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The transcription factor NF-κB is a central mediator of inflammation with multiple links

to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell

types within the vasculature and the circulation that are involved in thrombo-inflammatory

processes. All these cells express NF-κB, which mediates important functions in

cellular interactions, cell survival and differentiation, as well as expression of cytokines,

chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB

family members and their corresponding signaling molecules, which are involved in

platelet activation, as well as secondary feedback circuits. The response of endothelial

cells to inflammation and NF-κB activation is characterized by the induction of adhesion

molecules promoting binding and transmigration of leukocytes, while simultaneously

increasing their thrombogenic potential. Paracrine signaling from endothelial cells

activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch

to a “synthetic” state associated with a decrease in contractile proteins. Monocytes

react to inflammatory situations with enforced expression of tissue factor and after

differentiation to macrophages with altered polarization. Neutrophils respond with

an extension of their life span—and upon full activation they can expel their DNA

thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial

functions, but also induce a strong coagulatory response. This may cause formation

of microthrombi that are important for the immobilization of pathogens, a process

designated as immunothrombosis. However, deregulation of the complex cellular links

between inflammation and thrombosis by unrestrained NET formation or the loss of the

endothelial layer due to mechanical rupture or erosion can result in rapid activation and

aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis

is an important example of such a disorder caused by a dysregulated host response

to infection finally leading to severe coagulopathies. NF-κB is critically involved in these

pathophysiological processes as it induces both inflammatory and thrombotic responses.
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GENERAL LINKS BETWEEN
INFLAMMATION AND THROMBOSIS

The close association of inflammatory conditions and
coagulatory processes has an evolutionary origin, as injuries
require both an efficient blood clotting and an inflammatory
immune response against invading pathogens. In this review
we focus on the cellular interactions that link inflammation
with thrombotic processes, while the plasmatic coagulation
cascade is described elsewhere (1, 2). Platelets are the first
functional elements that seal damaged blood vessels upon injury
by forming aggregates and a subsequent thrombus. They are
also the first immunomodulatory cells at the side of injury
and inflammation, providing a functional link between host
response and coagulation (3). Endothelial cells in an inactivated,
quiescent state express potent inhibitors of coagulation and
platelet aggregation. However, upon inflammatory stimuli they
change their cellular program by expressing leukocytes adhesion
molecules to facilitate their entry to sites of inflammation.
In addition, they undergo a transition toward a more pro-
coagulatory phenotype (4). Furthermore, chronic inflammation
causes a phenotypic switch of vascular smooth muscle cells from
a contractile to a synthetic phenotype, which is associated with
secretion of pro-inflammatory mediators and which can finally
result in a macrophage-like state (5). Other cells of the circulation
and vasculature are altered by inflammatory conditions toward
a pro-thrombotic state, as well. Monocytes and neutrophils
contribute to coagulation by expression of tissue factor (6, 7),
which is upregulated upon inflammation. Moreover, in their
activated state, neutrophils are capable of expelling their DNA
in conjunction with histones and other associated proteins
thereby forming extracellular DNA designated as neutrophil
extracellular traps (NETs), which exert antibacterial functions,
but also induce a strong coagulatory response (8). Recent
findings indicate that these processes are also a physiological
part of an intravascular immunity especially in capillaries
causing clinically unnoticed forms of micro-thrombosis that
are termed immuno-thrombosis and which have the purpose of
immobilizing invaded pathogens (9).

While both physiological hemostasis and immuno-
thrombosis represent a normal response to traumas or invading
microorganisms, any deregulation of these processes can lead to
aberrant intravascular coagulation and a pathological obstruction
of the blood flow, which is generally defined as thrombosis.
This is often seen in acute inflammatory states, with sepsis
representing a clinically weighty example, where patients suffer
from anomalous systemic inflammation that is associated with
alterations in blood coagulation and microvessel thrombosis
in diverse organs (10). Furthermore, the interplay between
endothelial cells, smooth muscle cells, platelets, and leukocytes
becomes critical under chronic inflammatory conditions, which
are a central cause in the pathogenesis of atherosclerosis driving
vascular remodeling and plaque formation. Rupture or erosion
of the plaques can then cause rapid thrombosis and occlusion
of blood vessels that finally leads to myocardial infarction or
stroke, the two major reasons of mortality worldwide. Therefore,
understanding of the complex interaction between the distinct

cell types in inflammation and thrombosis is necessary for
prevention or treatment of cardiovascular diseases.

THE TRANSCRIPTION FACTOR NF-κB AND
ITS INHIBITORS

NF-κB is a central mediator of inflammation and thus
fundamentally involved in the molecular links between
inflammatory and thrombotic processes. It was first described in
1986 as transcription factor driving the expression of the κ-chain
of immunoglobulins in B-cells (11). Thus, the commonly used
abbreviation NF-κB stands for: Nuclear Factor of the κ-chain in
B-cells. While the name insinuates that this protein is specific
for B cells, with the κ-IgG chain being the most important target
gene, it is now clear that it is expressed in nearly all cells of the
human body and that it regulates the expression of hundreds or
thousands of genes (12) involved in a great variety of biological
processes. Not even the designation “nuclear” is correct, as this
transcription factor is mostly located in the cytosol, as long
as it is bound to one of its inhibitors in non-activated cells.
Furthermore, NF-κB is not a single factor as implied by the
name, but actually a protein family consisting of five members,
building homo- or heterodimers via their Rel-homology domain,
which is also responsible for DNA binding (Figure 1). Two of
the family members (p100 and p105) contain inhibitory domains
consisting of ankyrin repeats, which block binding to DNA and
constrain nuclear localization. These have to be proteolytically
processed by proteasomes for activation of NF-κB and binding
to enhancer elements in the promoter regions of target genes
(14–16). The processed forms of p100 and p105 (p52 and p50,
respectively), do not contain a transactivation domain and
need to dimerize with one of the other three family members,
RelA (p65), RelB, or c-Rel to function as transcription factors.
Dimers of p50 and p52 operate as transcriptional repressors, as
they can bind to promoter elements without activation of the
transcriptional machinery (17). The other three NF-κB proteins:
p65 (RelA), RelB, and c-Rel do not contain these inhibitory
domains. However, they bind to inhibitory molecules of the IκB
family, which contain ankyrin repeats similar to the inhibitory
domains of p100 and p105 and which have to be degraded for
release and activation of the transcription factor (17). One of the
most common NF-κB forms is a dimer of p65 bound to p50—the
processed form of p105, with the dimer again being inactivated
by association with a member of the IκB family. Binding of
IκB alters the conformation of NF-κB dimers and prevents
their association with DNA (18, 19) (Figure 2). Furthermore,
it shifts the preferential localization from the nucleus to the
cytosol. However, in contrast to the picture that is drawn in
most textbooks, IκB molecules do not completely prevent
translocation of NF-κB into the nucleus, as a vivid shuttling of
NF-κB between cytosol and nucleus can be observed even in
the presence of normal levels of IκB—with a halftime of about
7–14min (21–23). Studies with fluorescently tagged p65 and IκB
molecules in non-activated cells revealed that the concentration
of nuclear p65 is about 5% of the cytosolic one (21). The basis for
this phenomenon seems to be the fact that NF-κB/IκB complexes
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FIGURE 1 | NF-κB and IκB family of proteins and their functional domains. The proteins are designated by their gene symbols with frequently used aliases in brackets.

RHD, Rel-homology domain, responsible for DNA binding and dimerization; TA, transactivation domain, responsible for binding of the transcriptional machinery and

RNA-polymerase; LZ, leucine zipper; NLS, nuclear localization domain; A, ankyrin repeat; DD, death domain; PP, double-phosphorylation by IκB kinases triggering

ubiquitination and proteasomal degradation or processing (in case of NFKB1 and NFKB2). The numbers specify the amino acid borders of domains for human

isoforms. Atypical inhibitors are described in more detail in Pettersen et al. (13).

like most macromolecular complexes are subject to dissociation
and re-association, with a certain number of unbound molecules
under steady state conditions, which can then be recognized by
the nuclear import machinery and translocated to the nucleus.
As a consequence of this nucleocytoplasmic shuttling and the
dynamics of binding, a low level of NF-κB activity is predicted
even in non-activated cells (24). Thus, elevated levels of NF-κB
molecules as observed in chronic inflammatory states can
contribute to an increased risk of thrombosis even if inhibitory
molecules are present.

NF-κB SIGNALING PATHWAYS

After the discovery of NF-κB as a crucial transcription factor in
inflammation and immunity, great efforts have been undertaken
to elucidate the signaling pathways by which it is activated. Quite
soon it became clear that NF-κB activity is not only triggered
by inflammatory cytokines such as tumor nerosis factor alpha
(TNFα) or interleukin 1 (IL-1), but also by bacterial cell wall
components like lipopolysaccharides, by viruses and even by
physical stress conditions such as gamma- or UV-irradiation
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FIGURE 2 | 3D-structures of NF-κB/IκBα and NF-κB/DNA. (A) 3D-Model of a p65-NF-κB fragment (green; amino acids 20–320) bound to IκB (red, amino acids

70–282) generated with Chimera software (20) using the protein database file 1NFI. The position of the nuclear localization sequence (NLS) of p65 is indicated with an

arrow. (B) Conformation of a p65 fragment (blue, amino acids 20–291) bound to DNA (yellow) and p50 (gray; amino acids 39–350) forming a characteristic

butterfly-like structure (protein database file 1VKX). The p65-fragment, which was crystalized for this structure, lacks the last 29 amino acids of the corresponding

structure of (A), but is shown from the same perspective. (C) Superimposed structures of (A, B), illustrating the conformational switch of p65 between the IκB- and

the DNA-bound form (green and blue, respectively). The amino acid side chains of the lower p65 wing, which come closer than 0.5 nm to the DNA in the DNA-bound

form, are shown in ball-and-stick manner. These side chains are turned away in the IκB-bound form as depicted with an arrow.

TABLE 1 | Important activators of NF-κB.

