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Abstract
We present CellIQ, a real-time cellular network analyt-
ics system that supports rich and sophisticated analysis
tasks. CellIQ is motivated by the lack of support for real-
time analytics or advanced tasks such as spatio-temporal
traffic hotspots and handoff sequences with performance
problems in state-of-the-art systems, and the interest in
such tasks by network operators. CellIQ represents cel-
lular network data as a stream of domain specific graphs,
each from a batch of data. Leveraging domain specific
characteristics—the spatial and temporal locality of cel-
lular network data—CellIQ presents a number of opti-
mizations including geo-partitioning of input data, radius-
based message broadcast, and incremental graph updates
to support efficient analysis. Using data from a live cellu-
lar network and representative analytic tasks, we demon-
strate that CellIQ enables fast and efficient cellular net-
work analytics—compared to an implementation without
cellular specific operators, CellIQ is 2× to 5× faster.

1 Introduction
Cellular networks have become an integral part of our dig-
ital life in an increasingly mobile connected world driven
by the wide adoption of smartphones and tablets. These
networks must be designed, operated and maintained effi-
ciently in order to ensure satisfactory end-user experience.
To achieve this goal, cellular network operators collect
unprecedented volume of information about the network
and user traffic. Analysis of this data can provide crucial
insights in a number of tasks ranging from network plan-
ning (e.g., deployment of new base stations) to network
operation (e.g., improving utilization of limited radio re-
sources by interference coordination). The analysis is not
limited to network operations—for instance, it can also
help cities plan smarter road networks, businesses reach
more potential customers, and health officials track dis-
eases [29]. Thus, timely and efficient analysis of cellular
network data can be beneficial in a variety of scenarios.

Current state-of-the-art cellular analytics systems con-
tinuously collect per connection information such as ra-
dio resource usage, associated base stations and hand-
offs at network elements such as the Mobility Manage-
ment Entity (MME) and probes deployed in strategic lo-
cations. The collected information is then backhauled
to centralized servers in batches and ingested into the
analysis engine [3, 5, 15, 35]. Such analytics systems

are either based on streaming database technology [15]
or Hadoop batch processing [5, 35]. Thousands of pre-
defined reports are generated from the data periodically
and made available in a dashboard for the experts to
view. While these reports provide useful information, we
have learned from network operators that they can benefit
from timely and more sophisticated analyses. For exam-
ple, advanced analytics such as detecting and monitoring
spatio-temporal hotspots and tracking popular handoff se-
quences with abnormal failure rate would enable quick
resolution of performance problems.

In this paper, we propose CellIQ, a system for cellular
network analytics that builds on top of existing big data
cluster computing frameworks. By leveraging domain
specific knowledge, CellIQ enables fast and efficient cel-
lular network analysis at scale. The key insight in CellIQ
is the observation that cellular network data is naturally
represented as a time-evolving graph. In this graph, nodes
are network entities such as base stations and User Equip-
ments (UE). Edges represent adjacency of base stations
or connections between base stations and UEs.

Stream processing and graph processing has been top-
ics of tremendous interest recently, and hence a large
number of proposals exist in both areas. Existing stream-
ing systems such as TimeStream [31] and Spark Stream-
ing [37] do not support streaming graph processing. On
the other hand, existing graph parallel systems such
as GraphLab [25], PowerGraph [19], GraphX [18] and
GraphLINQ [28] are not optimized for operations span-
ning multiple graphs such as persistent connected com-
ponents over sliding windows. There are a couple of no-
ticeable exceptions: Kineograph [11] and Chronos [21]
focus on constructing incremental snapshots of evolving
graphs and optimizing data layout and job scheduling.
Differential Dataflow [27] supports incremental computa-
tion of algorithms on evolving graphs in the Naiad [30]
framework. These systems do not present specific opti-
mizations for cellular network analytics.

In contrast, CellIQ is optimized for cellular network
analytics. It leverages domain specific characteristics of
cellular networks—its spatial and temporal locality—to
achieve efficient analysis. CellIQ encodes network spe-
cific properties in a time-evolving graph. Connection
records per time window are edge properties between
UEs and base stations. Aggregate statistics per time win-
dow such as radio resource allocation, modulation and
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Figure 1: LTE network architecture (description in Table 1).

traffic volume are node properties. It then optimizes the
data layout with the use of space-filling curve based geo-
partitioning and edge indexing mechanisms. Window
operations are efficiently implemented using differential
and incremental graph update techniques. To avoid hop-
by-hop message propagation, CellIQ enables nodes to
broadcast messages to all nodes within a radius. For spa-
tial operations, we further support efficient aggregations.

