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Abstract
Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural 
support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accu-
mulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates 
adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic 
stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen 
species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive 
responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and 
pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall 
integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance 
mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate 
adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives 
from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms 
are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible 
for controlling the adaptive responses using selected examples.
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Introduction

Cell walls are essential for plant development and tightly 
involved in many signaling processes. They provide mechan-
ical support required for land plants growing on soil and are 
normally the first barriers involved in perception of stimuli 
and activation of signaling pathways inducing responses in 
the plasma membrane, cytoskeleton, cytoplasm, and orga-
nelles. Relevant stimuli during interactions between plants 
and their environment can have either a physical or chemi-
cal nature (Lamers et al. 2020; Le Gall et al. 2015). Physi-
cal stimuli include light, temperature, turgor pressure and 
mechanical forces, which affect the position of the cell wall 
with respect to the plasma membrane and could also include 
pressure in cytoskeleton structures (Bacete and Hamann 

2020; Vaahtera et  al. 2019). Chemical stimuli include 
non-plant derived molecules such as pathogen-associated 
molecular patterns (PAMPs) or plant-derived ones like 
damage-associated molecular patterns (DAMPs), volatiles, 
REACTIVE OXYGEN SPECIES (ROS) (including nitric 
oxide) and phytohormones (Chae et al. 2021; DeFalco and 
Zipfel 2021; Engelsdorf et al. 2018; Widhalm et al. 2015; 
Wong et al. 2021). Whether mechanical forces can also gen-
erate chemical signals by releasing components of the cell 
wall needs to be further explored.

Plants cells monitor the integrity of their cell walls and 
integrity impairment leads to responses mediated by the cell 
wall integrity (CWI) maintenance mechanism (Rui and Din-
neny 2020; Somerville 2004; Vaahtera et al. 2019). CWI 
impairment is caused by cell wall damage (CWD) occurring 
during exposure to abiotic and biotic stress as well as growth 
and development. Receptor-like kinases and ion channels are 
typically involved in sensing CWI impairment and activat-
ing responses, including hormone biosynthesis and signal-
ing, ROS, calcium transport and transcriptional regulation 
(Basu and Haswell 2020; Lamers et al. 2020; Chao Li et al. 
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2016a, b, c). Crosstalk between different pathways involv-
ing the same molecular components has made it difficult 
to fully comprehend the specific responses activated after 
exposure to a particular environmental stimulus or combi-
nation thereof. Nevertheless, CWI maintenance seems to 
be an attractive model system to study integration of sig-
nals induced by physical and chemical stimuli since pre-
vious work has shown that perception of both is relevant 
for integrity maintenance (Engelsdorf et al. 2018; Basu and 
Haswell 2020). Combining this model system with novel 
plant genome editing techniques that target specific genes 
and pathways should help us characterize gene hubs and 
genes with specific functions (Zhang et al. 2019; Zhu et al. 
2020). The resulting knowledge will enable us to understand 
the mode of action of the mechanisms responsible for signal 
integration.

Typical methods to investigate CWI maintenance mecha-
nisms involve the use of chemical agents or active enzymes 
to cause CWD (Engelsdorf et al. 2018). Cellulose is the 
main load-bearing component of cell walls and has been 
targeted by cellulose biosynthesis inhibitors (CBIs), like 
isoxaben (Desprez et al. 2002; Scheible et al. 2001). This 
pesticide affects the function of CELLULOSE SYNTHASE 
(CESA) proteins required for primary cell wall formation, 
resulting in reduced number of cellulose microfibrils lead-
ing to cell wall failure (Tateno et al. 2016). Interestingly, 
dicot plants are more sensitive to CBIs than monocots but 
the reason for this remains unknown (García-Angulo et al. 
2012; Tateno et al. 2016). Techniques used to investigate 
cell wall composition and structure such as monoclonal anti-
bodies, Fourier-transform infrared spectroscopy, Brillouin 
microscopy and labeling dyes are described in other reviews 
and will therefore not be reviewed here (Alonso-Simón et al. 
2011; Prevedel et al. 2019; Rydahl et al. 2018; Ursache et al. 
2021).

Most of the knowledge we currently have regarding the 
CWI maintenance mechanism and how it contributes to plant 
adaptation to environmental challenges comes from studies 
in Arabidopsis thaliana (hereafter Arabidopsis). Neverthe-
less, an increasing number of studies has started to shed light 
on the similarities and differences of CWI maintenance com-
ponents in other plant species, including ferns, crops, and 
trees. Understanding how CWI functions in different plants 
species could have big economic impacts on plant-derived 
food and biofuel production (Ezquer et al. 2020; Ha et al. 
2021). Climate change is causing extreme weather events 
that have profound negative impact on agricultural produc-
tion (Intergovernmental Panel on Climate Change 2019). 
Therefore, understanding how plant cells react to abiotic and 
biotic stress will be beneficial for food crop productivity. In 
addition, plant biomass has the potential to be used as a sus-
tainable resource to replace raw materials currently used for 
energy production or act as source for fine chemicals (Yoo 

et al. 2020). The latter is illustrated by lignin, which consists 
of monomers of interest to the chemical industry as precur-
sors for plastics, and whose production is at least partially 
regulated by the CWI maintenance mechanism (Denness 
et al. 2011; Miedes et al. 2014). Therefore it is of particu-
lar interest to understand the CWI maintenance mechanism 
process as it can potentially enable us to become a more 
carbon–neutral society (European Commission. Directorate-
General for Research and Innovation 2018).

Recent publications have focused on how mechanoper-
ception affects CWI (Bacete and Hamann 2020), the rele-
vance of differences in cell wall composition between mono-
cots and dicots for CWI (Gigli-Bisceglia et al. 2020), and 
how these differences affect defense responses (Molina et al. 
2021). Therefore, these topics will not be discussed here. In 
this review we will focus on chemical signals contributing 
to CWI maintenance and on the transcriptional regulation of 
relevant cell wall biosynthesis genes. We start by discussing 
the currently available information in Arabidopsis, proceed 
to summarize the knowledge available in other plant spe-
cies and conclude by comparing and contrasting similarities 
and differences between molecular components and their 
interactions.

Cell wall integrity maintenance: knowledge 
obtained from using Arabidopsis as model 
system

The role of cell‑surface receptors: CrRLK1L, WAK 
and their interactions

Environmental signals are mainly sensed in the cell wall-
plasma membrane continuum (Fig.  1). Displacement 
between the two caused by mechanical forces can activate 
membrane-bound receptors and ion channels (Bacete and 
Hamann 2020; Basu and Haswell 2020; Codjoe et al. 2021; 
Yoshimura et al. 2021). Almost 20 different kinase protein 
families have been discovered in plants and several of them 
have been implicated in plasma membrane-located signal-
ing processes (Dievart et al. 2020). Typically, the kinases 
contain a glycosylated extracellular ligand-binding domain, 
a hydrophobic transmembrane domain and a cytoplasmic 
kinase catalytic domain. Examples of such kinases are the 
members of the Catharanthus roseus receptor-like kinase1-
like (CrRLK1L) and Wall-associated kinase (WAK) sub-
families, which seem to interact with pectin via their extra-
cellular domains (Decreux and Messiaen 2005; Feng et al. 
2018; Gonneau et al. 2018; Kohorn 2016). This also sup-
ports the notion that they may function in sensing cell wall 
matrix disturbance. Different aspects of development, CWI 
maintenance, reproduction and response to stress are regu-
lated by CrRLK1L and WAK proteins but a large number 
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of family members, their broad expression domains and the 
resulting redundancy has made it difficult to discern specific 
biological functions of individual family members (Franck 
et al. 2018).

