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One Sentence Summary: 
Estimated cell type abundances from bulk RNA-seq across tissues reveal the cellular specificity 
of quantitative trait loci.  

Abstract: 
The Genotype-Tissue Expression (GTEx) project has identified expression and splicing 
quantitative trait loci in cis (QTLs) for the majority of genes across a wide range of human tissues. 
However, the functional characterization of these QTLs has been limited by the heterogeneous 
cellular composition of GTEx tissue samples. Here, we map interactions between computational 
estimates of cell type abundance and genotype to identify cell type interaction QTLs for seven 
cell types and show that cell type interaction eQTLs provide finer resolution to tissue specificity 
than bulk tissue cis-eQTLs. Analyses of genetic associations with 87 complex traits show a 
contribution from cell type interaction QTLs and enables the discovery of hundreds of previously 
unidentified colocalized loci that are masked in bulk tissue.  

Main Text: 
The Genotype-Tissue Expression (GTEx) project (1) and other studies (2-5) have shown that 
genetic regulation of the transcriptome is widespread. The GTEx Consortium, in particular, has 
built an extensive catalog of expression and splicing quantitative trait loci in cis (cis-eQTLs and 
cis-sQTLs) across a large range of tissues, showing that these cis-eQTLs and cis-sQTLs 
(collectively referred to here as QTLs) are generally either highly tissue-specific or widely shared, 
even across dissimilar tissues and organs (1, 6). However, the majority of these studies have 
been performed using heterogeneous bulk tissue samples comprising diverse cell types. This 
limits the power, interpretation, and downstream applications of QTL studies. Genetic effects that 
are active only in rare cell types within a sampled tissue may be undetected, a mechanistic 
interpretation of QTL sharing across tissues and other contexts is complicated without 
understanding differences in cell type composition, and inference of downstream molecular 
effects of regulatory variants without the specific cell type context is challenging. Efforts to map 
eQTLs in individual cell types have been largely restricted to blood, using purified cell types (7-
11) or single cell sequencing (12).

While there are many ongoing efforts to optimize single cell and single nucleus sequencing of 
human tissues (13, 14), including as part of the Human Cell Atlas (15), these methods are not yet 
scalable to sample sizes and coverage sufficient to achieve comparable power to bulk eQTL 
studies (16-18). However, cell type specific eQTLs can be computationally inferred from bulk 
tissue measurements, using estimated proportions or enrichments of relevant cell types to test 
for interactions with genotype. To date, such approaches have only been applied to a limited 



range of cell types such as blood cells (19, 20) and adipocytes (21). These studies identified 
thousands of cell type interactions in eQTLs discovered in whole blood samples from large 
cohorts (5,683 samples (19); 2,116 samples, (20)), indicating that large numbers of interactions 
are likely to be identified by expanding this type of analysis to other tissues and cell types.  
 
Identifying cell types in silico in bulk tissue 
 
Here, we used computational estimates of cell type enrichment to characterize the cell type 
specificity of cis-eQTLs and cis-sQTLs for 43 cell type-tissue combinations, using seven cell types 
across 35 tissues (Fig. 1A). Estimating the cell type composition of a tissue biospecimen from 
RNA-seq remains a challenging problem (22), and multiple approaches for inferring cell type 
proportions have been proposed (23). We performed extensive benchmarking for multiple cell 
types across several expression datasets (figs. S1 and S2). The xCell method (24), which 
estimates the enrichment of 64 cell types using reference profiles, was most suitable on the 
combined basis of correlation with cell counts in blood (fig. S1A), in silico simulations (fig. S1B), 
correlation with expression of marker genes for each cell type (fig. S1C,D), and diversity of 
reference cell types. Concordance between methods was generally high (fig. S1A and E). 
Furthermore, the inferred abundances reflected differences in histology (fig. S1C) and tissue 
pathologies (fig. S2). For each cell type, we selected tissues where the cell type was highly 
enriched (fig. S3). The xCell scores for these tissue-cell type pairs were highly correlated with the 
PEER factors used to correct for unobserved confounders in the expression data for QTL mapping 
(1) (fig. S4A), but were generally weakly correlated with known technical confounders (fig. S4B), 
suggesting that cell type composition accounts for a large fraction of inter-sample variation in 
gene expression.  
 
