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Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis

and chicken meat is the main source of infection. Recent studies showed that broiler

chicken immunization against Campylobacter should be the most efficient way to

lower the number of human infections by this pathogen. Induction of the mucosal

immune system after oral antigen administration should provide protective immunity

to chickens. In this work we tested the usefulness of Lactococcus lactis, the most

extensively studied lactic acid bacterium, as a delivery vector for Campylobacter

antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide

epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted

strongly with both CjaA and CjaD produced by a wild type C. jejuni strain. Next,

rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the

LPTXG motif. The genes expressing these proteins were transcribed under control of

the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences.

This strategy ensures a cell surface location of both analyzed proteins, which was

confirmed by immunofluorescence assay. In order to evaluate the impact of antigen

location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located

rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter

cecal load in vaccinated birds as compared with the control group and showed that

the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection

than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge,

this is the first attempt to employ Lactic Acid Bacteria (LAB) strains as a mucosal

delivery vehicle for chicken immunization. Although the observed reduction of chicken

colonization by Campylobacter resulting from vaccination was rather moderate, the

experiments showed that LAB strains can be considered as an alternative vector to

deliver heterologous antigens to the bird immune system. Additionally, the analysis

of the structure and immunogenicity of the generated rCjaAD hybrid protein showed

that the CjaA antigen can be considered as a starting point to construct multiepitope

anti-Campylobacter vaccines.
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INTRODUCTION

Campylobacter sp., members of Epsilonproteobacteria, are
intestinal inhabitants of a various animal and avian species
and, at the same time, are a major cause of human bacterial
food-borne gastroenteritis; each year they are responsible for
several 100 million cases of infection worldwide. The number
of reported confirmed cases of human campylobacteriosis varies
between countries and ranges between ten to more than 100
per 100,000 population (Kaakoush et al., 2015). In the EU in
2013, 214,779 cases were recorded (EFSA and ECDC, 2015). The
number of Campylobacter genus species is growing constantly.
Among at least 34 (http://www.bacterio.net/campylobacter.html
%20consulted%20on%2001/2016) species of the Campylobacter

genus which have been described so far, the most prevalent
species isolated from clinical cases of human campylobacteriosis
are C. jejuni and C. coli (Robyn et al., 2015). Whereas in
developing countries, the disease is endemic and affects mainly
children, in industrialized countries most cases of the disease
are mainly sporadic and are caused by the consumption of
pathogen-contaminated, improperly prepared broiler meat. The
gastrointestinal tract of infected broiler chickens contains a
very high load of C. jejuni (Silva et al., 2011; Hermans et al.,
2012; Powell et al., 2012). So, taking into consideration the
broad consumption of poultry meat products, it has been
established that the chicken reservoir is the main source of human
campylobacteriosis. It was calculated that decreasing the count of
Campylobacter in chicken intestines by 2 log10-units would lower
the number of human campylobacteriosis cases 30-fold, and that
a reduction by 3 log units should diminish the public health risk
by at least 90% (EFSA Panel on Biological Hazards (BIOHAZ),
2011; Rosenquist et al., 2013).

Reduction of chicken colonization by Campylobacter can be
achieved by vaccination, but an effective chicken vaccine against
Campylobacter is still lacking. To date, many Campylobacter

immunogenic proteins have been identified and tested as
protective antigens in chicken animal models using various
delivery vehicles and immunization strategies, but only with
partial success. The induction of immune responses (specific
intestinal IgA and serum IgG) was documented as a result
of immunizations, but the generated reductions of chicken
intestinal track colonization by C. jejuni were not satisfactory
(Wyszyńska et al., 2004; Buckley et al., 2010; Layton et al., 2011;
Clark et al., 2012; Neal-McKinney et al., 2012; Theoret et al.,
2012) also reviewed in references (de Zoete et al., 2007; Jagusztyn-
Krynicka et al., 2009).

The current knowledge indicates that an effective chicken
vaccine should induce both a strong and rapid immune
response, due to the short life span of broiler chickens.
For a short time after hatching, the chicks are protected
against Campylobacter infection by a high level of maternal
antibodies. The mechanism of this protection is not completely
clear (Sahin et al., 2001; Sahin et al., 2003; Cawthraw and
Newell, 2010). Therefore, birds should be immunized during
the first week of life, when the avian immune system is
immature. Given this aspect of immunization, we have to
deepen our knowledge about Campylobacter factors involved

in chicken colonization, as well as the pathogen’s interaction
with the bird’s immune system (Hermans et al., 2011a).
Additionally, with the advances in sequencing technologies, it
becomes obvious that the development of a universal effective
chicken vaccine against Campylobacter is hampered by the
Campylobacter genome plasticity and antigenic complexity (Friis
et al., 2010; Jeon et al., 2010; Gilbreath et al., 2011; Meric
et al., 2014). The genetic diversity among Campylobacter strains
finds reflection in chicken infection biology (Chaloner et al.,
2014). Additionally, epidemiological studies indicate that there
are multiple Campylobacter strains present in broiler flocks at
the same time (Newell et al., 2010). So, it is generally thought
that only multicomponent subunit vaccines, or using various
preparations for the primary vaccination and for the booster, will
satisfy immunization requirements.

Recently, the three-dimensional (3D) structures of many
antigens have been resolved using mainly two technologies:
nuclear magnetic resonance (NMR) spectroscopy and X-ray
crystallography, which in combination with bioinformatics
strategies allow mapping of the antigen epitopes and can
initiate the development of structural vaccinology. This strategy
should overcome several limitations in the development of
vaccines to protect against pathogens with genetic diversity
or antigenic hypervariability (Delany et al., 2014). The first
vaccine generated by employing technologies of reverse and
structural vaccinology is the 4CMenB multicomponent vaccine
against serogroup Neisseria meningitidis approved in 2013 by the
European Medicine Agency (Serruto et al., 2012).

In this study, we designed and constructed a hybrid CjaA
antigen, named the rCjaAD protein, that displays three CjaD
peptide epitopes on its surface. Next, the gene encoding rCjaAD
was cloned into a L. lactis strain in a way that ensured the location
of its product to the cell surface. The constructed strain was
used for chicken immunization to evaluate the induced immune
response and the protective effect of immunization.

MATERIALS AND METHODS

Bacterial Strains, Primers, Plasmids,
Media and Growth Conditions
Bacterial strains, plasmids and primers used in this study are
listed in Tables 1 and 2. The L. lactis IL1403 strain used in this
study was routinely cultured at 30◦C in M17 broth (Oxoid)
containing 0.5% (wt/vol) glucose (GM17). When needed,
media were supplemented with 5 µg ml−1 erythromycin.
The Escherichia coli strain TG1 was used as a host for the
construction of recombinant plasmids. The E. coli strain Rosetta
(DE3) pLysS was used to overproduce rCjaAD (pUWM1379).
E. coli strains were grown under standard conditions unless
otherwise indicated. When needed, media were supplemented
with antibiotics at the following concentrations: 30 µg ml−1

kanamycin, 250 µg ml−1 erythromycin, or 20 µg ml−1

chloramphenicol. C. jejuni strain 81–176 was the source of
the cjaA (cjj81176_1001, cj0982c) gene. C. jejuni 12/2 strain
employed in the protection experiment was a broiler-isolated
strain labeled with the pUOA18 plasmid containing a cat
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TABLE 1 | Bacterial strains and plasmids used in this study.

