1 Mb of AD GWAS SNP according to GRCh37 assembly;  

 

MAF = minor allele frequency; NA = not available; PP4 = posterior probability of colocalization; r2 = correlation of AD and eQTL variants

 

 

 

 

 

Region 
1 

AD GWAS Variant Lead eQTL Variant 
eQTL 

type 
PP4 r

2
  

rsID 
Nearest 

Gene 
MAF p-value 

eQTL 

P-value 
eGene Cell-type rsID MAF eGene 

eQTL 

P-value 
Cell-type GWAS  

P-value 

6:46487762-

48487762 
rs10948363 CD2AP 0.72 1.77E-07 2.32E-104 CD2AP NA rs4711880 0.23 CD2AP 1.36E-104 NA 2.57E-07 

Blood 

eQTL 
0.909 1.00 

6:46487762-

48487762 
rs10948363 CD2AP 0.72 1.77E-07 2.66E-09 CD2AP 

NK cells / CD8+ 

T-Cells 
rs13201473 0.27 CD2AP 1.47E-09 

NK cells / CD8+   

T-Cells 
2.74E-07 

Blood 

ct-eQTL 
0.917 1.00 

8:26195121-

28195121 
rs28834970 PTK2B 0.63 1.58E-09 9.15E-09 PTK2B 

Interferon 

response/ Anti-

bacterial Cells 

rs6557994 0.41 PTK2B 2.58E-09 

Interferon 

response/ Anti-

bacterial Cells 

8.19E-07 
Blood 

ct-eQTL 
0.990 0.78 

8:26467686-

28467686 
rs9331896 CLU 0.61 3.62E-16 Not an eSNP rs6557994 0.45 PTK2B 2.58E-09 

Interferon 

response/ Anti-

bacterial Cells 

8.19E-07 
Blood 

ct-eQTL 
0.990 0.00 

1:206692049-

208692049 
rs6656401 CR1 0.19 2.17E-15 1.05E-43 CR1 NA rs12037841 0.19 CR1 9.25E-44 NA 1.77E-15 

Brain 

eQTL 
0.993 1.00 

11:46557871-

48557871 
rs10838725 CELF1 0.68 1.91E-05 Not an eSNP rs35233100 0.068 MADD 2.88E-10 NA 1.25E-03 

Brain 

eQTL 
0.954 0.12 

11:58923508-

60923508 
rs983392 MS4A6A 0.59 4.76E-15 Not an eSNP rs11230563 0.35 CD6 2.31E-113 NA 0.48 

Brain 

eQTL 
0.854 0.00 

19:44411941-

46411941 
rs429358 APOE 0.78 0.00E+00 Not an eSNP rs74253343 0.47 RELB 1.9E-14 Oligodendroglia 0.23 

Brain ct-

eQTL 
0.971 0.00 
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Table 3: Top-ranked ct-eQTLs in myeloid cell types 

 

A. Monocytes/ macrophages 

eGene Lead eSNP Position
1 

MAF Beta Std Err P-value 

# significant 

eSNPs in 

gene/cell type 

SLC12A1 rs8037626 15:48606346 0.17 -3.340 0.219 1.62E-52 126 

DLG2 rs75798025 11:84018349 0.01 5.350 0.364 6.66E-49 597 

ABCA9 rs4147976 17:66925923 0.44 0.872 0.068 1.97E-37 48 

PTPRG rs116497321 3:62245373 0.01 2.650 0.221 3.96E-33 10 

CLNK rs5028371 4:10452986 0.50 1.060 0.092 7.66E-31 272 

NFXL1 rs10938499 4:47848377 0.33 -1.270 0.112 8.38E-30 73 

FCRL5 rs12760587 1:157526021 0.23 2.140 0.19 1.99E-29 93 

HLA-DRB5 rs9269047 6:32438783 0.12 -11.600 1.03 2.02E-29 1 

FMOD NA 1:203263699 NA 2.110 0.2 5.08E-26 42 

ABCA6 rs144031521 17:67162715 0.01 8.620 0.833 4.27E-25 9 

INPP5F rs181735165  10:121555618 0.02 7.150 0.701 1.99E-24 11 

RBMS3 rs192885607 3:29612955 0.00 2.570 0.257 1.52E-23 34 

ARHGAP44 NA 17:12750576 NA 1.760 0.177 2.69E-23 54 

C4BPA rs74148971 1:207275799 0.07 -2.300 0.234 8.44E-23 24 

DCLK2 rs114930380 4:150954757 0.03 1.630 0.169 5.16E-22 39 

PAM NA 5:102153433 NA -0.691 0.073 2.00E-21 47 

MYO1E rs146483144 15:59422810 0.03 4.300 0.453 2.26E-21 17 

DSP rs4960328 6:7495948 0.42 0.554 0.061 9.30E-20 6 

ROR1 rs1557596882  1:64453767 0.01 3.570 0.393 1.05E-19 31 

CACNB2 rs117299889 10:18404550 0.06 1.510 0.168 2.52E-19 61 
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B. Microglia 