Mapping cell type interaction eQTLs and sQTLs 
 
To identify cis-eQTLs and cis-sQTLs whose effect varies depending on the enrichment of the cell 
type, we leveraged the variability in cell type composition across GTEx samples to test for an 
interaction between cell type and genotype using a linear regression model for either gene 
expression or splicing (25) (Figs. 1B,C and S5A,B). Since QTLs identified this way are not 
necessarily specific to the estimated cell type but may reflect another (anti)correlated cell type, 
we refer to these eQTLs and sQTLs as cell type interaction eQTLs (ieQTLs) and cell type 
interaction sQTLs (isQTLs), respectively (or iQTLs in aggregate).  
 
Across cell types and tissues, we detected 3,347 protein coding and lincRNA genes with an ieQTL 
(ieGenes(26)) and 987 genes with an isQTL (isGenes) at 5% FDR per cell type-tissue 
combination (Figs. 2A, S5C, S6, and table S1). In the following analyses, we use ieQTLs and 
isQTLs identified with 5% FDR unless indicated otherwise. Notably, while 85% of ieQTLs 
corresponded to genes with at least one standard cis-eQTL (eGenes; we refer to cis-eQTLs 
mapped in bulk tissue as standard eQTLs for simplicity (26)) 21% of these ieQTLs were not in LD 
(R2 < 0.2) with any of the corresponding eGene’s conditionally independent eQTLs (1) (fig. S7, A 
and B). For comparison, the proportion of genes with at least one standard eQTL varies as a 
function of sample size (1), with a median of 42% across tissues (48% in transverse colon and 



63% in whole blood). This indicates that ieQTL analysis frequently reveals genetic regulatory 
effects that are not detected by standard eQTL analysis of heterogeneous tissue samples. Unlike 
standard cis-QTL discovery, iQTL discovery was only modestly correlated with sample size 
(Spearman’s ρ = 0.53 and 0.35, for ieQTLs and isQTLs, respectively; fig. S7C,D). The tissues 
with most iQTLs included blood, as well as transverse colon and breast, which both stratified into 
at least two distinct groups on the basis of histology (27): epithelial vs. adipose tissue (breast) 
and mucosal vs. muscular tissue (colon) (fig. S1C). This suggests that inter-individual variance 
(which partially reflects variation in biospecimen collection) in cell type enrichment driven by tissue 
heterogeneity is a major determinant in discovery power, and benefits iQTL mapping despite 
being a potential confounding factor for other types of gene expression analyses. Downsampling 
analyses in whole blood and transverse colon revealed linear relationships between sample size 
and ieQTL discovery in these tissues, suggesting that significantly larger numbers of ieQTLs may 
be discovered with larger sample sizes (fig. S7E). ieQTL discovery was largely robust to the 
choice of deconvolution method, with ~77% of neutrophil ieQTLs detected with xCell also detected 
using CIBERSORT, and close to complete replication (π1 > 0.99; fig. S7F). 
 
The QTL effect of ieQTLs and isQTLs can increase or decrease as a function of cell type 
enrichment (Fig. 1C and fig. S8A). This correlation is usually positive (56%; median across cell 
type-tissue combinations). As an example, a keratinocyte ieQTL for CNTN1 in skin had a stronger 
effect in samples with high enrichment of keratinocytes. However, for a significant number of 
ieQTLs the effect was negatively correlated (19%) suggesting that the interaction we identified 
likely captures an eQTL that is only active in at least one other cell type (fig. S8B). For 24% of 
ieQTLs the correlation was ambiguous. At a more stringent FDR cutoff (FDR < 0.01), the median 
proportion of ieQTLs with ambiguous cell type correlation decreased to 11% (fig. S8B, right 
panel), while the proportion of ieQTLs with positive correlation increased to 77%. Moreover, the 
ieQTLs with ambiguous direction tended to have lower MAF (fig. S8C), suggesting that at less 
stringent FDR this category might be enriched for false positives.  
 
Altogether, we identified numerous cell type ieQTLs and isQTLs across 43 cell type-tissue 
combinations, including iQTLs that are not detected by standard eQTLs analysis in bulk tissue. 
These cell type iQTLs pinpoint the cellular specificity of QTLs that might not necessarily be 
specific to the tested cell type, but may also capture eQTL effects of (anti)correlated cell types. 
 
Validation and replication of cell type iQTLs 
 
Since few external replication datasets exist, we used allele-specific expression (ASE) data of 
eQTL heterozygotes (28, 29) to correlate individual-level quantifications of the eQTL effect size 
(measured as allelic fold-change, aFC) with individual-level cell type enrichments. If the eQTL is 
active in the cell type of interest, we expect to see low aFC in individuals with low cell type 
abundance, and higher aFC in individuals with high cell type abundance (fig. S9). The correlation 
between cell type abundance and aFC across heterozygous individuals can thus be used as a 
measure of validation for a specific ieQTL. 
 