Using real cellular network data and representative an-
alytics tasks such as spatial and temporal traffic hotspots
and popular handoffs, we demonstrate that CellIQ en-
ables real time cellular network analytics. The perfor-
mance gain can be significant when compared with solu-
tions without cellular specific optimizations.

This paper makes the following contributions:
• We have designed and developed CellIQ, which to

the best of our knowledge is the first real-time cel-
lular network analytics system that is capable of
running sophisticated tasks including detection and
tracking of spatial and temporal traffic hotspots, and
popular handoff sequences with abnormal failures.
• We systematically take advantage of the domain spe-

cific characteristics of cellular networks, its spatial
and temporal locality, to optimize the performance
of CellIQ. We succinctly represent a batch of cellu-
lar network data as a spatial graph, and continuously
arriving data as a stream of spatial graphs. We care-
fully place data using a geo-partitioning technique
that avoids expensive data movements. We propose
differential and incremental graph updates for effi-
cient window operations and radius based message
broadcast for quicker spatial analysis.
• We evaluate our system using real cellular network

data consisting of several thousand base stations and
millions of users. Our results show that CellIQ out-
performs implementations without cellular specific
optimizations vastly.

2 Background on LTE Networks

In this section, we briefly review the LTE network archi-
tecture and its data collection mechanism to familiarize
the reader with the basic entities in the network and the
characteristics of the data available for analysis. We also
discuss how existing state-of-the-art analytic systems uti-
lize such collected data.

2.1 LTE Network Architecture
LTE networks enable User Equipments (UEs) such as
smartphones to access the Internet. The LTE network
architecture is shown in Figure 1, which consists of sev-
eral network entities (a description is given in Table 1).
When a UE is in idle mode, it does not have an active
connection to the network. To communicate with the
Internet, a UE requests the network to establish a com-
munication channel between itself and the Packet Data
Network Gateway (P-GW). This involves message ex-
changes between the UE and the Mobility Management
Entity (MME). The MME may contact the Home Sub-
scriber Server (HSS) to obtain UE capability and creden-
tials. To enable the communication between the UE and
MME, a radio connection called radio bearer between the
UE and the base station is established. GPRS Tunneling
Protocol (GTP) tunnels are established between the base
station and the Serving Gateway (S-GW), and between
the S-GW and the P-GW through message exchanges in-
volving these entities and the MME. The radio bearer
and the two GTP tunnels make up the the communication
channel between the UE and the P-GW called Evolved
Packet System (EPS) bearer (or simply bearer in short).

When an active UE moves across a base station bound-
ary, its connections will be handed off to the new base
station. There are several different types of handoffs:
handoffs that require the bearer to be handled by a new
S-GW, a new MME, handoffs that require the change of
radio frequency or radio technology (e.g. from LTE to
3G). Some of these procedures are very involved. For an
active UE, the network knows its current associated base
station. For an idle UE, the network knows its current
tracking area. A tracking area is a set of base stations that
are geographically nearby.

S-GWs are mainly used as mobility anchors to provide
seamless mobility. P-GW centralizes most network func-
tions like content filter, firewalls, lawful intercepts, etc.
P-GWs sit at the boundary of the cellular networks and
the Internet. A typical LTE network can cover a very
large geographic area (even as large as a country) and can
have a pool of MMEs, S-GWs and P-GWs for reliability
and load balancing purposes.

2.2 Data Collection and Analysis
Cellular network operators collect a wide variety of data
from their network, a few of which are discussed below:
Bearer and Signaling Records: A UE communicates
with the network by establishing one or more bearers.
Each bearer may have a different QoS profile or connect
to a different IP network. Multiple TCP connections can
be carried in one bearer. LTE networks keep track of
a rich set of bearer statistics such as (1) traffic volume,
frame loss rate in the data link layer, (2) physical radio re-
sources allocated, radio channel quality, modulation and



LTE Architecture Entities
Name Description

UE User Equipment: Any device that accesses the network
such as smartphones and tablets.

eNodeB Enhanced Node B: The base station through which UEs
access the network.

MME Mobility Management Entity: Provides roaming and
handoff support, UE authentication and paging.

HSS Home Subscriber Server: Is a central database that con-
tains user and subscription-related information.

S-GW Serving Gateway: Acts as a mobility anchor.
P-GW Packet Data Network Gateway: Allocates IP address

and centralizes most network functions such as content
filter, policy enforcement, lawful intercepts and charg-
ing support.

