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Cell wide responses to low oxygen exposure in Desulfovibrio vulgaris Hildenborough 1 
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ABSTRACT 1 

The responses of the anaerobic, sulfate-reducing Desulfovibrio vulgaris Hildenborough to 2 

low oxygen exposure (0.1% O2) were monitored via transcriptomics and proteomics.  Exposure 3 

to 0.1% O2 caused a decrease in growth rate without affecting viability. A concerted up-4 

regulation in the predicted peroxide stress response regulon (PerR) genes was observed in 5 

response to the 0.1% O2 exposure. Several of these candidates also showed increases in protein 6 

abundance. Among the remaining small number of transcript changes was the upregulation of the 7 

predicted transmembrane tetraheme cytochrome c3 complex. Other known oxidative stress 8 

response candidates remained unchanged during this low O2 exposure. To fully understand the 9 

results of the 0.1% O2 exposure, transcriptomics and proteomics data were collected for exposure 10 

to air using a similar experimental protocol. In contrast to the 0.1% O2 exposure, air exposure 11 

was detrimental to both the growth rate and viability and caused dramatic changes at both the 12 

transcriptome and proteome levels. Interestingly, the transcripts of the predicted PerR regulon 13 

genes were down regulated during air exposure. Our results highlight the differences in the cell 14 

wide response to low and high O2 levels of in D. vulgaris and suggest that while exposure to air 15 

is highly detrimental to D. vulgaris¸ this bacterium can successfully cope with periodic exposure 16 

to low O2 levels in its environment.  17 

 18 

Key words: PerR regulon, oxygen, air, stress, iTRAQ, microarray, integrated functional 19 

genomics, sulfate reducing bacteria. 20 

  21 
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INTRODUCTION 1 

Sulfate reducing bacteria (SRB) like Desulfovibrio spp. are truly cosmopolitan organisms 2 

that flourish in deep subsurface sediments, rice paddies, lake and ocean sediments, insect and 3 

animal guts, sewers and oil pipelines (8, 27, 40, 41, 51).  Though considered obligate anaerobes 4 

for many years after their discovery, Desulfovibrio spp. are found in many environments that are 5 

regularly or periodically exposed to oxygen (8, 20, 35).  A number of Desulfovibrio spp have 6 

been documented to reduce millimolar levels of O2 (12), and in an O2 gradient, Desulfovibrio 7 

vulgaris Hildenborough localizes to very low O2 concentrations rather than the anoxic region 8 

(30).  However, D. vulgaris does not couple growth to O2 respiration (8, 12), and even small 9 

amounts of O2 affect growth adversely (57).  Although D. vulgaris has been shown to survive 10 

long periods of air exposure (8, 9), it grows optimally in an anaerobic environment (46). 11 

Several studies have focused on discovering the D. vulgaris genes involved in its 12 

oxidative stress response (7, 36), and a basic model for O2 stress response in D. vulgaris has been 13 

proposed and reviewed (7, 37).  D. vulgaris has two major mechanisms for superoxide removal, 14 

namely the superoxide reductase (Sor) and the superoxide dismutase (Sod). The Sor, also called 15 

desulfoferrodoxin or rubredoxin oxidoreductase (rbo), occurs as part of an operon that also 16 

encodes a rubredoxin (rub) and the rubredoxin oxygen oxidoreductase (roo). The Sor reportedly 17 

works in conjunction with peroxidases (e.g., AhpC, rubrerythrins (18, 37)) and electron transfer 18 

proteins such as rubredoxins (7) to convert superoxides to water.  With regard to reactive oxygen 19 

species (ROS) removal, the Sor mechanism is considered to be the preferred pathway as it does 20 

not regenerate any intracellular O2 (14, 26, 28, 42).  The D. vulgaris genome encodes multiple 21 

genes, such as rubrerythrins, rubredoxins, and a nigerytherin, that are anticipated to be involved 22 

in peroxide reduction (Figure 1).  The sequence analysis of the D. vulgaris genome (23) enabled 23 
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prediction of regulons, among which a putative PerR regulon was defined (49).  The inferred 1 

PerR regulon contains the perR regulator and a subset of the peroxide reduction genes mentioned 2 

above (ahpC, rbr, rbr2, rdl and a conserved hypothetical protein, Figure 1).  The D. vulgaris 3 

genome also encodes a Fe-Sod that has been shown to provide a protective mechanism in the 4 

periplasmic space where O2-sensitive enzymes, such as the Fe-hydrogenase (HydA/B), function 5 

(17, 54).  The D. vulgaris Sod may also work in conjunction with a catalase, an efficient enzyme 6 

that catalyzes the turnover of H2O2 to water and oxygen (42).  Interestingly, the D. vulgaris 7 

catalase is encoded on a 202-kb plasmid, which has been documented to be lost during growth in 8 

ammonium-rich medium (18).   9 

Despite these protective mechanisms, ROS, such as superoxides and peroxides, are still 10 

produced during O2 reduction and trigger a variety of cellular damages in both aerobic and 11 

anaerobic organisms (37, 45, 53).  While it is the ROS that cause the majority of O2 related 12 

damage, O2 itself also irreversibly deactivates critical periplasmic proteins such as reduced Fe-13 

hydrogenases (54).  Oxidative stress due to O2 exposure is known to have multiple effects on 14 

cellular physiology, and O2 exposure at both high and low levels can be expected to elicit 15 

cellular responses, especially for anaerobic organisms. Our current knowledge of the oxidative 16 

stress response mechanisms in D. vulgaris is derived mainly from studies conducted using air or 17 

100% O2 exposure (13, 16-18, 59). A survey of these studies also revealed that differences in 18 

experimental protocols led to important differences in cellular responses.  For example, a study 19 

of oxygen responsive genes in D. vulgaris (18) reported a loss of viability in response to air 20 

exposure, yet a similar microarray study of air exposure (59) observed no such loss. Further, the 21 

modulation of the multiple protective mechanisms in response to low O2 exposure was not 22 

explored. The specificity of many of these mechanisms in O2 exposure also remains undefined, 23 
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as many of the candidate proteins are intimately linked with the redox status of the cell and may 1 

have redundant functions.   2 

We hypothesized that a cell-wide study of D. vulgaris in a low oxygen environment 3 

might uncover new information about these mechanisms. Consistent with this, a recent study 4 

showed a roo mutant to be sensitive to 0.2% O2 exposure (57). Cell-wide data from an air stress 5 

response may provide the perspective required to determine the specificity of responses in the 6 

low O2 exposure. In order to minimize variability from experimental setup and to place our data 7 

in context of previous studies, we conducted controlled experiments to measure D. vulgaris 8 

responses to both low oxygen levels and air.   9 

MATERIALS and METHODS 10 

Bacterial growth and maintenance.  Bacterial strains were grown and maintained as 11 

described previously (39).  In brief, Desulfovibrio vulgaris Hildenborough (ATCC 29579) was 12 

grown in a defined lactate (60 mM)/sulfate (50 mM) medium, LS4D (39).  To minimize sub-13 

culturing during experimentation, D. vulgaris stocks stored at -80°C were used as a 10% (% is 14 

v/v unless otherwise indicated) inoculum into 100-200 mL of fresh LS4D medium and the cells 15 

were grown to mid-log phase (optical density at a wavelength of 600 nm (OD600) of 0.3 – 0.4).  16 