The most studied member of this family, FERONIA 
(FER), illustrates this difficulty. FER has been implicated 
in many different biological processes including female 
fertility, cell elongation, immunity responses and mecha-
nosensing (Höfte, 2015; Ortiz-Morea et al. 2021; Zhong 
et al. 2022). The role of FER in so many diverse processes 
has been explained by its capacity to bind to different inter-
actors. Rapid alkalinization factor (RALF) peptides are 
growth regulators found in different plant species (Zhang 
et al. 2020b). FER seems to work as a scaffold, because it 
can interact with several different RALF peptides and other 

molecular interaction partners (Stegmann et al. 2017). FER 
functions as receptor for several RALFs including RALF1 
(Abarca et al. 2021). The FER-RALF1 interaction enhances 
FER phosphorylation capacity and inhibits proton transport 
mediated by  H+-ATPase pumps across the plasma mem-
brane, which in turn probably affects modification of cell 
walls according to the acid growth hypothesis (Haruta et al. 
2014). FER also regulates plant immunity by interacting 
with RALF23 to modulate elf18-induced ROS produc-
tion (Xiao et al. 2019). Additionally, FER enhances flg22-
induced FLS2-BAK1 complex formation, making FER an 
interactor/context-dependent positive or a negative regula-
tor of plant immunity. This is illustrated by the phenotypes 
of fer loss of function mutants, which are hyposensitive to 
flg22, elf18 and chitin but more susceptible to Pseudomonas 

Fig. 1  Receptors and their interactors participating in CWI mainte-
nance in Arabidopsis. Membrane-bound receptor-like kinases can 
activate signaling pathways in response to environmental or chemical 
cues. Different interaction partners (co-receptors) and ligands (RALF 

peptides) seem to determine the specific activities of signaling pro-
cess receptors, such as FER and THE1. Interaction with cell wall 
components (i.e. WAK or FER interactions with pectin) could trigger 
downstream signaling events
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syringae pv. tomato DC3000 coronatine-minus strain (Steg-
mann et al. 2017). The FER-induced resistance is due to the 
activation of ethylene/jasmonic acid (JA) pathways (Kes-
sler et al. 2010; Stegmann et al. 2017). FER also interacts 
with RHO OF PLANTS GUANINE EXCHANGE FAC-
TOR 1 (ROPGEF1) and functions in the RAC/ROC (after 
the small family of GTPases Rho, Rac and Cdc42) signaling 
pathway to regulate ROS-mediated root hair growth (Duan 
et al. 2010) and to suppress abscisic acid (ABA) signaling 
by activating the phosphatase ABA INSENITIVE2 (ABI2) 
(Yu et al. 2012). FER also contributes to cell expansion by 
interaction with extracellular Leucine-rich repeat extensins 
(LRXs) to promote vacuole expansion (Dünser et al. 2019). 
The connection between the extracellular signal and vacu-
olar expansion has not been fully elucidated, but the current 
hypothesis suggests that actin dynamics, which are regu-
lated by the FER-interacting RAC/ROP GTPases, could be 
modulating vacuole size. Actin dynamics have been recently 
shown to respond to osmotic stress (NaCl and mannitol) by 
changing the orientation of their filaments by 90 degrees 
in Arabidopsis and Chlamydomonas (Vilarrasa-Blasi et al. 
2021). The FER-LRX-RALF module regulates the activity 
of salicylic acid (SA), JA, ABA and ROS pathways during 
plant growth under abiotic stress (Zhao et al. 2021). FER 
has also been implicated on the growth recovery phase after 
salt stress, where it is necessary to increase cytosolic cal-
cium concentrations and to prevent cell bursting (Feng et al. 
2018). This evidence suggests that FER could be implicated 
in vacuolar-driven cellular expansion upon exposure to abi-
otic stress, however the molecular mechanism remains to 
be determined.

THESEUS1 (THE1), the founder member of the 
CrRLK1L gene subfamily, was identified as a suppressor 
of the short-hypocotyl phenotype observed in the cellulose-
deficient procuste1-1 (pcr1-1) mutant (Hématy et al. 2007). 
Knockout mutants (the1-1, the1-2, the1-3 and the1-6) show 
no phenotypic defects in non-stressed conditions, suggesting 
that THE1 becomes active only if CWI has been impaired, 
supporting the notion that it functions as CWI sensor. The 
the1-4 allele contains a T-DNA insertion in the region of 
the protein connecting the transmembrane and the kinase 
domains (Merz et al. 2017). Interestingly, in this allele, 
a truncated protein is produced that enhances the prc1-1 
phenotype, indicating that the kinase domain is not neces-
sary for THE1 activation in cellulose deficient plants but 
for reducing its activity (Merz et al. 2017). Intriguingly the 
the1-3 allele contains a T-DNA insertion 120 bases down-
stream from the the1-4 insertion site and results in a loss-of-
function allele (Merz et al. 2017). To explain the opposite 
effects, it was proposed that antisense transcripts (detected 
for both alleles but tenfold higher in the1-3) prevent gene 
expression in the1-3 but not the1-4, thus making the1-4 a 
gain-of-function allele. Furthermore, THE1 is required for 

cellulose-deficiency-induced lignin accumulation (Denness 
et al. 2011; Hématy et al. 2007). Importantly, THE1 does 
not influence cellulose deposition but rather senses cell wall 
perturbations (Hématy et al. 2007; Lindner et al. 2012). By 
combining a genetic analysis with measurements of JA, SA 
and lignin, it was shown that THE1 works in the same path-
way as the mechanosensitive  Ca+ channel MATING PHER-
OMONE INDUCED DEATH1 (MID1)—COMPLEMENT-
ING ACTIVITY 1 (MCA1) and the RLK FEI2 regulating 
CWI (Engelsdorf et al. 2018). THE1 also interacts with a 
ROPGEF family member (ROPGEF4), similar to FER (Qu 
et al. 2017). This interaction seems to mediate plant defense 
responses against the necrotrophic fungi Bortrytis cinerea. 
THE1 functions as a receptor for RALF34 in a pH-depend-
ent manner (Gonneau et al. 2018) to regulate lateral root 
initiation, with its specific mode of action to be determined.

Even though FER and THE1 have similar expression pat-
terns in vegetative tissues and interaction partners from the 
same protein families (RALF and ROPGEF), their knock-
out phenotypes are drastically different. the1 seedlings 
and plants only exhibit a visible phenotype when CWI is 
impaired (by treating them with a cellulose biosynthesis 
inhibitor or by combining them with cellulose-deficient 
mutants; Engelsdorf et al. 2018; Hématy et al. 2007). In con-
trast, fer plants exhibit very pronounced phenotypes, even in 
non-stressed conditions, exemplified by dwarf growth and 
reduced leave size due to reduced cell elongation (Deslauri-
ers and Larsen 2010; Guo et al. 2009a, b). Mutations in other 
members of the CrRLK1L family exhibit only minor effects 
on cell elongation (HERCULES RECEPTOR KINASE1; Guo 
et al. 2009a) and polar growth of root hairs (ANXUR1 and 
ANXUR2;Boisson-Dernier et al. 2009; Miyazaki et al. 2009). 
This raises the intriguing question why mutations in only 
one family member (FER) result in diverse and often strong 
mutant phenotypes. This is particularly surprising since 
the majority of the family members have broad expression 
domains and their expression is activated by specific abiotic 
and biotic stresses (Franck et al. 2018; Lindner et al. 2012), 
implying that they could participate in responding to differ-
ent environmental challenges. One possible explanation for 
the differential effects observed being that redundancy exists 
within the family, which does not include FER, leading then 
to the obvious question why FER is special.

As previously alluded to, FER plays essential roles in cell 
wall synthesis, stress response, cellular growth, morphogen-
esis and fertilization (Escobar-Restrepo et al. 2007; Franck 
et al. 2018; Guo et al. 2018; Shih et al. 2014). FER can 
bind to pectin fragments in vitro, to RALF peptides and also 
interact with LRXs. These characteristics have supported the 
notion that FER could act as a CWI sensor and core com-
ponent of CWI maintenance (Feng et al. 2018; Shih et al. 
2014). However, it is important to note that a FER knock 
down allele leads to enhanced production of JA, SA and 
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lignin after exposure of fer-5 seedlings to CWD, similar to 
the effects of the the1-4 gain of function allele (Engelsdorf 
et al. 2018). These effects indicate that Arabidopsis plants 
can still perceive CWD (induced by cellulose deficiency) in 
the absence of FER. This suggests in turn that FER is not 
essentially required for detection of CWI impairment caused 
by cellulose biosynthesis inhibition, but is possibly required 
for perception of a different type of CWD or redundancy for 
certain FER activities does exist within the family.