Strain or plasmid Relevant phenotype(s) or genotype(s) Source or reference

Strains

L. lactis subsp. lactis IL1403 Plasmid-free strain INRA (Chopin et al., 1984)

E. coli TG1 supE thi-1 �(lac-proAB) �(mcrB-hsdSM)5 (rK− mK−) F’ [traD36 proAB+ lacIq

lacZ_M15]

Sambrook and Russell, 2001

E. coli Rosetta pLysS (DE3) F− ompT hsdSB (rB
− mB

− ) gal dcm (DE3) pLysSRARE (CmR) Novagen

C. jejuni 81176 Wild type; isolated from a child with bloody diarrhea during an outbreak in

Minnesota (USA); pVir, pTet (TcR ); Lior 5; Penner 23/26

Korlath et al., 1985

C. jejuni 12/2 Wild type; isolated from a chicken; good colonizer; pUOA18 (CmR) Wyszyńska et al., 2004

Plasmids

pGEM-T Easy ApR; T vector for cloning PCR products Promega

pET28a KmR; lacI; overexpression vector Novagen

pBluescript II SK+ ApR; general cloning vector Stratagene

pIL253 EmR, lactococcal cloning vector Simon and Chopin, 1988

pUWM1000 EmR, L. lactis /E. coli shuttle vector (pIL253 containing ori pBR322) This study

pUWM1371 rcjaAD in Bluescript II SK+ This study

pUWM1379 6xhis-rcjaAD-6xhis fusion in pET28a This study

pUWM1373 Fragment encoding signal sequence of Usp45 (ssusp45 ) in pGEM-T easy This study

pUWM1376 Fragment encoding C-terminal CWA region of YndF (LPXTGYnd ) in pGEM-T

easy

This study

pUWM1381 Fragment encoding signal sequence of Usp45 (ssusp45 ) and fragment encoding

C-terminal CWA region of YndF (LPXTGYnd ) in pBluescript II SK

This study

pUWM1384 ssusp45_cjaA_LPXTGYndF in pBluescript II SK This study

pUWM1392 ssusp45_rcjaAD_LPXTGYndF in pUWM1000 This study

pUWM1395 ssusp45_cjaA_LPXTGYndF in pUWM1000 This study

pUWM1412 rcjaAD in pUWM1000 This study

TABLE 2 | Oligonucleotides used in this study.

Name of primer Sequence∗ Restriction recognition sites

UspAx agaggtaccgaattcTGTTTACCAGCTAGCGCCTA KpnI, EcoRI

UspBx atggcgcatgccgggcccaaTGAATTTGTGTCAGCGTAGA Sph, ApaI

UspCx AACGCGTTGCTCGAGACAGATCTAGTCGACCGATATCGGATC

CCGCGGCCGCCATGGCGCATGCCGGGCCCAA

MluI, XhoI, BglII, SalI, EcoRV,

BamHI, SacII, NcoI, SphI, ApaI

UspDx TATATCGATAACGCGTTGCTCGAGACAGA ClaI

YhgE_ClaI_LPXTG taatcgataGGCTTGAACTTGGTTGATAA ClaI

YhgE_XbaI agttctagagaattccaGCCATCATCCCCTCCTAA XbaI, EcoRI

YndF_ClaI_LPXTG ttaatcgaTTGGTAATGCCTCTGGCCAAT ClaI

YndF_XbaI_LPXTG agttctagagaaTTCCACAACCATTGCCCCTCCTTT XbaI, EcoRI

1001_Xho_LPXTG acctcgagtcAATTTTTCCACCTTCAATCAC XhoI

1001_Bam_LPXTG acaggatccGGAGGAAATTCTGACTC BamHI

R_CjaAD_inF agatccccgggaattcttaAATTTTTCCACCTTCAATCAC EcoRI

F_CjaAD_inF tgattaaatagaattcAGGAATTGTATGGGAGGAAATTCTGACGAAG EcoRI

∗Bold letters indicate C. jejuni or L. lactis nucleotide sequences, and the restriction recognition sites introduced for cloning purposes are underlined. Complementary

fragments of primers UspBx + UspCx and UspCx + UspDx are marked with italics. Primers were based on the C. jejuni 81176 or L. lactis IL1403 nucleotide sequences.

gene. Previous experiments have shown that the pUOA18
plasmid is stably maintained in Campylobacter (Wyszyńska
et al., 2004). C. jejuni strains were routinely grown at 37◦C
or 42◦C for 16–24 h under microaerobic conditions (5%
O2, 10% CO2, 85% N2) on Blood Agar Base No. 2 (BA,
Merck, Darmstadt, Germany) plates supplemented with
5% horse blood and “Campylobacter Selective Supplement
(Blaser-Wang)” (Oxoid, Basingstoke, UK). The medium
was supplemented with chloramphenicol (15 µg ml−1), if
necessary.

DNA Manipulations

General DNA Manipulations

Standard DNA manipulations were carried out as described
earlier by Sambrook and Russell (2001) or according to
the manufacturer’s instructions (A&A Biotechnology, Poland).
Chromosomal DNAs of C. jejuni 81–176 and L. lactis used for
PCR reactions were isolated using a commercial kit and protocol
(A&A Biotechnology, Poland). Polymerase chain reactions
(PCRs) were performed with PrimeStar HS DNA Polymerase
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(TaKaRa) or HotStar HiFidelity Polymerase (Qiagen) under
standard conditions. Synthetic oligonucleotide synthesis and
DNA sequencing for cloning experiments were performed by
Genomed S.A., Warsaw.

Construction of Recombinant Plasmids for

Recombinant Protein Overexpression

A DNA fragment encoding rCjaAD was synthesized by Genecust
and cloned into pBluescript II SK+ digested with PstI and
XhoI, generating plasmid pUWM1371. Thereafter, to prepare
the rCjaAD overexpression vector, plasmid pUWM1371 was
digested with NheI and XhoI restriction enzymes and a 0.9 kb
DNA fragment was inserted into pET28a, generating plasmid
pUWM1379. Correct construction of the recombinant plasmid
was verified by sequencing. Protein production was confirmed
by Western blot, using previously obtained rabbit polyclonal
anti-CjaD and anti-CjaA sera, and anti–6His serum (Pawelec
et al., 2000; Łaniewski et al., 2012). RCjaAD has a 6His tag fused
to both the N- and C-termini to allow purification by affinity
chromatography.

The construction of the CjaA expression vector (pUWM1146)
and CjaD expression vector (pUWM1292) was described
previously (Łaniewski et al., 2014; Kobierecka et al.,
2015).

Construction of the Shuttle Vector pUWM1000

The previously described L. lactis plasmid pIL253, based on the
pAMβ1 replicon, does not replicate autonomously in E. coli

(Simon and Chopin, 1988). To circumvent this problem, pIL253
was equipped with an ori pBR replicon. A 1.1 kb XbaI-BglII
DNA fragment carrying the pBR origin of replication was ligated
to pIL253 digested with XbaI and BamHI. The resulting shuttle
vector pUWM1000 replicates in both E. coli and L. lactis.

Construction of the Vectors Carrying the Fusion of

the Campylobacter Genes to the DNA Fragment

Encoding the Cell Wall Anchor Region of L. lactis

YndF

The primers UspAx and UspBx were used to amplify the DNA
region encoding the signal sequence of Usp45 (amino acids
1–30) from the chromosome of L. lactis IL1403 [PrimeStar
HS DNA Polymerase (TaKaRa)]. This region of DNA includes
also promoter of the usp45 gene. The UspBx primer contains
a 5′ nucleotide sequence complementary to UspCx primer.
PCR product that was purified using a Gel-Out extraction
kit (A&A Biotechnology) and the UspCx primer (in equal
amounts) was used as a template in a single PCR reaction,
using the primers UspAx and UspDx [HiFidelity Polymerase
(Qiagen)]. The resulting PCR product was purified and
cloned into pGEM-T Easy to generate pUWM1373 (the
scheme of pUWM1373 construction is given in Supplementary

Figure S1). Construction of this recombinant plasmid via a 2-
step PCR method allowed the introduction specific restriction
enzyme recognition sites, which were useful in cloning
procedures.