For every transcriptome and proteome experiment, fresh starter cultures at mid-log phase were 17 

used as 10% inoculum into 1-3 L biomass production cultures and grown at 30°C, as noted 18 

previously (39). 19 

Cell counts and growth assays during air and 0.1% O2 exposure.  One L of D. vulgaris 20 

culture in LS4D medium at mid-log phase (OD600 = 0.35) was sparged with either humidified, 21 

sterile N2, 0.1% O2 in N2, or air (21% O2).  The sparge bottles were constructed from 2-L media 22 
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bottles with three-valve standard HPLC delivery caps (ULTRA-WARE, Kimble/Kontes).  One 1 

valve was used to allow gas to enter, another for sampling, and the third for gas venting.  Gas 2 

was sparged through porous Teflon tubing (International Polymer Engineering, Tempe AZ) filled 3 

with glass micro beads to keep the tubing submerged in the culture.  Samples were taken at 0, 60, 4 

120, and 240 min following exposure. For measuring growth, cells were counted using the 5 

acridine orange direct count (AODC) method (31). For measuring viability, colony forming units 6 

(CFU) were tested, for which aliquots were taken at the above time points and diluted serially in 7 

anaerobic LS4D medium to obtain 10
2
 and 10

4 
dilutions.  A 200 µL sample of each dilution was 8 

suspended in molten LS4D containing 0.8% (w/v) agar before being spread on LS4D plates 9 

containing 1.5% (w/v) agar and grown anaerobically; colonies were counted after seven days. 10 

Biomass production for integrated ‘omics’ experiments.  Biomass for microarray analysis 11 

and proteomics experiments was generated as described previously (39).  All production cultures 12 

were grown in triplicate.  At an OD600 of 0.3 (initial time point, T0), sample triplicates were 13 

collected (300 mL each for microarrays and 50 mL each for proteomics).  Once T0 sampling was 14 

completed, the stress was applied by sparging humidified, sterile air, 0.1% O2 in N2, air or N2 15 

(control) at approximately 200 mL/min through the 2 L cultures.  Prior to T0, the doubling time 16 

for D. vulgaris was measured to be approximately 5 hours.  Samples were collected at 30, 60, 17 

120, and 240 min after sparging was initiated.  Processing and chilling times were minimized by 18 

pumping samples through a metal coil immersed in an ice bath as described previously (39).  The 19 

chilled samples were harvested via centrifugation, flash frozen in liquid nitrogen, and stored at -20 

80°C until analysis. Consistent with previous studies (18), pH measurements during sparging 21 

indicated that all treatments (N2, 0.1% O2, or air) resulted in a small pH (< 0.8) increase that may 22 

have been caused by H2S and CO2 loss during sparging. After four hours, the pH of each culture 23 
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was between 7.8 and 8.0.  Using previously reported specific oxygen reducing potential of wild 1 

type D. vulgaris (57),  it could be estimated that the maximum oxygen reducing potential of the 2 

culture is approximately 5.4 µmol O2 / min. At a sparging rate of 200 mL /min, 7.8 µmol O2 / 3 

min is estimated to be added to the culture (Supplementary data, Calculation S1, 4 

http://vimss.lbl.gov/Oxygen/). Measurements with Foxy Fospor-R oxygen sensor (Ocean Optics, 5 

Florida, USA) indicated that a continuous sparge with 0.1% O2 increased the levels of dissolved 6 

O2 in the blank media. The higher levels of O2 (relative to the pure N2 sparge) were detectable in 7 

a live D. vulgaris culture while being sparged, and ensured that there was a constant exposure to 8 

O2 during the 0.1% O2 treatment (Supplementary data, Figure S2, http://vimss.lbl.gov/Oxygen/). 9 

 10 

Microarray transcriptomic experiments and data analysis.  DNA microarrays using 70-11 

mer oligonucleotide probes covering 3,482 of the 3,531 annotated protein-coding sequences of 12 

the D. vulgaris genome were constructed as previously described (33). Briefly, all 13 

oligonucleotides were commercially synthesized without modification by MWG Biotech Inc.  14 

(High Point, NC), prepared in 50% vol/vol DMSO (Sigma-Aldrich, St Louis, MO) and spotted 15 

onto UltraGAPS glass slides (Corning Life Sciences, Corning, NY) using a BioRobotics 16 

Microgrid II microarrayer (Genomic Solutions, Ann Arbor, MI).  Each oligonucleotide probe 17 

had two replicates on a single slide.  Probes were fixed onto the slides by UV cross-linking (600 18 

mJ) according to manufacturer’s protocol.  Total RNA extraction, purification, and labeling were 19 

performed independently on each cell sample using previously described protocols (5).  Each 20 

replicate sample consisted of cells from 300 mL cultures.  Labeling of cDNA targets from 21 

purified total RNA was carried out using the reverse transcriptase reaction with random hexamer 22 

priming and the fluorophore Cy5-dUTP (Amersham Biosciences, Piscataway, NJ).  Genomic 23 
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DNA was extracted from D. vulgaris cultures at stationary phase and labeled with the 1 

fluorophore Cy3-dUTP (Amersham Biosciences, Piscataway, NJ).  To hybridize a single glass 2 

slide, the Cy5-dUTP-labeled cDNA probes obtained from stressed or unstressed cultures were 3 

mixed in equal amounts with the Cy3-dUTP-labeled genomic DNA.  After washing and drying, 4 

the microarray slides were scanned using the ScanArray Express microarray analysis system 5 

(Perkin Elmer).  The fluorescent intensity of both the Cy5 and Cy3 fluorophores was analyzed 6 

with ImaGene software version 6.0 (Biodiscovery, Marina Del Rey, CA).   7 

Microarray data analyses were performed using gene models from NCBI.  All mRNA 8 

changes were assessed with total genomic DNA as control.  Log2 ratios and z-scores were 9 

computed as previously described (39).  A mean log2-ratio cutoff of  ≥ |2| across time points and 10 

an accompanying z-score ≥ |2| were used to identify genes whose expression changed most 11 

significantly.  Searches of the microarray data with the mean gene expression profile of genes in 12 

the predicted PerR regulon were performed using the Pearson correlation coefficient as the 13 

scoring function and the Euclidean distance to sort the final search results The 0.71 correlation of 14 

the rubredoxin-like protein DVU3093, the lowest scoring gene from the predicted PerR regulon, 15 

was used as an empirical significance cutoff for the profile search results. (For additional notes 16 

and analysis information see supplementary Figure S5). All heat-maps of gene expression data 17 

were rendered as vector graphics and output in Encapsulated PostScript (EPS) format using 18 

JColorGrid (29). The rendering configuration specified a constant maximum and minimum data 19 

range (log2 ratio range of (-6.25, 6.25)), a log2 ratio increment of 0.5, and with the log2 ratio 20 

color scale centered at log2 ratio = 0.  21 

The specificity of transcription changes in the predicted PerR regulon genes was assessed 22 

using the mean expression of genes in the regulon computed across different experimental 23 
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conditions corresponding to six previously published VIMSS studies (e.g., heat shock (5), salt 1 

stress (39), nitrite (22), and stationary phase (6)). The mean expression of genes in the PerR 2 

regulon was computed for each time point in each experiment, as well as the global mean and 3 

standard deviation across all time points and experiments. To assess the confidence of the 4 

observed gene expression changes, z-scores were computed for the mean PerR gene expression 5 

at each time point in the 0.1% O2 and air stress experiments. Assuming a normal distribution, the 6 