The WAK subfamily contains 5 members in Arabidop-
sis, which are characterized by their conserved Epidermal 
growth factor (EGF)-containing extracellular domain, a 
transmembrane region and a conserved kinase domain 
(Kohorn 2016). Arabidopsis also encodes 21 WAK-like 
(WAKL) kinases, which show little similarity to the WAKs 
except in the EGF repeats and kinase domains, but it is not 
clear whether they associate with the cell wall (Verica and 
He 2002). WAK1, preferentially expressed in the vascula-
ture, and WAK2, preferentially expressed in organ junctions, 
abscission zones and meristems, are the most abundant 
WAKs. WAK2 mutants exhibit shorter roots and reduc-
tion of vacuolar invertase levels, whereas the hyperactive 
receptor  WAK2cTAP induced stress responses, which were 
suppressed in a PECTIN-METHYLESTERASE3 (PME3) 
loss-of-function allele, suggesting that de-esterified pectin 
activates the WAK2 hyperactive allele. (Kohorn et al. 2012, 
2009, 2006). This is in accordance with other data showing 
that WAKs can bind oligogalacturonides (OGs) and (prefer-
entially) de-esterified pectin (Kohorn 2016). Other compo-
nents of the signaling cascades in which WAKs are involved 
include MITOGEN-ACTIVATED PROTEIN KINASE 3 
(MPK3), MPK6 and downstream targets of the signaling 
processes such as a vacuolar invertase, ENHANCED DIS-
EASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN 
DEFICIENT4 (PAD4), required for pathogen resistance as 
well as affecting turgor pressure (Kohorn 2016). While our 
knowledge regarding WAKs and WAKLs has improved sig-
nificantly over recent years, we still do not fully understand 
their respective biological functions and mode of action nor 
identified their interaction partners. One possible way to 
resolve this situation could be to combine CRISPR-CAS-
based manipulation of their respective activities with (phos-
pho-)proteomics studies.

Representative PAMPs and DAMPs relevant for CWI 
maintenance

As sessile organisms, plants have developed mechanisms 
to resist a variety of stresses. Pathogen infection can cause 
CWD during infection and activate the CWI maintenance 
mechanism (Hamann 2012; Novaković et al. 2018). Biotic 
stress responses are activated during plant infection by 
microbes and pathogens. Plant infection can occur through 

natural openings like stomata, open wounds, or direct infil-
tration by the usage of cell wall (CW)-degrading enzymes 
(Muthamilarasan and Prasad 2013). CW-degrading enzymes 
help to penetrate into the host tissues and make carbon 
sources and nutrients available to infecting pathogens (Cantu 
et al. 2008). Plants have evolved a multi-level protection sys-
tem to prevent successful infection. The first level of protec-
tion consists of the physical-structural defense determined 
by cell wall composition and structure, which influence 
infection success or failure (Bacete et al. 2018). The second 
level is the response to signal molecules such as PAMPs 
and DAMPs. Plants can recognize specific invaders by their 
molecular patterns and activate specific defense mechanisms 
in response (Fig. 2; Abdul Malik et al. 2020; DeFalco and 
Zipfel, 2021; Zhou and Zhang 2020). DAMPs are produced 
by damaged cells or secreted from intact cells undergoing 
pathogen invasion. They typically consist of wall glycans, 
cytosolic proteins, protein fragments, peptides, nucleotides 
and amino acids (Hou et al. 2019). In contrast, PAMPs 
are secreted by invaders. PAMPs and DAMPs are recog-
nized by pattern recognition receptors (PRRs), which are 
plasma membrane-localized receptor-like kinases (RLKs) or 
receptor-like proteins (RLPs) which activate plant immune 
responses (Li et al. 2020; Newman et al. 2013). The PRR 
family is divided into subfamilies according to their abil-
ity to perceive signals. Leucine-rich repeat receptor-like 
kinases (LRR-RLK), such as FLAGELLIN SENSING 2 
(FLS2) and EF-TU RECEPTOR (EFR), perceive signals 
deriving from FLAGELLIN (flg22 epitope) and EF-Tu 
(elf18/elf26 epitopes). The PRR lysin-motif (LysM) RLK 
CHITIN ELICITOR RECEPTOR KINASE-1 (CERK1) 
binds to fungal chitin-oligomers and bacterial peptidogly-
cans (Couto and Zipfel 2016). P/DAMPs-triggered immunity 
(PTI) both involve a drastic increase in ROS production, 
activation of MAPK modules and  Ca2+-DEPENDENT PRO-
TEIN KINASES (CDPKs), modulation of hormone-based 
signaling, reorganization of the cytoskeleton and changes 
in gene expression (Ferrari et al. 2007; Giovannoni et al. 
2021; Gravino et al. 2015; Kawasaki et al. 2017; Marti et al. 
2021; Wong et al. 2007). These procedures also activate 
other defense mechanisms, which modulate CWI, cell wall 
composition/structure and help the plant to resist wall deg-
radation. At the same time, activated signaling pathways 
also modify allocation of resources between growth and 
defense to maximise resources available to support defense 
responses (Lorrai and Ferrari 2021). CWI maintenance 
involves also accumulation of phytohormones such as JA, 
SA, and ethylene, increased production of ROS and activa-
tion of  Ca2+-based and MAPK signaling modules. These 
inputs lead to ectopic production of cell wall components 
such as callose and lignin, originally implicated in defense 
responses (Denness et al. 2011; Ellis and Turner 2001; 
Engelsdorf et al. 2018; Hamann et al. 2009; Kohorn et al. 
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2009; Nakagawa et al. 2007; Tsang et al. 2011). Here we will 
focus on selected examples for PAMPs and DAMPs, because 
they can be used as tools to understand how CWI mainte-
nance and PTI are controlling plant defense responses in a 
coordinated manner to successfully resist pathogen infection.

Flagellin is the main building block of the organs 
responsible for moving almost all flagellated bacteria and 
the primary ligand of receptors like FLS2 (Schuster and 
Khan 1994). Flagellin perception depends on FLS2 heter-
odimerization with the LRR-RLK co-receptor BRASSI-
NOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 
1 (BAK1) followed by activation of signal translation ele-
ments such as BOTRYTIS-INDUCED KINASE 1 (BIK1) 
and MAPK species, PBS1-LIKE KINASES 1 (PBL1), and 
SUGAR TRANSPORT PROTEIN 13 (STP13), which leads 
to accumulation of hydrogen peroxide, reorganization of the 
cytoskeleton and increased hexose uptake (Henty-Ridilla 
et al. 2013; Lee and Seo 2021; Li and Staiger 2018; Macho 
and Zipfel 2014; Rasmussen et al. 2012; Zhang et al. 2010).

Plant defense responses induced by perception of chitin 
involve mainly secretion of chitinases (hydrolytic enzymes). 
However, a minor strategy involves recognition of fungal 
chitin by LYSIN MOTIF-CONTAINING RECEPTOR-LIKE 
KINASE 5 (LYK5) and CERK1 (Miya et al. 2007). LYK5 
has a higher affinity to chitin than CERK1, which enhances 
the chitin-mediated formation of LYK5/CERK1 complex 
and CERK1 phosphorylation (Cao et al. 2014; Miya et al. 
2007; Petutschnig et al. 2010). The signals generated by 
this complex are translated by RECEPTOR-LIKE CYTO-
PLASMIC KINASES (RLCK) VII-4 and PBL27, which in 
turn activate a MAPK signaling module (Bi et al. 2018; Rao 
et al. 2018; Yamada et al. 2016). CALCIUM-DEPENDENT 
PROTEIN KINASE 5 (CPK5) was recently implicated in 
the signaling process, because it can directly phosphorylate 
LYK5 and thus modulate chitin-induced defense responses 
in plants (Huang et al. 2020). Interestingly, chitin is not the 
only ligand that activates the CERK1/LYK5 complex. Cal-
lose-derived DAMPs, such as non-branched β-1,3-glucan 

Fig. 2  PAMPs and DAMPs activate diverse pathways in response to 
environmental stimuli. PAMPs and DAMPs are sensed at the plasma 
membrane by receptors from diverse families. Dependent on the 
specific perturbation and foreign or endogenous molecule detected 

specific defense responses are activated. Similar responses to biotic 
stress are observed in Arabidopsis and other plants, whereas chitin 
detection differs between Arabidopsis and rice (see text and Fig. 4)
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oligosaccharides, promote immune responses in Arabidopsis 
through this complex as well (Mélida et al. 2018). Intrigu-
ingly, the juxta-membrane domains of CERK1, BAK1 and 
FLS2 all regulate the kinase activities of these receptors and 
play conserved roles in chitin signaling. This exemplifies the 
functionally similar organization of the receptor-based sign-
aling processes mediating plant responses to chitin (Zhou 
et al. 2020).