Activator class Examples

Cytokines Il-1β, TNFα (25, 26), IL-12 (27), IL-17 (28), IL-33 (29),

Lymphotoxin-β (30), GM-CSF (31)

Receptor ligands CD40L (32), BAFF [B-cell activating factor (33)],

CD4-ligand [HIV-gp120, (34)], TRAIL (35), FasL (36),

BMP-2 and−4 (37), EGF (38), HGF (39), insulin (40)

Bacteria Lipopolysaccharide [LPS (41, 42)], flagellin (43),

CpG-DNA (44), enterotoxins (45, 46),

Viruses dsRNA via PKR (47), many viral proteins [as reviewed in:

(48)]

Eukaryotic parasites Candida albicans (49), Entamoeba histolytica (50),

Leishmania (51)

Cell lysis products DAMPs [Danger associated molecular patterns, (52)],

HMGB1 (53), extracellular DNA(54), extracellular RNA

(55, 56)

Physiological stress ER stress (57–59), turbulent flow (shear stress) (60–62),

acidic pH (63), oxidative stress (64, 65), hyperglycemia

(66)

Physical stress Ionizing radiation (67, 68), UV-light (69, 70), cold (71)

Modified proteins Advanced glycation end products (AGEs), oxidized LDL,

amyloid protein fragments

Viruses not only activate NF-κB—but also often make use of the NF-κB pathway to control

their own replication or to prevent apoptosis of host cells; furthermore, some viral genes

have NF-κB binding sites and are induced by NF-κB (48).

(see Table 1 for a more extended list of activating stimuli). The
detailed clarification of the receptors that sense the original
triggers and the components that transmit and modulate these
signals inside the cell took many years and involved the work
of numerous research groups [for a review see: (72)]. The
variety of individual activation pathways became quite confusing
throughout the years, so that some structuring was proposed
to group the signaling cascades in a logical way. Since then,
most researchers classify the activation in (i) the classical (or

canonical) pathway, which is triggered by TNFα, IL-1, or
lipopolysaccharide (LPS); (ii) a non-classical (non-canonical
or alternative) activation elicited by CD40 ligand (CD40L) or
lymphotoxin β (LTbeta); and (iii) atypical signaling pathways
such as that initiated by DNA-damage (Figure 3). Yet, it has to be
stated that this classification is arbitrary and should not lead to a
dogmatic view of NF-κB activation. Furthermore, there appears
to be a non-genomic pathway of NF-κB signaling molecules,
which will be discussed in the platelet section. Moreover, it has
recently been shown that stimulation of the alternative pathway
can also activate components of the classical pathway and that the
transcriptional responses can be qualitatively very similar (73).

Activating ligands usually trigger a conformational change
or an oligomerization of receptors, which generates a binding
surface for intracellular adaptor proteins. These are then
recruiting E3-type ubiquitin-ligases (TRAF and IAP-proteins),
which transfer a polyubiquitin chain that has been built up by E1

(ubiquitin-activating) and E2 (ubiquitin-conjugating) enzymes

to target proteins such as RIPK1 or other TRAF and IAP proteins.
The polyubiquitin-chains that are formed by these enzymes, are

linked via lysine-63 (K63) or lysine-11 (K11), creating a structure
that serves as binding and signaling platform for downstream
adaptor molecules (TAB1/2 and NEMO) and their associated
kinases (TAK1 and IκB kinases, IKKα, and IKKβ). Another
polyubiquitination structure that activates the NF-κB signaling
pathway is formed by linking the carboxy-terminus of a ubiquitin
molecule with the amino-terminus of the starting methionine
(M1) on the next ubiquitin moiety. This reaction is catalyzed
by an enzyme complex termed LUBAC (linear ubiquitin chain
assembly complex) and acts primarily on the adapter molecule
NEMO or on other polyubiquitin chains as substrates (74–
78). Altogether, K11-, K63-, and M1-type polyubiquitin chains
generate signaling platforms via adapter molecules and clustering
processes, which allow phosphorylation of IκB kinases on their
activation loops. This occurs either by upstream signaling kinases
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FIGURE 3 | Major NF-κB activation pathways. (A) Canonical (classical) pathway, upper left side: exemplified by TNFα and IL-1 triggered reactions. (B) Non-canonical

(alternative, non-classical) pathway, upper-right side: represented with the CD40L-activated pathway. (C) Atypical NF-κB activation pathway triggered by genotoxic

stress: lower left side. For more detailed explanation see the text.

such as TAK1 or by proximity-induced auto-phosphorylation
in a way, that one IKK molecule activates another one in a
dimer or oligomer, a process, which is commonly termed as
transphosphorylation (79). Finally, most of the NF-κB-activating
signaling pathways converge at the level of IκB kinases (IKKα

and IKKβ), which upon activation phosphorylate the inhibitory
molecules of the IκB family or the inhibitory domains of p100
and p105 on two adjacent serine residues. This triggers another
type of polyubiquitination, which is characterized by linkage
of ubiquitin moieties via lysine-48 (K48) and catalyzed by E3-
ligases of the CRL (Cullin-Ring ligase) type, also named SCF-
type (for the key components Skp1, Cullin, and F-box protein)
(80, 81). These K48-linked polyubiquitin chains are recognized
by proteasome activators, leading to proteasomal degradation of
the inhibitor and release of the NF-κB dimer.

Important feedback mechanisms of NF-κB regulation are
found at the level of the activating K63- and M1-type

polyubiquitin chains. These can be degraded by specific
deubiquitinating enzymes (DUBs), primarily the molecules A20
and CYLD, which act as negative regulators of NF-κB signaling.
A20 or an associated E3-ligase have furthermore the capability to
catalyze K48-type polyubiquitination of RIPK1, thereby leading
to proteasomal degradation of this crucial NF-κB activating
effector molecule (82). For a comprehensive overview of the
different ubiquitination steps see Figure 3.

The biological response following NF-κB activation is
manifold and depends on the cell type, the accessibility of
promoter regions, which is regulated by epigenetic mechanisms,
and furthermore additional feedback pathways, which intersect
with the NF-κB pathway. Basically, we have to view these
processes rather as dynamic signaling networks and feedback
circuits far beyond the classical cascade scheme of signaling
pathways involving significant crosstalk between various
upstream and downstream pathways (17), which may have
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additional implications on the links between inflammation
and thrombosis, but which are beyond the scope of this
review.

The major biological function of NF-κB is to change cellular
programs in all different kinds of stress situations, so that the
various cell types can respond to the stress in a way that the
organism can cope with the threat, activate defense mechanisms
and eliminate or escape the endangering factors with the final
aim to re-gain the original physiological state (83). This major
biological function of NF-κB signaling explains the various
types of target genes that are upregulated or induced after NF-
κB activation. As listed more comprehensively in Table 2 and
illustrated in Figure 4, these target genes comprise a great variety
of cytokines and chemokines, the majority of which is acting in
a pro-inflammatory manner, often themselves leading to NF-κB
activation and thereby constituting a positive feedback circuit.
This is in line with an upregulation of many different immune
and chemokine receptors (211). Another set of genes that are
induced by NF-κB are adhesion molecules, which are crucial
for transmigration of leukocytes through the endothelium, as
well as cell-cell interactions that are important for immune
defense and platelet function. At the cellular level, NF-κB
activation leads to upregulation of anti-apoptotic genes, which
supports cell survival under stress condition. However, the
same mechanism may contribute to cancer development as high
levels of anti-apoptotic genes provide a survival advantage to
cells with malignant mutations, which would otherwise die or
become senescent (212, 213). Moreover, NF-κB induces cyclin D
proteins, which are essential for cell cycle progression (214), as
well as the oncogene c-Myc, which upregulates many cell cycle
proteins and which is overexpressed in a majority of cancers
(215). Apart from c-Myc, various other transcription factors are
induced by NF-κB, such as members of the interferon-regulatory
IRF family in accordance with immune defense functions, as
well as HIF-1α, GATA-3 or LEF1 demonstrating that NF-κB is
capable of influencing the cellular transcriptional network in
a complex manner involving numerous feedback circuits (17).
Additionally, NF-κB up-regulates the transcription of various
members of the NF-κB gene family, thereby creating positive
feedback loops. However, these are in most cases counteracted
by negative feedback mechanisms, which are induced by NF-
κB as well. These include the induction of the various IκB
family members, which inhibit NF-κB directly, as well as
proteins that are removing the activating K63- or M1-linked
polyubiquitin chains from NF-κB activating proteins such as
A20 or ABIN (216). Finally, the vital role of these feedback
inhibitors is to shut off NF-κB activity and to revert the
cell to its inactivated state. Impairment of these processes
is often the basis for chronic inflammatory diseases. The
complexity of all the feedback circuits is further enhanced by
NF-κB-dependent upregulation of several miRNAs, which lead
to the degradation or reduced translation of many different
mRNAs (199).

Important NF-κB target genes in the context of inflammation
include various enzymes such as cyclooxygenases and
lipoxygenases catalyzing the formation of prostaglandins
and leukotrienes, as well as NO synthases, which are important

TABLE 2 | Important target genes of NF-κB.