Table 1: Key entities in the LTE network architecture.

coding rate in the physical layer, (3) bearer setup delay,
failure reason, (4) associated base station, S-GW, P-GW,
MME, and (5) bearer start and end time. LTE networks
also collect data on many signaling procedures such as
handoff, paging (waking up a UE to receive incoming
traffic), attach request. The collection of these data occur
at MMEs and base stations, which organize them into
records. Each record can have several hundred fields.
As indicated earlier, LTE networks may have a pool of
MMEs, S-GWs and P-GWs. Since a base station can
communicate with multiple MMEs, bearer level records
need to be merged across MMEs.
TCP Flow Records: Probes can be strategically de-
ployed in the network, e.g., between S-GWs and P-
GWs. The purpose of these probes is to collect TCP
flow records. The collected flows can then be associated
with their corresponding bearer records.
Network Element Records: Network elements such
as base stations and MMEs have operational statistics
such as aggregate downlink frame transmitted per time
window and number of bearers failed per time window.
These records are also collected and are normally used
for network monitoring purposes.

While collecting data packets continuously is infeasi-
ble due to its prohibitive space and resource overhead1,
most of the data mentioned above can be collected with-
out noticeable overhead in operational LTE networks.

Existing state-of-the-art cellular analytics systems are
deployed in operator owned data centers. The records that
are collected at the network entities are accumulated over
short time intervals (e.g., per minute) to be sent to the data
center. Although the data is available at minute granular-
ity, existing analysis frameworks do not utilize them as
soon as they arrive. Instead, the data is accumulated and
used to generate several thousands of pre-defined reports
(most of which are aggregate statistics) periodically (typ-
ically once a day). The generated reports are displayed in
a dashboard where domain experts can peruse them.

1 An operator may choose to enable packet collection for a short
duration for troubleshooting purposes, but such cases are typically rare.

3 Motivation and Overview
Current cellular network analytics systems provide in-
valuable insights to the network operator. The reports
they generate are immensely useful for the operator to un-
derstand the behavior of their network. However, in the
present form, the analysis supported by these systems are
rudimentary at best. Most, if not all, of the generated re-
ports are simple aggregate statistics such as downlink or
uplink volume per network entity. We have learned from
network operators that cellular networks could benefit
tremendously from sophisticated analytics. For instance,
operators are interested in learning if some regions of the
network are hotspots, and if they are, whether they persist.
Since such hotspots may indicate insufficient network re-
sources, they are useful for dynamic load balancing or
network planning. Similarly, it is important to detect and
mitigate abnormal failures to provide satisfactory end-
user experience. Thus, there is a need for cellular analytic
systems to be both timely and sophisticated.

We now outline the challenges in developing such a
system and make a case for using cellular specific opti-
mizations to achieve the desired goals. Then we present
our solution briefly.

3.1 Requirements and Challenges
An operational LTE network serving a large region can
have thousands of base stations and millions of users.
To keep up with the demand, operators are continuously
adding capacity by deploying new base stations. The
number of other network elements, such as MMEs, S-
GWs, and P-GWs are also on the rise. A typical LTE
network can generate several terabytes of monitoring
data per minute. The volume of monitoring data has
been growing as both mobile data-plane traffic and sig-
naling traffic (known as the signaling storm problem due
to chatty applications) continue to grow exponentially.
Due to the interplay between the network elements, LTE
network data has to be analyzed as a whole.

Cellular network operators need to perform a myr-
iad of analytics tasks in real time. For example, Mo-
tive [4] provides over 7000 offline network analytics re-
ports. Performing these and more advanced analyses real-
time means that each computationally intensive task must
be executed efficiently to avoid impacting the overall sys-
tem. To illustrate the challenges involved in performing
these analysis, we present three broad tasks that are of
interest to network operators:

Continuous monitoring of connections and entities:
Operators must continuously monitor millions of UEs,
their connections and network elements. Fine-grained lo-
cation and time-dependent thresholds are needed to pre-
vent unacceptable error alarms.

Real time detection of spatial and temporal pat-
terns: Cellular networks exhibit rich dynamics in both



temporal and spatial domains. User perceived perfor-
mance tends to vary over time and location due to changes
in the subscribers’ activity. Hence, operators need to de-
tect and track spatial and temporal patterns. Examples
of such patterns include (1) persistent spatial hotspots in
terms of abnormally high signaling traffic, or high frame
loss rate, and (2) impending flash crowd events that draws
a large number of users to the same location.

Real time troubleshooting to identify root causes:
Operators need to perform sophisticated on demand ana-
lytics tasks to understand the root cause of performance
and security problems. Similar to wired networks, cel-
lular network operators need to detect, locate and trou-
bleshoot performance and security problems, e.g., via
expert rule-based inference [24], machine-learning tech-
niques [1, 13], or inference of dependency among net-
work elements, entities and events [7, 22]. Performing
these tasks in real-time can be very challenging.

