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One Sentence Summary:
Estimated cell type abundances from bulk RNA-seq across tissues reveal the cellular specificity
of quantitative trait loci.

Abstract:

The Genotype-Tissue Expression (GTEx) project has identified expression and splicing
quantitative trait loci in cis (QTLs) for the majority of genes across a wide range of human tissues.
However, the functional characterization of these QTLs has been limited by the heterogeneous
cellular composition of GTEXx tissue samples. Here, we map interactions between computational
estimates of cell type abundance and genotype to identify cell type interaction QTLs for seven
cell types and show that cell type interaction eQTLs provide finer resolution to tissue specificity
than bulk tissue cis-eQTLs. Analyses of genetic associations with 87 complex traits show a
contribution from cell type interaction QTLs and enables the discovery of hundreds of previously
unidentified colocalized loci that are masked in bulk tissue.

Main Text:

The Genotype-Tissue Expression (GTEX) project (1) and other studies (2-5) have shown that
genetic regulation of the transcriptome is widespread. The GTEx Consortium, in particular, has
built an extensive catalog of expression and splicing quantitative trait loci in cis (cis-eQTLs and
cis-sQTLs) across a large range of tissues, showing that these cis-eQTLs and cis-sQTLs
(collectively referred to here as QTLSs) are generally either highly tissue-specific or widely shared,
even across dissimilar tissues and organs (7, 6). However, the majority of these studies have
been performed using heterogeneous bulk tissue samples comprising diverse cell types. This
limits the power, interpretation, and downstream applications of QTL studies. Genetic effects that
are active only in rare cell types within a sampled tissue may be undetected, a mechanistic
interpretation of QTL sharing across tissues and other contexts is complicated without
understanding differences in cell type composition, and inference of downstream molecular
effects of regulatory variants without the specific cell type context is challenging. Efforts to map
eQTLs in individual cell types have been largely restricted to blood, using purified cell types (7-
11) or single cell sequencing (12).

While there are many ongoing efforts to optimize single cell and single nucleus sequencing of
human tissues (73, 74), including as part of the Human Cell Atlas (15), these methods are not yet
scalable to sample sizes and coverage sufficient to achieve comparable power to bulk eQTL
studies (76-18). However, cell type specific eQTLs can be computationally inferred from bulk
tissue measurements, using estimated proportions or enrichments of relevant cell types to test
for interactions with genotype. To date, such approaches have only been applied to a limited



range of cell types such as blood cells (19, 20) and adipocytes (27). These studies identified
thousands of cell type interactions in eQTLs discovered in whole blood samples from large
cohorts (5,683 samples (19); 2,116 samples, (20)), indicating that large numbers of interactions
are likely to be identified by expanding this type of analysis to other tissues and cell types.

Identifying cell types in silico in bulk tissue

Here, we used computational estimates of cell type enrichment to characterize the cell type
specificity of cis-eQTLs and cis-sQTLs for 43 cell type-tissue combinations, using seven cell types
across 35 tissues (Fig. 1A). Estimating the cell type composition of a tissue biospecimen from
RNA-seq remains a challenging problem (22), and multiple approaches for inferring cell type
proportions have been proposed (23). We performed extensive benchmarking for multiple cell
types across several expression datasets (figs. S1 and S2). The xCell method (24), which
estimates the enrichment of 64 cell types using reference profiles, was most suitable on the
combined basis of correlation with cell counts in blood (fig. S1A), in silico simulations (fig. S1B),
correlation with expression of marker genes for each cell type (fig. S1C,D), and diversity of
reference cell types. Concordance between methods was generally high (fig. S1A and E).
Furthermore, the inferred abundances reflected differences in histology (fig. S1C) and tissue
pathologies (fig. S2). For each cell type, we selected tissues where the cell type was highly
enriched (fig. S3). The xCell scores for these tissue-cell type pairs were highly correlated with the
PEER factors used to correct for unobserved confounders in the expression data for QTL mapping
(7) (fig. S4A), but were generally weakly correlated with known technical confounders (fig. S4B),
suggesting that cell type composition accounts for a large fraction of inter-sample variation in
gene expression.