Using this approach, the median proportion of ieQTLs with a significant (P < 0.05) aFC-cell type 
Pearson correlation was 0.62 (Fig. 2B). For 13 cell type-tissue combinations with > 20 significant 
ieQTLs, the corresponding π1 statistic (the proportion of true positives, (30)) confirmed the high 
validation rate (mean π1 = 0.75, fig. S10). While this approach does not constitute formal 
replication in an independent cohort, it is applicable to all tested cell type-tissue combinations and 
corroborates that ieQTLs are not statistical artefacts of the interaction model. 
 
Next, we performed replication analyses in external cohorts, including whole blood from the 
GAIT2 study (31), purified neutrophils (9), adipose and skin tissues from the TwinsUK study for 
ieQTLs (5) and temporal cortex from the Mayo RNA sequencing study for both ieQTLs and isQTLs 
(32). Replication rates ranged from π1 = 0.32 – 0.67, with the highest rate observed in purified 
neutrophils for whole blood (fig. S11). The differences in replication rate likely reflect a 
combination of lower power to detect cell type ieQTLs/isQTLs compared to standard 
eQTLs/sQTLs, as well as differences in tissue heterogeneity across studies. Taken together, 
these results show that ieQTLs and isQTLs can be detected with reasonable robustness for 
diverse cell types and tissues. 
 
Cell type ieQTLs contribute to tissue specificity 
 
Next, we sought to determine to what extent cell type ieQTLs contribute to the tissue specificity 
of cis-eQTLs. First, we analyzed ieQTL sharing across cell types, observing that ieQTLs for one 
cell type were generally not ieQTLs for other cell types (e.g. myocyte ieQTLs in muscle tissues 
were not hepatocyte ieQTLs in liver, etc.; fig. S12A). To determine if a significant cell type 
interaction effect is associated with the tissue specificity of an eQTL, we tested whether cell type 
ieQTLs are predictors of tissue sharing. We annotated the top cis-eQTLs per gene across tissues 
with their cell type ieQTL status for the five cell types with at least 20 ieQTLs (adipocytes, epithelial 
cells, keratinocytes, myocytes, and neutrophils). This annotation was included as a predictor in a 
logistic regression model of eQTL tissue sharing on the basis of eQTL properties including effect 
size, minor allele frequency, eGene expression correlation, genomic annotations, and chromatin 
state (1). In all five cell types, ieQTL status was a strong negative predictor of tissue sharing, with 
the magnitude of the effect similar to that of enhancers, indicating that ieQTLs are an important 
mechanism for tissue-specific regulation of gene expression (Figs. 3A, S12B). Testing whether 
cell type isQTLs are predictors of tissue sharing for four cell types with at least 20 isQTLs 
(adipocytes, epithelial cells, myocytes, and neutrophils) revealed only neutrophil isQTL status as 
a significant negative predictor (fig. S13). This is likely due to a combination of lower power to 
detect isQTLs and higher likelihood of splicing-affecting variants having shared effects if a gene 
is expressed in a tissue or cell type (1).  
 
We corroborated the finding for ieQTLs using multi-tissue eQTL mapping with MASH (1), testing 
whether eGenes that are tissue-specific (eQTLs discovered at LSFR < 0.05 only in the tissue type 
of interest) have a higher proportion of cell type ieQTLs compared to eGenes that are shared 
across tissues (LSFR < 0.05 in multiple tissues). Indeed, the proportion of cell type ieQTLs across 
all 43 cell type-tissue combinations was significantly higher in tissue-specific eGenes compared 
to tissue-shared eGenes (P = 1.9 ´ 10-05, one-sided Wilcoxon rank sum test, Fig. 3B) further 



highlighting the contribution of cell type-specific genetic gene regulation to tissue specificity of 
eQTLs. For tissues with notably high inter-sample heterogeneity (e.g. breast, transverse colon, 
and stomach), the above-average enrichment is likely at least partially driven by higher power to 
detect ieQTLs. 
 