Lipo-polysaccharides (LPS) form another relevant 
group of PAMPs (Kutschera et al. 2019; Shang-Guan et al. 
2018; Sun et al. 2017). They act as ligands for the LECTIN 
RECEPTOR-LIKE KINASES (LecRLKs). LecRLKs bind 
non-enzymatically to specific carbohydrates, which func-
tion as links between the plasma membrane and cell wall 
(Gouget et al. 2006; Vaid et al. 2013). LecRLKs consist of 
an extracellular lectin domain, a transmembrane region and 
a cytoplasmic kinase region (Vaid et al. 2013). The classifi-
cation of lectins is based on amino acid sequence, structure, 
as well as properties of the lectin domains and has led to a 
division of all lectins into three sub-classes. The first-class, 
C-type lectins require calcium ions for carbohydrate bind-
ing. The second-class, G-type lectins are Galanthus niva-
lis agglutinin-related lectins. The last-class are the L-type 
lectins, which were first discovered in Legume seeds (Bel-
lande et al. 2017; Vaid et al. 2013). LPS can activate G-type 
PRR LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED 
ELICITATION (LORE), which in turn phosphorylates the 
cytoplasmic receptor kinases PBL34, PBL35, and PBL36, 
leading to activation of a MAPK signaling pathway (Luo 
et al. 2020; Ranf et al. 2015; Sun et al. 2020). L-types 
LecRK-IX.2 and LecRK-I.9 (DOES NOT RESPOND TO 
NUCLEOTIDES 1 [DORN1]), which perceive flg22 and 
extracellular ATP, respectively; induce PTI responses 
including  Ca2+ influx, direct phosphorylation and activa-
tion of RESPIRATORY BURST OXIDASE HOMOLOGS 
D (RBOHD) leading to ROS production and activation of 
the MAPK signaling module (Choi et al. 2014; Luo et al. 
2017; Wang et al. 2018a, b).

PLANT ELICITOR PEPTIDES (PEPs) are well-estab-
lished DAMPs and play an important role in PTI (Bartels 
and Boller 2015; Huffaker 2015; Lori et al. 2015). PEP pre-
cursors are sequestered at the vacuolar membrane. When 
cells are damaged, they are activated by METACASPASE4 
(MC4) and released only in the damaged cells (Hander et al. 
2019). PEPs bind to PEP-RECEPTOR1 and 2 (PEPR1 and 
PEPR2) and activate different responses. This includes inter-
action of PEPR2 with the proton pump AUTOINHIBITED 
H + -ATPase 2 (AHA2; Shen et al. 2020). AHA2 pumps 
protons into the apoplast, thus decreasing the pH in the 
apoplastic space (Shen et al. 2020). The PEP1/PEPR2 com-
plex also interacts with BIK1 and RBOHD/F, activating a 
robust burst of ROS in response to bacterial pathogens (Jing 
et al. 2020). Intriguingly, application of PEPs suppresses 

in PEPR-dependent manner CWD-induced phytohormone 
production (Engelsdorf et al. 2018). Simultaneously, PEPR1 
and PEPR2 loss of function mutants show enhanced JA, 
SA accumulation in response to CWI impairment (Engels-
dorf et al. 2018). These results indicate that PTI and CWI 
maintenance-controlled processes are coordinated and PEP-
based signaling processes are required for this coordination. 
One possible reason for this coordination could be that CWI 
maintenance acts as back-up defense mechanism activating 
phytohormone-based defenses in case the normal PTI-based 
responses are inhibited by pathogen-derived modulators.

DAMPs can also be cellulose-derived, since treatments 
with cellulose fragments (disaccharide to heptasaccha-
ride) result in activation of PTI in a similar manner as OGs 
(Johnson et al. 2018; Souza et al. 2017). The most active 
compound is cellotriose, which induces ROS production, 
phosphorylation of MAPKs and expression of defense 
genes (Johnson et al. 2018; Locci et al. 2019). Such frag-
ments could be generated by LYTIC POLYSACCHARIDE 
MONOOXYGENASES (LPMOs), enzymes used by phy-
topathogens to cleavage cellulose polymers (Vaaje-Kolstad 
et al. 2010). Two LRR-RLKs, namely STRESS INDUCED 
FACTOR 2 and 4 (SIF2 and SIF4), were implicated as 
critical factors in response to LPMO. LPMO treatments 
led to enhanced levels of ethylene, JA, SA, camalexin and 
increased resistance to the necrotrophic fungus Botrytis 
cinerea (Zarattini et al. 2021). In addition, physical interac-
tion of SIF2 with the FLS2-BAK1 complex activates PTI 
signaling (Chan et al. 2020; Yuan et al. 2018). This results 
in direct phosphorylation of the SLOW ANION CHAN-
NEL1 (SLAC1), which is necessary for abscisic acid (ABA)-
mediated stomatal closure that enhances bacterial resistance 
(Chan et al. 2020).

One of the most studied groups of DAMPs are pectin-
derived OGs, which activate PTI (Nothnagel et al. 1983) and 
were the first DAMPs discovered (Hahn et al. 1981). The 
core element of plant pectin is a polymer homogalacturonan 
(HG) that consists of α-1–4 linearly linked galacturonic acid 
molecules, which are methylesterified on C6 and often acet-
ylesterified on C2 and/or C3 residues (Ridley et al. 2001). 
Production of OGs could be based on polygalacturonases 
that hydrolyze the α-1,4 linkages of low methyl-esterified 
homogalacturonans and have a substrate preference for lin-
ear polygalacturonic acids (Benedetti et al. 2015). However, 
a more recent report showed that treatment with Botrytis 
cinerea resulted in 80% of OGs being produced by patho-
gen-derived pectin lyases and acetyl- and methylesterified 
(Voxeur et al. 2019). Importantly, HG turnover also gen-
erates OGs, which could act as DAMPs starting immune 
responses or also have a signaling role during development 
(Denoux et al. 2008; Moscatiello et al. 2006). OGs promote 
expression of genes encoding chitinases, glucanases, and 
polygalacturonase-inhibiting proteins (De Lorenzo et al. 
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2001; Ridley et al. 2001); drastic increase of ROS produc-
tion, accumulation of phytoalexins, activation of phospho-
lipase C, CDPK and the cytoplasmic kinases ROG1 and 
ROG2 leading to increased expression of defense-related 
genes (Delteil et al. 2016; Ferrari et al. 2007; Galletti et al. 
2008; Kohorn et al. 2016). The activity of OGs is depend-
ent on the length, with a molecule size of 10–15 monomers 
apparently forming the most active forms (Ferrari et al. 
2007). The pectin-hydrolyzing enzyme ARABIDOPSIS 
DEHISCENCE ZONE POLYGALACTURONASE 1 
(ADPG1), which is required during development (Ogawa 
et al. 2009), has been reported recently to be upregulated in 
lignin-modified plants (Gallego-Giraldo et al. 2020). The 
changes in lignin composition apparently initiate a signal-
ing cascade involving the CWI maintenance mechanism and 
induction of ADPG1 expression, releasing DAMPs (pos-
sibly OGs) and initiating immune responses (Voxeur and 
Höfte 2020). OGs also bind to WAK1 and 2, key regulators 
of cell expansion, biotic stress responses, wounding and 
metal tolerance (Kohorn et al. 2006; Tripathi et al. 2021). 
However, WAKs bind not only small pectin fragments but 
also long polymers cross-linked by  Ca2+ in the cell wall and 
activate pectin-induced defense responses raising questions 
about specific functions of particular pectin types (Kohorn 
et al. 2009). To keep the deleterious effects of OGs under 
control, Arabidopsis encodes Berberine bridge enzyme-like 
(BBE-like) proteins whose oxidative activity specifically tar-
gets and inactivates the eliciting activity of non-oxidized 
OGs (Benedetti et al. 2018). Modification of OGs converts 
reducing galacturonic acids to oxidized galactaric acids. The 
change in homogalacturonan fragments retards degradation 
and use by microbial pathogens as carbon sources (Bene-
detti et al. 2018). It is unknown whether other molecules 
use similar oxidative mechanisms to regulate signaling and 
metabolic turn over of cell walls.