Target gene class Examples

Cytokines, chemokines IL-1α and -β (84, 85), IL-2 (86), IL-6 (87), IL-8 (88),

IL-12 (89), IL-17 (90), TNFα (91), IFNβ (92), IFNγ

(93), CCL5 (94), Fractalkine (95), Gro (96)

Immune receptors CCR5 (97), CCR7 (98), CD3 (99), CD23 (FcεRII)

(100), CD40 (101), CD137 (102), MHC I (103), Nod2

(104), TCR (105), TLR9 (106), TNFR2 (107),

TREM-1 (108)

Other receptors A2A adenosine receptor (109), adrenoceptor α2B

(110), EGFR (111), RAGE (112)

Adhesion molecules E-selectin (113), ICAM-1 (114), fibronectin (115),

P-selectin (116), VCAM-1 (117)

Acute phase proteins CRP (118), PTX3 (119), serum amyloid A (120)

Coagulation regulators Tissue factor [F3, (121)], F VIII (122), uPA (123),

PAI-1 (124)

Anti-apoptotic genes A20 (125), A1 (126), Bcl-2 (127), c-FLIP (128),

c-IAP1 and−2 (129), BIRC3 (130), XIAP (131),

TRAF1 and TRAF2 (129, 132)

Cell cycle regulators Cyclin D1−3 (133–135), c-Myc (136)

Enzymes COX-2 (137), lipoxygenase (138), iNOS (139, 140),

nNOS (141), BACE-1 (142), cathepsin B (143),

MMP-1 (144), MMP-3 (145), MMP-9 (146), GSTP-1

(147), G6PD (148), granzyme B (149), HO-1 (150),

lysozyme (151), PI3K catalytic subunit (152), PKA-α

(153), PKC-δ (154), PLA-2 (155), PLC- δ (156),

TERT (157), transglutaminase (158)

Stress response genes Hsp90A (159), superoxide dismutase (160, 161),

Ferritin H (162)

Growth factors FGF8 (163), G-CSF (164), M-CSF (165), GM-CSF

(166), NGF (167), EPO (168), IGFBP-1 and−2

(169, 170), osteopontin (171), VEGF-C (172)

Transcription factors AR (173), c-Myc (136), c-Rel (174), GATA-3 (175),

HIF-1α (176), IRF-1 and−2 (177), IRF-4 (178), IRF-7

(179), LEF1 (180), NFKB1 (181), NFKB2 (182),

Nurr1 (183), p53 (184), RelB (185), Stat5a (186)

Feedback genes Neg. feedback: IκBα (187), IκB-ε (188), NLRP2

(189), A20 (125, 190), ABIN-1 and−3 (191),

Pos. feedback: XIAP (131, 192), NF-κB transcription

factors as mentioned above.

miRNAs miR-9 (193), miR-21 (194), miR-143 (195),

miR-125b and miR-155 (196), miR-146(197),

miR-224 (198), for review see (199)

Viral genes Adenovirus E3 (200), CMV (201), EBV (202), HBV

(203), HSV-proteins (204), HPV-16 (205), SV-40

(206)

for vasodilation and blood pressure regulation (for references see
Table 2).

Furthermore, a variety of coagulation factors and regulators
are induced by NF-κB, including tissue factor [F3, (121)], factor
VIII (122), urokinase-type plasminogen activator (uPA) (123),
and Plasminogen activator inhibitor-1 (PAI-1) (124). Thus,
NF-κB contributes to coagulatory events not only via cellular
activation processes, but also by transcriptional induction of
proteins of the plasmatic coagulation cascade. This provides
another molecular explanation for the functional links between
inflammation and thrombotic processes that contributes to
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FIGURE 4 | Categories of inflammatory target genes in different cell types. Transcriptional responses after stimulation with TNFα have been analyzed using gene set

enrichment analysis (GSEA) with the following datasets: smooth muscle cells: GSE96962; endothelial cells: GSE96962; monocytes: GSE56681; neutrophils:

GSE40548. Gene sets were derived from NF-κB target genes as described in Jia et al. (207). As p-value and log fold change (LogFC) are often used to evaluate

significant results from differential expression analysis and the up-regulated/down-regulated genes are usually at the top and/ bottom of the ranked gene list,

respectively, we used the signed z-value to rank genes, where the sign is from LogFC, as previously described (208). To assess the enrichment of the target genes of

NF-kappa B gene sets in the different datasets, the GSEA Preranked tool was used (209). Gene sets showing a significant enrichment are represented by ***(FDR <

0.001), **(FDR < 0.01), and *(FDR < 0.05). The plot was produced using the R package, ggplot2 (210) visualizing the normalized enrichment scores as stacked bars

showing differences in the response between different cell types of the vasculature and circulation.

increased cardiovascular risk in situations of acute or chronic
inflammation.

PLATELETS AS MEDIATORS BETWEEN
INFLAMMATION AND THROMBOSIS

Platelets, the cells that build the thrombus in primary hemostasis,
are now considered crucial immune-modulatory cells providing
essential functional links between inflammatory and thrombotic
processes. They are small anucleate cell fragments derived from
megakaryocytes with a diameter of 2–4µm and circulate in
the blood for ∼7–10 days, where they patrol the endothelial
wall, recognizing structures representing vessel damage. Since
their discovery by Bizzozero in 1882 they are recognized for
their central role in hemostasis (217), preventing blood loss
upon injury by formation of platelet-platelet aggregates, which
are stabilized by fibrin fibers that are formed by the plasmatic
coagulation cascade (218, 219). Negative charges on the surface
of activated platelets, which expose phosphatidylserine upon
activation-dependent membrane lipid flip-flop, allow for calcium
binding and provide the ideal surface for site-specific proteolytic
activation of coagulation factors (Figure 5).

More and more evidence emerges, that activated platelets not
only trigger recruitment and activation of further platelets to
the site of injury but that platelets also interact with leukocytes,
thereby orchestrating immune responses and mediating
wound healing and repair processes via interaction with the
endothelium (220–222). Activated platelets and microvesicles
bind leukocytes, which leads to mutual activation and rapid,
local release of platelet-derived cytokines. Platelets enhance
leukocyte extravasation, differentiation and cytokine release.

They propagate monocyte differentiation into macrophages
and modulate oxidative burst in neutrophils [reviewed in
(223)]. Toll-like receptor 4 (TLR-4)-activated platelets bind
to neutrophils and initiate neutrophil extracellular trap NET
formation (224). Platelets mediate NET formation either via
P-selectin-PSGL1 interactions (225), neutrophils integrin αLβ2
[LFA-1 (CD11a/CD18)] (226) or platelet GPIbα (227) resulting
in increased bacterial clearance. Additionally, the platelet release
products thromboxane (TXA2), platelet factor 4 (CXCL4), von
Willebrand factor (vWF) (228), and High mobility group box
1 (HMGB1) (229) trigger NET formation. Activated platelets
and platelet microvesicle further present HMGB1 to neutrophils
and commit them to autophagy and NET generation, thereby
potentially causing thrombo-inflammatory lesions (229–231).
Additionally, cleavage of IL-1β by NLRP3-mediated activation of
caspase-1 contributes to platelet activation (232) and is associated
with acute thrombotic events during hypoxic conditions (233).

Platelets can be activated by vessel injury (e.g., immobilized
vWF or collagen exposure) as well as thrombin, which is
generated by an activated coagulation cascade. Platelets further
release substances that enhance their activation e.g., adenosine
diphosphate (ADP) and TXA2. However, more and more
evidence emerges that also inflammatory triggers are able
to activate platelets. Platelets also express functional TLRs,
including TLR2, TLR3, TLR4, TLR7, and TLR9 (234–236).
Binding of LPS to platelet TLR4 induces platelet activation (237)
to promotemicrovascular thrombosis (238) as well as platelet and
neutrophil sequestration into the lung, liver and spleen (239) as
well as formation of NETs.

Upon activation, platelets release their granule content,
which comprises over 300 factors, involved in a plethora of
processes (221). Platelet dense granules contain ADP, adenosine
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triphosphate (ATP), serotonin and calcium ions, which are
important for activation and recruitment of further platelets.
Platelet α-granules contain VWF, Factor V, and Factor VIII and
fibrinogen, which can further boost activation of the coagulation
cascade. Other α-granule-derived molecules like CXCL4/PF4,
chemokine (C-C motif) 4 (CCL4/MIP-1), chemokine (C-C
motif) 5 (CCL5/RANTES), CD40L, and P-selectin (CD62P)
recruit and/or activate leukocytes, while additional factors such
as vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF) and transforming growth factor (TGF-
β), act on endothelial cells and trigger angiogenesis and wound
repair processes (220, 240).

Platelet granule exocytosis, which occurs via fusion of the
granule membrane with the plasma membrane, involves a
complex interplay of actin polymerization and proteins of
the SNARE family (soluble N-ethylmaleimide-sensitive-factor
attachment protein receptors), which reside on vesicles
(v-SNAREs) and target membranes (t-SNAREs) (241).
Synaptosomal-associated protein 23 (SNAP-23), a t-SNARE,
is required for release from all three types of granules in
platelets (241).

Despite the lack of a nucleus, platelets contain a variety of
transcription factors as well as upstream signaling molecules
and emerging evidence suggests that these factors trigger non-
genomic effects in platelets rather than representing remnants of
megakaryocytic packaging. Platelets are further able of shuttling
transcription factors to other cells via shedding off transcription
factor-laden microvesicles (242), which fulfill various effector
functions (243).

Platelets contain the majority of NF-κB signaling proteins
(244–249) and activation of the NF-κB/IKK/IκB pathway can
be detected in response to platelet stimulation (245, 248–250)
(Figure 5). While ADP, collagen, epinephrine, and thrombin
all result in NF-κB pathway activation via phosphorylation of
IκB and its proteasomal degradation (252), platelet activation
in response to arachidonic acid does not seem to involve
NF-κB (249). The precise signaling pathways contributing
to NF-κB activation in platelets are currently unknown. In
thrombin-activated platelets, activation of IκB kinases can be
prevented by a neutral sphingomyelinase inhibitor or a p38
MAPK inhibitor downstream of the thrombin receptor protease
activated receptor 4 (PAR4) but not PAR1 (253), indicating that
these signal mediators are important for distinct pathways of
NF-κB activation.

The effects of NF-κB, IκB and IKK on platelet activation
were evaluated in vitro and in vivo using genetic ablation or
inhibition of different factors of the NF-κB complex. However,
these studies do not provide a conclusive picture, so far. Platelets
are sensitive to NF-κB inhibitors, but the functional role of
NF-κB in platelets is currently still incompletely understood.
In vivo experiments revealed, that LDLR knockout-out mice
with a platelet-specific genetic ablation of IKKβ show increased
neointima formation and enhanced leukocyte adhesion at
the injured area due to decreased platelet GPIbβ shedding
and prolonged platelet-leukocyte interactions (254). However,
another study using IKKβ-deficient platelets postulated that
these platelets are unable to degranulate, leading to reduced

reactivity and prolonged tail bleeding, which was postulated to
be caused by defective SNAP-23 phosphorylation in absence of
IKKβ (251).