95% confidence interval corresponds to a z-score of 2, and at most 5% of the data are expected 7 

to have more significant changes. In the microaerobic experiment the z-scores were 0.4, 1.2, and 8 

1.7 for time points 60, 120, and 240 min, respectively. In the air stress experiment, the z-scores 9 

were -0.4 -0.8, -1.3, -1.6, and -2.5, for time points 0, 10, 30, 120, and 240 min, respectively. Note 10 

that this is the only calculation of z-score across multiple experiments; all other z-scores reported 11 

in this study have been computed across the 0.1% O2 and air exposure experiments only. 12 

Microarray data for this study is available though the URL: http://www.microbesonline.org/cgi-13 

bin/microarray/viewExp.cgi?locusId=&expId=28+74. Raw microarray data can also be accessed 14 

through the following URLs for 0.1% O2 exposure and air stress respectively; 15 

http://www.microbesonline.org/microarray/rawdata/exp28_E35 16 

http://www.microbesonline.org/microarray/rawdata/exp74_E12 17 

Proteomics and proteomics data analyses.  Sample preparation, chromatography, and 18 

mass spectrometry for iTRAQ proteomics were performed as described previously (47) with 19 

modifications to the lysis buffers used.  Frozen cell pellets from triplicate 50 mL cultures were 20 

thawed and pooled prior to cell lysis.  For the 0.1% O2-exposed biomass, cells were lysed via 21 

sonication in 500 mM triethylammonium bicarbonate (TEAB), pH 8.5 (Sigma-Aldrich), and the 22 

clarified lysate was used as total cellular protein.  Sample denaturation, reduction, blocking, 23 
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digestion, and labeling with isobaric reagents were performed according to the manufacturer’s 1 

directions (Applied Biosystems, Framingham, MA).  The four-plex iTRAQ labels were used as 2 

follows: tag114, T0 control; tag115, 240-minute control; tag116, 240-minute 0.1% O2 sparged; and 3 

tag117, 240-minute 0.1% O2 sparged (replicate).  Tag116 and tag117 provided technical replicates to 4 

allow assessment of internal error.  For the air-exposed biomass, cell pellets were lysed via 5 

sonication in lysis buffer (4 M urea, 500 mM TEAB, pH 8.5), and the clarified lysate was diluted 6 

with water to 1 M urea before being used.  The same labeling procedure was used, and labels 7 

were used as follows: tag114, 120-minute N2 sparged control; tag115, 240-minute N2 sparged 8 

control; tag116, 120-minute air sparged; and tag117, 240-minute air sparged.  Strong cation 9 

exchange (SCX) was used to separate both 0.1% O2- and air-exposed, iTRAQ-labeled samples 10 

into 21-23 salt fractions.  Fractions were desalted, dried, and separated on a C18 reverse phase 11 

nano-LC-MS column using a Dionex LC system coupled with an ESI-QTOF mass analyzer 12 

(QSTAR® Hybrid Quadrupole TOF, Applied Biosystems, Framingham, MA) as previously 13 

described (47).   14 

Collected mass spectra were analyzed using Analyst 1.1 with ProQuant 1.1, ProGroup 15 

1.0.6 (Applied Biosystems, Framingham, MA), and MASCOT version 2.1 (Matrix Science, Inc, 16 

Boston, USA). A FASTA file containing all the putative ORF sequences of D. vuglaris, obtained 17 

from microbesonline.org (1) was used to form the theoretical search database along with the 18 

common impurities trypsin, keratin, cytochrome c, and bovine serum albumin.  The same search 19 

parameters were used in both programs as described previously (47).  Only proteins identified by 20 

at least two unique peptides at greater than 95% confidence by both ProQuant and MASCOT 21 

were considered for further analysis.   22 
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All protein ratios were obtained from the ProQuant database using ProGroup.  Tag ratios 1 

for each protein were computed as the weighted average from all peptides that were uniquely 2 

assigned to that protein.  Technical replicates (tag116 and tag117 used to label 0.1% O2 exposed 3 

biomass) were used to assess variability in quantification of Log2 ratios.  To define a cut-off for 4 

internal error, the deviation between the absolute value of log2(116/115) and log2(117/115) for a 5 

given protein was used.  The internal error cut-off was set at the value of deviation at which 95% 6 

of all proteins showed deviation ≤ that value.  The internal error cut-off was found to be |0.13|.  7 

To compute the level of significant change, z-score was computed for all log2 values.  Protein 8 

log2 values with z-scores ≥ |2| were considered to be significantly changed. COG categories as 9 

defined by (52) were used to plot fraction of each COG category identified (Figure 8). Complete 10 

proteomics data can be obtained at http://vimss.lbl.gov/Oxygen/ 11 

RESULTS 12 

Effect of different growth conditions on biomass and viability. For genome-wide 13 

assessment of cellular response, growth assays were conducted to determine the level of O2 that 14 

affected the growth rate but was not lethal. Extended exposure to 0.05% O2 had no overall effect 15 

on D. vulgaris growth (Figure 2A). Consistent with this, there were no significant changes in 16 

transcript levels under these conditions (Supplementary data, http://vimss.lbl.gov/Oxygen/). 17 

Sparging with 0.1% O2 reduced both the growth rate and maximal growth (Figure 2A). However 18 

the cells resumed normal growth after a lag of about three growth cycles (15 hours), and colony 19 

forming units (CFU) were similar to control (Supplementary Figure S1, 3). Therefore, 0.1% O2 20 

was selected as the condition for the low O2 exposure experiments in this study. Though the 21 

affect of 0.1% O2 exposure on growth was most evident at later time points, to measure cellular 22 
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response at the transcript and protein level, biomass was collected at time points up until 240 1 

minutes post exposure Figure 2B).  2 

When exposed to air (21% O2) for a similar length of time, the effect on both growth rate 3 

and viability was drastic. Direct cell counts showed that the air sparged samples contained only 4 

40% of the number of cells present in the control (N2 sparge) after 240 minutes of sparging. 5 

Further, a measurement of the CFU indicated that only a fraction of cells formed colonies when 6 

plated (~ 10%) compared the control culture at T0 (Supplementary Figure S3). This result is 7 

consistent with most previous studies where a similar reduction in viability has been documented 8 

(18); there was only one exception where colony forming units remained unaffected (59).   9 

Genome wide transcriptional response. The transcript profiles of cultures exposed to 10 

0.1% O2 were analyzed.  Applying a log2 ratio cutoff of ≥ |2| in at least one time point (and z ≥ 11 

|2|), for genes whose expression changed significantly, revealed only 12 significantly up-12 

regulated genes. These results suggest that 0.1% O2 exposure produced a mild perturbation in D. 13 

vulgaris.  The up-regulated genes included five out of the six predicted members of the predicted 14 