3.2 Need for Cellular Specific Optimiza-
tions

Having discussed the various requirements and chal-
lenges, we now turn our attention towards how a data
processing system may accommodate such analysis tasks.
To do so, we contacted network administrators and dis-
cussed a few representative analysis tasks of interest.
We then implemented these tasks in an existing graph-
parallel analysis framework. During this exercise, we re-
alized that most, if not all, of the analysis tasks can be ex-
pressed by three operations: (i) sliding window operation,
(ii) time window operation2, and (iii) spatial operation.
This section is a reflection of our experience, describing
how these operations can be used, as available in existing
frameworks, to implement a typical analysis task. In each
of the example tasks, we detail why a straight-forward im-
plementation may not be sufficient, alluding to the need
for domain specific optimizations.

3.2.1 Sliding Window Operations

Persistent hotspot tracking per sliding window We de-
fine a traffic hotspot to be a group of close by base sta-
tions, each of whose traffic volume is above a threshold
for the time window (referred to as snapshot). We can
construct a graph with nodes representing base stations.
Two nodes are connected by an edge if and only if the traf-
fic volumes of both nodes exceed the threshold. Detecting
hotspots is then equivalent to computing connected com-
ponents on this graph. Although the computation can be
expressed in a distributed dataflow framework [30, 36]
using join and group-by operators, this can be very

2It may appear that (i) and (ii) are similar, but it is important to
note the difference. Sliding window operations requires more state
management, since records in one window may be reused in the next.
In other words, the expiry of records in a sliding window are variable,
while that in a time window are same.

inefficient as shown in prior work in graph parallel sys-
tems [18, 25, 26]. The reason is that join operators are not
optimized for graph processing and can be very expensive.
Network operators need to compute traffic hotspots per
time window. In addition, they also need to detect persis-
tent hotspots (a hotspot is persistent for a sliding window
if it is a hotspot in all the component intervals). This task
thus requires computation across many windows.

As a concrete example, Figure 2a shows the hotspot
graph for three time windows. Suppose we want to com-
pute the persistent hotspots for a sliding window of 3. A
straightforward approach is to merge the graphs and per-
form connected component computation on the resulting
graph using a graph parallel processing engine such as
GraphLab, GraphX, or GraphLINQ [18, 25, 28]. How-
ever, we found that this strategy to be very inefficient
when the sliding window is large.

A better approach is to maintain a cumulative graph
which counts the number of edges. We then subtract
the edge counts from the time window that needs to be
forgotten, thus applying differential updates to the under-
lying graph. For the example presented earlier, the edge
count for BS1—BS2 is 3, while that for BS2—BS3 and
BS1—BS3 is 1. Suppose the graph at time window 0
is empty. We can perform the computation on this cu-
mulative graph. Two nodes are in the same connected
component iff their edge count is 3. Hence, the persistent
hotspot is BS1—BS2. We demonstrate that this technique
speeds up sliding window operations by up to 3× (§ 6).

3.2.2 Time Window Operations

Popular handoff sequence tracking per time window
Handoffs can cause connection failures or performance
degradation. Operators are interested in monitoring pop-
ular handoff sequences in time windows and across slid-
ing windows. A handoff sequence is a valid base station
traversal sequence by a set of UEs. If we keep track of
both the sequence and the set of associated UEs, then
handoff sequence tracking can be implemented as an iter-
ative graph algorithm. Consider the example in Figure 2b,
where UE1 is handed off from base station BS1 to BS2
and then from BS2 to BS3 over a time window W . If
we are interested in computing the popular handoff se-
quences in this window W , then BS1 sends the ID of UE1
and the sequence it observes, BS1→BS2, to BS2. In the
next iteration, BS2 appends the sequence with its observa-
tion, and forwards the new sequence, BS1→BS2→BS3,
to BS3. A shortcoming of this approach is that the state
management and iterations required to converge becomes
a bottleneck for large windows. Thus, the analysis slows
down significantly.

A simple optimization to this strategy is to divide W
into smaller windows w. However, we cannot compute
sequences in each of these windows independently and
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Figure 2: Representative analysis tasks of interest to cellular network operators.

then combine them3. Instead, we bootstrap every window
w with the previous window’s handoff sequence and in-
crementally update the graph. Applying this technique
results in speeding up analysis tasks that depend on time
window operations by 2× to 5× (§ 6).