In vitro studies using pharmacological inhibitors of IKKβ

indicated that NF-κB is involved in the activation of platelet
fibrinogen receptor GPIIb/IIIa (249), which is important for
platelet aggregation and that the NF-κB pathway further
participates in lamellipodia formation, clot retraction and
stability (249). Inhibition of IKKβ and thus IκBα phosphorylation
by BAY-11-7082 or RO-106-9920 suggested a positive role for
IKKβ in thrombin- or collagen-induced ATP release, TXA2

formation, P-selectin expression and platelet aggregation (248,
249). Other studies using the NF-κB inhibitor andrographolide
were in line with a positive role of NF-κB for platelet activation
(255, 256) and it was also reported that platelet vitality may
depend on NF-κB, as inhibition with BAY 11-7082 or MLN4924
led to depolarization of mitochondrial membranes, increased
Ca2+ levels and ER stress induced apoptosis (257). However,
in general it has to be stated that the use of pharmacological
inhibitors in platelet function studies in vitro may suffer
from artifacts of the assay system, such as inappropriate drug
concentrations, which induce off-target effects, or unspecific side
effects. It has been reported for instance that the commonly used
IKKβ inhibitor BAY-11-7082 can induce apoptosis independent
from its effect on NF-κB signaling (258) and that it is an effective
and irreversible broad-spectrum inhibitor of protein tyrosine
phosphatases (259).

Interestingly, NF-κB activation via IKKβ was also reported
to initiate a negative feedback of platelet activation, as the
catalytic subunit of PKA is associated with IκBα, from where
it is released and activated when IκBα is degraded, followed
by the known inhibitory actions of PKA such as VASP
phosphorylation (250). This is in line with another report,
where NF-κB inhibition in collagen- or thrombin-stimulated
platelets led to increased VASP phosphorylation (260). With
respect to the role of platelets, certainly further studies are
warranted to determine, if increased levels or activity of NF-
κB result in increased platelet reactivity and furthermore, how
systemic chronic inflammation may affect platelet function
differently than the plasmatic phase of coagulation. In general,
a better understanding of NF-κB-dependent platelet responses
would be crucial to fully understand the effect of NF-κB
inhibitors, which are currently used as anti-inflammatory and
anti-cancer agents, as they may elicit unintended effects on
platelet functions.

MEGAKARYOCYTES AS PRECURSORS OF
PLATELETS

While it is clear that platelets contain basically all upstream
signaling molecules of the NF-κB pathway, as well as the
transcription factors themselves, they can only respond to
inflammatory triggers in a non-genomic manner. In contrast,
megakaryocytes (MKs), their progenitors, can convert systemic
or local inflammatory conditions to a transcriptional response,
which may has consequences on the phenotype of released
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FIGURE 5 | Non-genomic roles of NF-κB signaling molecules in platelets. Non-genomic effects of NF-κB signaling molecules are triggered via binding of epinephrine

to α2 adrenergic receptors, ADP to P2Y receptors, thrombin to PAR4 receptors, collagen to glycoprotein VI (GPVI) receptors or fibrinogen to GPIIb/GPIIIa receptors.

Degranulation is reported to be mediated via phosphorylation of SNAP-23 by IKK2 (251), representing a positive effect of NF-κB signaling on platelet activation.

However, PKA was reported to be present in a complex with NF-κB and IκB and uncoupling of this complex upon IKK2 activation resulted in protein kinase A (PKA)

activation, causing phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and inhibition of platelet activity (250). Interaction of platelets with leukocytes is

mediated via binding of platelet P-selectin, exposed upon degranulation, to leukocyte PSGL-1, which is supported by platelet GP-Ib-IX binding to Mac-1 on

leukocytes.

platelets. Megakaryocytes reside in the vascular niche of the
bone marrow where they can sense inflammatory conditions
via different receptors, such as TLRs and from where they
release platelets into the blood circulation. Interestingly, a recent
report has provided evidence that megakaryocytes are also
located in the microcirculation and the extravascular space of
the lung, contributing up to 50% of the total platelet production
(261). At least in the bone marrow, hematopoietic stem cells
undergo a unique and remarkable maturation and differentiation
process to become megakaryocytes, which involves extensive
endomitosis (262, 263). As a result megakaryocytes have a
ploidy of up to a 128-fold chromosome-set in one single, giant,
poly-lobulated nucleus (264–266), giving megakaryocytes their
name. A second distinct feature of megakaryopoiesis is the
generation of a complex membrane system, called demarcation
membrane system (DMS) or invaginated membrane system
(IMS) (264, 267–269), that serves a reservoir for later platelet
production (268, 270). The final phase of megakaryocyte
maturation includes the formation of proplatelets, in which long
branches extend into sinusoidal capillaries allowing proplatelet
release into the blood stream. The main driving force of
proplatelet elongation is microtubule sliding (271). Finally, due
to blood flow, platelets fission from the tips of proplatelets
and are released into the blood stream (272). After transfer
of the megakaryocyte’s cytoplasm and DMS/IMS into platelets,
the remaining denuded nucleus is removed by macrophages
(273). Interestingly, it seems that apoptosis is a physiological

evet for mature megakaryocytes and that peak proplatelet
and platelet production is shortly followed by apoptosis
(274–276).

Inflammatory cytokines and pathways are involved in various
steps of megakaryopoiesis and thrombopoiesis. Megakaryocytes
express toll-like receptors (TLRs) (277, 278), tumor necrosis
factor receptors (TNFR1 and 2) (279), receptors for IL-1β (280,
281), and IL-6 (282, 283), all of which are important activation
pathways of NF-κB. Activity of the IKK complex increases
during megakaryopoiesis and decreases during thrombopoiesis,
allowing controlled cell death (284). The most important
signaling molecule driving differentiation and maturation
of megakaryocytes is thrombopoietin (TPO), a glycoprotein
primarily produced by liver and kidney. Binding of this protein
to its receptor c-Mpl on bone marrow cells is the primary
signaling event that promotes and regulates megakaryopoiesis
(264, 285, 286). Other cytokines that synergize with TPO include
IL-1α, IL-1β, IL-3, IL-6, IL-9, IL-11, and granulocyte-macrophage
colony-stimulating factor (GM-CSF) (287–291). However, all of
them are dependent on TPO to exert their pro-megakaryopoietic
functions (291). Furthermore, immatureMKs themselves express
IL-1α, IL-1β, IL-3, IL-6, and GM-CSF to stimulate their ploidy via
NF-κB and TPO (287–289, 292).

A further link between inflammation and megakaryopoiesis
is provided by reactive oxygen species (ROS), which after being
released by activated macrophages and neutrophils commit
hematopoietic stem cells toward the megakaryocytic lineage
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(293). Interestingly, a stem cell population was identified, which
is already committed to the megakaryocytic lineage and matures
rapidly upon inflammatory conditions, to replenish the loss of
platelets (294).

One of themost intriguing recent findings was that upon acute
inflammation IL-1α leads to rapid, TPO-independent platelet
production. IL-1α signaling reduces plasma membrane stability,
dysregulates tubulin expression and proplatelet formation,
ultimately triggering megakaryocyte rupture and release of
enormous amounts of platelets within short time. In this way,
platelet loss due to acute injuries, blood loss or infection can be
rapidly compensated (281).

To conclude, it can be stated that inflammation in general
and NF-κB signaling in particular, does not only directly
affect platelets, but also indirectly via modulation of their
megakaryocytic progenitors.

ENDOTHELIAL CELLS

The endothelial cell lining of blood vessels represents a selective
barrier between the blood stream and the surrounding tissue
and exerts a variety of functions that contribute to hemostasis,
and inflammatory responses that are related to coagulation
(295). Many of these reactions are specific to their localization
within the body as endothelial functions vary between different
vascular beds. Under homeostatic conditions, endothelial cells
constantly secrete nitric oxide, prostacyclin (in large vessels)
as well as prostaglandin E2 (in smaller vessels) to suppress
platelet adhesion and activation (Figure 6, upper panel) (4,
296). This is additionally supported by negatively charged
glycosaminoglycans on the endothelial surface that prevent
adhesion of platelets. The NF-κB signaling cascade has a
key role in endothelial cells in response to stress situations
(Figure 6, lower panel), as it is capable of regulating both pro-
inflammatory and coagulatory responses, which are also prone
to a significant level of crosstalk (297). In principal, all NF-κB
signaling molecules are present in endothelial cells and their
activation leads to a pro-adhesive and pro-coagulant phenotype
with a concomitant reduction of the barrier function (298).
In vitro, the strongest activators of NF-κB in endothelial cells
appear to be TNFα and thrombin, but also other cytokines
like IFNγ or IL-1β potently activate NF-κB in these cells.
One major difference of thrombin- and TNFα-mediated NF-
κB activation lies in their respective receptors. Thrombin binds
to the extracellular terminus of PAR-1, a member of the G-
coupled receptor superfamily, whereas TNFα binds to TNFR-
1 and TNFR-2 (299, 300). Both pathways then converge at
the level of the IKK complex (76, 301), yet interestingly,
thrombin and TNFα appear to induce some overlapping but
still differential target gene expression in endothelial cells (302).
In addition, there appears to be a synergistic effect of TNFα
and thrombin in regulating endothelial permeability (303).
Important NF-κB target genes in endothelial cells are adhesion
molecules such as intercellular adhesion molecule 1 (ICAM-1),
vascular cell adhesion molecule 1 (VCAM-1), and E-selectin that
mediate adherence of inflammatory cells including monocytes,

neutrophils, lymphocytes, and macrophages to the vascular
wall triggering extravasation into tissues (304–307). It has been
shown that expression of a constitutively active form of IKKβ,
the central activator of NF-κB, in endothelial cells drives full
expression of these adhesion molecules in the absence of any
cytokine stimulation, indicating that the IKK/IκB/NF-κB axis is
essential and sufficient for the pro-inflammatory activation of the
endothelium (308). However, in quiescent endothelial cells, the
ETS-related gene (ERG) prevents NF-κB p65 binding to DNA,
indicating that ERG may compete with p65 for DNA binding
under basal conditions (309).