Transcriptional regulation of cell wall metabolism

Transcriptional regulation acting downstream of receptor-
like kinases, small peptides or P/DAMPS has been linked 
mostly to immune responses. Examples are the interaction 
between FER and RALF peptides which lead to phospho-
rylation of the transcription factor (TF) MYC2 influencing 
JA signaling (Guo et al. 2018); the regulation of EDS1 and 
PAD4 by WAKs mediated by MAPKs mentioned above 
(Kohorn et al. 2016) and the activation of defense-related 
genes by P/DAMPS (B. Li et al. 2016a, b, c). The production 
of callose regulated by the TF MYB51 in response to flg22 
illustrates how PTI regulates a particular element of cell 
wall metabolism (Clay et al. 2009). Many forms of CWD, 
both abiotic and biotic, activate common signaling processes 
involving hormone crosstalk, ROS and calcium signaling, 
meaning that the transcriptional machinery, controlled by 

these signaling processes, will be activated in response to 
CWD as well (Le Gall et al. 2015; Li et al. 2016a, b, c; 
Liao et al. 2017; Novaković et al. 2018). While CWI mainte-
nance is likely to control transcriptional regulation of genes 
involved in cell wall metabolism, the mechanisms linking 
CWD perception to transcriptional changes remain to be 
elucidated. In addition to input from CWI monitoring, tran-
scriptional regulation of cell wall biosynthesis genes needs 
to also integrate inputs deriving from perception of other 
stresses and developmental cues (Fig. 3). This ensures cor-
rect synthesis and delivery of cell wall components for spe-
cific cell types, developmental stages and during interactions 
with the environment (Kozlova et al. 2020; Rao and Dixon 
2017; Wang et al. 2016; Wolf et al. 2012).

Little is known about transcriptional regulation during 
primary cell wall formation. In Arabidopsis, the Ethylene 
Response Factors (ERF) TFs ERF034, ERF035, ERF038 
and ERF039 belong to group IIId of the ERF APETALA2/
ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN 
(AP2/EREBP) supergene family and function as transcrip-
tional activators of CESA1, CESA3 and CESA6, which are 
involved in primary (but not secondary) cell wall formation 
(Saelim et al. 2019). Ectopic expression of ERFs 035–038 
and ERF040 (belonging to groups IIId and IIIe) in the dou-
ble mutant nac secondary wall thickening promoting factor 1 
and 3 (nst1and nst3), lacking secondary cell walls, produced 
multilayered, thickened fiber cell walls without ultra violet 
autofluorescence indicative for the presence lignin, therefore 
resembling primary cell walls (Sakamoto et al. 2018).

Secondary cell wall regulation is better understood and 
involves coordination of multiple regulatory layers con-
sisting of distinct classes of transcription factors (Kumar 
et al. 2016). Using high-spatial-resolution gene expression 
data and enhanced yeast one-hybrid assays, a gene regula-
tory network involving TFs and enzymes involved in sec-
ondary cell wall biosynthesis was mapped (Taylor-Teeples 
et al. 2015). E2 FACTOR C (E2Fc, from the E2F family 
of TFs, whose members are key regulators of the cyclinD/
retinoblastoma/E2F pathway) seems to act upstream of the 
several TF families acting as secondary cell wall forma-
tion regulators: NAM (NO APICAL MERISTEM), ATAF 
(ARABIDOPSIS TRANSCRIPTION ACTIVATION 
FACTOR), CUC (CUP-SHAPED COTYLEDON) and 
VASCULAR-RELATED NAC DOMAIN 6 and 7 (VND6 
and VND7) belonging to the NAC family of TFs. Mod-
erate levels of E2FC activate VND7 whereas extremely 
low or high levels of E2FC repress VND7 expression, in 
agreement with previous reports showing that E2FC can 
act as a transcriptional activator and repressor (de Jager 
et al. 2001; del Pozo et al. 2007; Heckmann et al. 2011; 
Kosugi and Ohashi, 2002). TFs belonging to this regula-
tory network were further classified in tiers, based on their 
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regulatory hierarchy (Kumar et al. 2016). Tier 1 genes 
regulate transcription of structural genes, tier 2 regulate 
tier 1 and structural genes whereas tier 3 regulate tier 1 
and 2 genes. VND6 and VND7 are positioned high in the 
hierarchy and together with NST1, NST2 and SECOND-
ARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 1 
(SND1) form Tier 3. Tiers 1 and 2 contain TFs of the MYB 
TF family-like KNOTTED1-like homeobox (KNOX). TFs 
from the Homeodomain-leucine Zipper class III (HD-
ZIP III) family are also positioned high in the regulatory 
hierarchy and are important for cell differentiation (Du 
and Wang, 2015). HD-ZIP III expression is regulated by 
microRNAs miR165/166, ensuring proper vasculature 
patterning (Fig. 3; Carlsbecker et al. 2010; Miyashima 
et  al. 2011). These transcriptional networks regulate 
genes required for cell wall formation include cellulose 
biosynthesis genes such as CESA4, CESA7 and CESA8 or 
genes involved in hemicellulose and lignin biosynthesis. 
These selected examples provide some perspective on the 
complexity of the transcriptional networks responsible for 
regulation of cell wall metabolism and form the foundation 
to be used for understanding the mode of action of the cor-
responding processes in other plant species. More impor-
tantly, the examples also highlight our lack of knowledge 
regarding the mechanisms connecting initial perception of 
CWI impairment with transcriptional regulation of meta-
bolic processes bringing about changes in structure and 
composition of cell walls, in particular primary cell walls.

Epigenetic regulation of cell wall biosynthesis

Epigenetic control is important for cell fate maintenance by 
tissue-specific regulation of gene expression during differ-
entiation processes (Lafos et al. 2011). Epigenetic modifica-
tions are induced by abiotic and biotic factors and can result 
in improved long-term adaptability of plants to unfavorable 
environmental conditions (Kumar et al. 2017). Epigenetic 
regulation in dicots and especially in Arabidopsis thaliana 
has been extensively studied in the context of development 
and stress responses (Liang et al. 2020; Pikaard and Mit-
telsten Scheid, 2014).