To examine the sharing patterns of cell type ieQTLs across tissues we used two cell types with 
ieQTLs mapped in >10 tissues (16 tissues for epithelial cells and 13 for neurons). We observed 
that while standard eQTLs were highly shared across the subsets of 16 and 13 tissues, cell type 
ieQTLs tended to be highly tissue-specific, reflected by an average of four and five tissues with 
shared ieQTL effects compared to 11 and 12 for eQTLs in epithelial and brain tissues respectively 
(Fig. 3C,D, left panels). These findings were robust to power differences in detecting eQTLs vs. 
ieQTLs, with eQTLs remaining predominantly shared even when limited to 20% of samples (fig. 
S14). 25.3% of neuron ieQTLs were shared between nine brain tissues, highlighting that tissues 
of the cerebrum (e.g. cortex, basal ganglia, limbic system) show particularly high levels of sharing 
compared to cerebellar tissues, the hypothalamus, and the spinal cord (Fig. 3D, left panel). This 
pattern was absent when analyzing standard eQTLs. Pairwise tissue sharing comparisons further 
confirmed that cell type ieQTLs showed greater tissue specificity and more diverse tissue sharing 
patterns than standard eQTLs, which were broadly shared across all tissues (Fig. 3C and D, 
middle and right panels). These results show that incorporating cell type composition is essential 
for characterizing the sharing of genetic regulatory effects across tissues. 
 
GWAS and tissue-specific eQTLs and sQTLs 
 
To study the contribution of cell type interaction QTLs to genome-wide association study (GWAS) 
results for 87 complex traits, we first examined the enrichment of iQTLs of each cell type/tissue 
combination for trait associations (GWAS P ≤ 0.05) using QTLEnrich (33). We used 23 and 7 cell 
type/tissue pairs (19 and 7 unique tissues) with >100 ieQTLs or isQTLs, respectively, at a relaxed 
FDR of 40% to generate robust enrichment estimates of 87 GWAS traits. Across all tested cell 
type/tissue-trait pairs, the GWAS signal was clearly enriched among ieQTLs and isQTLs (1.3 and 
1.4 median fold-enrichments, respectively), similarly to standard eQTLs and sQTLs (Fig. 4A, table 
S4). The GWAS enrichments were robust to the iQTL FDR cutoffs (fig. S15A and B). 
 
We next analyzed the enrichments of the individual traits for iQTLs of two cell types that we 
estimated had the largest number of ieQTLs: neutrophil iQTLs in blood and epithelial cell iQTLs 
in transverse colon. We compared them to the corresponding standard QTLs (Fig. 4B, fig. S15C 
and D), focusing on traits that had a significant enrichment for either QTL type (Bonferroni-
adjusted P < 0.05). Interestingly, in blood we observed a significant shift towards higher 
enrichment for ieQTLs (one-sided, paired Wilcoxon rank sum test; P = 0.0026) and especially 
isQTLs (P = 2.8 ´ 10-05), which appears to be driven by GWAS for blood cell traits, and also 
immune traits having a higher enrichment for iQTLs. The higher iQTL signal is absent in colon 
(ieQTL P = 1 and isQTL P = 0.13), even though the standard QTL enrichment for blood cell traits 
appear similar for blood and colon. This pattern suggests that cell type interaction QTLs may have 
better resolution for indicating relevant tissues and cell types for complex traits compared to tissue 
QTLs, but further studies are needed to fully test this hypothesis. 



 
Next, we asked whether cell type iQTLs can be linked to loci discovered in genome-wide 
association studies (GWAS) and used to pinpoint their cellular specificity. To this end, we tested 
13,702 ieGenes and 2,938 isGenes (40% FDR) for colocalization with 87 GWAS traits (1), using 
both the cell type ieQTL/isQTL and corresponding standard QTL. 1,370 (10.3%) cell type ieQTLs 
and 89 (3.7%) isQTLs colocalized with at least one GWAS trait (Figs. 5A and B, and tables S5 
and S6). The larger number of colocalizations identified for neutrophil ieQTLs and isQTLs in whole 
blood relative to other cell type-tissue pairs likely reflects a combination of the larger number of 
ieQTLs and isQTLs and the abundance of significant GWAS loci for blood-related traits in our set 
of 87 GWASs (Fig. 5B). 
 
Our analysis revealed a substantial proportion of loci for which only the ieQTL/isQTL colocalizes 
with the trait (467/1370, 34%; Fig. 5B), or where the joint colocalization of the ieQTL/isQTL and 
corresponding standard eQTL indicates the cellular specificity of the trait as well as its potential 
cellular origin (401/1370, 29%; Fig. 5B). For example, a colocalization between the DHX58 gene 
in the left ventricle of the heart and an asthma GWAS was only identified through the 
corresponding myocyte ieQTL (PP4 = 0.64), but not the standard eQTL (PP4 = 0.00; Fig. 5C). 
Cardiac cells such as cardiomyocytes are not primarily viewed to have a causal role in asthma, 
but their presence along pulmonary veins and their potential contribution to allergic airway disease 
have been described (34). 
 