3.2.3 Spatial Operations

Top traffic gradients tracking Users may converge to
a particular location. Operators need to predict these
movements and re-optimize their network (e.g., self-
optimization techniques such as antenna tilt adjustment
and interference coordination) to handle such situations.
A traffic gradient of a base station is defined as the
weighted average of traffic moving towards it. A coarse
grained approximation is to consider all handoffs around
a distance of a certain radius R. For each handoff, we
project the speed towards the base station and weigh by
the product of the bearer throughput divided by the dis-
tance between the source base station and the base station
under consideration. For example, in Figure 2c, suppose
there is a handoff of UE1 from BS1 to BS2. The handoff

information will propagate to all base stations in a radius
R. BS4 (not a direct neighbor of either BS1 or BS2)
will add the traffic gradient of this handoff to its current
gradient. Currently most graph processing systems only
propagate message on a hop-by-hop basis, thus this anal-
ysis would be inefficient if implemented directly. A bet-
ter approach is to broadcast the message to a multi-hop
neighborhood in one iteration. We found this optimiza-
tion to speed up this analysis by up to 4× (§ 6).

3.3 Solution Overview
The examples we discussed previously show that cellular
network analytics systems require a computation model
that can process property graph streams efficiently. To
achieve this goal, we presented a case for leveraging cel-
lular specific optimizations exploiting spatial and tempo-
ral locality. Ideally we would like a single processing
engine that can support a combination of incremental
data-parallel processing, stream processing and graph-
parallel processing. Since the Berkeley Data Analytics
Stack (BDAS) [34] supports all of these computation

3Doing so without extensive state management would entail incor-
rect results, because computing sequences independently would miss
some subsequences that happen across windows.

models, we chose to build CellIQ on BDAS. However,
we note that the techniques we present are not restricted
to a particular framework; for instance, CellIQ’s spatial
optimization techniques can be incorporated into a differ-
ent framework such as Naiad [30].

The key abstraction of the BDAS stack is called
Resilient Distributed Datasets (RDDs) [36] which can
recover data without replication by tracking the lin-
eage graph of operations that were used to build it.
GraphX [18], BDAS’s graph-parallel engine, builds on
top of the RDD abstraction. It represents graph structured
data (called property graph) as a pair of vertex and edge
property collections (implemented as RDDs). GraphX
embeds graph computation within the Spark distributed
dataflow frameworks and distill graph computation to
a specific join-map-group-by dataflow pattern. It intro-
duces a range of optimizations both in how graphs are
encoded as collections and as well as the execution of the
common dataflow operators.

CellIQ is implemented as a layer on top of GraphX
and incorporates several domain specific optimizations:

• Data placement We implement geo-partitioning
of the input data. Vertex properties, edge prop-
erties and graphs from different snapshots are co-
partitioned. This minimizes data movement.
• Radius based message broadcast For messages

that need to reach a radius of nodes, we enable the
exchanges to complete in one iteration.
• Spatial aggregation We implement spatial aggre-

gation for tasks that depend on aggregate statistics
such as intra-tracking and inter-tracking area hand-
off monitoring.
• Differential graph updates Tasks that require slid-

ing window operations are implemented using dif-
ferential updates to the underlying graph over the
time windows under consideration.
• Incremental graph updates Time window opera-

tions are optimized using incremental updates.

We wrap these optimizations with a cellular specific
programming abstraction, G-Stream. The G-Stream API
exposes a domain-specific combination of streaming and
graph processing. In the rest of the paper, we describe the
CellIQ system (§ 4) and the optimizations (§ 5) in detail.
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4 CellIQ System
In this section, we describe how CellIQ represents cel-
lular network data, and optimizes the placement for effi-
cient analysis. We then discuss the computational model.

4.1 Graph Representation
Cellular monitoring data as property graphs Our data
model for a window of cellular monitoring data is a graph
G(V,E), where the vertex is either a user equipment or a
base station. For the purpose of the analytics we are inter-
ested in, we discard other entities, although it is easy to
incorporate them if required. An edge is formed between
a user and the base station to which she is connected,
Thus, each base station vertex consists of many edges.
Similarly, an edge is formed between two base stations
when a user traverses between them (i.e., she is handed-
off from the first base station to the second). To access
the cellular network, a UE performs various procedures
during which it exchanges control messages with the net-
work. These procedures are carried out using complex
protocols modeled as state machines. Any action the user
wishes to take in the network, such as browsing the web,
watching a video or making a voice call, triggers a myriad
of control plane messages. We incorporate these control
plane monitoring records as edge properties. Handoffs
records are edge properties of the previous base stations.
We do not replicate the record for the new base stations.
Essentially, all control plane interaction between a user
and a base station is stored on the edge between them.
Similarly, the edge between two base stations may store
records relevant to user traversals between them. Figure 3
depicts such a simple graph.