The acetyltransferase GENERAL CONTROL NON-
DEREPRESSIBLE 5 (GCN5) modulates directly expres-
sion of genes required for cell wall loosening such as 
CHITINASE-LIKE 1 (CTL1), POLYGALACTURO-
NASE INVOLVED IN EXPANSION 3 (PGX3), and MYB 
DOMAIN PROTEIN 54 (MYB54) in response to salt 
stress (Zheng et al. 2019). The importance is confirmed 
by GCN5 knockout mutants resulting in dwarfed plants, 
deformed flowers, decreased root length, and reduced cel-
lulose content (Hu et al. 2015; Zheng et al. 2019). GCN5 
binds directly to sequences in the promoter of CTL1, 
which mediates interactions between cellulose microfi-
brils and hemicelluloses (Zheng et al. 2019). The H3K4-
histone methyltransferase ARABIDOPSIS HOMOLOG 
of TRITHORAX1 (ATX1) acts as a positive regulator 
on the secondary cell wall formation during stem growth 
by activating expression of NAC TF family members 

Fig. 3  Transcriptional regulation of genes involved in responses to 
cell wall metabolism. An overview of relevant molecular components 
and structures in the cytoplasm and nucleus. Stress leads to genera-

tion of signals, which are relayed to the nucleus to modulate expres-
sion of transcriptional regulators, controlling expression of genes 
mediating responses to CWI impairment and biotic stress
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SECONDARY WALL-ASSOCIATED NAC DOMAIN 
PROTEIN1 (SND1) and NAC SECONDARY WALL 
THICKENING PROMOTING FACTOR1 (NST1; Wang 
et al. 2021). EXPANSIN (EXP) genes play an essential 
role during fruit ripening and their expression is regulated 
by histone modifications such as H3K9/K14 acetylation 
and H3K27 tri-methylation (Mu et al. 2021). While the 
available evidence indicates that regulation of cell wall 
metabolism by epigenetic modification happens, neither 
are the underlying principals and regulatory mechanisms 
well understood, nor do we know to what extent this regu-
latory mechanism is relevant in the context of CWI-medi-
ated changes in cell wall metabolism.

Regulation of CWI maintenance in other 
plant species

Receptor‑like kinases: abundance 
and diversification in different plant species

Homologues of Arabidopsis RLK genes have been identified 
in other plant species (Couto and Zipfel, 2016; Honkanen 
et al. 2016), but conservation and diversification of their spe-
cific functions remain largely unexplored (Fig. 4). A recent 
study suggests that the CrRLK1L kinase signaling pathway 
is specific for land plants, since analysis of algae genomes 
identified neither orthologues for CrRLK1 members nor for 

Fig. 4  Receptors and biotic stress responses in other plants. Similar 
strategies to sense CWI impairment seem to be active in Arabidop-
sis and other plants. Since the number of family members encod-
ing membrane-bound receptors and peptides has diversified in other 
plants, the specific interactions between receptors, co-receptors 
and ligands as well as the downstream effects of CWI impairment, 
can differ from the ones observed in Arabidopsis. FLR1 and FLR2 
(Oryza sativa) are homologues of AtFER with specialized functions 

in growth and immunity. WAKs family members have increased 
and specialized in crops including Brachypodium, Zea maize, wheat 
and Oryza sativa; where they function in diverse developmental and 
immune responses. Similar to their function in Arabidopsis, PEPs and 
PEPRs have been implicated in defense responses in Zea maize and 
Oryza sativa. SIT1 (L-type LecRLK) and CEBiP/CERK complex and 
interactors represented in the figure are based on Oryza sativa studies
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RALFs peptides (Mecchia et al. 2020). The only CrRLK1L 
kinase orthologue (MpFER) found in Marchantia polymor-
pha, exhibits the highest similarity to FER from Arabidop-
sis, highlighting again its particular importance (despite 
having been referred to as MpTHE before) (Honkanen et al. 
2016; Mecchia et al. 2020). MpFER is required for correct 
rhizoid formation and expansion, maintaining the morpho-
logical integrity of the gametophyte and plant fertility, bio-
logical processes similar to those requiring AtFER. However, 
MpFER does not seem to repress cellular growth after CWI 
impairment, as AtTHE1. Isoxaben, a cellulose biosynthe-
sis inhibitor, still affected the development of the gemmae 
in wild type and RNA interference lines targeting MpFER 
(Mecchia et al. 2020), suggesting that the CWI maintenance 
function arose later during plant evolution.

The two main rice varietal groups Oryza sativa indica 
and Oryza sativa japonica contain the same number of 
CrRLK1L kinases as Arabidopsis but very little information 
exists regarding their respective functions (Yang et al. 2020). 
FERONIA-LIKE RECEPTOR 2 and 11 (FLR2 and FLR11) 
seem to participate in plant immunity responses since flr2 
and flr11 knock-out mutants exhibit enhanced resistance to 
rice blast infection without significant negative impact on 
growth. ROS production was increased at the penetration 
site after rice blast inoculation in leaf cells, while reduced 
ROS production and bigger lesion areas were observed in 
FRL2 overexpression lines (Yang et al. 2020). FRL2 seems 
to have a critical role in plant height, while FLR1 has a 
minor role but is required for fertility instead. FLR1 and 
FLR2 both positively regulate expression of genes encod-
ing enzymes (ENT-KAURENE OXIDASE 2, GIBEREL-
LIN 20-OXIDASE 2 and GIBERELLIN 30-OXIDASE 2) 
required for Gibberellin biosynthesis (Li et al. 2016a, b, c). 
Single mutants of the enzymes showed reduced shoot length, 
which was rescued to different extents by introducing flr1 
and flr2, suggesting that FLR1 and FLR2 are involved in 
different regulatory pathways.

A comprehensive genome-wide comparative analysis of 
the CrRLK1L subfamily in 62 species found that on aver-
age eudicots contain 22 CrRLK1L proteins whereas mono-
cots only 13, possibly explained by the larger genome size 
of eudicots (Solis-Miranda et al. 2020). Additionally, a 
comparison between Arabidopsis and four legume species 
revealed that expression patterns of most CrRLK1L genes 
were conserved despite the increased number of members 
in legumes (especially in the MEDOS clade). Based on the 
expression patterns of several legume CrRLK1Ls they have 
been implicated in root nodulation.

The number of WAK kinases has increased profoundly in 
other plant species compared to Arabidopsis. Whereas this 
family consists only of 5 WAKs and 21 WAKLs in Arabi-
dopsis (the distinction between WAKs and WAKLs is less 
clear in other species), the number has increased to 29 in 

cotton, 125 in rice, 341 in wheat, more than 100 in maize, 
91 in Barley and 115 in Brachypodium distachyon (hereafter 
Brachypodium)(Dou et al. 2021; Tripathi et al. 2021; Wu 
et al. 2020; Zhang et al. 2021). Their ability to interact with 
pectin has been confirmed independently for several species, 
despite the low pectin abundance in grass cell walls (about 
20% in primary cell walls of Arabidopsis but only 5–10% in 
grasses; Chen et al. 2021a, b; Gigli-Bisceglia et al. 2020; Wu 
et al. 2020) suggesting that WAKs have a highly conserved 
role in connecting pectic compounds in plant cell walls 
to intracellular responses. In Brachypodium, high expres-
sion levels of several WAK genes (specifically BdWAK2, 
10, 42, 72 and 108) in rapidly growing tissue implicates 
them in cell expansion (Wu et al. 2020). Vacuolar invertase-
dependent regulation of turgor pressure was hypothesized 
to be the mechanism responsible for WAK-mediated cell 
wall expansion in Arabidopsis but remains to be experimen-
tally confirmed (Kohorn 2016; Kohorn et al. 2012). While 
WAKs have been implicated in abiotic and biotic stress 
responses by activating phytohormone biosynthesis, such 
as JA, and hypersensitive responses signaling cascades lead-
ing to programmed cell death, as exemplified by the activity 
of BdWAK2 (Wu et al. 2020), the mechanisms responsi-
ble remain unknown. Interestingly, manipulation of wheat 
WAK and WAK-like genes confers pathogen resistance by 
different mechanisms. Wheat WAK2 enhances resistance 
to the fungus Fusarium graminearum through interactions 
with pectin (Gadaleta et al. 2019). In contrast, gene-for-gene 
resistance to the fungus Zymoseptoria tritici producing Sep-
toria tritici blotch (STB) is provided by WAKL4, also named 
Stb6, through recognition of apoplastic avirulent effectors 
(Saintenac et al. 2018).

Relevant signaling processes during response 
to biotic stress

The mode of action of the signaling cascades activated 
by flagellin in Arabidopsis and rice exhibits similarities 
(Fig. 4). The CrRLK1L FERONIA family in rice has 12 
FERONIA-LIKE RECEPTORS (OsFLR) members (Yang 
et al. 2020). Overexpression of OsFLS2 results in enhanced 
immune responses to flg22 and flagellin (Takai et al. 2008). 
OsFLR1 has a crucial role in parasitism of Meloidogyne 
incognita where it interacts with parasite-derived RALFs 
and manipulates plant cell expansion and cell wall modifi-
cation to facilitate parasitism (Zhang et al. 2020a). This is 
in contrast to the situation in Triticum aestivum (Ta), where 
transient silencing of TaFER1 and TaFER2 had no obvious 
impact on Fusarium graminearum infection (Wood et al. 
2020).