An example where both the standard eQTL and the cell type ieQTL colocalize with the trait is 
given in Fig. 5C for KREMEN1 in adipocytes in subcutaneous adipose tissue and a birth weight 
GWAS (PP4 ~0.8); KREMEN1 has been linked to adipogenesis in mice (35). We highlight two 
analogous examples for isQTLs: the epithelial cell isQTL for CDHR5 in small intestine colocalized 
with eosinophil counts whereas the standard sQTL did not (Fig. 5D), and conversely, both the 
standard sQTL and myocyte isQTL for ATP5SL in the left ventricle of the heart colocalized with 
standing height (Fig. 5D). Additional examples of ieQTLs and isQTLs colocalizing with trait 
associations are provided in figs. S16 and S17. While the iQTLs do not necessarily pinpoint the 
specific cell type where the regulatory effect is active, they indicate that cell type specificity plays 
a role in the GWAS locus. Together, our colocalization results indicate that cell type interaction 
QTLs yield new potential target genes for GWAS loci that are missed by standard QTLs and 
provide hypotheses for the cellular specificity of regulatory effects underlying complex traits.  
 
Discussion 
 
By mapping interaction effects between cell type enrichment and genotype on the transcriptome 
across GTEx tissues, we provide an atlas of thousands of eQTLs and sQTLs that are likely to be 
cell type specific. Notably, the ieQTLs and isQTLs we report here include several immune and 
stromal cell types in tissues where cell type specific QTLs have not been characterized in prior 
studies. Cell type ieQTLs are strongly enriched for tissue- and cellular specificity and provide a 
finer resolution to tissue-specificity than bulk cis-QTLs that are highly shared between tissues. 
Given the enrichment of GWAS signal in cell type iQTLs for cell types potentially relevant to the 
traits, and the large fraction of colocalizations with GWAS traits that are only found with cell type 



iQTLs, exhaustive characterization of cell type specific QTLs is a highly promising approach 
towards a mechanistic understanding of these loci, complementing experimental assays of variant 
function. However, the substantial allelic heterogeneity observed in standard QTLs (1) and limited 
power to deconvolve QTLs that are specific to rare cell types or with weak or opposing effects 
indicate that many more cell type specific QTLs exist beyond those that can be currently 
computationally inferred from bulk tissue data. We therefore anticipate that upcoming population-
scale single-cell QTL studies will be essential to complement the approaches presented here. 
However, as those data are still difficult to obtain for many tissues, our demonstration of the 
insights gained from cell type iQTLs indicates that improving deconvolution approaches and 
increasing sample sizes will be valuable in this effort and enable discoveries for cell types and 
tissues not considered in this study. 
 
Methods summary 
 
The GTEx V8 data (1) was used for all analyses. Cell type enrichments were computed using 
xCell (24). Interaction QTL mapping was performed using tensorQTL (36). Full methods are 
available in (26). 
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Fig. 1. Study design of mapping cell type ieQTLs and isQTLs in GTEx v8 project. (A) Illustration of 43 cell type-
tissue pairs included in the GTEx v8 project. See (1) for the full list of tissues included in the GTEx v8 project; two 
brain regions (frontal cortex and cerebellum) were sampled in replicates. Cell types with median xCell enrichment 
score > 0.1 within a tissue were used (fig. S2). (B) Schematic representation of a cell type interaction eQTL and 
sQTL. RNA-seq coverage is depicted in gray, blue, and red, representing different genotypes. Differences in 
coverage between genotypes, corresponding to a QTL effect, are only observed with high cell type enrichment. The 
scatter plot illustrates the regression model used to identify iQTLs, where the dots represent individual samples. (C) 
Example cell type ieQTL and isQTL. The CNTN1 eQTL effect in not sun-exposed skin is associated with keratinocyte 
abundance (p = 4.1 ´ 10-19; left panel). The TNFRSF1A sQTL effect in whole blood is associated with neutrophil 
abundance but is only detected in samples with lower neutrophil abundances (p = 6.7 ´ 10-78; right panel). Each data 
point represents an individual and is colored by genotype. Cell type enrichment scores and gene expression were 
inverse normal transformed, and intron excision ratios were standardized. The regression lines from the interaction 
model illustrate how the QTL effect is modulated by cell type enrichment. 
 