In order to prepare the translational fusion of C. jejuni
gene with 3′end of L. lactis yndF gene, several steps of

genetic manipulation were undertaken. First, the nucleotide
sequence encoding the C-terminal CWA region of yndF was
PCR amplified from the chromosome of L. lactis IL1403
with primers YndF_XbaI_LPXTG and YndF_ClaI_LPXTG.
The 0.4 kb amplicon was cloned into pGEM-T Easy to
generate plasmid pUWM1376. Next, the KpnI-ClaI DNA
fragment of pUWM1373, the XbaI-ClaI DNA fragment
of pUWM1376 and pBluescript II SK digested with XbaI
and KpnI were ligated. The resulting plasmid, designated
pUWM1381, contains DNA fragments encoding the signal
sequence of the usp45 gene and a DNA fragment encoding the
C-terminal CWA region of YndF in the same transcriptional
orientation.

Subsequently, pUWM1381 was used to create the translational
fusions of cjaA or rcjaAD genes with a signal sequence of
usp45 and a nucleotide sequence encoding the C-terminal
CWA region of the yndF gene. Briefly, C. jejuni DNA
fragments of 777 bp encoding the cjaA gene that lacks its
own signal sequence were PCR-amplified using the primer pair
1001_Bam_LPXTG and 1001_Xho_LPXTG from chromosomal
DNA. Next, that fragment was cloned into the pUWM1381
recombinant plasmid using BamHI-XhoI restriction enzymes,
to generate the pUWM1384. Construction of a pUWM1382
plasmid containing the translational fusion of the rcjaAD gene
with a nucleotide sequence encoding the C-terminal CWA region
of YndF was generated by cloning the 0.94 bp XhoI-SphI DNA
fragment of pUWM1371 into pUWM1381 linearized with the
same restriction enzymes.

Next, the EcoRI-EcoRI fragments containing translational
fusions of cjaA or rcjaAD genes with a nucleotide sequence
encoding the C-terminal CWA region of YndF were transferred
into the pUWM1000 E. coli/L. lactis shuttle vector, generating
pUWM1395 and pUWM1392, respectively. Correct construction
of the resulting plasmids was confirmed by restriction analysis
and sequencing.

Construction of the Vector Encoding Campylobacter

Antigens of Cytoplasmic Location

In-Fusion R© HD Cloning technology was employed to generate
pUWM1412, the recombinant plasmid containing the rcjaAD

gene. The nucleotide sequence encoding the rcjaAD gene that
lacks its own signal sequence was PCR amplified from the
pUWM1371 with primers R_CjaAD_inF and F_CjaAD_inF.
The primers used added 15 bp nucleotide sequences to
each end of the PCR amplicon that are complementary to
the two ends of an EcoRI linearized pUWM1000 vector.
The cloning procedure was carried out according to the
manufacturer’s instruction (Clonetech). Correct construction of
the resulting plasmid was confirmed by restriction analysis and
sequencing.

Transformation of E. coli and
Lactococcus lactis
Recombinant plasmids pUWM1392, pUWM1395 and
pUWM1412 were introduced into L. lactis IL1403 cells by
electroporation as described by Landete et al. (2014). To prepare
the competent Lactococcus strains, an overnight culture was
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inoculated 1:50 in GM17 containing 1% glycine and 0.5 M
sucrose and incubated at 30◦C until an OD600 of 0.6 was reached.
Bacteria were collected (10,000 g, 10 min, 4◦C) and the pellet was
washed three times in a washing solution [5 mM KH2PO4, 2 mM
MgCl2, 10% glycerol (v/v)] containing 0.5 M sucrose. Bacteria
were resuspended 1:100 in the same solution and a volume of
40 µL was electroporated immediately or kept at −70◦C for
further use. L. lactis competent cells were electroporated at 2.5 kV,
200 � and 25 µF in 0.4 cm cuvettes using a BioRad GenePulser
(BioRad, Life Science Research Products, Hercules, CA, USA).
After electroporation, Lactococcus cells were resuspended in
GM17 broth containing 0.5 M sucrose, 20 mM MgCl2 and
2 mM CaCl2 and incubated at 30◦C for 2 h. Following the
incubation, bacteria were plated on M17 containing 0.5 M
sucrose supplemented with erythromycin (5 µg ml−1). The
plates were incubated at 30◦C for 2 days.

Escherichia coli was transformed as previously described
(Hanahan, 1983).

Recombinant Protein and Polyclonal
Antibody Production
Overexpression and Purification of CjaA, CjaD and

rCjaAD

rCjaAD was overexpressed and purified from E. coli Rosetta
(DE3) pLysS harboring pUWM1379 by autoinduction, as
described by Studier (2005). After 24 h growth, the bacterial
culture was centrifuged and the cell pellet was suspended in
50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole,
pH 8.0. Cells were disrupted by sonication. Subsequently, the
cell lysate was centrifuged and the resulting supernatant was
applied onto a HisTrap column (NGC Chromatography system
BioRad). The protein was eluted with an imidazole gradient.
Fractions containing rCjaAD were pooled and extensively
dialyzed against phosphate buffered saline (PBS) and used
for rabbit immunization. Rabbit immunization was carried
out according to the ethical standards and with the approval
(5666/2014) of the Local Ethics Committee No. 1, Warsaw,
Poland.

The anti-rCjaAD rabbit serum was specific and recognized
rCjaAD, as verified by Western blot analysis. Overexpression
and all purification steps were monitored by SDS-PAGE.
Overexpression and purification of CjaA and CjaD were
performed using identical method as described previously
(Łaniewski et al., 2012; Kobierecka et al., 2015).

SDS-PAGE and Western Blotting

SDS-PAGE and Western blotting procedures were done by
standard techniques. Blots were developed with nitro blue
tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate
(Sigma–Aldrich) as a substrate, using previously obtained rabbit
polyclonal anti-CjaA, anti-CjaD (Pawelec et al., 2000; Łaniewski
et al., 2012), or anti-rCjaAD (this work) sera or anti-His
antibodies (Sigma–Aldrich) as primary antibodies, and mouse
anti-rabbit IgG alkaline phosphatase conjugate (Sigma–Aldrich)
or goat anti-mouse IgG alkaline phosphatase conjugate as
secondary antibodies.

Cellular Localization of the Hybrid Proteins –

Immunofluorescence Assay

For the immunofluorescence assay, L. lactis IL1403 cells carrying
plasmids encoding CjaA or rCjaAD localized in different areas
of the bacteria were used. The immunofluorescence assays
were carried out as previously reported (Kobierecka et al.,
2015).

Rabbit polyclonal anti-CjaA (Pawelec et al., 2000; Łaniewski
et al., 2012) or anti-rCjaAD (this work) sera were used
as primary antibodies and goat anti-rabbit IgG Alexa
Fluor A488 as secondary antibodies. Fluorescence was
visualized with a NIKON A1R MP microscope (University
of Warsaw).

Assessment of the Immune Responses
and Chicken Protection
Growth of Carrier Strain (Lactococcus lactis IL1403

Containing C. jejuni rcjaAD or cjaA genes) for

Chicken Immunization

To prepare bacterial suspensions for chicken immunization, an
overnight culture of bacteria was diluted 1:50 in fresh pre-
warmed GM17 broth and grown at 30◦C to an optical density
A600 = ∼0.4. The cells were sedimented by centrifugation at
8000 × g for 10 min at 4◦C, and then suspended in buffered
saline with 0.1% gelatin (BSG) to an optical density A600 = ∼1
(∼1 × 109 CFU/ml). CFUs were determined by plating serial
dilutions of culture on GM17 agar plates supplemented with 5µg
ml−1 erythromycin.