In contrast, the mechanism modulating the response 
to chitin in rice differs from the one in Arabidopsis. Fun-
gus derived chitin is recognized by LysM-RLP CHITIN 
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OLIGOSACCHARIDE ELICITOR-BINDING PRO-
TEIN (OsCEBiP), which afterward binds to (OsCERK1) 
whereas in Arabidopsis, AtCERK1 binds chitin directly. 
The OsCEBiP/OsCERK1 complex in turn activates signal-
ing components such as OsRacGEF (Akamatsu et al. 2013; 
Malinovsky et al. 2014; Shimizu et al. 2010). OsRAC1 is 
a small GTPase that activates immune responses such as 
ROS production by interacting with NADPH oxidase and 
a ROS scavenger to modulate the extent of ROS produc-
tion (Wong et al. 2007). For proper response, both HEAT 
SHOCK PROTEIN 90 and its co-chaperone HSP70-HSP90 
ORGANIZING PROTEIN (HOP) / STRESS-INDUCED 
PROTEIN 1 (STI1) are required because they are respon-
sible for efficient transport of OsCERK1 and OsRAC1GEF 
from the endoplasmatic reticulum to the plasma mem-
brane (Akamatsu et al. 2013; Chen et al. 2010; Nakashima 
et al. 2008). OsRAC1 is phosphorylated and activates then 
immune responses (including lignin biosynthesis involving 
CINNAMOYL-COA REDUCTASE 1 (OsCCR1)) through 
a MAPK-signaling module (Akamatsu et al. 2013; Kawasaki 
et al. 2017, 2006; Tang et al. 2017). RLPs like RECEPTOR-
LIKE CYTOPLASMIC KINASE 185 (OsRLCK185) and 
RECEPTOR-LIKE CYTOPLASMIC KINASE 176 (OsR-
LCK176) are also positive regulators of immune responses 
in rice and interact directly with the OsCEBiP/OsCERK1 
complex (Ao et al. 2014; Yamaguchi et al. 2019, 2013). 
Since PTI-controlled responses activated by chitin are quite 
pronounced, pathogens try to suppress them by secretion 
of LysM-containing proteins, which bind chitin oligomers 
creating complexes to avoid chitin recognition by the plant 
(de Jonge et al. 2010; Mentlak et al. 2012).

The LPS protein family has 75 members (32 G-type, 42 
L-type, and 1 C-type) in Arabidopsis, and 173 members 
(100 G-type, 72 L-type, and 1 C-type) in rice (Vaid et al. 
2012). In rice, ABNORMAL POLLEN 1 (AP1) belongs to 
the L-type LecRLKs and modulates carbohydrate metabo-
lism required for pollen maturation (He et al. 2021). Another 
L-type LecRLK (SALT INTOLERANCE 1, SIT1) mediates 
salt-induced, ethylene-based signaling processes by modu-
lating ethylene production and promoting ROS accumulation 
in rice (Li et al. 2014a, b). A G-type lecRLK is required for 
interactions between Populus trichocarpa and the ectomyc-
orrhizal fungus Laccaria bicolor (Labbé et al. 2019). Simul-
taneously, it was shown that expression of LecRLK1 from 
Populus trichocarpa in non-host switchgrass roots allows 
colonization by Laccaria bicolor and improves productiv-
ity of this potential bioenergy crop exposed to abiotic stress 
(Qiao et al. 2021).

In Zea mays, ZmWAK genes play essential roles during 
infection by fungal pathogens Sporisorium reilianum and 
Exserohilum turcicum by regulating biosynthesis of defense-
related benzoxazinoids (Hurni et al. 2015; Yang et al. 2019a, 
b; Zhang et al. 2017). Mutations in OsWAK genes (such 

as Xa4) lead to enhanced resistance against the bacterial 
blight (Xanthomonas oryzae pv. oryzae-Xoo), increased cell 
wall strength while reducing plant height to a small extent 
and not interfering with grain yield (Krattinger and Keller, 
2017; Ning et al. 2017). In wheat, TaWAK7D is modulat-
ing resistance against Rhizoctonia cerealis, by controlling 
expression of several pathogenesis-related genes (Qi et al. 
2021). Comparative transcriptome analysis showed that the 
OsWAK activates TFs belonging to the bZIP, WRKY, MYB, 
DOF, and HSF families during bacterial infection, suggest-
ing the TFs may be responsible for the enhanced resistance 
(Bakade et al. 2021).

DAMPs like the tri-saccharide 31-β-d-Cellobiosyl-
glucose or the tetrasaccharide 31-β-d-Cellotriosyl-glucose 
arise when pathogen-derived endoglucanases digest rice 
hemicellulose. They also activate PTI in rice via OsCERK1 
(Mélida et al. 2018; Yang et al. 2021). In rice, OGs do also 
activate WAK-mediated responses to biotic stress. These 
responses include enhanced cellulose biosynthesis (Hu et al. 
2017), ROS production, and expression of genes involved in 
pathogen response (Delteil et al. 2016).

PEP-mediated processes have also been described in 
monocots (Lori et al. 2015). Infection with Cochliobolus 
heterostrophus and Colletotrichum graminicola activates 
ZmPEPR1, increases expression of defense-related genes 
and metabolites, while ZmPEP1 binds to ZmPEPR1 (Huf-
faker et al. 2011; Lori et al. 2015). Exogenous application 
of OsPEPs elicits multiple defense responses in rice cell 
cultures (Shinya et al. 2018). Treatment of rice cells with 
OsPep3 during infection by Mythimna loreyi enhances 
defense responses, including activation of MAPKs and 
production of defense-related hormones and metabolites 
(Shinya et al. 2018). At the same time, OsPEPR1 overex-
pression increases the sensitivity of rice plants to these stress 
signals (Shinya et al. 2018).

Transcriptional regulation of cell wall metabolism 
in different species

Our current knowledge regarding the regulation of primary 
cell wall formation in plants is based mainly on studies of 
Arabidopsis with the obvious consequence being that the 
process remains unexplored in many other species. Inter-
estingly, coexpression experiments suggest that the rice 
homologue of AtERF34 is involved in secondary cell wall 
regulation, instead of primary cell wall regulation as in 
Arabidopsis (Hirano et al. 2013). Similar to Arabidopsis, 
transcriptional regulation of secondary cell wall formation 
in other plant species requires a diverse set of TF families 
including NAC, MYB, HD-ZIP III and KNOX (Kumar et al. 
2016; Taylor-Teeples et al. 2015).

In rice, the KNOX TF OsKNAT7 coordinates second-
ary cell wall biosynthesis and cell expansion via different 
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interactors and downstream factors compared to its Arabi-
dopsis homologue, as also indicated by the differences in 
mutant phenotypes observed (Wang et al. 2019; Yu 2019a). 
Thicker walls in rice are caused by higher cellulose and 
xylan content, whereas in Arabidopsis this is caused by 
increased lignin. Additionally, rice mutants exhibit larger 
grain size and cells in spikelet bracts, effects not observed in 
Arabidopsis. Rice KNAT7 acts upstream of MYB61, thereby 
inhibiting secondary cell wall biosynthesis whereas in 
Arabidopsis KNAT7 is active downstream of MYB61 (Wang 
et al. 2019; Yu 2019b). It is unclear whether a feedback loop 
exists between both TFs or if secondary cell wall regulation 
evolved differently across species. OsKNAT7 interacts with 
GROWTH REGULATING FACTOR 4 (GRF4) and NAC31 
to repress cell expansion and wall thickness. Furthermore, 
the cotton (Gossypium hirsutum) gene KNOTTED1-LIKE, 
member of the GhKNOX family, regulates fiber develop-
ment, initiation and elongation possibly by forming heterodi-
mers with OVATE FAMILY PROTEIN 4 (Gong et al. 2014).