Besides classical activation of endothelial cells by various
cytokines, they can also be activated by shear stress, meaning
specifically a turbulent blood stream: Unidirectional, laminar
shear stress actually limits endothelial activation and is associated
with resistance to atherosclerosis (310, 311). In contrast,
disturbed flow, such as turbulent or oscillatory conditions (e.g.,
at sites of vessel branching points, bifurcations, and curvatures)
cause physical stress and subsequent pro-inflammatory gene
expression that is associated with increased permeability of the
cell layer (310, 311). Flow-induced endothelial cell activation
is mediated via NF-κB and is integrin-and matrix-dependent
(312). Recent studies indicate that focal adhesion kinase regulates
NF-κB phosphorylation and transcriptional activity in response
to flow (313). Another important aspect refers to the function
of PECAM-1, which forms a mechanosensory complex with
vascular endothelial cell cadherin and VEGFR2. Together, these
receptors confer responsiveness to flow as shown in PECAM-
1-knockout mice, which do not activate NF-κB in regions of
disturbed flow. Thismechano-sensing pathway is required for the
earliest-known events in atherogenesis (314).

In addition to NF-κB-driven transcriptional responses to
inflammatory states, endothelial cells also react to stress stimuli
in other ways. The most prominent one of these is probably
the fusion of specific secretory granules designated as Weibel-
Palade bodies (WPB) with the cell membrane upon activation
by various triggers such as thrombin or histamine. Exocytosis
of these granules can also be induced by Toll-like receptors and
other activators of the NF-κB pathway such as CD40L implying
a role of NF-κB signaling molecules for the degranulation (315–
319). Uponmembrane fusion, the cargo of the vesicles is released,
which includes several proteins that play a role in inflammation
and thrombosis such as coagulation factor VIII, vWF, or P-
selectin. The latter is exposed on the endothelial cell surface
upon fusion ofWPBs with the cytoplasmic membrane, triggering
the adhesion of leukocytes. vWF is a large glycoprotein, which
remains in a folded state in the microenvironment of WPBs, but
is unfolded at the neutral pH of the blood circulation. This leads
to the formation of ultra-large vWF multimers (ULVWF), which
are able to bind platelets via interaction with GPIba or GPIIb (4).
ULVWF multimers are subsequently cut by metalloproteinase
ADAMTS13 on the endothelial surface providing a feedback
mechanism to counteract platelet adhesion (320).

Endothelial cells modulate the balance between coagulation
and fibrinolysis also by various other pathways: they counteract
coagulation by binding of antithrombin III to the endothelial
surface, release of tissue factor pathway inhibitor (TFPI),
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FIGURE 6 | Blood vessel under basal conditions and upon inflammatory stimulation. Under basal conditions the endothelium provides an anti-thrombogenic surface

via expression and production of tissue plasminogen activator (t-PA), ATPases, antithrombin III (ATIII), heparan sulfate, glycosaminoglycans (GAGs), tissue factor

pathway inhibitor (TFPI), nitric oxide (NO), prostacyclin (PGI2), and endothelial protein C receptor (EPCR). Smooth muscle cells are in a “contractile” state, determined

by expression of myosin heavy chain (MHC), myosin light chain kinase (MLCK),α-smooth muscle cell actin (α-SMCA), smooth muscle 22α (SM22α), and calponin.

Upon inflammatory stress, endothelial cells release von Willebrand Factor vWF from Weibel Palade bodies (WPB), which triggers platelet string formation via

glycoprotein Ib (GPIb). Furthermore, adhesion and transmigration of leukocytes is facilitated by expression of adhesion molecules, like E-selectin and intracellular

adhesion molecule 1 (ICAM-1), which bind to PSGL-1 and Mac-1 on leukocytes, respectively. Activation of neutrophils leads to release of inflammatory mediators

(IL-1, IL-6, TNFα, CXCL-2, CXCL-10, CXCL-8). Smooth muscle cells change their phenotype toward a “synthetic” state associated with decreased expression of

α-SMCA and SM22α and increased expression of matrix metalloproteinases (MMP) and vascular cell adhesion molecule 1 (VCAM-1).

expression of thrombomodulin, activation of protein C, and
synthesis as well as release of tissue plasminogen activator (t-
PA) (296). These anti-thrombotic roles are often terminated
by inflammatory diseases as for instance in endotoxemia and
septic shock where a bacterial infection causes a pro-thrombotic
state in endothelial cells by the activation of NF-κB (321).

This has been demonstrated in a mouse model of sepsis,
where endothelial-selective blockade of NF-κB via transgenic
expression of a degradation-resistant form of IκBα resulted
in decreased endothelial permeability, reduced infiltration
of neutrophils and lower levels of thrombin-antithrombin
complexes (322). Othermouse studies confirmed that endothelial
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NF-κB dampens the thrombomodulin-EPCR anticoagulation
pathway (323). In addition to this systemic effect, NF-κB also
serves as survival factor for endothelial cells themselves upon
LPS-induced acute stress (324). This is also important for
the maintenance of the endothelial barrier function as NF-
κB inhibits endothelial apoptosis to ensure timely transition
from barrier injury to recovery (325). Interestingly, endothelial
expression of a degradation-resistant form of IκBα did not
affect embryonic development, while endothelial cell-specific
knockout of IKKβ resulted in increased embryonic lethality and
endothelial apoptosis, which was at least in part mediated by
kinase-independent functions of IKKβ (326).

A crucial role of endothelial NF-κB signaling has also been
shown in mouse models of atherosclerosis where ablation of
canonical NF-κB signaling by endothelial cell-specific deletion of
NEMO or overexpression of a dominant-negative variant of IκBα

protected ApoE-deficient mice from atherosclerosis induced by
a Western-type diet (327). In general, atherosclerosis can be
considered as chronic inflammatory disease of the vasculature,
which is characterized by a complex crosstalk between different
cell types, with endothelial cells constituting a crucial starting
point of a vicious cycle, wherein NF-κB activation does not
only lead to the expression of adhesion molecules that bind
leukocytes, but also causes secretion of inflammatory mediators,
which activate smooth muscle cells. This leads to vascular
remodeling resulting in the plaque formation and narrowing of
the vessel lumen. Furthermore, endothelial cells could undergo
a reprogramming process toward a mesenchymal phenotype,
designated as endothelial-mesenchymal transition, which is
characterized by the expression of smooth muscle actin, various
fibroblast markers and collagen (328). This phenotypic shift
was reported to be involved in endothelial dysfunction during
atherosclerosis. It can be triggered by cytokines such as TGFβ or
IL-1, high glucose levels or pressure overload, as well as oxidized
LDL (329–331).

VASCULAR SMOOTH MUSCLE CELLS

Vascular smooth muscle cells (SMCs) are important players
in both inflammatory and thrombotic processes. In general,
arteries and veins consist of three layers, the tunica adventitia,
largely constituted by connective tissue and fibroblasts, the tunica
media mainly containing vascular smooth muscle cells and
the tunica intima. Separated from the media by the internal
elastic membrane, the intima consists of loose connective tissue
intermingled with few SMCs, that is covered by a monolayer
of endothelial cells resting on a basal membrane. The main
function of SMCs in a blood vessel is to regulate the caliber.
In a normal vessel, SMCs are in the contractile phenotype
(Figure 6). They have very low cell division rates, a very restricted
migratory behavior and express high levels of contractile
proteins, such as myosin heavy chain, myosin light chain kinase,
calponin, smooth muscle actin, and SM22α. Under conditions of
inflammation, SMCs gain plasticity—their phenotype can change
from contractile to synthetic; they rearrange their cytoskeleton,
loose expression of contractile proteins, and regain their ability

to proliferate and migrate. This phenotypic switch is central to
many vascular diseases, such as atherosclerosis, re-stenosis, and
vascular aging (332). The important role of SMC in stabilizing the
cytoskeleton is highlighted in patients with mutations in ACTA2
encoding for smooth muscle actin or its promoter, leading to a
higher risk for coronary disease (333). In atherosclerotic plaques,
which represent chronically inflamed parts of arteries, SMCs
reside predominantly in the superficial parts of lesions. They are
mainly locally derived from the vessel wall (334). Phenotyping of
the cells within the plaques revealed sizeable populations of SMCs
without contractile proteins (335). Of note, also macrophages
can express SMC genes such as smooth muscle α-actin and
SM22α. Thus, SMC marker–positive cells can be derived from
cell types other than SMCs and SMCmarker–negative cells can be
SMC-derived. Finally, even cells that are positive for CD68—the
common macrophage marker, may not be macrophages as SMCs
can undergo a cellular transition toward macrophage-like cells
while simultaneously losing some of their SMC characteristics.
This has been elucidated in more detail by genetic cell tracing
approaches, which could show that more than 80% of SMC-
derived cells within atherosclerotic lesions lack SMC markers
that are commonly used in immuno-histochemical stainings, and
that more than 30% of SMC-derived cells express conventional
macrophage markers (336, 337). This means that many studies
might have misinterpreted cellular markers and that probably
many disease processes attributed to macrophages are in fact
driven by SMCs that converted their cellular program. An
important aspect is that SMC-derived macrophage-like cells are
apparently less efficient in phagocytosis of deposits and apoptotic
cells within the plaque as compared to “real” macrophages,
which exacerbates necrotic core formation rendering the plaque
unstable and prone for rupture (338, 339).