PerR regulon (Figure 3).  Few other genes with annotated functions showed a significant change; 15 

however, tmcB (DVU0264) and divK (DVU0259), were upregulated, both of which belong to an 16 

operon containing an iron sulfur cluster transmembrane ferredoxin complex. Using the same 17 

criteria, no transcript showed significant down regulation. 18 

It is noteworthy that following an exposure to 0.1% O2, the perR transcript increased with 19 

time, as did the transcripts of all other predicted PerR regulon genes (Figure 3).  In addition to 20 

the predicted PerR regulon, the D. vulgaris genome encodes many genes thought to protect 21 

against oxidative damage that are widely present across many classes of bacteria, including 22 

superoxide dismutase (sodB), catalase (kat), and several thioredoxins (Figure 4).  Based on 23 
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conservation across sulfate-reducing bacteria, several oxidative stress response genes are 1 

considered to be signature genes in SRB (5) and include predicted oxygen response candidates 2 

such as the Sor operon and several ferritins (Figure 5).  Of genes encoding functions inferred to 3 

protect against oxidative damage, neither the genes widely distributed nor the signature genes 4 

showed a significant transcript change in response to 0.1% O2 exposure. Microarray data also 5 

indicated that genes predicted to be involved in central metabolic pathways, such as the sulfate 6 

reduction pathway, ATP synthesis, and several periplasmic or cytoplasmic hydrogenases, were 7 

unaffected during 0.1% O2 exposure (Figure 4 and 5).   8 

In contrast, air exposure generated a large number of differentially expressed genes: 393 9 

candidates showed a significant up-regulation whereas 454 genes were found to be down-10 

regulated (for complete data see microarray data link provided in the methods section). Among 11 

these, genes in the predicted PerR regulon were downregulated, as were signature SRB genes 12 

and other genes considered to provide protection from oxidative stress (Figure 3, 4, 5).  Further, 13 

in contrast to the response in the 0.1% O2 exposure, significant down regulation for many genes 14 

in central pathways were recorded in air exposure (Figure 4, 5), highlighting the striking 15 

difference in D. vulgaris response to the two conditions. Upregulated transcripts in the air-16 

stressed biomass included clp proteases, chaperone proteins, and phage shock proteins (Figure 17 

8), suggestive of a drastic stress response.  None of these genes showed any change during 18 

exposure to 0.1% O2.  19 

Proteomic response.  An iTRAQ proteomics strategy was used to identify differences in 20 

protein content for the same samples used for microarray analysis.  A total of 251 proteins were 21 

identified by two independent MS analysis software packages (see Materials and Methods and 22 

(47)).  As in the microarray data, proteins were considered to be significantly changing if their 23 
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absolute z-scores exceeded two.  Responses at the protein level may lag those at the transcript 1 

level and this may account for the milder proteomic changes compared to microarray results.  2 

The highest change noted was over two fold (log2 ratio = 1.37).  For z-scores ≥ |2| there were 3 

only four proteins with increased levels and two proteins with decreased levels.  Three of the six 4 

predicted PerR regulon members were identified in the proteomics data, and all were present at 5 

higher levels in the 0.1% O2 exposed biomass (Figure 6, Table 1).  Proteins for other oxygen 6 

response mechanisms, such as Sod (DVU2410), RoO (DVU3185) and members of the Sor 7 

operon were also identified but no significant changes were observed. The only other protein that 8 

showed accumulation in 0.1% O2 exposure was a putative zinc-resistance associated protein, 9 

ZraP (DVU3384), though the mRNA levels did not reflect this change. Only two proteins, Rho 10 

(DVU1571), a predicted transcription termination factor, and IlvE (DVU3197), a predicted 11 

branched-chain amino acid aminotransferase, showed decreased levels.  While many members of 12 

central metabolism (e.g., ATP synthesis, sulfate reduction, and pyruvate to acetate conversion) 13 

were identified, none of these proteins showed any significant change in response to the 0.1% O2 14 

exposure, consistent with microarray data.  15 

Proteomics analysis of air-stressed biomass was conducted at both 120 min and 240 min. 16 

As can be seen in Figure 6C, the response at 120 min showed a similar trend to that at 240 min. 17 

A total of 438 proteins were identified in this analysis. Thirty-three proteins exhibited significant 18 

change after 120 min of air sparging, while sixteen changed following 240 min (Table 1).  In 19 

contrast to the 0.1% O2 exposure, in air stress, Sod (DVU2410) showed the largest increase and 20 

this increase was confirmed by immunoblotting (Supplementary Figure S4, 21 

http://vimss.lbl.gov/Oxygen/). The proteomics data from the air-stressed biomass also identified 22 

proteins in most central pathways (Table 1); however, no concerted significant changes could be 23 
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seen across any pathways. Notably, neither the ORF annotated as ZraP nor the predicted PerR 1 

regulon showed any significant change at 240mins during air exposure.   2 

The PerR regulon expression profile.  The genes of the predicted PerR regulon showed a 3 

distinct expression pattern in both the 0.1% O2 exposure and aerobic stress across several time 4 

points (Figure 9).  The mean expression profile for the predicted PerR regulon genes was used to 5 

search the remainder of the microarray data for other transcripts showing similar changes.  Many 6 

transcripts correlated with the mean expression profile of the predicted PerR regulon genes 7 

across the two conditions and sets of time points.  Among the genes of the predicted PerR 8 

regulon, the most correlated gene to that of the mean PerR profile was rubrerythrin (DVU3094, 9 

correlation 0.98) and the least correlated was a rubredoxin-like protein (DVU3093, 0.71). Using 10 

0.71 as an empirical score significance cutoff, the PerR mean expression profile search identified 11 

58 candidates.  As evidence of the specificity of the information contained in the mean PerR 12 

expression profile, we analyzed the score distribution of the PerR regulon members in the search 13 

results. The top five out of six candidates from the search were five out of six members of the 14 

PerR regulon: a rubrerythrin (DVU3094) (Pearson rank/final rank 1/2, correlation 0.98), ahpC 15 

(2/1, 0.95), PerR (3/6, 0.94), a hypothetical protein DVU0772 (5/1, 0.89), and a putative 16 

rubrerythrin DVU2318 (6/58, 0.89) (Figure 9 and supplementary data, Figure S5 and Table S1). 17 

Six out of eight transcripts in the predicted tmc operon, encoding the tetraheme cytochrome c3 18 

complex, also showed high correlation with the PerR profile: DVU0260 (0.83), DVU0265 19 

(0.83), DVU0267 (0.82), DVU0264 (0.80), DVU0266 (0.77), and DVU0263 (0.75). The cydA/B 20 

genes that encode the putative cytochrome bd oxidase were also correlated with the mean PerR 21 

regulon gene expression profile, at 0.74 and 0.69 for cydA and cydB, respectively (however, 22 

cydB was correlated below the level of the empirical correlation cutoff). The remaining genes in 23 
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the top matches of the profile search were ten conserved hypothetical proteins and thirty seven 1 

hypothetical proteins (Table S1, http://vimss.lbl.gov/Oxygen/).  2 

DISCUSSION  3 

While continuous bubbling of the D. vulgaris culture with 0.1% O2 ensured cell exposure 4 

to a proportional amount of O2, this level of O2 exposure produced only a mild perturbation. This 5 

is reflected in the small number of genes that changed expression and the fact that no changes 6 

were observed in central metabolic genes.  This may be an indication that under normal growth 7 

conditions, D. vulgaris already contains adequate levels of most of the enzymes required to 8 

respond to low levels of O2 exposure. A concerted upregulation of the entire predicted PerR 9 

regulon was observed during 0.1% O2 exposure, with ahpC being one of the most upregulated 10 

candidates at both the transcript and protein levels. Along with the tmc transmembrane 11 

cytochrome c3 operon, these were the only cellular responses to 0.1% O2 exposure.  PerR 12 

regulons have been described in many bacteria (3, 21, 24, 25, 48, 58), and genes regulated by 13 

PerR are often involved in defense against ROS accumulation.  In D. vulgaris, predicted 14 

members of the PerR regulon, such as a rubrerythrin (DVU0265), have been identified as 15 

important enzymes in exposure to both O2 as well as other oxidative stresses (18).   16 