Mapping cell type interaction eQTLs and sQTLs

To identify cis-eQTLs and cis-sQTLs whose effect varies depending on the enrichment of the cell
type, we leveraged the variability in cell type composition across GTEx samples to test for an
interaction between cell type and genotype using a linear regression model for either gene
expression or splicing (25) (Figs. 1B,C and S5A,B). Since QTLs identified this way are not
necessarily specific to the estimated cell type but may reflect another (anti)correlated cell type,
we refer to these eQTLs and sQTLs as cell type interaction eQTLs (ieQTLs) and cell type
interaction sQTLs (isQTLs), respectively (or iQTLs in aggregate).

Across cell types and tissues, we detected 3,347 protein coding and lincRNA genes with an ieQTL
(ieGenes(26)) and 987 genes with an isQTL (isGenes) at 5% FDR per cell type-tissue
combination (Figs. 2A, S5C, S6, and table S1). In the following analyses, we use ieQTLs and
isQTLs identified with 5% FDR unless indicated otherwise. Notably, while 85% of ieQTLs
corresponded to genes with at least one standard cis-eQTL (eGenes; we refer to cis-eQTLs
mapped in bulk tissue as standard eQTLs for simplicity (26)) 21% of these ieQTLs were not in LD
(R? < 0.2) with any of the corresponding eGene’s conditionally independent eQTLs (7) (fig. S7, A
and B). For comparison, the proportion of genes with at least one standard eQTL varies as a
function of sample size (1), with a median of 42% across tissues (48% in transverse colon and



63% in whole blood). This indicates that ieQTL analysis frequently reveals genetic regulatory
effects that are not detected by standard eQTL analysis of heterogeneous tissue samples. Unlike
standard cis-QTL discovery, iQTL discovery was only modestly correlated with sample size
(Spearman’s p = 0.53 and 0.35, for ieQTLs and isQTLs, respectively; fig. S7C,D). The tissues
with most iQTLs included blood, as well as transverse colon and breast, which both stratified into
at least two distinct groups on the basis of histology (27): epithelial vs. adipose tissue (breast)
and mucosal vs. muscular tissue (colon) (fig. S1C). This suggests that inter-individual variance
(which partially reflects variation in biospecimen collection) in cell type enrichment driven by tissue
heterogeneity is a major determinant in discovery power, and benefits iQTL mapping despite
being a potential confounding factor for other types of gene expression analyses. Downsampling
analyses in whole blood and transverse colon revealed linear relationships between sample size
and ieQTL discovery in these tissues, suggesting that significantly larger numbers of ieQTLs may
be discovered with larger sample sizes (fig. S7E). ieQTL discovery was largely robust to the
choice of deconvolution method, with ~77% of neutrophil ieQTLs detected with xCell also detected
using CIBERSORT, and close to complete replication (111 > 0.99; fig. S7F).

The QTL effect of ieQTLs and isQTLs can increase or decrease as a function of cell type
enrichment (Fig. 1C and fig. S8A). This correlation is usually positive (56%; median across cell
type-tissue combinations). As an example, a keratinocyte ieQTL for CNTN1 in skin had a stronger
effect in samples with high enrichment of keratinocytes. However, for a significant number of
ieQTLs the effect was negatively correlated (19%) suggesting that the interaction we identified
likely captures an eQTL that is only active in at least one other cell type (fig. S8B). For 24% of
ieQTLs the correlation was ambiguous. At a more stringent FDR cutoff (FDR < 0.01), the median
proportion of ieQTLs with ambiguous cell type correlation decreased to 11% (fig. S8B, right
panel), while the proportion of ieQTLs with positive correlation increased to 77%. Moreover, the
ieQTLs with ambiguous direction tended to have lower MAF (fig. S8C), suggesting that at less
stringent FDR this category might be enriched for false positives.

Altogether, we identified numerous cell type ieQTLs and isQTLs across 43 cell type-tissue
combinations, including iQTLs that are not detected by standard eQTLs analysis in bulk tissue.
These cell type iQTLs pinpoint the cellular specificity of QTLs that might not necessarily be
specific to the tested cell type, but may also capture eQTL effects of (anti)correlated cell types.

Validation and replication of cell type iQTLs

Since few external replication datasets exist, we used allele-specific expression (ASE) data of
eQTL heterozygotes (28, 29) to correlate individual-level quantifications of the eQTL effect size
(measured as allelic fold-change, aFC) with individual-level cell type enrichments. If the eQTL is
active in the cell type of interest, we expect to see low aFC in individuals with low cell type
abundance, and higher aFC in individuals with high cell type abundance (fig. S9). The correlation
between cell type abundance and aFC across heterozygous individuals can thus be used as a
measure of validation for a specific ieQTL.