Anyway, these cells produce fibrous caps, and SMCs are an
important source of collagen (340), which activates platelets,
when endothelial cells are lost due to plaque rupture or
erosion. The downregulation of SMC contractile genes such
as SM22α is a typical phenomenon of atherosclerotic lesions
(341). Interestingly, SM22α suppresses NF-κB signaling pathways
under inflammatory conditions (342).

SMCs express multiple NF-κB family members and two
inhibitor proteins, IκBβ and IκBα. In normal vessels SMCs
display no basal NF-κB activity but the latter is readily induced
in SMCs within atherosclerotic lesions. Interestingly, exposure
to inflammatory cytokines induces prolonged NF-κB activation
because of a sustained decrease in the inhibitory subunit IκBβ

(343). TNFα appears as a crucial factor for the progression of
atherosclerotic lesions as shown in TNFα/ApoE double knock-
out mice, which display reduced thickness of vascular walls and
reduced sizes of atherosclerotic lesions (344). TNFα binds to
TNF receptors expressed on SMCs (345), which then triggers
NF-κB via the classical activation pathway. This induces the
expression of the pro-coagulatory tissue factor gene (346), as
well as pro-inflammatory and matrix-remodeling genes such as
MCP-1, matrix metalloproteinase-3 and−9 (MMP3 andMMP9),
VCAM-1, and IL-1β, and furthermore potently downregulates
SMC contractile genes (smooth muscle actin, SM22α, smooth
muscle myosin heavy chain) (347). TNFα decreases expression
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of these contractile genes through induction of Krüppel-like
transcription factor 4 (Klf4), a known regulator of SMC
differentiation (348), which seems to be a target gene of NF-κB,
based on specific binding sites in its enhancer region (337).

Even though a direct link between the downregulation of
SMC contractile genes, NF-κB signaling and an increased risk
for plaque rupture and arterial thrombosis has yet not been
made, it is clear that elucidating mechanisms of phenotypic
changes of SMCs in the course of inflammation seems to be a
key in understanding many vascular diseases and may offer new
therapeutic approaches.

NEUTROPHILS

Neutrophils are the most abundant leukocyte fraction in
humans with a rapid turn-over controlled by constitutive
(spontaneous) apoptosis within 24–48 h after release from the
bone marrow. Their life-span is markedly extended during
inflammatory reactions and coupled to neutrophil activation
to promote the inflammatory response (349). Since both, cell
survival and pro-inflammatory activation are regulated by NF-
κB, this transcription factor is central to neutrophil function
and shows a unique expression pattern distinct from other
leukocyte subsets (350, 351). In unstimulated neutrophils, NF-
κB and in particular IκBα are not restricted to the cytosol
as in most other cells but show abundant localization to the
cell nucleus, with nuclear IκBα being regarded as a protective
mechanism preventing the NF-κB-dependent expression of pro-
inflammatory and anti-apoptotic genes (351). Furthermore,
the IKK complex is partially localized to the nucleus. Upon
neutrophil activation, IKKβ and NEMO are phosphorylated in
the cytosol as well as the nucleus while IKKα is entirely lost
from both compartments. The subsequent IκBα degradation and
phosphorylation of RelA at serine 536 then promote NF-κB target
gene expression (352).

Functional dimers of p50 (NFκB1), p65 (RelA), and/or c-
Rel are detectable in neutrophils, and their activity is induced
by a vast variety of pro-inflammatory mediators (353). While
the majority of stimuli including TNFα and LPS trigger DNA
binding by p50 and RelA (354), distinct agonists such as G-
CSF selectively induce c-Rel activity (355). The first studies
showing p50/RelA activation in neutrophils by pathogens,
revealed the process of phagocytosis as an important trigger
(356, 357). Subsequently, engagement of toll-like receptors
(TLRs) by microbial products was identified to regulate NF-
κB activity in neutrophilic granulocytes (358), with agonists
of TLR4 (359, 360), TLR2 (361, 362) but also TLR7/8 (363)
and TLR9 (364, 365) serving as important activators. Apart
from TLRs, other pathways for sensing pathogen- or damage-
associated molecular patterns [involving e.g., CIRP or Sox2 (366,
367)], as well as pathogen recognition via Fc receptors (368),
were more recently identified to control neutrophil activation via
NF-κB.

Neutrophil adhesion in the course of an inflammatory
reaction is primarily mediated by activated β2 integrins (Mac-
1: CD11b/CD18). Integrin binding or aggregation reportedly

promotes NF-κB activation to enhance pro-inflammatory and
anti-apoptotic gene expression (369). Furthermore, the β2
integrins may function as co-stimulatory signals for cytokines
like GM-CSF and IL-8 to activate NF-κB when neutrophils are
attached as opposed to suspended (370). Also myeloperoxidase
released by these cells may bind to CD11b/CD18 and enhance the
activation of NF-κB (371). Engagement of other integrins such
as α9β1 by the respective ligand (VCAM-1 on endothelial cells)
results in a comparable effect on NF-κB function (372, 373).

In the context of hemostasis and thrombosis, activated
platelets expose CD40L at their surface which binds to neutrophil
CD40 thereby inducing NF-κB target gene expression via
the alternative activation pathway (374). Interestingly, platelet-
derived microparticles reportedly transfer glycoprotein IIb/IIIa
receptors onto neutrophils, which co-localize with β2-integrins
and enhance NF-κB activation (375). Apart from platelets,
coagulation factors and derived fragments may function to guide
neutrophil activation and extend the neutrophil life-span via NF-
κB transcriptional activity. For example, fibrinogen triggers IκBα

degradation and NF-κB activation by binding to CD11b/CD18
molecules (376). In addition, the F1 and F2 fragments which
are released upon prothrombin processing are known to induce
NF-κB activity in neutrophils (377). Furthermore, regulators
of plasmin activation (PAI-1 and uPA) may potentiate the
polymorphonuclear (PMN) cell response to pro-inflammatory
stimuli with respect to NF-κB activation (378).

Moreover, ROS have been implicated in the signaling
pathway leading to NF-κB activation (379). However, the
impact of ROS such as hydrogen peroxide (H2O2) generated
at inflammatory sites has been subject to extensive debate
and contradictory reports with respect to NF-κB activation in
neutrophils. Direct exposure of neutrophils to H2O2 does not
result in NF-κB activity. In contrast, the effect of LPS- or TNFα
stimulation are abrogated by H2O2 resulting in decreased IκBα

degradation and NF-κB translocation (380, 381). Similarly, when
intracellular levels of ROS (superoxide and hydrogen peroxide)
are increased by inhibition of catalase or the mitochondrial
electron transport chain, the pro-inflammatory activation of
NF-κB is inhibited (382–384). However, distinct approaches to
raise intra- or extracellular superoxide levels (based on paraquat,
nickel or combinations of xanthine oxidase and hypoxanthine
or lumazine) showed a promoting rather than inhibiting effect
on NF-κB activation (385–387). The controversial results may
indicate that ROS regulation of NF-κB activity at inflammatory
sites is more complex than previously thought and that ROS may
exert both, pro- and anti-inflammatory effects. While low doses
of H2O2 seem to trigger NF-κB activation, high oxidative stress
does not alter or even adversely affect the NF-κB status (388, 389).
Comparably, myeloperoxidase was recently reported to engage in
a negative feedback loop of NF-κB downregulation to dampen
the pro-inflammatory cytokine response (390). Other inhibitors
of NF-κB activation in neutrophils include nitric oxide (391, 392),
complement factor C5a (393), and prostaglandin D2 (394).

The target genes regulated by NF-κB in neutrophils can be
grouped according to the three major functions of mediating cell
adhesion, promoting inflammation, and inhibiting neutrophil
apoptosis. In contrast, phagocytosis does not seem to be
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dependent on NF-κB (395). The induction of integrin CD11b
expression requires p65 and promotes the firm adhesion and
transmigration of neutrophils (395, 396). Activated PMNs secrete
a multitude of pro-inflammatory mediators. Among the NF-κB
regulated genes are the cytokines TNFα, IL-1, IL-6 (397, 398),
the chemokines CXCL-2,−8, and−10 (360, 387, 397) as well as
the TLR4 co-receptor CD14 (399) and the neutrophil gelatinase-
associated lipocalin (400). Of interest, NF-κB activation also
promotes microparticle release from PMNs (401). While NF-κB
is known to exert a negative feedback regulation by inducing
transcription of its inhibitor IκBα, an additional feedback
mechanism has been identified in neutrophils: Expression of
miR-9 is controlled by NF-κB and serves to inhibit the NFκB1
transcript (193).

Importantly, the balance between neutrophil production,
survival and cell death is regulated by NF-κB. The mobilization
of neutrophils from the bone marrow is subject to control by
p50/p65 and seems to involve the NF-κB induced expression
of the transcription factor C/EBPα (402, 403). While NF-κB
is known to further support neutrophil survival and block
spontaneous apoptosis, it may—in turn—facilitate cell death via
neutrophil extracellular trap (NET) formation. Thus, NETosis is
abrogated in the presence of NF-κB inhibitors such as BAY 11-
7082 and Ro 106-9920 (404, 405), although it has to be stated that
these inhibitors may also have NF-κB independent effects.

In the context of hemostasis and thrombosis, it was shown
that activated platelets promote NET formation by a variety of
signals including HMGB1 which induces neutrophil autophagy
and subsequent expulsion of DNA NETs (229). It was proposed
that autophagy constitutes an essential second step required
to trigger NETosis after the initial pro-inflammatory priming
of neutrophils (406). Thus, in addition to its role in the
inflammatory activation of neutrophils, NF-κB may contribute
to further steps of NET induction, as it exerts context-
dependent effects on autophagy (407). Importantly, NETs seem
to provide a scaffold for platelet, erythrocyte, tissue factor
and fibrin deposition, which reportedly promotes arterial and
venous thrombosis (227, 408–412). NET-exposed histones as
well as neutrophil proteases such as elastase and cathepsin
G are known to further enhance platelet activation and to
degrade inhibitors of coagulation (413, 414). The detrimental
role of NETs in thromboembolic disease has specifically been
addressed in the cancer setting (415, 416). Tumor cells were
shown to directly trigger NET formation or prime platelets to
promote NETosis which results in further platelet activation and
release of tissue factor (417, 418). In addition, this process of
NET-associated cancer thrombosis is enhanced by tumor-cell
derived microparticles (419). Most recently, clinical evidence
is corroborating the association between NET formation and
thrombosis in cancer patients (420, 421).