The air stress had a much more drastic effect on a cell-wide level. The responses at the 17 

mRNA level were reproducible across biological replicates (Figure 10 B). Further, the changes 18 

in transcript levels between air stressed biomass at 120 and 240 min were self consistent, having 19 

a Pearson correlation of 0.77.  The proteomics measurements for the biomass were similarly self 20 

consistent, having a Pearson correlation of 0.73 (Figure 6B).  The microarray data indicated an 21 

overall down-regulation in central metabolic pathways such as sulfate reduction, ATP synthesis, 22 
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electron transfer, lactate uptake, and conversion of lactate to acetate, none of which were 1 

observed in the 0.1% O2 exposure. The down regulation of genes such as lactate permease and 2 

lactate dehydrogenase during air exposure may be representative of cellular stress or a defensive 3 

response to prevent use of the electron donor and consequently prevent reduction of oxygen. 4 

Most importantly, upon air exposure the transcript levels for the predicted PerR regulon genes 5 

decreased overall, where transcripts for perR and genes encoding rubrerythrin and the putative 6 

rubrerythrin decreased consistently with time and showed 4-fold to 24-fold down regulation. 7 

These results highlight a sharp contrast in the response of D. vulgaris to 0.1% O2 compared to air 8 

exposure. 9 

Using the mean expression profile for the predicted PerR regulon genes across the two 10 

exposures, the microarray data were searched for other transcripts with similar expression 11 

profiles. The resulting list contained several members of the eight-gene operon encoding the 12 

transmembrane tetraheme cytochrome c3 complex (DVU0258:DVU0266) and also the cydAB 13 

operon (DVU3270-DVU3271), encoding the cytochrome d ubiquinol oxidase proteins. The 14 

cytochrome bd oxidase system is typically involved in oxidative phosphorylation, and increases 15 

in the transcription of the corresponding genes during oxidative stress have been reported for 16 

other anaerobic bacteria, such as D.  gigas (38), Moorella thermoacetica (11), and Bacteroides 17 

fragilis (2). These enzymes also appear to have a protective role in aerobic bacteria such as 18 

Escherichia coli and Salmonella during oxidative stress (15, 34). The existence of cytochrome 19 

bd oxidases in D. vulgaris has been a matter of historical discussion since pure cultures of D. 20 

vulgaris  are unable to grow in oxygen (8). Here, the significant increase observed in transcripts 21 

for the electron transfer systems such as the tmc cytochrome c3 complex and for the oxidative 22 
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phosphorylation enzymes like cytochrome bd oxidase may indicate that additional copies of 1 

these enzymes serve a protective role during the 0.1% O2 exposure.   2 

Several redox active proteins such as a thiol peroxidase, bacterioferritin, flavodoxin and 3 

ferredoxins also correlated with the mean PerR regulon gene expression profile.  Since these 4 

candidates also increased during 0.1% O2 exposure, they may also be required for O2 defense in 5 

D. vulgaris. Other oxidative response genes, including the rubredoxin (DVU3184), present in the 6 

Sor operon, and the Sor itself, were also identified by the gene expression profile search, but no 7 

significant up-regulation of these candidates was observed. Of these fifty-eight candidates, more 8 

than one third (twenty one), have no predicted functions. Among genes for which a functional 9 

annotation exists, several chemotaxis and signal transduction genes were identified.  These genes 10 

are ideal candidates for further studies to confirm any specific role in oxidative stress response.   11 

 It has been recently demonstrated that a roo
 
deletion strain of D. vulgaris was more 12 

sensitive to microaerobic stress than the wild type (57); however, we observed no change in 13 

expression of this gene at either the transcript or protein level in the 0.1% O2 exposure 14 

experiments.  Deletion of the genes encoding Sor and Sod has been shown to create strains with 15 

greater O2 sensitivity (18).  While neither of these genes showed a significant transcriptional 16 

change during 0.1% O2 exposure, candidates that confer fitness and ensure survival may already 17 

be present and not necessarily show changes in transcript or protein levels. Compared to the 18 

0.1% O2 exposure, air appears to have a severely detrimental effect on cellular growth. It should 19 

be noted however that increase in the Sod protein levels, and the few additional upregulated 20 

transcripts in oxidative stress response genes (such as putative peptide methionine sulfoxide 21 

reductases, msrA and msrB (DVU0576 and DVU1984)), in the air stressed biomass may be 22 

physiologically relevant for the small population of cells that remain viable in the air exposure.   23 
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Genes in the predicted PerR regulon have exhibited perturbations in other D. vulgaris 1 

functional genomics studies (e.g., heat shock (5), salt stress (39), nitrite stress (22), and 2 

stationary phase (6)). The increase in all members of this predicted regulon was also seen in heat 3 

shock (5), but the time dependent increase shown by these genes appears to be unique to the 4 

0.1% O2 exposure. Additionally, while a large number of upregulated genes were documented in 5 

the heat shock study, the upregulation during 0.1% O2 exposure of the predicted PerR regulon 6 

genes constitutes a much more specific and limited transcriptional response. Taken together, it 7 

appears that PerR derepression is the primary D. vulgaris response to low O2 exposure. 8 

Interestingly, the air stress transcriptomic data correlated better with that of heat shock than with 9 

the data from 0.1% O2 exposure (Figure 10), and the predicted PerR regulated genes were 10 

significantly down regulated in air stress, further supporting the specificity of PerR derepression 11 

during low O2 exposure. The common changes between air stress and heat shock have been also 12 

noted in a previous study (59).   13 

Another candidate that was universally upregulated across multiple stress conditions 14 

monitored in D. vulgaris was a protein annotated as zinc resistance-associated protein ZraP 15 

(DVU3384). Though it was highly upregulated in both conditions studied here, DVU3384 may 16 

be a general stress response candidate. Additionally, though zinc uptake regulons have been 17 

shown to increase in O2 exposure in Lactobacilli (50) and oxidative stress in Bacillus (19), 18 

DVU3384 may not be a zinc binding protein. In proteins with confirmed zinc binding motifs 19 

such as the E. coli YjaI, known to preferentially bind Zn and Ni (43), Zn binding is conferred by 20 

a two-part motif: an N-terminally located sequence, HRWHGRC, and a C-terminally located 21 

sequence, HGGHGMW. Due to the evolutionary distances between this gamma proteobacterium 22 

versus the delta sulfate reducer and the low sequence similarity to experimentally validated 23 
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proteins, more experimental proof is required to confirm the metal ion binding specificity of the 1 

D. vulgaris ZraP (DVU3384). However, the D. vulgaris ZraP sequence contains a cysteine 2 

residue in the C-terminal region as well as multiple histidine residues in the N-terminal region, 3 

both contained in glycine-rich and presumably flexible regions of the protein. Together these 4 

data suggest that the D. vulgaris ZraP contains a likely metal binding site and is an interesting 5 

candidate for follow up experiments.   6 

Many bacteria traditionally categorized as anaerobic organisms, including Helicobacter 7 

pylori (56) and Bacteroides fragilis (2), contain numerous mechanisms to counter O2 stress.  8 

Other anaerobes, such as Clostridium spp, Moorella thermoacetica, and Spirillum winogradskii 9 

(4, 10, 11, 32, 44), have also been found to tolerate transient exposure to oxic environments.  10 