Immunization and Challenge Regimen

Hy-line chickens were obtained on the day of hatch from a
local hatchery. Birds were randomly assigned to experimental
groups and housed in an animal facility in separate cages for
each group and given water and feed ad libitum. Chickens
were confirmed to be culture-negative for Campylobacter by
cloacal swabbing. All animal experiments were carried out
according to the ethical standards and with the approval
(699/2015) of the Local Ethics Committee No. 1, Warsaw,
Poland.

Chickens deprived of food and water for 4 h were orally
inoculated with 100 µl of 109 CFU/ml of L. lactis carrying
pUWM1392 (SPusp45_rCjaAD_CWAYndF), pUWM1395
(SPusp45_CjaA_CWAYndF) or pUWM1412 (rCjaAD of
cytoplasmic location). Booster doses were administrated 8
and 17 days after primary immunization. Following vaccination,
chickens were observed for development of diarrhea and other
potential adverse side effects. A group of birds inoculated with
BSG and L. lactis IL1403 were used as a controls. At the 22nd
day of life, birds were orally challenged with ∼104 CFU of
C. jejuni wild-type strain 12/2. At 5 and 9 days post challenge,
five birds from each group were euthanized and samples of
cecum were collected. Dilutions of the contents were made in
PBS and plated onto BA plates supplemented with 5% horse
blood, “Campylobacter Selective Supplement (Blaser-Wang)”
and chloramphenicol (15 µg ml−1) for enumeration of C. jejuni.
Plates were incubated at 37◦C for 48 h. Plates that were
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culture-negative at 48 h were reincubated for an additional
48 h. This procedure permits detection of 103 CFU/g of cecal
contents.

To monitor the humoral immune response, three birds from
each group were sacrificed on days 7, 14, 21, 27, and 31 post-
hatch and samples of serum and gut secretion were collected
for the post-mortem examination. On day 1 post hatch, the
same number of unvaccinated birds were also euthanized. Blood
samples were taken after decapitation. Following centrifugation,
sera were collected and stored at −20◦C. Samples of gut
secretions were collected by intestinal lavage. Secretory IgA
antibodies were extracted from lower parts of the intestine
with PBS containing 0.05% Tween 20 and soybean trypsin
inhibitor (0.1 mg ml−1) (dilution 1:10). Samples were shaken
for 2 h at 4◦C, centrifuged at 20,000 × g for 30 min at
4◦C, and afterward the supernatant was collected and stored
at −20◦C.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Antigen Preparation

The 6xHis-tagged rCjaAD protein purified as described above
was also used as a coating antigen.

ELISA Assay

The level of the antibodies against rCjaAD protein in chicken
intestinal secretions and blood sera was quantified by ELISA.
Briefly, 96-well Maxisorp plates (Nunc, Rochester, NY, USA)
were coated with either the purified rCjaAD protein (5 µg per
well) or Campylobacter membrane proteins (30 µg per well) in
PBS and incubated overnight at 4◦C. Then, plates were blocked
for 1 h at 37◦C with PBS containing 0.1% Tween 20 (Sigma–
Aldrich) and 1% BSA (bovine serum albumin), washed three
times with PBS containing 0.1% Tween 20 (Sigma–Aldrich)
and incubated for 1 h at room temperature with the diluted
sera (1:256) or intestinal secretion samples (1:10). Goat anti-
chicken IgA horseradish peroxidase conjugate (Thermo Fisher,
Scientific) was employed to detect chicken IgA that bound
to Campylobacter antigens. The plates were developed with
3,3′,5,5′-tetramethylbenzidine (Sigma–Aldrich), according to the
manufacturer’s directions. The reaction was stopped with 3M
H2SO4 and optical density was determined at A 490 using
an ELISA reader (Tekan). The level of specific serum IgG
was measured using rabbit anti-chicken IgY (whole molecule)
alkaline phosphatase conjugate (Sigma–Aldrich). The reaction
was run with p-nitrophenyl phosphate (1 mg ml−1) as substrate
and was stopped after 30 min incubation (room temperature)
with 3N sodium hydroxide. Optical density was determined
at 405 nm using an ELISA reader (Tekan). Each sample was
analyzed in triplicate.

Bioinformatics Analyses
Protein Structure Prediction

Secondary structure prediction and tertiary fold-recognition
(FR) were carried out via the GeneSilico metaserver gateway
(Kurowski and Bujnicki, 2003). Solvent accessibility for the

individual residues was predicted with SABLE (Adamczak et al.,
2005), ACCPRO2 (Cheng et al., 2005a), and JNET (Cuff
and Barton, 2000). Disordered residues were predicted from
consensus of results generated with disprot (Dunker et al., 2002),
DISpro (Cheng et al., 2005b), DisEMBL (Linding et al., 2003),
RONN (Yang et al., 2005), and disopred (Ward et al., 2004)
methods. Secondary structure was predicted using a consensus
of PSIPRED (Jones, 1999b), PROFsec (Rost et al., 2004), PROF
(Ouali and King, 2000), SABLE (Adamczak et al., 2005), JNET
(Cuff and Barton, 2000), JUFO (Meiler and Baker, 2003),
PORTER (Pollastri and McLysaght, 2005), SSPRO2 (Cheng et al.,
2005a), and SAM-T02 (Karplus et al., 2003). In all these cases
results generated by independent methods were compared and
a consensus result was retrieved as a most probable solution.
The FR analysis (attempt to match the query sequence to
known protein structures) was carried out using PDBBLAST,
HHSEARCH (Soding, 2005), FFAS03 (Jaroszewski et al., 2005),
FORTE (Tomii and Akiyama, 2004), SAM-T02 (Karplus et al.,
2003), 3DPSSM (Kelley et al., 2000), INBGU (Fischer, 2000),
FUGUE (Shi et al., 2001), mGENTHREADER (Jones, 1999a),
and SPARKS (Zhou and Zhou, 2004). Target-template alignments
reported by these methods were compared, evaluated, and
ranked by the PCONS server (Lundstrom et al., 2001) to
identify the preferred modeling templates and the consensus
alignment. The alignments between the amino acid sequences
of CjaA and CjaD and the structures of the best templates
identified by FR were used to carry out homology modeling
using Modeler (Sali and Blundell, 1993). For the evaluation of
models, a MetaMQAPmethod was used. (Pawlowski et al., 2008),
which allows predicting the deviation of individual amino acid
residues in the model from their counterparts in the native
structure.

Prediction of Epitopes

Epitopes were predicted from sequence using the following
methods: Chou and Fasman Beta-Turn Prediction (Chou and
Fasman, 1978), Emini Surface Accessibility Prediction (Emini
et al., 1985), Karplus and Schulz Flexibility Prediction (Karplus
and Schulz, 1985), Kolaskar and Tongaonkar Antigenicity
(Kolaskar and Tongaonkar, 1990), Parker Hydrophilicity
Prediction (Parker et al., 1986), and Bepipred Linear Epitope
Prediction (Larsen et al., 2006). All results were compared and
consensus predictions were mapped on homology models of
CjaA and CjaD proteins. We considered consensus fragments
that were located in loops exposed to the solvent to be the most
probable epitopes.