Using this approach, the median proportion of ieQTLs with a significant (P < 0.05) aFC-cell type
Pearson correlation was 0.62 (Fig. 2B). For 13 cell type-tissue combinations with > 20 significant
ieQTLs, the corresponding 14 statistic (the proportion of true positives, (30)) confirmed the high
validation rate (mean 111 = 0.75, fig. S10). While this approach does not constitute formal
replication in an independent cohort, it is applicable to all tested cell type-tissue combinations and
corroborates that ieQTLs are not statistical artefacts of the interaction model.

Next, we performed replication analyses in external cohorts, including whole blood from the
GAIT2 study (37), purified neutrophils (9), adipose and skin tissues from the TwinsUK study for
ieQTLs (5) and temporal cortex from the Mayo RNA sequencing study for both ieQTLs and isQTLs
(32). Replication rates ranged from 14 = 0.32 — 0.67, with the highest rate observed in purified
neutrophils for whole blood (fig. S11). The differences in replication rate likely reflect a
combination of lower power to detect cell type ieQTLs/isQTLs compared to standard
eQTLs/sQTLs, as well as differences in tissue heterogeneity across studies. Taken together,
these results show that ieQTLs and isQTLs can be detected with reasonable robustness for
diverse cell types and tissues.

Cell type ieQTLs contribute to tissue specificity

Next, we sought to determine to what extent cell type ieQTLs contribute to the tissue specificity
of cis-eQTLs. First, we analyzed ieQTL sharing across cell types, observing that ieQTLs for one
cell type were generally not ieQTLs for other cell types (e.g. myocyte ieQTLs in muscle tissues
were not hepatocyte ieQTLs in liver, etc.; fig. S12A). To determine if a significant cell type
interaction effect is associated with the tissue specificity of an eQTL, we tested whether cell type
ieQTLs are predictors of tissue sharing. We annotated the top cis-eQTLs per gene across tissues
with their cell type ieQTL status for the five cell types with at least 20 ieQTLs (adipocytes, epithelial
cells, keratinocytes, myocytes, and neutrophils). This annotation was included as a predictor in a
logistic regression model of eQTL tissue sharing on the basis of eQTL properties including effect
size, minor allele frequency, eGene expression correlation, genomic annotations, and chromatin
state (7). In all five cell types, ieQTL status was a strong negative predictor of tissue sharing, with
the magnitude of the effect similar to that of enhancers, indicating that ieQTLs are an important
mechanism for tissue-specific regulation of gene expression (Figs. 3A, S12B). Testing whether
cell type isQTLs are predictors of tissue sharing for four cell types with at least 20 isQTLs
(adipocytes, epithelial cells, myocytes, and neutrophils) revealed only neutrophil isQTL status as
a significant negative predictor (fig. S13). This is likely due to a combination of lower power to
detect isQTLs and higher likelihood of splicing-affecting variants having shared effects if a gene
is expressed in a tissue or cell type (7).

We corroborated the finding for ieQTLs using multi-tissue eQTL mapping with MASH (7), testing
whether eGenes that are tissue-specific (eQTLs discovered at LSFR < 0.05 only in the tissue type
of interest) have a higher proportion of cell type ieQTLs compared to eGenes that are shared
across tissues (LSFR < 0.05 in multiple tissues). Indeed, the proportion of cell type ieQTLs across
all 43 cell type-tissue combinations was significantly higher in tissue-specific eGenes compared
to tissue-shared eGenes (P = 1.9 x 10, one-sided Wilcoxon rank sum test, Fig. 3B) further



highlighting the contribution of cell type-specific genetic gene regulation to tissue specificity of
eQTLs. For tissues with notably high inter-sample heterogeneity (e.g. breast, transverse colon,
and stomach), the above-average enrichment is likely at least partially driven by higher power to
detect ieQTLs.