In Eucalyptus trees (Eucalyptus grandis), the NAC TF 
EgNAC141 activates genes required for lignin biosynthesis 
(Sun et al. 2021). EgNAC141 belongs to a group of genes 
identified through a combination of phylogenetics and large-
scale expression profiling (Hussey et al. 2015). These genes 
are preferentially expressed in the xylem and have no Arabi-
dopsis orthologues. NAC TFs involved in lignin production 
are characterized by their tissue- or cell-specific expression, 
as exemplified by EgNAC141, which is apparently expressed 
1000 times higher in the xylem and stem than in other tis-
sues. Another NAC-domain containing protein, Populus 
trichocarpa PdWND3A, which seems to be the homologue 
of the Arabidopsis AtVND4 and 5 TFs, regulates vessel size 
in the stem (Yang et al. 2019a, b). Upregulation of ferulate 
5-hydroxylase 1 gene expression in PdWND3A overexpress-
ing lines increases lignin content. The enzyme encoded 
mediates the chemical conversion from coniferaldehyde to 
5-OH coniferaldehyde in the syringil monolignol biosyn-
thesis pathway. It remains unclear if particular aspects of 
lignin biosynthesis are specifically regulated by PdWND3A 
as both lignin biosynthesis and the ratio of lignin monomers 
syringil/guaiacyl are affected.

Expression of the TF HD-ZIP III family is regulated by 
microRNAs in Arabidopsis and rice (Carlsbecker et al. 2010; 
Miyashima et al. 2011; Zhang et al. 2018). OsmiR166b 
is located in a yield-related QTL interval and affects rice 
grain yield (Fang et al. 2013). One of its targets, OsHox32, 
regulates lignin and cellulose biosynthesis by suppressing 
expression of the cell wall biosynthetic genes CINNA-
MYL ALCOHOL DEHYDROGENASE 2 (OsCAD2) and 
OsCESA7 (H. Chen et al. 2021a, b). Knockdown lines of 
OsmiR166b and overexpression of OsHox32 exhibit culms 
with cavities, brittle culms and reduced cell wall thickness in 
leaves. These results suggest that OsmiR166b and OsHox32 

form a regulatory module modulating culm formation. These 
selected examples illustrate how the functions of several TFs 
are conserved between different plant species, while others 
differ (Feller et al. 2011; Jiang, 2019; Wang et al. 2018a, b; 
Yokoyama and Nishitani, 2004). However, it is important to 
note that we observe both cases where individual genes have 
changed activities (ERF34) and where organisation of gene 
activities (KNAT7/MYB61) are modified.

Epigenetic regulation of cell wall metabolism 
in crop plants

Epigenetic regulation in dicots and especially in Arabidopsis 
thaliana has been extensively studied in the context of devel-
opment and stress responses (Yamaguchi 2019). In contrast, 
knowledge regarding epigenetic processes in monocots is 
limited. In protoplasts from Oryza, chromatin deconden-
sation/reorganization and histone modification seem to be 
tightly connected to proteins required for de novo formation 
of cell walls (Mujahid et al. 2013; Tan et al. 2011). However, 
the mechanism regulating de novo wall formation in proto-
plasts differs probably from the normal situation, where the 
synthesis of new cell walls occurs during cell division, rais-
ing questions to what extent the regulatory mechanisms are 
the same (Mujahid et al. 2013). Salinity stress increased in 
Zea mays expression of histone acetyltransferase genes such 
as HISTONE ACETYLTRANSFERASES B (ZmHATB) 
and ZmGCN5, which can result in increased acetylation of 
H3K9 on at histone H4K5 (Li et al. 2014a, b). The increased 
histone acetylation is associated with an enhanced expres-
sion of EXPANSIN B2 (ZmEXPB2) and XYLOGLUCAN 
ENDOTRANSGLYCOSYLASE (ZmXET1) genes (Li et al. 
2014a, b; Wolny et al. 2021). These results are intriguing 
because salinity stress induces mainly elevated expression 
of ZmEXPB2, ZmEXPB6, and ZmEXPB8 isomers (Geilfus 
et al. 2010). In wheat, increased dimethylation at histone 
H3K9 and decreased levels of trimethylation at histone 
H3K4 and acetylation at histone H3K9 lead to a negative 
impact on transcriptional modulation of three EXPAN-
SIN A1 (TaEXPA1) homologs, gene silencing (Hu et al. 
2013). Thus, monocots seem to sustain stable expression 
of β-Expansins in response to stress through epigenetic 
modification. In rice, GCN5 is highly expressed in the root 
meristem and is required for cell division and growth (Zhou 
et al. 2017). GCN5 is recruited by WUSCHEL (WUS)-
RELATED HOMEOBOX11 (WOX11) and regulates root-
specific genes involved in energy metabolism, hormone 
response and cell wall biosynthesis. To summarize the cur-
rently available information indicates that epigenetic modi-
fication is relevant for regulation of at least certain aspects 
of cell wall metabolism and that research opportunities exist 
to explore the mechanisms responsible.
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Conclusions

By monitoring the status of their cell walls, plants are 
able to adapt successfully to adverse environmental condi-
tions. Sensing environmental stimuli at the wall triggers 
cellular responses responsible for successful adaptation to 
the surrounding environment. Progress has been made in 
Arabidopsis to identify the function of several CWI main-
tenance sensors and the processes they regulate. Neverthe-
less, the molecular mechanisms, interacting partners and 
regulatory pathways of most of the putative CWI sensors 
have still not been elucidated in detail. AtFER function has 
been characterized extensively mainly because of the plei-
otropic effects observed in the loss-of-function mutants, 
indicating that this protein has key functions in many dif-
ferent biological processes. This is to be expected bearing 
in mind the contributions of cell walls to many different 
aspects of plant life. AtTHE1 has also received attention 
because of its apparently more specific function in CWI 
maintenance in response to CWD. Interestingly, amongst 
higher plants, the CrRLK1L gene family has fairly con-
served numbers and expression domains for its members, 
suggesting that their function might also be conserved. In 
contrast, the number of WAK family members, which also 
seem to be able to detect cell wall impairment, is increased 
significantly in other plant species compared to Arabidop-
sis. However, WAKs and WAKLs continue to be involved 
in cell elongation and responses to biotic stress mecha-
nisms in different plant species. Therefore, the reason for 
the increased number of genes and potential benefits of 
having them remains an open question. One possibility 
is that expression of several of these genes is restricted to 
specialized tissues and organs not found in other species.

Knowledge regarding the mode of action of the CWI 
maintenance mechanism and its relevance in other plant 
species is in its infancy. Larger genomes and multiple 
homologous genes, likely with redundant function, will 
pose difficulties in identifying the key molecular compo-
nents for CWI maintenance. Investigating both ends of the 
evolutionary tree, close species to Arabidopsis on one side 
and ferns on the other, should help us discover common 
molecular mechanisms involved in the response to CWD 
and CWI maintenance and more importantly identify 
opportunities to use the resulting knowledge to improve 
performance of food and bioenergy crop plants.

In Arabidopsis, our knowledge regarding transcriptional 
regulation of primary cell wall metabolism has started to 
grow recently. This is exemplified by the ERF family of 
transcription factors, which regulate expression of CESA 
genes, thus controlling cellulose production. Regarding 
other metabolic processes required for primary cell wall 
formation, our understanding could be improved. However, 

comparing this knowledge to information regarding tran-
scriptional regulation of the same metabolic processes in 
other species, highlights that the situation is there even 
worse, thus creating exciting research opportunities. In 
contrast, information, knowledge and understanding 
regarding transcriptional regulation of secondary cell wall 
metabolism in Arabidopsis and other plants is much more 
advance as exemplified by our knowledge regarding the 
networks of TFs from different families acting in a hier-
archical manner to control secondary cell wall formation. 
For several Arabidopsis homologues the functions seem to 
be preserved in other species suggesting they could form 
leads to analyse the regulatory processes in these species 
in a knowledge-based manner.
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