This representation enables us to do computations on
the control plane data efficiently. For instance, the path of
a user can be found using a simple graph traversal. Simi-
larly, aggregate base station information can be obtained
without any costly map and shuffle operations.

4.2 Graph Partitioning
A straight-forward approach to distributing the graph in a
cluster is to partition the vertices and edges among the ma-
chines using a hash-partitioner. Although such a scheme
ensures uniform distribution of vertices and edges, it also
places neighboring vertices in different machines, thus
resulting in poor performance. PowerGraph [19] intro-

duces the vertex-cut technique based on the observation
that natural graphs exhibit power law degree distribution,
and proposes a greedy edge placement algorithm that min-
imizes vertex replication. Cellular network graphs do not
typically exhibit power law degree distribution and hence
the algorithm is not directly applicable. An alternative
approach is to use balanced edge-cuts (e.g., as proposed
by METIS [23]) for partitioning. However, this results in
two disadvantages. First, they result in edge replication
which are costly in our graph representation with many
thousands of records stored in edges per time window.
Second, since edge properties change over time, an edge-
cut that is optimal in one snapshot may not remain so in
the next, requiring expensive data movements. To strike
a balance between these advantages and shortcomings,
CellIQ uses the vertex-cut strategy to avoid replicating
edges, and a geo-partitioning technique to place edges to
preserve spatial locality.

Geo-partitioning of data For efficient analysis of cel-
lular network data, CellIQ requires nodes that are phys-
ically close by to be present in the same partition. To
achieve this, CellIQ uses a geo-partitioner to distribute
the graph across the cluster. The partitioner first maps the
vertices to real world geo-coordinates. Each user inherits
the location of the base station they are connected to. A
standard way to organize multidimensional co-ordinates
is to use a tree based datastructure (e.g., Quad-trees [17]
or R-trees [20]), but they require complex look ups in a
distributed setting. In order to leverage the key based look
up schemes typical in cluster computing frameworks,
CellIQ’s geo-partitioner uses a space-filling curve based
approach. The key idea behind space filling curves is
to map 2-dimensional locations to 1-dimensional keys
that preserve spatial proximity [33]. Thus, keys that are
contiguous represent contiguous locations in space. We
convert the geo-location of each of the nodes in the graph
to its corresponding 1 dimensional space-filling curve key.
The key space is then range-partitioned to the machines
in the cluster. Edges are co-partitioned with vertices by
assigning them the key associated with the source vertex.

Edge indexing Many base station properties such as
traffic volume, aggregate frame losses are computed from
edge properties between base stations and UEs. To en-
able fast computation, we index edge properties by base
station ID. This ensures the edge properties of a given
base station will most likely end up in one partition.

4.3 Computation Model: Discretized
Graph Streams (G-Streams)

Because cellular network data arrives continuously, we
need to perform the analysis tasks in a streaming fashion.
We treat a streaming computation as a series of determin-
istic batch graph computations on small time intervals
(snapshots). The data received in each interval is stored in



the cluster to form an input dataset for that interval. Once
the time interval completes, this dataset is processed via
deterministic graph parallel operations, such as subgraph,
connected component, etc to produce new datasets repre-
senting either program outputs or intermediate state.

We define discretized graph streams (G-Streams) as
a sequence of immutable, partitioned datasets (property
graphs as a pair of vertex and edge property collections)
that can be acted on by deterministic transformations.
User defined cellular network analytics programs manip-
ulate G-Stream objects. In contrast, D-Streams are de-
fined on a sequence of RDDs instead of property graphs.
We will show that our computations cannot be easily ex-
pressed using the D-Stream API.

5 CellIQ API and Optimizations
In this section, we present the APIs and various optimiza-
tion techniques in CellIQ.

5.1 GeoGraph API
The GeoGraph represents the domain specific property
graph presented in the previous section, and incorporates
the spatial optimizations in CellIQ. The methods exposed
by the API is shown in Listing 1.

class GeoGraph[V, E] extends Graph[V, E]{
...

//For efficient message exchanges
def sendMsg (radius: Double, V, V) : M

//For spatial aggregation tasks
def spatialAG(reduceV: (V, V) => V,

reduceE: (E, E) => E) = {
val superV: Collection[(ccId, V)] =

this.vertices.groupBy(ccId, reduceV)
val superE: Collection[(ccId, ccId, E)] =

this.triplets.map
{ e => (e.src.cc, e.dst.cc, e.attr) }
.groupBy((e.src.cc, e.dst.cc), reduceE)

//Return the final graph
Graph(superV, superE)

}
}

Listing 1: Spatial graph API for cellular monitoring data.