To examine the sharing patterns of cell type ieQTLs across tissues we used two cell types with
ieQTLs mapped in >10 tissues (16 tissues for epithelial cells and 13 for neurons). We observed
that while standard eQTLs were highly shared across the subsets of 16 and 13 tissues, cell type
ieQTLs tended to be highly tissue-specific, reflected by an average of four and five tissues with
shared ieQTL effects compared to 11 and 12 for eQTLs in epithelial and brain tissues respectively
(Fig. 3C,D, left panels). These findings were robust to power differences in detecting eQTLs vs.
ieQTLs, with eQTLs remaining predominantly shared even when limited to 20% of samples (fig.
S14). 25.3% of neuron ieQTLs were shared between nine brain tissues, highlighting that tissues
of the cerebrum (e.g. cortex, basal ganglia, limbic system) show particularly high levels of sharing
compared to cerebellar tissues, the hypothalamus, and the spinal cord (Fig. 3D, left panel). This
pattern was absent when analyzing standard eQTLs. Pairwise tissue sharing comparisons further
confirmed that cell type ieQTLs showed greater tissue specificity and more diverse tissue sharing
patterns than standard eQTLs, which were broadly shared across all tissues (Fig. 3C and D,
middle and right panels). These results show that incorporating cell type composition is essential
for characterizing the sharing of genetic regulatory effects across tissues.

GWAS and tissue-specific eQTLs and sQTLs

To study the contribution of cell type interaction QTLs to genome-wide association study (GWAS)
results for 87 complex traits, we first examined the enrichment of iQTLs of each cell type/tissue
combination for trait associations (GWAS P < 0.05) using QTLEnrich (33). We used 23 and 7 cell
typeltissue pairs (19 and 7 unique tissues) with >100 ieQTLs or isQTLs, respectively, at a relaxed
FDR of 40% to generate robust enrichment estimates of 87 GWAS traits. Across all tested cell
typeltissue-trait pairs, the GWAS signal was clearly enriched among ieQTLs and isQTLs (1.3 and
1.4 median fold-enrichments, respectively), similarly to standard eQTLs and sQTLs (Fig. 4A, table
S4). The GWAS enrichments were robust to the iQTL FDR cutoffs (fig. S15A and B).

We next analyzed the enrichments of the individual traits for iQTLs of two cell types that we
estimated had the largest number of ieQTLs: neutrophil iQTLs in blood and epithelial cell iQTLs
in transverse colon. We compared them to the corresponding standard QTLs (Fig. 4B, fig. S15C
and D), focusing on traits that had a significant enrichment for either QTL type (Bonferroni-
adjusted P < 0.05). Interestingly, in blood we observed a significant shift towards higher
enrichment for ieQTLs (one-sided, paired Wilcoxon rank sum test; P = 0.0026) and especially
isQTLs (P = 2.8 x 10%), which appears to be driven by GWAS for blood cell traits, and also
immune traits having a higher enrichment for iQTLs. The higher iQTL signal is absent in colon
(ieQTL P =1 and isQTL P = 0.13), even though the standard QTL enrichment for blood cell traits
appear similar for blood and colon. This pattern suggests that cell type interaction QTLs may have
better resolution for indicating relevant tissues and cell types for complex traits compared to tissue
QTLs, but further studies are needed to fully test this hypothesis.



Next, we asked whether cell type iQTLs can be linked to loci discovered in genome-wide
association studies (GWAS) and used to pinpoint their cellular specificity. To this end, we tested
13,702 ieGenes and 2,938 isGenes (40% FDR) for colocalization with 87 GWAS traits (1), using
both the cell type ieQTL/isQTL and corresponding standard QTL. 1,370 (10.3%) cell type ieQTLs
and 89 (3.7%) isQTLs colocalized with at least one GWAS trait (Figs. 5A and B, and tables S5
and S6). The larger number of colocalizations identified for neutrophil ieQTLs and isQTLs in whole
blood relative to other cell type-tissue pairs likely reflects a combination of the larger number of
ieQTLs and isQTLs and the abundance of significant GWAS loci for blood-related traits in our set
of 87 GWASSs (Fig. 5B).

Our analysis revealed a substantial proportion of loci for which only the ieQTL/isQTL colocalizes
with the trait (467/1370, 34%; Fig. 5B), or where the joint colocalization of the ieQTL/isQTL and
corresponding standard eQTL indicates the cellular specificity of the trait as well as its potential
cellular origin (401/1370, 29%; Fig. 5B). For example, a colocalization between the DHX58 gene
in the left ventricle of the heart and an asthma GWAS was only identified through the
corresponding myocyte ieQTL (PP4 = 0.64), but not the standard eQTL (PP4 = 0.00; Fig. 5C).
Cardiac cells such as cardiomyocytes are not primarily viewed to have a causal role in asthma,
but their presence along pulmonary veins and their potential contribution to allergic airway disease
have been described (34).