Statistical Analyses
Statistical analyses of colonization results were performed using
GraphPad Prism 6 (GraphPad Software, Inc., San Diego, CA,
USA). The significance of differences between the obtained values
was appraised using one-way analysis of variance (ANOVA)
followed by the post hoc Tukey test. Statistical analyses of ELISA
test were assessed using the Kruskal–Wallis test followed by
Dunn’s multiple-comparison post hoc test. Statistical analyses
were performed using STATISTICA 10PL software (StatSoft,
USA). Any p-values <0.05 were considered significant.
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RESULTS

Protein Structure Prediction
CjaA

As a starting point for a structural model of CjaA, a
protein FR analysis of the CjaA amino acid sequence was
performed. FR methods attempt to identify the most appropriate
modeling templates for a query sequence and return a set
of alternative alignments to proteins of known structure.
Most FR methods available in the MetaServer consistently
reported the structure of the crystal structure of the cysteine-
binding protein from C. jejuni (PDB code: 1xt8) as the
potentially best template for modeling the CjaA protein
(top matches to 1xt8, with all methods). However, the FR
analyses showed no statistically significant similarity to any
structurally characterized template for the N terminal part of
CjaA (residues 1–25). A model of the central domain (starting
from residue 26) was constructed using the ‘FRankenstein’s
Monster’ protocol (Kosinski et al., 2005), and as expected
from comparative modeling, the CjaA revealed features of
its templates. The prediction of the quality of the final
model yields good scores with MQAP methods. The program
MetaMQAP predicted that the whole model exhibits a root
mean square deviation from the true structure on the
order of 5.2 Å, and a predicted GDT_TS score of 41.667.
These results suggest that our model of CjaA is sufficiently
reliable as a framework to interpret sequence–structure-
function relationships in the CjaA, such as analysis of putative
epitopes.

CjaD

As a starting point for a structural model of CjaD, a protein
FR analysis of the CjaD amino acid sequence was performed.
Most FR methods available in the MetaServer reported
two structures: the crystal structure of TolB/Pal complex
and the solution structure of peptidoglycan associated
lipoprotein from Haemophilus influenzae bound to UDP-N-
acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimel
oyl-D-alanyl-D-alanine (PDB codes: 2hqs and 2aiz) as the
potentially best templates for modeling of the CjaD protein.
However, the residues 1–50 were identified as intrinsically
disordered by all methods available in the Metaserver. A model
of the central domain (starting from residue 50) was constructed
using the ‘FRankenstein’s Monster’ protocol (Kosinski et al.,
2005) based on two template structures. The prediction of
the quality of the final model yields good scores with MQAP
methods. The program MetaMQAP predicted that the whole
model exhibits a root mean square deviation from the true
structure on the order of 6.7 Å, and a predicted GDT_TS score of
34.39. These results suggest that our model of CjaD is sufficiently
reliable as a framework to interpret sequence–structure-function
relationships in the CjaD, such as analysis of its putative
epitopes.

Prediction of Epitopes

As a starting point to identify epitopes in CjaA amino
acid sequence we performed epitope identification based on

FIGURE 1 | Ribbon and surface diagram of the full-length protein

model (A) CjaA, (B) CjaD. Potential peptide epitopes are shown in

yellow.

amino acid sequence using five methods (references as in
Materials and Methods). Then, we mapped amino acid residues
identified by all five methods onto the comparative models
of CjaA and CjaD built in this work. As putative epitopes,
we defined only those from predicted regions of the amino
acid sequences that were located on the protein surfaces
and visibly exposed to the solvent (Figure 1). The following
CjaA fragments were selected as the most probable epitopes:
55–60, 79–82, 111–118, 136–149, 167–171, and 263–268. In
the case of CjaD, the 87–91, 99–108, and 139–158 amino
acid fragments were indicated as the most probable peptide
epitopes.

Additionally, based on the aforementioned predictions, six
alternative amino acid sequences of CjaA with inserted CjaD
epitopes were designed. For this purpose, first we selected five
loops in CjaAmodel that were exposed to the solvent (25–26, 88–
89, 189–190, 207–208, 218–219) and inserted three CjaD epitopes
(EVSGV, DEWGTDEYN, GETNPVCTEKTKACDAQNRR) in
all possible combinations (Supplementary Figure S2). Thus,
we obtained six alternative amino acid sequences with three
CjaD epitopes each. Finally, we built homology models for
all six hybrid amino acid sequences (rCjaAD). The obtained
models confirmed that cores of the proteins are unchanged
whereas epitopes are inserted into loops exposed to the solvent
(Figure 2).
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FIGURE 2 | Dimensional structures of each of the proposed amino acid sequences of CjaA with the three insertions of CjaD peptide epitopes.

FIGURE 3 | The amino acid sequence of rCjaAD protein. Amino acids

between which peptide epitopes of CjaD protein (indicated in bold) were

inserted are indicated in red.

Construction of CjaA Protein Displaying
CjaD Peptide Epitopes on its Surface;
Analysis of its Antigenicity and
Immunogenicity
The structure based approach combined with the identification
of the CjaA and CjaD epitopes allowed us to construct a
CjaA antigen that presents CjaD epitopes on its surface.
Three epitope amino acid sequences (EVSGV, DEWGTDEYN,
GETNPVCTEKTKACDAQNRR) from CjaD were inserted at
positions 25–26, 88–89, 189–190 of CjaA amino acid sequence
(Figure 3). The DNA fragment encoding hybrid protein lacking
the CjaA signal sequence (rCjaAD) was synthesized by Genecust
and cloned into pBluescript II SK+ (see Materials and Methods).
Next, it was recloned into pET28a and introduced into E. coli
Rosetta (DE3) pLysS. rCjaAD was overproduced and purified by
affinity chromatography.

Next we checked the specificity of rCjaAD by Western
blot experiments. We found that rCjaAD protein reacts with
specific rabbit anti-CjaA, as well as with specific rabbit anti-
CjaD sera (Figures 4B,C, lane 1). As the hybrid protein was
constructed with the aim of vaccination, we also investigated its

immunogenicity. We found that the specific serum obtained by
rabbit immunization with rCjaAD reacted strongly with both the
native CjaA and the native CjaD produced by a wild type C. jejuni
strain (Figure 4A, lane 4).

Construction of the L. lactis Strains
Expressing C. jejuni Genes
We constructed two plasmids expressing a fusion of the C. jejuni
CjaA or rCjaAD with the cell wall anchor region of YndF (CWA-
YndF): LPETGDKEQGMKKITLFGSFLLILGSLVLFIRFRKVD).
YndF (NP_267457) is a substrate for sortase SrtA. Two mucin-
binding domains were identified in this protein, which suggests
its possible function in adhesion to epithelial cells or possibly
other cells (Dieye et al., 2010).

All genetic manipulations were performed in E. coli. To begin,
we constructed a shuttle vector pUWM1000 able to replicate in
E. coli and L. lactis strains. The shuttle vector is a derivative
of a patented L. lactis plasmid carrying erythromycin resistance
(pIL253), in which the ori pBR was introduced in order to ensure
its replication in E. coli cells. The plasmid was introduced into
E. coli by chemotransformation and L. lactis by electroporation.