5.1.1 Message Broadcast Within a Radius

Similar to the traffic gradient tracking example presented
earlier, many analysis tasks may require messages from
a node in the graph to be propagated to every other node
within a geographic distance that far exceeds a single
hop4. GraphX implements this operation using triplets
(a triplet contains an edge and its property, and the two

4In metropolitans, base stations may be placed as close as a few
hundred meters from each other, while the analysis may look at areas
spanning several miles.

component vertex properties), which requires join oper-
ations. Since the operation has to be repeated for every
iteration (hop), it becomes expensive. The sendMsg API
is designed to enable efficient message broadcast to mul-
tiple nodes rather than just the immediate hop neighbor.
It uses a routing table similar to the one maintained by
GraphX. These routing tables are maintained in the ver-
tex partitions and identifies the edge partitions that have
edges associated with each vertex in the vertex partition.

In CellIQ, the edges are defined by a distance thresh-
old. We decompose the entire space of interest into sub-
spaces using the threshold by overlaying a grid. For each
node, we can compute the subset of subspaces that may
contain nodes within a radius R. We maintain a sub-
space to edge partition mapping that enables easy lookup.
This approach is much more efficient than the hop-by-hop
propagation, as it minimizes the overheads of joins to a
constant instead of being proportional to the hop count.

5.1.2 Spatial Aggregation

Many classes of analysis require operations on spatially
aggregated graphs. For instance, operators are interested
in tracking intra-tracking area and inter-tracking area
handoffs. A tracking area consists of a set of base stations.
Inter-tracking area handoffs are more involved which con-
sume high signaling resources and are thus more prone
to failures. To assist this kind of tasks, CellIQ exposes
the spatialAG function. The function assumes that each
graph vertex contains a field cc that can be used for ver-
tex and edge grouping. The function takes two reduce
functions: one for aggregating vertex properties and the
other for aggregating edge properties.

As an example, to compute inter-tracking area and
intra-tracking area handoffs, we could use the tracking
area ID (TAI) field as the cc field. Our vertex reduce
function would sum up each component vertex’s property
fields such as traffic volume. If we are only interested in
handoffs, then this function may return null. For the edge
reduce function, we return the total handoffs. Note that
we allow self-edges. A self-edge property is the sum of
intra-tracking area handoffs.

5.2 GStream API
The GStream API in CellIQ is as described in List-

ing 2. The input to CellIQ is a stream of GeoGraphs.
Similar to DStreams [37], we implement operations on
this streaming domain specific graph by batching their
execution in small time steps. In our system, input graph
streams are read from the network. Two types of opera-
tions apply to these graph streams: (1) Transformations
create a new G-Stream from one or more parent streams.
These can either be stateless, applying separately on the
property graph in each time interval or stateful, produc-
ing states across time intervals. (2) Output operations,



class GStream[V, E] extends Serializable {
...

def vertexStream(): DStream[(Id, V)] =
this.map(g => g.vertices)

def edgeStream(): DStream[(Id, Id, E)] =
this.map(g => g.edges)

def graphReduce(reduceFunc(Graph[V, E], Graph[V, E],
fv: (V, V) => V, fe: (E, E) => E)
): Graph[V, E] =
this.reduce((a, b) => reduceFunc(a, b, fv, fe))

// Return a new Gstream by reducing the input graph
// over a sliding window. fv and fe can use defaults
// if not supplied. The differential version (not
// shown) also requires an inverse reduce function.
def graphReduceByWindow(

reduceFunc(Graph[V, E], Graph[V, E],
fv: (V, V) => V,
fe: (E, E) => E): Graph[V, E],

windowDuration: Duration,
slideDuration: Duration
): GStream[V, E] =
this.window(windowDuration,
slideDuration).map(x => x.graphReduce(reduceFunc))

}

Listing 2: GStream API.

similar to Spark, write data to external systems.
Even though we can not directly extend D-Stream API,

we provide two functions that maximally reuse D-Stream
functions. The two functions convert a G-Stream into
an independent vertex property D-Stream and edge prop-
erty D-Stream. These can use all the original D-Stream
functions, specifically the functions on collections of key
value pairs. The key for the vertex D-Stream is the vertex
ID and value is the vertex property. Similarly, the key for
the edge D-Stream is the edge ID and value is the edge
property. Since the individual component RDDs (vertex
or edge RDDs) of the D-Stream are geo-partitioned, they
automatically take advantage of our spatial optimizations.

G-Streams support the same stateless transformations
available in GraphX including subgraph, connected com-
ponents and join of vertex and edge RDDs. In addition,
G-Streams also provide several stateful transformations
for computations across multiple time intervals.