An example where both the standard eQTL and the cell type ieQTL colocalize with the trait is
given in Fig. 5C for KREMENT1 in adipocytes in subcutaneous adipose tissue and a birth weight
GWAS (PP4 ~0.8); KREMENT1 has been linked to adipogenesis in mice (35). We highlight two
analogous examples for isQTLs: the epithelial cell isQTL for CDHRS in small intestine colocalized
with eosinophil counts whereas the standard sQTL did not (Fig. 5D), and conversely, both the
standard sQTL and myocyte isQTL for ATP5SL in the left ventricle of the heart colocalized with
standing height (Fig. 5D). Additional examples of ieQTLs and isQTLs colocalizing with trait
associations are provided in figs. S16 and S17. While the iQTLs do not necessarily pinpoint the
specific cell type where the regulatory effect is active, they indicate that cell type specificity plays
a role in the GWAS locus. Together, our colocalization results indicate that cell type interaction
QTLs yield new potential target genes for GWAS loci that are missed by standard QTLs and
provide hypotheses for the cellular specificity of regulatory effects underlying complex traits.

Discussion

By mapping interaction effects between cell type enrichment and genotype on the transcriptome
across GTEXx tissues, we provide an atlas of thousands of eQTLs and sQTLs that are likely to be
cell type specific. Notably, the ieQTLs and isQTLs we report here include several immune and
stromal cell types in tissues where cell type specific QTLs have not been characterized in prior
studies. Cell type ieQTLs are strongly enriched for tissue- and cellular specificity and provide a
finer resolution to tissue-specificity than bulk cis-QTLs that are highly shared between tissues.
Given the enrichment of GWAS signal in cell type iQTLs for cell types potentially relevant to the
traits, and the large fraction of colocalizations with GWAS traits that are only found with cell type



iQTLs, exhaustive characterization of cell type specific QTLs is a highly promising approach
towards a mechanistic understanding of these loci, complementing experimental assays of variant
function. However, the substantial allelic heterogeneity observed in standard QTLs (7) and limited
power to deconvolve QTLs that are specific to rare cell types or with weak or opposing effects
indicate that many more cell type specific QTLs exist beyond those that can be currently
computationally inferred from bulk tissue data. We therefore anticipate that upcoming population-
scale single-cell QTL studies will be essential to complement the approaches presented here.
However, as those data are still difficult to obtain for many tissues, our demonstration of the
insights gained from cell type iQTLs indicates that improving deconvolution approaches and
increasing sample sizes will be valuable in this effort and enable discoveries for cell types and
tissues not considered in this study.

Methods summary
The GTEx V8 data (1) was used for all analyses. Cell type enrichments were computed using

xCell (24). Interaction QTL mapping was performed using tensorQTL (36). Full methods are
available in (26).
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Fig. 1. Study design of mapping cell type ieQTLs and isQTLs in GTEx v8 project. (A) lllustration of 43 cell type-
tissue pairs included in the GTEx v8 project. See (1) for the full list of tissues included in the GTEx v8 project; two
brain regions (frontal cortex and cerebellum) were sampled in replicates. Cell types with median xCell enrichment
score > 0.1 within a tissue were used (fig. S2). (B) Schematic representation of a cell type interaction eQTL and
sQTL. RNA-seq coverage is depicted in gray, blue, and red, representing different genotypes. Differences in
coverage between genotypes, corresponding to a QTL effect, are only observed with high cell type enrichment. The
scatter plot illustrates the regression model used to identify iQTLs, where the dots represent individual samples. (C)
Example cell type ieQTL and isQTL. The CNTN1 eQTL effect in not sun-exposed skin is associated with keratinocyte
abundance (p = 4.1 x 10°'%; left panel). The TNFRSF1A sQTL effect in whole blood is associated with neutrophil
abundance but is only detected in samples with lower neutrophil abundances (p = 6.7 x 1078; right panel). Each data
point represents an individual and is colored by genotype. Cell type enrichment scores and gene expression were
inverse normal transformed, and intron excision ratios were standardized. The regression lines from the interaction
model illustrate how the QTL effect is modulated by cell type enrichment.