The control of neutrophil apoptosis is central to the
inflammatory reaction as well as resolution and is primarily
dependent on the NF-κB mediated expression of anti-apoptotic
genes such as Bcl-x(L), A1, and A20 (363, 422). Thus,
unstimulated neutrophils are characterized by the predominant
presence of IκBα in the cell nucleus which inhibits NF-κB activity
and allows for spontaneous apoptosis and rapid cell turn-over.

When the nuclear accumulation of IκBα is artificially increased
or when NF-κB activation is blocked, the constitutive apoptosis
is accelerated (423, 424). In contrast, the pro-inflammatory
activation of neutrophils by e.g., TNFα, LPS, type I interferons,
or IL-1β results in IκBα degradation in the cytosol and nucleus
and the subsequent liberation of NF-κB to prevent apoptosis
(349, 425–428). The signaling pathway of TNFα for NF-κB
activation is best characterized in this context. TNFα has a
bimodal influence on the rate of neutrophil apoptosis in vitro,
causing early acceleration and late inhibition when NF-κB
dependent expression of anti-apoptotic proteins is achieved
(429). TNF receptor 1 (TNFR-1) mediates activation of PI3
kinase and PKC-delta which results in assembly of the TNFR-
1-TRADD-RIP-TRAF2 complex required for anti-apoptotic
signaling (430). Apart from pro-inflammatory cytokines, it is the
integrin-mediated adhesion and transmigration of neutrophils,
which substantially enhances NF-κB mobilization and thereby
promotes cell activation and survival in the situation where
neutrophils extravasate from blood into tissue to engage at
inflammatory sites (373, 431). Importantly, since hemostasis is
closely linked to inflammation, the factors of coagulation and
fibrinolysis also critically contribute to the localized activation
and enhanced life-span of neutrophils. For example, binding of
neutrophil surface integrin to fibrinogen activates NF-κB and
delays apoptosis (376), and the release of prothrombin fragments
or activation of uPA/PAI-1 may similarly enhance NF-κB activity
(377, 378).

The shift in balance from spontaneous apoptosis to cell
survival is reflected in the expression levels of pro- and anti-
apoptotic mediators in PMNs.While pro-apoptotic proteins such
as Bad, Bax, Bak, and Bik show stable expression and long half-
lives, the NF-κB induced anti-apoptotic regulators like A1 and
Mcl-1 are comparably short-lived and seem to transiently tilt
the balance toward survival as long as NF-κB remains active
(363, 364, 432).

The resolution of these processes at later phases requires
the down-modulation of NF-κB activity by the re-expression
of IκBα (350) and the induction of counter regulators such
as suppressor of cytokine signaling 3 (SOCS3) (433). Failure
to downregulate NF-κB results in the inappropriate survival of
neutrophils, chronic inflammation, and tissue damage which
is associated with neutrophil-mediated inflammatory disorders
such as sepsis, rheumatoid arthritis and acute lung injury
(349, 434, 435). Furthermore, sustained neutrophil activation
and survival via the NF-κB pathway have been shown to
promote tumor progression and metastasis by providing a pro-
tumorigenic and pro-angiogenic environment (436, 437).

MONOCYTES

Monocytes contribute essentially to pro-inflammatory immune
responses in general. In parallel with neutrophils, monocytes are
produced in high numbers in the bone marrow as a response
to infections and diseases and are responsible for driving
inflammation (438). In addition, monocytes are the main source
of circulating TF (439). The myeloid linage gives rise to a variety
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of functionally diverse cell types and is therefore in need of a
tightly regulated differentiation program, which is partly built
around the NF-κB pathway (440, 441).

Overall, monocytes can be divided into several subsets.Within
the human monocyte compartment, three distinct monocyte
populations can be defined according to their expression of
CD14 and CD16. Monocytes positive for CD14 and negative
for CD16 are termed classical monocytes (CMs) and are the
most abundant subset within the human circulation followed
by intermediate monocytes (IMs), defined by CD14++CD16+

expression and non-classical monocytes (NCMs), which are
CD14+CD16++. The differentiation of monocytes from classical
to intermediate and the non-classical phenotype is a linear
process. In humans, classical monocytes are the first subset to
emerge from the bone marrow, followed by differentiation into
intermediate and non-classical monocytes (442). In addition,
differentiation of monocytes is connected to cellular aging as
NCMs display clear markers of cellular senescence including
reduced telomere length and reduced numbers of Ki67-positive
cells (443).

CD16+ monocytes overall are more proinflammatory and
more procoagulant. In general IMs and NCMs display increased
protein levels of p65 (443). When healthy volunteers are
infused with low-dose LPS, CD16+ monocytes respond with
upregulation of IL-6 and IL-8 which could not be observed in
CD16− monocytes (444). Furthermore, in vitro IMs reacted to
the alarmin IL-33 with an upregulation of TF via an NF-kB
dependent pathway, a pathway probably active also in patients
with atherosclerosis as monocyte-derived microvesicles positive
for TF were correlated with IL-33 plasma levels (445).

In contrast to human monocytes, mouse monocytes are
classified into pro-inflammatory and patrolling monocytes.
Even though there are differences between mouse and human
monocytes, monocyte subsets within the two species are
broadly conserved (446). Pro-inflammatory monocytes are
characterized by high expression of Ly6c. This subset of
monocytes is strongly associated with encountering infections
and driving inflammation. Expression of inflammatory
cytokines, chemokines, and ROS production have been
observed during heavy recruitment to inflamed tissue in
various models (438). Definition and characterization of the
Ly6clow CXCR1hi patrolling monocyte subset appears to be
more complicated. Their exact role during homeostasis is not
completely understood, but it is known that they show features
for tissue remodeling and restoration (447). Further they tend
to express anti-inflammatory mediators, like IL-10 and arginase
(ARG1) (448), which suggest a counterbalancing role against the
pro-inflammatory subset.

The balance of murine subsets has been suggested to be
mainly defined by GM-CSF andM-CSF stimuli (449, 450), which
are both triggering the NF-κB pathway (31, 451). NF-κB itself
generates a positive feed-back loop to produce M-CSF (452).

Monocytes require NF-κB for differentiation but also
accumulate NF-κB in their cytoplasm during maturation in
order to guarantee a rapid NF-κB response upon activation
(440). TNFα, which is secreted very early, represents one of
the most prominent inflammatory genes, which is induced by

the accumulated NF-κB reservoir, subsequently triggering a pro-
inflammatory program of monocytes, or macrophages in an
autocrine manner.

Importantly, monocytes require growth factors, like M-CSF,
not only for differentiation but also for survival. Many of
these stimuli are dependent on NF-κB signaling, suggesting
a chronical dependence of monocytes on this pathway for
survival. This has originally been demonstrated by studies
using the NF-κB inhibitor pyrrolidine dithiocarbamate (451,
453) and could be confirmed with other NF-κB inhibitors
when studying human monocyte-derived dendritic cells. In this
study a role of NF-κB was demonstrated for survival, cytokine
production and differentiation (454). More recently, it has been
revealed that monocytes require autonomous TNFα to achieve
function, survival and maintenance of the Ly6chi subset in
an experimental autoimmune encephalomyelitis (EAE) model
(455). These findings indicate a critical regulatory function for
NF-κB in the autonomous loop of monocytes, as TNFα is
driven by NF-κB and, in turn, is a strong inducer of NF-κB
by itself (456, 457). Monocyte-specific constitutive activation
of NF-κB resulted in a more severe pathogenicity within the
EAE model and demonstrated increased levels of inflammatory
monocyte-associated cytokines (458). Future studies are required
to determine the potential regulatorymechanism of NF-κB in this
context.

Interestingly, mouse studies using myeloid-specific deletion
of the central NF-κB activator IKKβ revealed an interesting
effect on macrophage polarization. Deletion of IKKβ resulted
in a shift toward the inflammatory M1 phenotype both in an
infection- and a tumor model, indicating a role of IKKβ and NF-
κB for polarization toward the M2 phenotype, which decreases
inflammation and fosters tissue repair (459, 460).

A disease, where monocytes play a crucial role is
atherosclerosis. This complex disorder is orchestrated by
multiple variables and cell types, but is fundamentally
dependent on infiltrating monocytes (461). In this context,
macrophage-specific deletion of IKKβ resulted in an aggravation
of atherogenesis in one study (462), while a similar experimental
set-up used in another study showed reduced lesion area (463).
A protective effect of macrophage IKKβ in the context of
atherosclerosis would be in line with the above-mentioned
notion that IKKβ deletion or inhibition leads to a shift toward to
the M1 phenotype, which is known to drive atherosclerosis. This
concept is also supported by the observation that transgenic mice
with macrophage-specific upregulation of p65 exhibited reduced
atherosclerotic lesion formation and foam cell development
(464). In contrast to that, another study with myeloid cell-
specific IκB deletion (expected to result in elevated p65 activity)
claimed an increase in atherosclerosis (465). Thus, a clear picture
on the role of macrophage-specific NF-κB in atherogenesis is
still lacking. For atherosclerosis, it is arguable that enhanced
NF-κB expression may delay foam cell formation but might have
severe consequences in a later stage of the diseases. For instance,
increased NF-κB signaling in monocytes also results in a more
pronounced expression of tissue factor (466), a critical variable
in the pathology of atherothrombosis (467). The relevance of
monocyte-derived tissue factor for thrombus formation has been
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demonstrated in an elegant study of impaired blood flow by
von Brühl et al. (227). The authors identified neutrophils and
monocytes to be the major leukocyte populations responsible for
thrombus development. They found that, besides neutrophil-
mediated NETosis, monocyte-derived tissue factor is critical
for fibrin generation within the thrombus and contributes
fundamentally to thrombus development. This is in line with
findings showing a correlation of monocytic NF-κB activity
with the occurrence of deep vein thrombosis (DVT) in cancer
patients (468). A similar concept has already been suggested
based on experimental results describing the necessity of p50 in
the pathogenesis of deep vein thrombosis (469).