While some among these are microaerophilic, D. vulgaris, like H.  pylori and Clostridium spp., 11 

cannot utilize O2 for growth and is anaerobic by definition. However, our data indicate that this 12 

bacterium can survive 0.1% O2 exposure both in terms of growth as well as cellular response and 13 

appears to be entirely suited for ecological niches that experience transient exposure to O2. 14 

Results from previous studies have shown that the members of the Sor operon and other 15 

oxidative stress response genes are important for the survival of D. vulgaris in O2 exposure (18, 16 

55). Our study suggests that additional protection may be provided by the peroxidases in the 17 

predicted PerR regulon and membrane bound cytochromes. The very concerted increase and 18 

temporal response of the predicted PerR regulon in D. vulgaris upon exposure to low 19 

concentrations of oxygen is consistent with a physiological response to a condition that may be 20 

frequently encountered in the natural environment.  Seasonal episodic infiltration of snow melts 21 

and rainfall events bring oxygenated waters to previously established anoxic and reducing 22 

environments. Given the ability of D. vulgaris to cope with low O2 levels for short periods, these 23 
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weather related effects are unlikely to be catastrophic.  Further, despite the graver consequences 1 

of exposure to higher levels of O2, even the limited viability ensures propagation of the 2 

bacterium through this exceedingly harsh stress.  This further suggests why D. vulgaris and other 3 

SRBs are so resilient in a variety of habitats, including those where exposure to oxygen may 4 

occur periodically.  5 
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Figure Captions 1 

Figure 1.  Overview of selected O2 responsive proteins in D. vulgaris.  (A) Localization and 2 

mechanistic role of individual proteins in O2 reduction in the Gram negative D. vulgaris cell are 3 

shown. While all candidates are represented in the transcriptome data, those for which 4 

proteomics data was available are colored grey. Also shown is the Fenton’s reaction between 5 

Fe
2+

 and H2O2 which generates harmful hydroxyl radicals. (B) The predicted PerR regulon 6 

(candidates with potential PerR binding motifs) and other selected candidates.  Underlined genes 7 

are reported to encode NADH peroxidases.  DVU numbers are shown in parentheses.  8 

 9 

Figure 2.  Effect of O2 exposure on growth of D. vulgaris.  Growth of D. vulgaris was measured 10 

via cell count / ml (AODC).  Each measurement is an average of three technical replicates. (A) 11 

D. vulgaris cell counts after sparging (200 ml/min) with 0.05% O2 in N2 (open triangle), 0.1 % 12 

O2 in N2 (filled square), or N2 (open square) measured over 60 hours. Over the 72 hour period, 13 

D. vulgaris showed similar growth profiles in 0.5% O2 and N2 (control), while in 0.1% O2 a 14 

much lower maximal growth was observed. (B) D. vulgaris cell count after sparging (200 15 

ml/min) with N2 (open bar) compared to 0.1% O2 (filled bar) at 0 and 240 minutes. In order to 16 

assess the cell wide changes initiated in response to the 0.1% O2 exposure, biomass for transcript 17 

and protein analysis was collected at 240 min after initiation of exposure, prior to entering 18 

stationary phase. Note that the effect of 0.1% O2 sparge is only evident at later time points.  19 

 20 

Figure 3.  Genes whose expression changed most significantly in response to 0.1% O2 exposure 21 

(cut-off threshold of log2 R ≥ 2 and corresponding Z ≥ 2).  Heat map shows changes in mRNA 22 
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levels over time (in minutes) in response to either 0.1% O2 or air stress.  The range of changes 1 

observed for these two experiments are shown in the key as log2 R adjacent to the heat map. * 2 

Predicted PerR regulon genes.  3 

 4 

Figure 4.  Transcriptomic response of selected genes in 0.1% O2 and air exposed cultures.  The 5 

heat map shows changes in mRNA levels over time (in minutes) in response to either 0.1% O2 or 6 

air stress.  Candidates are grouped by function or gene ID numbers and are not from an 7 

automated clustering.  The range of changes observed for these two experiments are shown in the 8 

key adjacent to the heat map. Included candidates are genes considered important in redox 9 

changes, and genes for central pathways such as electron transport, ATP synthesis, carbon uptake 10 

and metabolism.  11 

 12 

Figure 5.  Transcriptomic response of signature SRB genes during 0.1% O2 and air exposure.  13 

The heat map shows changes in mRNA levels over time in response to either 0.1% O2 or air 14 

stress.  Signature genes as described in Chhabra et al 2006 were used. Genes have been 15 

categorized by function. The range of changes observed for these two experiments are shown in 16 

the key adjacent to the heat map.  17 

 18 

Figure 6.  iTRAQ proteomics for exposure to 0.1% O2 and air.  (A) The 0.1% O2-exposed 19 

sample was labeled with both tag116 (replicate 1) and tag117 (replicate 2), allowing the assessment 20 

of the internal error.  (B) The plots shows log2 (0.1% O2/T0) vs. log2 (N2/T0).  Proteins whose z-21 

score ≥ |2| were considered significant, and these candidates are highlighted as shown in the 22 

legend.  (C) Log2(air/N2) at 120 minutes compared to the log2(air/N2) at 240 minutes.  Proteins 23 
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that have the same level of change in both time points would fall on the 45° line.  Clustering of 1 

data around the 45° line demonstrated that there is a trend in changes observed between 120 2 

minutes and 240 minutes.  Selected proteins are color-coded as described in the legend. 3 

 4 

Figure 7.  Protein distribution in clusters of orthologous groups (COGs). Proteins identified in 5 

the proteomics data cover all major COG categories (except B and V, having 1 and 32 proteins, 6 

respectively). In each COG category, fraction of protein that showed an increase and decrease in 7 

the air stress is shown in hashed bars and filled bars respectively. The grey bar bars indicate the 8 

fraction of proteins identified and the bars with horizontal lines indicates fraction of the total 9 

predicted proteome belonging to that category. The COG categories are sorted in order of 10 

decreasing fraction identified (grey bar).  Notably, the highest fraction of changes was observed 11 

in COG category S (function unknown). COGs R, L, U, and T appear under-represented. 12 

Category U contains many membrane proteins, which are often not present in high abundance. 13 

The low abundance of signaling proteins may also be the reason for disproportionately low 14 

identification of proteins in COG T.  The label X represents all proteins with no assigned COG 15 

and is the largest fraction of the total proteome, containing 1066 proteins. 16 

 17 

Figure 8.  Comparison between proteomics and microarray data for selected candidates.  This is 18 

a graphical representation of data presented in Table 1.  Open symbols represent 0.1% O2 19 

exposure, whereas the solid symbols represent air exposure. Circle 1 highlights all of the 20 

candidates belonging to the low oxygen exposure.  The most significant changes occurred in 21 

oxidative stress genes and in ZraP.   Air exposure caused a much larger level of change.  Circle 2 22 

highlights the large increases observed in proteases and chaperones during air exposure.  Circle 3 23 
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highlights the group of periplasmic binding ABC transport proteins that show an opposite trend, 1 

namely increased protein levels but decreased transcript levels.  More candidates show this trend, 2 

compared to the few candidates that show increased transcript levels but decreased protein levels 3 

(top left hand quadrant).   4 

 5 

Figure 9.  Analysis of microarray data to extract genes that show changes correlated with 6 

changes in the predicted PerR regulon. (A) Heat map shows changes in mRNA levels for the 7 

predicted members of the PerR regulon in 0.1% O2 and air exposure.  Average trend for each 8 

time point over all the members is shown in the bottom panel.  The average values from (A) 9 

were used to search the entire data set.  A Pearson correlation similarity measure showed 58 10 

genes with a trend better than or equal to the worst fitting member of the PerR regulon 11 