Fig. 2. Cell type ieQTL and isQTL discovery. (A) Number of cell type ieQTLs (left panel) and isQTLs (right panel)
discovered in each cell type-tissue combination at FDR < 5%. Bar labels show the number of ieQTLs and isQTLs,
respectively. See Fig. 1A for the legend of tissue colors. (B) Proportion of cell type ieQTLs that validated in ASE data.
Validation was defined as ieQTLs for which the Pearson correlation between allelic fold-change (aFC) estimates from
ASE and cell type estimates was nominally significant (P < 0.05). Tissue abbreviations are provided in table S2. Bar
labels indicate the number of ieQTLs with validation/number of ieQTLs tested.

Fig. 3. Cell type ieQTLs contribute to cis-eQTL tissue specificity. (A) Coefficients from logistic regression models
of cis-eQTL tissue sharing, where epithelial cell ieQTL status is one of the predictors: All significant top cis-eQTLs per
tissue were annotated based on if they were also a significant ieQTL for a given cell type. The coefficients represent
the log(odds ratio) that an eQTL is active in a replication tissue given a predictor. Chromatin states were defined using
matched Epigenomics Roadmap tissues and the 15-state ChromHMM (37). Genomic annotations, conservation, and
overlaps with Ensembl regulatory build TF, CTCF, and DHS peaks are also included. Bars represent the 95%
confidence interval. (B) Proportion of cell type ieQTL-genes (ieGenes) among tissue-specific and tissue-shared
eGenes. An eGene is considered tissue-specific if its eQTL had a MASH local false sign rate (LFSR, equivalent to
FDR) < 0.05 only in the cell type ieQTL tissue (or tissue type) otherwise it is considered tissue-shared. Results of all
43 cell type-tissue combinations are shown. See Fig. 1A for the legend of tissue colors. (C+D) Tissue activity of cell
type ieQTLs and eQTLs, where a cell type ieQTL and eQTL was considered active in a tissue if it had an LFSR < 0.05
(left panel). Pairwise tissue-sharing of ieQTLs (middle panel) or lead standard cis-eQTLs (right panel) respectively. The
color-coded sharing signal is the proportion of significant QTLs (LFSR < 0.05) that are shared in magnitude (within a
factor of 2) and sign between two tissues.

Fig. 4. Cell type iQTLs are enriched for GWAS signals. (A) Distribution of adjusted GWAS fold-enrichment of 23x87
(top panel) and 7x87 (bottom panel) tissue-trait combinations using the most significant iQTL or standard QTL per
eGene/sGene. (B) Adjusted GWAS fold-enrichments of 87 GWAS traits among iQTLs on the x-axis and standard QTLs
on the y-axis. Filled circles indicate significant GWAS enrichment among iQTLs at P < 0.05 (Bonferroni-corrected).
Colors represent GWAS categories of the 87 GWAS ftraits (see table S3).

Fig. 5. Cell type iQTLs improve GWAS-QTL matching. (A) Proportion of cell type ieQTLs (left panel) or isQTLs (right
panel) with evidence of colocalization using COLOC posterior probabilities (PP4 > 0.5), for ieQTLs and isQTL at FDR
< 0.4. Color saturation indicates if a trait colocalized with the cell type iQTL only (dark), the cis-QTL only (light) or both
QTLs (medium). Bar labels indicate the number of cell type iQTLs with evidence of colocalization (either as iQTL or cis-
QTL)/number of iQTLs tested. (B) Summary of all QTL-trait colocalizations from (A). (C) Association p-values in the
DHX58 locus for an asthma GWAS (top), standard heart left ventricle cis-eQTL (middle) and myocyte ieQTL (bottom),
and in the KREMEN1 locus for a birth weight GWAS (top), standard subcutaneous adipose cis-eQTL (middle), and
adipocyte ieQTL (bottom). (D) Association p-values in the CDHRS locus for an eosinophil count GWAS (top), standard
small intestine terminal ileum cis-sQTL (middle) and epithelial cell isQTL (bottom), and in the ATP5SL locus for a
standing height GWAS (top), standard heart left ventricle cis-sQTL (middle), and myocyte isQTL (bottom).
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