Next, specific recombinant plasmids to generate fusions of
C. jejuni and L. lactis genes were created. First, the promoter
and DNA fragment coding for a signal peptide (SP) of Usp45
L. lactis protein (a 45 kDa secreted protein of unknown function)
was introduced into pGEM-Easy to allow secretion of produced
antigens. At the same time, the PCR-amplified DNA fragment
encoding the CWA region of YndF was inserted into pGEM-
T Easy. The resulting plasmids (pUWM1373 and pUWM1376,
respectively) were the source of fragments, which were connected
in the same transcriptional orientation in pBluescript II SK
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FIGURE 4 | Western blot analysis of the specificity of rCjaAD. Protein

extracts were separated by 12% SDS-PAGE under reducing conditions and

probed with: (A) anti-rCjaAD antibodies, (B) anti-CjaA antibodies,

(C) anti-CjaD antibodies. Lanes: 1 – purified protein 6xHis-rCjaAD-6xHis, 2 –

purified protein 6xHis-CjaA; 3 – purified protein 6xHis-CjaD; 4 – C. jejuni cell

lysate, M - protein molecular-weight marker.

in the next step (pUWM1381). There are different nucleotide
sequences recognized by restriction enzymes located at the
junction between the 3′ end of the DNA region encoding
the SPUsp45 signal sequence and the 5′ end of L. lactis DNA
encoding the CWA region of YndF. This strategy facilitates
cloning of C. jejuni genes. The last stage of the construction
work included the insertion of two C. jejuni genes (encoding
CjaA and rCjaAD, respectively) in such a way that both are
expressed from the Usp45 promoter. The proteins lack the
CjaA signal sequence but are equipped with the Usp45 signal
sequence and are fused to the C-terminus of YndF. The details
of construction are shown in Figure 5 and Supplementary

Figure S3.
Finally, the DNA fragments of pUWM1384 or pUWM1382

encoding CjaA or rCjaAD fused to C-terminus of YndF were
transferred into the pUWM1000 shuttle vector to generate
pUWM1395 and pUWM1392, respectively. The correctness of
constructed recombinant plasmids was verified by sequencing
at every step of work. pUWM1392 and pUWM1395 were
introduced into L. lactis by electrotransformation. Next, we
confirmed the production of CjaA and rCjaAD by L. lactis
by Western blotting experiments. We found that L. lactis

contained plasmids harboring the rcjaAD or cjaA genes expressed

proteins with approximate molecular masses of∼53 or ∼50 kDa,
respectively. Molecular masses of the proteins reacting with
specific rabbit sera against CjaA or rCjaAD were consistent
with the calculated sizes of the CjaA or rCjaAD fusions with
CWA region of YndF (Supplementary Figure S4, lines 1
and 2).

To confirm the impact of the C-terminus of YndF on
protein location and subsequently on the efficacy of vaccination,
we also constructed two L. lactis strains harboring the
recombinant plasmid that encodes Campylobacter rCjaAD
antigen with a cytoplasmic localization (pUWM1492). Details of
its construction are described in the methods section. The protein
produced by this strain, which reacts with anti-rCjaAD serum,
has the expected molecular mass (Supplementary Figure S4,
line 3).

Localization of CjaA and rCjaAD Proteins
We next investigated the localization of CjaA and rCjaAD
by immunofluorescence assay. We found that the L. lactis

IL1403 strain bearing the fusion SPUsp45_rCjaAD_CWAYndF
displayed strong fluorescence. Fluorescence was also observed
for SPUsp45_CjaA_CWAYndF protein, though not as intense
as the SPUsp45_rCjaAD_CWAYndF protein. In contrast, no
fluorescence was observed in cells of L. lactis strain harboring
a recombinant plasmid encoding Campylobacter rCjaAD
antigen with a cytoplasmic location. The results are given in
Figure 6.

Chicken Immunization with L. lactis

Producing Surface Exposed Hybrid
Protein rCjaAD
Many Lactic Acid Bacteria (LAB) have received Generally
Regarded as Safe (GRAS) status, and some of them are
recognized as probiotics (Fontana et al., 2013; Wyszyńska
et al., 2015). This makes LAB strains such as L. lactis

suitable as potential vectors for chicken vaccination against
Campylobacter. Our constructed L. lactis strain, expressing
surface exposed rCjaAD, was used for chicken immunization

FIGURE 5 | Schematic representation of the hybrid proteins. P59 and PUsp45 are strong, constitutive lactococcal promoters (van der Vossen et al., 1987), sp

refers to the signal peptide of Usp45 (van Asseldonk et al., 1990) and cwa to the cell wall anchor region of the lactococcal protein YndF. Epitopes of CjaD proteins

are marked with white rectangles. The corresponding plasmids are indicated in parentheses.

Frontiers in Microbiology | www.frontiersin.org 9 February 2016 | Volume 7 | Article 165

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Kobierecka et al. Surface Display System for Campylobacter Antigens

FIGURE 6 | Localization of SPUsp45_rCjaAD_CWAYndF , SPUsp45_CjaA_CWAYndF and CjaA proteins on L. lactis IL1403 cells. Microscopic observations of

the L. lactis strains expressing the fusion genes: spUsp45_rcjaAD_cwaYndF , spUsp45_cjaA_cwaYndF and rcjaAD. (A) Shows bacterial cells whose fusion proteins were

visualized with anti-CjaA or anti-rCjaAD antibodies that were further detected with goat anti-rabbit IgG Alexa Fluor A488. (B) Primary antibodies were omitted

(negative controls). Fluorescence was visualized with a NIKON A1R MP microscope. The bar represents 10 µm.

in order to evaluate how well it provided protection against
Campylobacter infection and to assess the induced immune
responses. Additionally, to assess the role of protein localization
and to evaluate the impact of a hybrid protein containing
epitopes derived from two immunogenic proteins, two additional
L. lactis strains were included in the experiment. One
(L. lactis /pUWM1412) produces cytoplasm-localized rCjaAD,
and the second produces surface-localized CjaA (L. lactis

/pUWM1395). The scheme of the experiments is depicted in
Table 3.

Briefly, three groups of 1-day old chickens (19 per each group)
were orally immunized with L. lactis strains expressing C. jejuni

antigens (details are given in Materials and Methods). Chickens
were boosted with the same doses of the same strains at 8 and
17 days post-hatch. Two groups of birds, one inoculated with
BSG and the second inoculated with L. lactis IL1403 were used as
a controls. The rationale behind this schedule of immunization is
the fact that the immune system of chickens remains immature
for the first 2 weeks of life (Mast and Goddeeris, 1999; Bar-Shira
et al., 2003). Additionally, maternal antibodies, mainly directed
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TABLE 3 | Scheme of immune response and protection experiments.

Day of life 1 7 8 14 17 21 22 27 31

Immunization with Lactococcus + + +

Collection of blood and gut secretion samples for immune response analyses + + + + + +

Challenge with Campylobacter +

Cecum isolation for Campylobacter enumeration + +

Note: + indicates when the procedures occurred.

against outer-membrane proteins, may restrict the induction of
an immune response.

Serum and Intestinal Antibody
Responses
To investigate the immunogenicity of the surface-exposed
rCjaAD hybrid protein delivered by L. lactis, serum IgYs
and mucosal IgAs were measured by ELISA using rCjaAD as
coating antigen. The kinetics of the induction of two kinds of
antibodies (specific IgYs and specific IgAs) varies significantly
(Figures 7A,B). Systemic IgY responses to Campylobacter

antigens were observed at days 7 and 14 (after the first and
the second dose of vaccine), decreased at days 21 and 27, and
finally increased at day 31 when the experiment was terminated
(Figure 7A). The high level of specific IgYs observed during
the first 2 weeks of chicken life represents maternal antibodies.
The vaccinated groups (with one exception) had higher levels of
specific IgYs on days 7 and 14 than the group vaccinated with
carrier strain. These results indicate that vaccination may support
the protective activity of maternal antibodies. The extremely high
level of specific IgG induced by L. lactis/pUWM1392 (surface
exposed rCjaAD) and low level induced by L. lactis/pUWM1395
(surface exposed CjaA) observed at day 14 is not clear. The anti-
rCjaAD IgY response at day 31 elicited by L. lactis harboring
Campylobacter antigens is significantly higher than the control
group. The highest titer of the anti-rCjaAD antibodies was
detected after immunization with the L. lactis that presented
hybrid protein on its surface. Generally, mucosal IgAs are
regarded as the first line of immune defense against many
pathogens. Anti-rCjaAD mucosal IgA titers increased in all
immunized group after the second booster (day 21). In the case
of specific anti-rCjaAD mucosal IgAs, no correlation was noticed
between the level of the induced immune response and antigen
localization. Anti-rCjaAD IgA responses in the three groups
immunized with L. lactis strains were similar, both in kinetics and
titer at all points of the experiment (Figure 7B).