In conclusion, we know that the NF-κB pathway is involved
in multiple aspects of monocyte differentiation and activation,
which makes it difficult to distinguish the role of NF-κB in
each individual stage of monocytes. It will require elegant

inducible gene-manipulation strategies to answer these questions
but considering the major influence of NF-κB on monocyte
behavior, it might open doors for therapy of a broad spectrum
of inflammatory diseases.

CLINICAL ASPECTS: SEPSIS AS AN
EXAMPLE OF AN ACUTE
THROMBO-INFLAMMATORY DISEASE
STATE

The vasculature and cells of the circulatory system react in
a complex manner to inflammatory stress including various
feedback circuits and cellular crosstalk coordinating a common
systemic response in order to protect the host (Figure 6).
However, dysregulation of this subtle balance between
physiological inflammation and coagulation causes chronic

FIGURE 7 | Hallmarks of sepsis as a thrombo-inflammatory disease. Multiple, complex interactions between monocytes/macrophages, endothelial cells, platelets, the

complement system, coagulation, and neutrophils are found under septic conditions. Activation of NF-κB causes not only the release and/or the generation of a

multitude of pro-inflammatory mediators, but also the induction of pro-coagulatory mechanisms, which lead to the clinical signs and symptoms of sepsis.

Frontiers in Immunology | www.frontiersin.org 16 February 2019 | Volume 10 | Article 85

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mussbacher et al. NF-κB in Inflammation and Thrombosis

inflammation and pathological thrombosis. Sepsis is a prime
example of such a dysregulated response, which can lead to
life-threatening conditions caused by an overshooting host
defense (470). In general, the term sepsis denotes a systemic
inflammatory response to infection. It is initiated by the
activation of innate immune cells via pathogen-associated
molecular patterns (PAMPs), such as lipopolysaccharide (LPS),
microbial peptides, cell wall components, or nucleotides,
which trigger various receptors on the host cells: C-type lectin
receptors; Toll-like receptors (TLRs); RIG-I like receptors,
as well as nucleotide-binding oligomerization domain–like
receptors (NOD-like receptors). These and similar receptors
can also stimulated by so-called danger associated molecular
patterns (DAMPs) or “alarmins,” which include various cytosolic
proteins, extracellular RNA or DNA that could all be released
from damaged cells. In this way, necrosis or physical cell damage
as it occurs in course of poly-traumas can trigger sepsis-like
processes (commonly termed systemic inflammatory response
syndrome, SIRS) in the absence of any infectious pathogen (471).
Finally, most of these pattern recognition receptors activate
NF-κB, which causes the expression of inflammatory cytokines
like IL-1β or TNFα. Since these cytokines are both target genes
and triggers of NF-κB, positive feedback loops are initiated,
which result in a so-called “cytokine-storm” (472). Furthermore,
activation of NF-κB causes not only the release and/or the
generation of a multitude of pro-inflammatory mediators,
but also the induction of pro-coagulatory mechanisms, which
altogether lead to the clinical signs and symptoms of sepsis
as well as disseminated intravascular coagulation (DIC) and
multiple organ dysfunction (473) (Figure 7). The latter is
basically caused by widespread thrombus formation in capillaries
and reduced blood pressure causing tissue hypoperfusion.
The disseminated coagulation can be explained by NF-κB-
mediated upregulation of tissue factor (F III) and F VIII in
combination with a reduction of anticoagulatory mechanisms
such as Tissue Factor Pathway Inhibitor (TFPI), antithrombin,
or thrombomodulin (471). Moreover, inflammatory activation
of neutrophils triggers the formation of NETs, which exert not
only anti-microbial functions by trapping and killing bacteria,
but also initiate the contact pathway of coagulation via F XI
and XII (474, 475). Various components of NETs like histones
and proteolytic constituents have been identified as crucial
regulations of coagulation, which contribute to development
of end-organ damage (413). Collaborative interactions between
NET-derived histone H4, platelets and inorganic polyphosphates
are able to promote disseminated coagulation intendent of the
invading pathogen (8). The diminished oxygen supply caused by
microvascular thrombi results in deregulation of mitochondria
function, which leads to increased formation of ROS thereby
aggravating tissue damage and contributing to the release of
danger signals.

Extensive formation of thrombi in the microcirculation causes
systemic depletion of coagulation factors and platelets resulting
in increased bleeding events at other sites of the organism—a
phenomenon generally designated as “coagulopathy.”

This imbalance is not only observed in coagulation—also
inflammatory processes are affected. Due to strong, overshooting

TABLE 3 | Clinical studies targeting the thrombo-inflammatory axis of sepsis.

Agent Short description References

Anti-TNFα Reduction of mortality (OR 0.91) (482)

Glucocorticoids Reduction of mortality (OR 0.87) (483, 484)

Ibuprofen (NSAID) Improvement of biomarkers, no

significant effect on mortality

(485)

Acetylsalicylic acid

(ASA)

Lower mortality suggested; large trial

still ongoing

(486–488)

Atorvastatin Lower IL-6 levels implying

anti-inflammatory effects; however, no

clear effects on survival

(489)

Atorvastatin Reduction of conversion to severe

sepsis from 24 to 4%

(490)

Rosuvastatin No effect in sepsis-induced ARDS (491)

Azithromycin Sepsis-induced ARDS: significant

survival improvement (OR 0.38),

immune-modulatory effect assumed

(492)

Edaravone (radical

scavenger)

Reduction of mortality from 30 to

13% in septic peritonitis

(493)

Antithrombin III No reduced mortality, but increased

risk of bleeding (RR 1.58)

(494, 495)

Antioxidants No beneficial effects of vitamins C

and E, β-carotene, N-acetyl-cysteine,

selenium, omega-3 fatty acids

(496–500)

inflammatory responses in the first phase, counter-acting
feedback-mechanism often become predominant at a later
stage of the disease resulting in immunosuppression associated
with increased risk for secondary or opportunistic infections.
Attempts to understand the complex pathogenesis of sepsis
included low-dose infusion of LPS into healthy volunteers
(476). This revealed that LPS activates the endothelium and the
coagulation system, as well as fibrinolysis, accompanied by a pro-
inflammatory response (476, 477). Similar to LPS, infusion of
the cytokine TNFα into healthy volunteers exerted not only pro-
inflammatory actions, but also activated the coagulation cascade
(478, 479).

Given the importance of NF-κB for the initiation of the vicious
circle of sepsis, its inhibition has often been considered as an
interesting therapeutic approach to treat or prevent overshooting
immune responses (480). This notion is supported by different
animal models of sepsis showing a beneficial effect of NF-κB
inhibition (472, 481). However, blocking NF-κB activity is also
accompanied by reduced host defense and thus elimination
of pathogens—and is therefore contraindicated at the late
state of sepsis. Thus, the right balance between positive and
negative effects of NF-κB inhibition or the correct timing of
blocking NF-κB have not been found, yet. This is reflected by
various clinical trials blocking NF-κB or associated inflammatory
pathways by treatment with anti-inflammatory substances (as
listed in Table 3). These substances included glucocorticoids,
which inhibit the NF-κB pathway, as well as non-steroidal anti-
inflammatory drugs (NSAIDs) such as acetylsalicylic acid (ASA),
which do not only block the synthesis of inflammatory mediators
but also inhibit the activity of IKKs (501). Interestingly, ASA
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and its active metabolite salicylic acid (SA) exert both anti-
inflammatory (502) and anti-coagulatory actions (503) and SA
naturally occurs in the human body due to up-take of plant-based
food and endogenous production (504). Furthermore, a number
of antioxidants has been investigated, which indirectly inhibit
the NF-κB activation pathway, including vitamin C, vitamin E,
β-carotene, N-acetylcysteine, selenium, or omega-3 fatty acids
(505–510). However, clinical trials with these antioxidants failed
to show any beneficial effect in sepsis (496–500). On the other
hand, beneficial effects of anti-inflammatory agents have been
reported in a recent systematic meta-analysis showing that anti-
TNFα treatment of septic patients slightly reduces mortality with
an odds ratio of 0.91 (482). Furthermore, the relevance of LPS
as trigger of sepsis could be underlined by studies applying
extracorporeal endotoxin elimination devices with promising
results (511).

Nevertheless, the various clinical trials on NF-κB inhibition
in sepsis underline the complex role of NF-κB in immune
defense, inflammation and coagulation and the difficulty to
find the right timing or regimen of treatment. However,
concepts of dampening NF-κB activity appear very promising
in thrombotic diseases that are characterized by rather low-
grade chronic inflammation. This was demonstrated in a recent
large clinical trial applying anti-IL-1β antibodies in patients
with atherosclerosis and a prior myocardial infarction. The
anti-inflammatory effect could be shown by dose-dependent
reduction of the CRP level with was associated with an
decreased risk to develop a second infarction, non-fatal stroke
or cardiovascular death (512). However, as expected anti-IL1β
treated patients had a higher risk of infections.

Overall, it is clear that inflammatory processes and thrombotic
events are tightly linked on many different levels and that
the NF-κB signaling pathway plays a fundamental role in the
molecular and cellular linkages. Since NF-κB itself is a central
hub in this network of reactions, an unspecific inhibition of this

transcription factor might cause unwanted side-effects or be less
efficient due to complex feedback circuits. However, considering
the diversity of the intracellular as well as intercellular
signaling networks that are built around NF-κB, targeting more
specific connections between inflammation and coagulation
might be very promising to reduce thrombotic morbidities
that are associated with numerous chronic inflammatory
diseases.
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