(Supplementary Figure S4).  (B) Heat map for mRNA changes for these 58 genes.  Color legend 12 

indicates the predicted functional category of these genes.  For complete details of this list, see 13 

Supplementary Table T1.  14 

 15 

Figure 10.  Microarray data for air stress.  (A) Comparison of mRNA data for exposure to 0.1% 16 

O2 vs. exposure air shows no linear relationship, (Pearson correlation coefficient = 0.03, p-value 17 

= 0.01805).  (B) Comparison mRNA data of two biological replicates of air exposure at 240 min. 18 

Though exposure to air created a heterogeneous population, the responses from two different 19 

biological replicates correlate strongly (Pearson correlation coefficient value of 0.69, p-value < 20 

0.000005). Note that data for the second biological replicate is from an independent experiment. 21 

(C) Heat shock (50ºC, 120 min) data from (5) was compared with the 120 min air exposure data.  22 

Direct comparisons of these data were possible because both experiments used the same 23 
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microarray design, the biomass samples came from the same pipeline, and the microarray 1 

experiments used genomic DNA as control. A stronger linear relationship exists between the 2 

overall trends observed for heat shock vs. air exposure (Pearson correlation coefficient value of 3 

0.45, p-value < 0.000005).  All p values are one-tailed t-statistic based.  4 

  5 



���

�

�

�

�

�

�

�

�

�

��

�

�����
���	
��

����
���	
��

����
���	���

�����
���
���

�����
�������

�����������������������
����������������

����
����
��

�� �
����
��

���!�
��
����

"���
�#��	���

�$��
����	��

PerR�binding�motif�

%��#�
��	�
��

%��!�
��	�
��

���#�
�������

���!�
�������

������� ��
�������

�����

�	
���


��

����

���� �� ������

����
���

����

���

���

���

���

�����

���

����

���

ē
���

���

����

���

����

���� �� �
�� ��! ����" �� �#�

��
$

���
$

���%���
�

�������
�



 

0

2

4

6

0 min 240 min

C
e

ll 
c
o

u
n

ts
 (

1
0

^8
) 

/ 
m

l

0

5

10

15

20

0 20 40 60 80

Time (Hours)

C
e

ll 
C

o
u

n
ts

 (
1

0
^8

) 
/ 

m
l

A

B

 



{

60 120 240

0.1% O
2 {

30 120 24010

Air

No data

 DVU2826 : hypothetical protein

* DVU2247 : alkyl hydroperoxide reductase C

* DVU2318 : rubrerythrin, putative

 DVU2121 : response regulator

* DVU3093 : rubredoxin-like protein

 DVU0267 : hypothetical protein

 DVU0024 : conserved hypothetical protein

 DVU2681 : hypothetical protein

* DVU0772 : hypothetical protein

* DVU3094 : rubrerythrin

 DVU0264 : Transmembrane complex, ferredoxin, 2 [4Fe-4S]

 DVU0259 : DNA-binding response regulator
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COG Category Description 
 

B: Chromatin structure and dynamics 
C: Energy production and conversion 
D: Cell division and chromosome partitioning 
E: Amino acid transport and metabolism 
F: Nucleotide transport and metabolism 
G: Carbohydrate transport and metabolism 
H: Coenzyme metabolism 
I: Lipid metabolism 
J: Translation, ribosomal structure and biogenesis 
K: Transcription 
L: DNA replication, recombination, and repair 
M: Cell envelope biogenesis, outer membrane 
N: Cell motility and secretion 
O: Posttranslational modification, protein turnover, 

chaperones 
P: Inorganic ion transport and metabolism 
Q: Secondary metabolites biosynthesis, transport, and 

catabolism 
R: General function prediction only 
S: Function unknown 
T: Signal transduction mechanisms 
U: Intracellular trafficking and secretion 
V: Defense mechanisms 
X: No annotated COG function 
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DVU0995 � ThiJ/PfpI�family�protein �� 0.42�(0.8) 1.33�(1.16) �1.05�(�1.89)

DVU1228 tpX thiol�peroxidase 0.16�(0.77) 0.5�(0.84) 0.24�(0.09) �1.41�(�2.54)

DVU1397 bfr bacterioferritin �0.02�(0.05) 0.12�(0.22) 0.28�(0.13) �0.98�(�1.18)

DVU1457 trxB thioredoxin�reductase,�putative 0.15�(0.75) 0.11�(0.22) 1.98�(1.79) 1.53�(2.75)

DVU1568 ftn ferritin �0.13�(�0.38) 0.22�(0.38) 0.74�(0.58) �2.34�(�4.3)

DVU1839 trx thioredoxin 0.14�(0.7) �0.1�(�0.18) 1.58�(1.4) 1.15�(1.84)

DVU2247 ahpC alkyl�hydroperoxide�reductase�C 1.89�(7.41) 0.19�(0.35) 1.36�(1.18) �1.4�(0)

DVU2318 rbr2 rubrerythrin,�putative 1.14�(4.56) 0.66�(1.13) 0.77�(0.6) �3.8�(0)

DVU2410 sodB superoxide�dismutase,�Fe 0.32�(1.4) �� 3.19�(2.97) 0.34�(0)

DVU3049 � hemerythrin�family�protein 0.27�(1.19) 0.08�(0.14) 1.88�(1.7) �0.89�(�1.41)

DVU3094 rbr rubrerythrin 0.52�(2.16) 0.78�(1.36) 1.16�(0.99) ��

DVU3183 SOR Superoxide�reductase �� 0.59�(1.09) 1.69�(1.51) 2.31�(1.69)

DVU3185 roO rubredoxin�oxygen�oxidoreductase 0�(0.11) 0.54�(1.03) 0.64�(0.48) �0.05�(�0.1)

DVUA0091 kat Catalase 0.19�(0.9) 0.68�(0.84) 1.32�(1.14) �0.85�(�1.25)

,
���	����	�*�-.	��
����	�*���.�
���
����
��������

DVU0811 dnaK dnaK 0.03�(0.26) 0.24�(0.39) 1.03�(0.87) 3.28�(5.62)

DVU1012 � hemolysin�type�calcium�binding�repeat �0.39�(�1.37) 0.3�(0.45) 1.19�(1.02) 3.71�(0)

DVU1468 htrA peptidase/PDZ�domain �0.36�(�1.27) 0.39�(0.74) 1.11�(0.94) 4.21�(6.74)

DVU1976 groEL chaperonin,�60�kDa �0.35�(�1.21) 0.34�(0.47) �0.16�(�0.3) 2.1�(3.82)

DVU1977 groES chaperonin,�10�kDa �� 0.15�(0.25) 1.33�(1.15) 2.79�(3.63)

DVU3384 zraP zinc�resistance�associated�protein 1.04�(4.16) 0.93�(1.24) 1.78�(1.6) ��
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DVU0095 potD�1 polyamine�ABC�transporter,�periplasmic�polyamine�binding �� �0.5�(�0.84) 1.56�(1.38) 0.44�(0.81)

DVU0107 glnH glutamine�ABC�transporter,�periplasmic�glutamine�binding �� �0.1�(�0.19) 2.25�(2.05) �1.54�(�2.74)

DVU0169 � oligopeptide/dipeptide�ABC�transporter,�periplasmic� 0.09�(0.49) �0.2�(�0.3) 2.22�(2.02) �1.11�(�1.54)