Protection Analysis
To determine whether the rCjaAD delivered by L. lactis provides
protection against Campylobacter infection, immunized chickens
were challenged orally with 8 × 104 bacterial cells of a broiler-
isolated C. jejuni strain 5 days after the second booster. The
C. jejuni strain used for the challenge experiment was labeled
with the pUOA18 plasmid containing a cat gene. Protection
was assessed at 5 and 9 days after the challenge by plating to
determine the level of bird’s caeca colonization by wild type
Campylobacter.

There was a noticeable, though not statistically significant,
reduction in the CFUs (colony forming units) of C. jejuni in the
cecal contents of birds immunized with L. lactis that produced
surface-exposed rCjaAD (pUWM1392), as compared to control
group (Figure 8). The mean CFU/gram of cecal content observed
in this group was about 1 × 107 whereas the mean level of
colonization in the control group was 1 × 108 CFU/gram. In
the control group receiving L. lactis vector strain, no reduction
in the colonization level was noticed, as compared to group
receiving BSG, especially 9 days after the challenge. It should be
noted that among three vaccinated groups, the group immunized
with L. lactis producing surface-located rCjaAD displayed the
lowest range in the level of colonization. Additionally in this
group, the immunization of two out of six birds resulted in
reduction of cecal C. jejuni by about 2 log10 units compared
to birds receiving BSG at 9 days after challenge. Based on the
mean level of colonization, vaccination with L. lactis/pUWM1395
(surface-exposed CjaA) does not result in protection against
C. jejuni colonization. However, in this case the highest range
of colonization levels was observed between individual chickens.
While vaccination with L. lactis/pUWM1392 producing surface-
located rCjaAD resulted in reduction of C. jejuni colonization
at 5 and 9 days post-challenge, the reduction observed after
immunization with an L. lactis strain producing the same antigen,
but cytoplasmically located, is noted only for a short time. At day
9 post-challenge, the mean level of colonization was even slightly
higher compared to the non-vaccination group. However, this
group also had significant differences in the level of colonization
between individual birds.

DISCUSSION

Campylobacter sp. infection remains the leading cause of
human food-borne gastroenteritis in industrialized countries.
The occurrence of high loads of Campylobacter cells in the
chicken digestive tract is still prevalent in broiler flocks (EFSA
and ECDC, 2015). So there is an urgent need to control chicken
contamination by Campylobacter. Many interventions aimed
at lowering the level of chicken-carcass contamination during
the poultry production cycle have recently been proposed and
tested. However, the currently available interventions are of
limited effectiveness or difficult to sustain (Hermans et al., 2011b;
Josefsen et al., 2015). Thus, the market needs an effective anti-
Campylobacter chicken vaccine. Recent progress has been made
to understand the complex Campylobacter biology during chick
colonization, as well as improvements in the technologies used

Frontiers in Microbiology | www.frontiersin.org 11 February 2016 | Volume 7 | Article 165

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Kobierecka et al. Surface Display System for Campylobacter Antigens

FIGURE 7 | Immune responses of chickens vaccinated with L. lactis strains (L. lactis/pUWM1392, L. lactis/pUWM1395 and L. lactis/pUWM1412).

Levels of serum IgY (A) and mucosal sIgA (B) antibodies specifically recognizing CjaA or rCjaAD antigens were determined by ELISA. Chickens were given three

doses of the vaccine strains at 1, 8, and 17 days post-hatch. Birds were infected with C. jejuni at 22 day of life. Control birds were given L. lactis IL1403 strain (open

bars) or BSG (black bars). Serum and intestinal samples were collected at the specified days of chicken life. Purified rCjaAD protein was used as a coating antigen.

Serum samples were diluted 1:256 and intestinal secretion samples 1:10. Absorbance values represent a mean of 5 birds ±SD per time interval. A statistical analysis

was carried out using the Kruskal–Wallis test followed by Dunn’s multiple-comparison post hoc test. An asterisk indicates significant difference (p < 0.05) between

groups and control group (group V).
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FIGURE 8 | Colonization of chickens vaccinated with L. lactis strains (L. lactis/pUWM1392, L. lactis/pUWM1395 and L. lactis/pUWM1412) and then

given a C. jejuni challenge. Chickens were given three doses of the vaccine strains at 1, 8, and 17 days after hatch and challenged with C. jejuni 12/2/pUOA13

5 days later. Control birds were given BSG. Viable C. jejuni cells were recovered from the ceca of chickens at specified days after challenge. Bacterial recoveries

represent colonization levels of 5 birds per time interval. The geometric mean for each group is denoted by bars. No significant differences (p < 0.05) between

groups were seen.

for identifying the immunodominant proteins (Hermans et al.,
2011a; Hoppe et al., 2014; Hu et al., 2014); both of these facilitate
the selection of antigens for immunization.

Based on the results of chicken vaccination experiments
presented by us and others (Wyszyńska et al., 2004; Buckley
et al., 2010; Layton et al., 2011), and also on known facts
about Campylobacter physiology and genomics, we decided to
use two conserved, extracytoplasmic and highly immunogenic
proteins, CjaA and CjaD (Konkel et al., 1996; Pawelec et al., 1997;
Pawelec et al., 2000), for the experiments in this paper. CjaA
is a periplasmic, cysteine binding protein (Muller et al., 2005),
and CjaD is a peptidoglycan-associated essential protein (PAL)
responsible for the integrity of bacterial cell wall (Godlewska
et al., 2009). Additionally, CjaA was found among the proteins
recognized by maternal antibodies that protect young chicks
against Campylobacter infection (Shoaf-Sweeney et al., 2008).
Analysis of the genomes of members of the Campylobacter genus,
species other than C. jejuni, indicate CjaA as a core-virulence
factor and potential candidate for subunit vaccine development
(Ali et al., 2012). Given that several Campylobacter species
have recently been recognized as emerging animal or human
pathogens, this particular characteristic of CjaA is significant
(Kaakoush et al., 2015). To facilitate antigen production by
the vector strain and to overcome, at least partially, the
problem created by the various Campylobacter genotypes, we
constructed a hybrid protein: a CjaA that presents CjaD epitopes
on its surface. Detailed bioinformatics analysis allowed us to
determine the CjaD epitopes and specify the appropriate places
to introduce them into the CjaA amino acid sequence. Structural