Fig. 2. Cell type ieQTL and isQTL discovery. (A) Number of cell type ieQTLs (left panel) and isQTLs (right panel) 
discovered in each cell type-tissue combination at FDR < 5%. Bar labels show the number of ieQTLs and isQTLs, 
respectively. See Fig. 1A for the legend of tissue colors. (B) Proportion of cell type ieQTLs that validated in ASE data. 
Validation was defined as ieQTLs for which the Pearson correlation between allelic fold-change (aFC) estimates from 
ASE and cell type estimates was nominally significant (P < 0.05). Tissue abbreviations are provided in table S2. Bar 
labels indicate the number of ieQTLs with validation/number of ieQTLs tested.  
 
Fig. 3. Cell type ieQTLs contribute to cis-eQTL tissue specificity. (A) Coefficients from logistic regression models 
of cis-eQTL tissue sharing, where epithelial cell ieQTL status is one of the predictors: All significant top cis-eQTLs per 
tissue were annotated based on if they were also a significant ieQTL for a given cell type. The coefficients represent 
the log(odds ratio) that an eQTL is active in a replication tissue given a predictor. Chromatin states were defined using 
matched Epigenomics Roadmap tissues and the 15-state ChromHMM (37). Genomic annotations, conservation, and 
overlaps with Ensembl regulatory build TF, CTCF, and DHS peaks are also included. Bars represent the 95% 
confidence interval. (B) Proportion of cell type ieQTL-genes (ieGenes) among tissue-specific and tissue-shared 
eGenes. An eGene is considered tissue-specific if its eQTL had a MASH local false sign rate (LFSR, equivalent to 
FDR) < 0.05 only in the cell type ieQTL tissue (or tissue type) otherwise it is considered tissue-shared. Results of all 
43 cell type-tissue combinations are shown. See Fig. 1A for the legend of tissue colors. (C+D) Tissue activity of cell 
type ieQTLs and eQTLs, where a cell type ieQTL and eQTL was considered active in a tissue if it had an LFSR < 0.05 
(left panel). Pairwise tissue-sharing of ieQTLs (middle panel) or lead standard cis-eQTLs (right panel) respectively. The 
color-coded sharing signal is the proportion of significant QTLs (LFSR < 0.05) that are shared in magnitude (within a 
factor of 2) and sign between two tissues.  
 
Fig. 4. Cell type iQTLs are enriched for GWAS signals. (A) Distribution of adjusted GWAS fold-enrichment of 23x87 
(top panel) and 7x87 (bottom panel) tissue-trait combinations using the most significant iQTL or standard QTL per 
eGene/sGene. (B) Adjusted GWAS fold-enrichments of 87 GWAS traits among iQTLs on the x-axis and standard QTLs 
on the y-axis. Filled circles indicate significant GWAS enrichment among iQTLs at P < 0.05 (Bonferroni-corrected). 
Colors represent GWAS categories of the 87 GWAS traits (see table S3). 
 
Fig. 5. Cell type iQTLs improve GWAS-QTL matching. (A) Proportion of cell type ieQTLs (left panel) or isQTLs (right 
panel) with evidence of colocalization using COLOC posterior probabilities (PP4 > 0.5), for ieQTLs and isQTL at FDR 
< 0.4. Color saturation indicates if a trait colocalized with the cell type iQTL only (dark), the cis-QTL only (light) or both 
QTLs (medium). Bar labels indicate the number of cell type iQTLs with evidence of colocalization (either as iQTL or cis-
QTL)/number of iQTLs tested. (B) Summary of all QTL-trait colocalizations from (A). (C) Association p-values in the 
DHX58 locus for an asthma GWAS (top), standard heart left ventricle cis-eQTL (middle) and myocyte ieQTL (bottom), 
and in the KREMEN1 locus for a birth weight GWAS (top), standard subcutaneous adipose cis-eQTL (middle), and 
adipocyte ieQTL (bottom). (D) Association p-values in the CDHR5 locus for an eosinophil count GWAS (top), standard 
small intestine terminal ileum cis-sQTL (middle) and epithelial cell isQTL (bottom), and in the ATP5SL locus for a 
standing height GWAS (top), standard heart left ventricle cis-sQTL (middle), and myocyte isQTL (bottom). 
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