eGene Lead eSNP Position
1 

MAF Beta Std Err P-value 

# significant 

eSNPs in 

gene/cell-type 

AC142381.1 rs199931530 16:33047273 0.45 -0.401 0.012 3.89E-233 43 

MLANA rs201480524 9:68457329 0.50 -0.176 0.007 4.82E-124 18 

AC015688.3 rs62058902 17:25303954 0.50 -0.213 0.009 1.94E-113 11 

HNRNPCL1 rs75627772 1:13182567 0.00 0.186 0.008 4.31E-113 8 

AL050302.1 rs3875276 21:14472722 0.50 -0.890 0.040 2.62E-111 142 

ALLC rs9808287 2:3624799 0.11 0.833 0.044 1.41E-79 12 

FAM21B NA 10:47917284 NA -2.210 0.118 2.88E-78 22 

WNT3 rs9904865 17:44908263 0.37 -1.570 0.084 3.90E-78 1 

RPL9 rs1458255 4:39446549 0.28 -2.370 0.137 4.76E-67 37 

HLA-DRB1 rs72847627 6:32538512 0.32 -2.130 0.125 4.15E-65 2305 

XRCC2 rs80034602 7:152104360 0.50 2.120 0.128 1.30E-61 5 

WI2-3308P17.2 rs4067785 1:120576209 0.50 -0.184 0.011 1.33E-58 9 

DEFB121 rs117541536 20:29422202 0.49 -7.420 0.460 1.56E-58 1 

GINS1 rs75374582 20:26109209 0.50 -33.200 2.060 1.95E-58 5 

EXOSC10 rs2580511 1:121113600 0.50 -4.390 0.276 5.78E-57 5 

TRIM49B rs202086299 11:48363026 0.50 0.205 0.013 2.16E-54 5 

TMPRSS9 rs7248384 19:23936403 0.48 -1.410 0.093 1.83E-52 1 

LDHC NA 11:18432033 NA 0.428 0.030 1.07E-47 73 

HLA-DOB rs201194354 6:32796857 NA 1.190 0.084 4.39E-46 70 

DEFB119 rs78099404 20:29617870 0.50 -0.377 3.51E-15 <1.0E-314 142 

 

1 map position according to GRCh37 assembly 

MAF = minor allele frequency; NA = not available
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Table 4: Overlap of ct-eQTLs in myeloid cell types in brain and blood 

A. Unique eGenes shared in significantly associated ct-eQTLs in monocytes/ 

macrophages and microglia. Number below each gene represents significant eGene-

eSNP eQTL pairs in each gene 

 

 

 

 

 

B. eSNP-eGene pairs among ct-eQTLs significant in both monocytes/ macrophages and 

microglia 

 

 

 

C. Overlap of significant eQTLs in brain and blood with ct-eQTLs in myeloid cell types 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 

number in parentheses represent the proportion of ct-eQTLs for each cell type on the left that were 

also observed in either microglia or monocytes/macrophages 

BTNL3 FAM118A HLA-DOB HLA-DRB1 HLA-DRB5 

1 43 6 200 1 

Monocytes/Macrophages Microglia  

eGene eSNP Position MAF Beta P-value Beta P-value 
AD GWAS   

P-value  
25 

HLA-DOB rs3763355  6:32786882 0.06 -2.02 9.98E-15 0.938 3.89E-14 0.001 

HLA-DOB rs3763354 6:32786917 0.15 -1.11 1.40E-10 -0.642 2.80E-13 0.652 

HLA-DOB rs1183595100 6:32768232 NA -1.13 8.34E-11 -0.605 1.98E-11 NA 

Cell-types Monocytes/ Macrophages Microglia 

Blood 

# ct-eQTLs 

common to cell 

type pair 

# ct-eQTLs 

unique to cell 

type pair 

# ct-eQTLs 

common to cell 

type pair 

# ct-eQTLs 

unique to cell 

type pair 

Neutrophils1     3 (0.3%)
2 

0 

CD4+T-Cells     3 (0.5%) 0 

NK/CD8+T-Cells     337 (12.9%) 0 

Erythrocytes     119 (5.6%) 0 

Monocytes/ Macrophages     251 (7.8%) 3 

Unknown     0 0 

Interferon/ Anti-bacterial     628 (3.3%) 63 

Neutrophils2     0 0 

B-cells     0 0 

Eosinophils     38 (5.2%) 0 

Brain 
  

  
  

  

Endothelial Cells 55 ( 0.5%) 0     

Neurons 250 (1.3%) 0     

Microglia 251 (1.6%) 3     

Astrocytes 0 0     

Oligodendroglia 0 0     
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