DVU0386 glnH amino�acid�ABC�transporter,�periplasmic 0.12�(0.62) �0.44�(�0.77) 1.36�(1.18) �1.49�(�2.82)

DVU0547 � high�affinity�branched�chain�amino�acid�ABC�transporter,�periplasmic 0.04�(0.3) �0.29�(�0.51) 1.19�(1.02) �1.7�(�3.33)

DVU0675 fliY amino�acid�ABC�transporter,�periplasmic 0.22�(0.97) �� 2.17�(1.97) ��

DVU0712 � amino�acid�ABC�transporter,�periplasmic�binding 0.25�(1.14) �0.07�(�0.14) 1.08�(0.91) �0.94�(0)

DVU0752 � amino�acid�ABC�transporter �0.28�(�0.97) �0.3�(�0.55) 1.1�(0.92) 0.39�(0.7)

DVU0966 � amino�acid�ABC�transporter,�periplasmic �0.14�(�0.41) �0.5�(�0.92) 1.8�(1.62) �2.05�(�3.6)

DVU1238 � amino�acid�ABC�transporter,�periplasmic �� �0.3�(�0.59) 1.66�(1.48) �1.04�(�1.96)

DVU1937 � phosphonate�ABC�transporter,�periplasmic �0.04�(�0.02) �0.06�(�0.12) 0.91�(0.74) �1.28�(�2.3)

DVU2297 � glycine/betaine/L�proline�ABC�transporter,�periplasmic�binding 0�(0.12) 0.23�(0.38) 2.02�(1.83) 0.29�(0.55)

DVU2342 � amino�acid�ABC�transporter,�periplasmic �� �0.51�(�0.93) 1.12�(0.95) �0.63�(�1.03)

DVU3162 � ABC�transporter,�periplasmic�substrate�binding�protein 0.09�(0.51) �0.13�(�0.24) 2.76�(2.55) 0.54�(0)

��,��(��.����

DVU0775 atpD ATP�synthase,�F1�beta�subunit �0.21�(�0.68) �0.39�(�0.63) 0.27�(0.11) 0.29�(0.35)

DVU0777 atpA ATP�synthase,�F1�alpha�subunit �0.13�(�0.38) �0.57�(�0.97) 0.13�(�0.01) �0.02�(�0.02)

DVU0778 atpH ATP�synthase,�F1�delta�subunit �0.24�(�0.78) �0.66�(�0.94) �0.43�(�0.57) �0.88�(�1.42)

DVU0114 hisG ATP�phosphoribosyltransferase �� �0.2�(�0.21) �2.1�(�2.2) �1.65�(�3.21)

DVU0779 atpF2 ATP�synthase�F0,�B�subunit �� �0.89�(�1.56) �0.64�(�0.78) �1.06�(�1.17)

DVU0780 atpF1 ATP�synthase�F0,�B�subunit �� �0.39�(�0.69) �0.95�(�1.07) �1.91�(�2.97)
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DVU0402 dsrA dissimilatory�sulfite�reductase�alpha�subunit 0.05�(0.35) 0.09�(0.17) 0.97�(0.8) �2.4�(�2.49)

DVU0403 dvsB dissimilatory�sulfite�reductase�beta�subunit 0.22�(1) 0.01�(0.01) 0.91�(0.75) �2.8�(�4.74)

DVU0404 dsrD dissimilatory�sulfite�reductase�D �0.02�(0.04) 0.2�(0.3) 2.14�(1.95) ��

DVU0847 apsA adenylyl�sulphate�reductase,�alpha�subunit 0.02�(0.25) �0.08�(�0.13) 0.84�(0.67) �0.89�(�1.32)

DVU0848 qmoA Quinone�interacting�membrane�bound�oxidoreductase �0.03�(0) �0.5�(�0.89) 0.56�(0.4) �0.61�(�1)

DVU0849 qmoB Quinone�interacting�membrane�bound�oxidoreductase �0.1�(�0.27) �0.46�(�0.67) 0.54�(0.39) 0.16�(0.26)

DVU1295 sat sulfate�adenylyltransferase 0.07�(0.42) �0.08�(�0.14) �0.19�(�0.34) �0.28�(0)

DVU1597 sir sulfite�reductase,�assimilatory�type �0.37�(�1.3) �0.05�(�0.1) 0.63�(0.47) 0.66�(1.22)

DVU2776 dsrC dissimilatory�sulfite�reductase,�gamma�subunit �0.23�(�0.76) �0.25�(�0.44) 0.56�(0.41) �0.52�(�0.57)
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DVU0161 purF amidophosphoribosyltransferase �� �0.22�(�0.37) �0.36�(�0.5) �0.43�(�0.72)

DVU0488 purD phosphoribosylamine��glycine�ligase 0.31�(1.37) �0.06�(�0.08) �0.56�(�0.7) 1.36�(0)

DVU0795 purC phosphoribosylaminoimidazole�succinocarboxamide�synthase �0.02�(0.03) �0.34�(�0.52) �0.09�(�0.23) 0.28�(0.45)

DVU1043 guaA GMP�synthase �� 0.02�(0.03) �0.68�(�0.81) 1.35�(2.62)

DVU1044 guaB inosine�5`�monophosphate�dehydrogenase �0.21�(�0.7) 0.09�(0.15) �1.15�(�1.26) �0.12�(�0.21)

DVU1406 purM phosphoribosylformylglycinamidine�cyclo�ligase �� �0.33�(�0.63) �0.48�(�0.61) �1.25�(�1.65)

DVU1932 adk adenylate�kinase�(TIGR) 0.11�(0.57) �0.49�(�0.68) 0.4�(0.24) �1.5�(�2.97)

DVU2942 purB adenylosuccinate�lyase 0.2�(0.93) �0.14�(�0.24) 0.65�(0.49) 0.35�(0.53)

DVU3181 purL phosphoribosylformylglycinamidine�synthase�II 0.04�(0.32) �0.18�(�0.28) �1.97�(�2.07) 0.19�(0.34)

DVU3204 purA adenylosuccinate�synthetase 0�(0.11) �� 0.04�(�0.11) �0.64�(�1.16)

DVU3206 purH phosphoribosylaminoimidazolecarboxamide�formyltransferase �� 0.28�(0.5) �0.37�(�0.51) �1.53�(�3.02)

DVU3235 purH IMP�cyclohydrolase,�putative 0.26�(1.17) 0.06�(0.11) 1.4�(1.22) �0.06�(�0.11)
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DVU3025 por pyruvate�ferredoxin�oxidoreductase �0.3�(�1.03) �0.04�(�0.07) �0.36�(�0.5) �0.56�(�0.8)

DVU3027 glcD glycolate�oxidase,�subunit �0.23�(�0.75) �0.42�(�0.77) �0.61�(�0.74) �0.7�(�0.81)

DVU3029 pta phosphate�acetyltransferase �0.29�(�1) �0.47�(�0.81) �1.19�(�1.31) �1.27�(0)

DVU3030 ackA acetate�kinase 0�(0.16) �0.31�(�0.54) 0.85�(0.68) �1.21�(�1.36)

a
��±�0.13�represents�the�internal�error�cut�off�as�computed�in�the�methods�section

b
��Values�shown�are�log2�ratios,�in�paranthesis�are�the�corresponding�z�scores;�only�values�for�which�z�score�is�≥�2�were�considered�significant�change
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