modeling verified the construction of the hybrid protein. It
showed that the CjaA structure was not disturbed and that
the selected CjaD epitopes were present on the CjaA surface.
The immunogenicity of rCjaAD was documented by rabbit
immunization; the rabbit serum obtained after immunization
with rCjaAD reacted with CjaA or CjaD present in a wild
type Campylobacter strain. A similar approach has recently
been presented by Konkel et al. (1996) who showed that
intramuscular immunization with a subunit vaccine that consists
of epitopes from three surface-exposed colonization proteins
(CadF-FlaA-FlpA), combined with adjuvant, gave a significant
reduction of Campylobacter colonization (Neal-McKinney et al.,
2014). However, due to the biology of Campylobacter infection
it is generally considered that oral antigen administration
will be the most effective way to immunize chickens. As
shown by Theoret et al. (2012) the mode of antigen delivery
is sometimes crucial for immunization. They noticed that
subcutaneous vaccination with purified rDps (DNA binding
protein from starved cells) did not reduce colonization of
chickens by Campylobacter, whereas the same protein delivered
by an attenuated Salmonella appeared to be effective (Theoret
et al., 2012). The importance of humoral immune response
in preventing chicken colonization by Campylobacter has been
recently documented by Hermans et al. (2014). They showed that
passive immunization of 6 days old chicks with IgY obtained
from egg yolks of hens immunized with C. jejuni lysates or
fraction of C. jejuni hydrophobic proteins resulted not only
in reduction their colonization by homologous C. jejuni strain
but also reduce the pathogen transmission to not infected
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birds (Hermans et al., 2014). More and more LAB, mainly
members of the Lactococcus and Lactobacillus genera, have been
tested as vehicles for the delivery of heterologous bacterial or
viral antigens into animal mucosal immune systems (Marelli
et al., 2011; Villena et al., 2011; Kajikawa et al., 2012; Fontana
et al., 2013; Li et al., 2014). In this work, we employed
L. lactis because genetic engineering tools for this bacterium
have been worked out in detail (Fontana et al., 2013). To
the best of our knowledge, our work is the first attempt to
use an LAB strain as a Campylobacter antigen delivery vehicle
for chicken immunization. Although we observed a positive
result from immunization, the reduction of chicken digestive
tract colonization by Campylobacter after vaccination was not
significant andwas lower than that described previously by us and
others (Wyszyńska et al., 2004; Layton et al., 2011). The median
reduction in C. jejuni cecal contents observed after vaccination
with surface-exposed hybrid protein was 1 log10 However, it
should be noted than there was about a 2 log10 reduction in
the level of colonization for four out of 10 birds. The main
drawback of the L. lactis delivery vehicle is the lack of long-lasting
colonization in the chick digestive tract. Thus, we postulate that
it may be necessary to optimize the number of vaccine doses
to improve the effectiveness of vaccination. Alternatively, using
Lactobacillus sp. that colonize bird intestines should result in
more efficient induction of the immune response (Wyszyńska
et al., 2015).

The significant differences among published results of
chicken vaccination against Campylobacter are apparent. The
reduction in chicken colonization observed in protection
experiments varies between 6 log10 to 1 log10 when compared
to control groups (Wyszyńska et al., 2004; Buckley et al.,
2010; Layton et al., 2011; Theoret et al., 2012). However,
those various experiments differ substantially. Comparison
of the experiments is difficult, if not impossible, because
of differences in the nature of the antigens, the routes of
antigen administration, the use of adjuvant, and the schemes
of immunization or challenge experiments. Additionally, recent
progress in chicken genome sequencing has revealed enormous
differences among commercial breeds of broiler chickens
(Rubin et al., 2010; Yan et al., 2014; Yi et al., 2014).
These differences may have an impact on the bird immune
system functioning and on colonization by Campylobacter
(Humphrey et al., 2014). Differences in the immune responses
to infection were observed not only among various breeds
of chickens but also between among individual birds of
the same population (Connell et al., 2012), which may
explain the varying levels of colonization observed between
individual birds in our protection experiments (see Figure 8).
Also, the gastrointestinal microbiome of chickens differs
for genetically diverse birds (Oakley et al., 2014; Schokker
et al., 2015). Thus, in the light of the knowledge from
the global analysis of chicken genomes or transcriptomes,
it is apparent that the chicken line is of great importance
when vaccine prototypes are evaluated. Also, the presence of
maternal antibodies should be taken into account when results
of immunization are evaluated. To exclude the impact of
maternal antibodies, some experiments have been conducted

on SPF chickens (Buckley et al., 2010; Hodgins et al.,
2015).

Many recent experiments have sought to clarify how the
location of antigen delivered by LAB strains affects the
efficacy of vaccination (Reveneau et al., 2002; Wyszyńska
et al., 2015). Generally, surface located antigens work more
efficiently than those located in the cytoplasm; however,
some exceptions were also observed (Shaw et al., 2000).
Thus, this issue needs to be evaluated individually for each
antigen and delivery vector. Our protection experiments
demonstrated that the hybrid protein, equipped with a cell-
wall anchored motif and delivered orally using L. lactis
as a vehicle, acted more effectively than cytoplasm-located
protein administered by the same strain. Also, using the
hybrid rCjAD protein resulted in a higher level of protection
when compared to surface-located CjaA. It should be noted
that one of the CjaD epitopes inserted into CjaA was
the same as that used by Layton et al. (2011). However,
Layton et al. (2011) demonstrated a much higher level of
protection. The reasons for the discrepancy are difficult to
identify as both vaccination experiments differ substantially.
One notable difference is that the Salmonella strain used
by the Layton group as the carrier strain co-expressed the
immune-enhancing region of the CD154 ligand (Layton et al.,
2011).

Overall, our work demonstrates the possibility of delivering
foreign antigens via an LAB vector for chicken immunization
against Campylobacter, and it also documents that CjaA
is a good starting point for constructing a multi-epitope
hybrid protein taking into account recently identified
immunogenic C. jejuni proteins present in egg yolks of
immunized hens (Hermans et al., 2014). Hybrid proteins
containing epitopes of several immunogenic proteins may ensure
higher levels of protection than vaccination with individual
proteins.
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FIGURE S1 | The scheme of pUWM1373 construction.

FIGURE S2 | Amino acid sequence of CjaA containing inserted three CjaD

peptide epitopes (EVSGV, DEWGTDEYN, GETNPVCTEKTKACDAQNRR) in

all possible combinations. Amino acids between which epitopes of CjaD

protein were inserted are indicated in red.

FIGURE S3 | The scheme of pUWM1392 and pUWM1395

construction.

FIGURE S4 | The production of CjaA and rCjaAD by L. lactis. Protein

extracts were separated by 12% SDS-PAGE under reducing conditions and

probed with anti-rCjaAD antibodies. Lanes: M - protein molecular-weight

marker, 1 – L. lactis/pUWM1392, 2 – L. lactis/pUWM1395;

3 – L. lactis/pUWM1412.
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Wyszyńska, A., Raczko, A., Lis, M., and Jagusztyn-Krynicka, E. K. (2004).
Oral immunization of chickens with avirulent Salmonella vaccine strain
carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune
response associated with protection against challenge with wild-type
Campylobacter. Vaccine 22, 1379–1389. doi: 10.1016/j.vaccine.2003.1
1.001

Yan, Y., Yi, G., Sun, C., Qu, L., and Yang, N. (2014). Genome-wide
characterization of insertion and deletion variation in chicken using next
generation sequencing. PLoS ONE 9:e104652. doi: 10.1371/journal.pone.01
04652

Yang, Z. R., Thomson, R., McNeil, P., and Esnouf, R. M. (2005). RONN: the
bio-basis function neural network technique applied to the detection of
natively disordered regions in proteins. Bioinformatics 21, 3369–3376. doi:
10.1093/bioinformatics/bti534

Yi, G., Qu, L., Liu, J., Yan, Y., Xu, G., and Yang, N. (2014). Genome-wide
patterns of copy number variation in the diversified chicken genomes using
next-generation sequencing. BMC Genomics 15:962. doi: 10.1186/1471-2164-
15-962

Zhou, H., and Zhou, Y. (2004). Single-body residue-level knowledge-based
energy score combined with sequence-profile and secondary structure
information for fold recognition. Proteins 55, 1005–1013. doi: 10.1002/prot.
20007

Frontiers in Microbiology | www.frontiersin.org 17 February 2016 | Volume 7 | Article 165

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Kobierecka et al. Surface Display System for Campylobacter Antigens

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Kobierecka, Olech, Książek, Derlatka, Adamska, Majewski,
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