Windowing: Similar to D-Stream windowing operator,
the window operation groups all the graphs from a sliding
window of past time intervals into one. For example,
calling gs.window(“5s”) yields a G-Stream containing
graphs in intervals [0,5), [1,6), [2,7), etc.

graphReduce: Reduces a G-Stream into a GeoGraph.
Sliding window: The graphReduceByWindow opera-

tion computes one graph per sliding window.

5.2.1 Extending GraphX Operators to Support
graphReduce

We represent each time window of data as a property
graph. To perform window computations, we need to re-
duce a sequence of graphs into one graph. GraphX does

not support certain graph transformations such as inter-
section and union. We extend the GraphX API to support
these transformations. Both intersection and union
operators take two graphs, a vertex function and an edge
function. The vertex function decides what to do with the
vertex properties of each common vertex. Similarly, the
edge function decides how to combine the edge properties
of each common edge. An intersection operator per-
forms a GraphX innerJoin operation on either two ver-
tex or two edge RDDs, and keeps only common vertices
and edges in both graphs. A union operator performs a
GraphX outerJoin operation and keeps all vertices and
edges from both graphs.

def persistConnectedComponents(gs: GStream) = {
val gs1 = gs.graphReduceByWindow(

(a, b) => a.intersection(b,
(id, v1, v2) => _,
(id1, id2, e1, e2) => _),

"1s", "5s")
val hotspots = gs1.map(_.connectedComponents())

}

Listing 3: Connected components in sliding windows.

Listing 3 illustrates the use of the graphReduce
operator by computing the connected components in
each sliding window, where we reduce each sliding
window into a graph using the intersection opera-
tor as the reduce function. We then output the con-
nected component in each sliding window of 5s using the
connectedComponents operator of GraphX. Similarly,
to compute popular handoff sequences for each sliding
window, we collect all handoff sequences for each sliding
window using the reduceByWindow operator. We then
sort the sequences by the number of UEs traversing them.

5.2.2 Differential Updates for Sliding Window Oper-
ations

For sliding window computation, if we have to perform
pair-wise graph reduce operation, it can be very expen-
sive. To enable differential computation, we provide dif-
ferential aggregation of property graphs. The differential
version of graphReduceByWindow takes an graph aggre-
gation function and a function for “subtracting” a graph.
The incremental computation can be implemented in this
framework by using a null subtraction function and then
resetting the graph at every window.

In the example shown in listing 4, the reduce func-
tion simply sums up the vertex properties (counts) and
edge properties (counts) of the two graphs. The inverse
reduce function just subtracts the vertex properties and
edge properties of one graph from the other. For each slid-
ing window of K snapshots, instead of computing K −1
graph intersections, we only perform one graph union and
one graph subtraction. We union the cumulative graph
with the graph of the current snapshot, and subtract the



def persistConnectedComponents(gs: GStream) = {
val gs1 = gs.graphReduceByWindow(

(a, b) => a.union(b,
(id, v1, v2) => v1+v2,
(id1, id2, e1, e2) => e1+e2),

(a, b) => a.intersection(b,
(id, v1, v2) => v1-v2,
(id1, id2, e1, e2) => e1-e2),

"1s", "5s")

val hotspots = gs1.map(x =>
x.subgraph(vPred = (id, c) => c>=K,

ePred = (id1, id2, cV1,
cV2, cE) => cE>=K)

.connectedComponents())
}

Listing 4: Incrementally computing connected components in
each sliding window.

graph at t −K time interval where t is the current interval
number. To compute the persistent hotspots for a slid-
ing window, we filter vertices and edges whose count are
smaller than K using the subgraph operator of GraphX,
and then run connectedComponents.

Similarly, for handoff sequence, we accumulate the
list of UEs traversed a handoff sequence (list combine).
For subtraction, we just remove the tail elements of the
sequence from t −K time interval.

5.3 Co-partitioning Component Graphs
As shown in Chronos [21], in general, it is very hard
to accommodate graph structure locality (neighborhood)
per snapshot and temporal locality (co-locate vertices or
edges in different time windows) across snapshots. Ap-
plications or systems have to make a tradeoff between re-
taining structure locality and temporal locality for evolv-
ing graphs. In cellular network data, edges in one snap-
shot have spatial locality and edges across snapshot re-
tain most of the spatial locality as users do not move
long distance over short time windows. As a result, we
co-partition all graph snapshots in the active set (old snap-
shots are cleaned up). This co-partition retains both struc-
tural and temporal locality, and significantly reduces data
movement for computations on G-Streams.

5.4 Indices and Routing Tables
GraphX maintains indices on the partitions that vertices
or edges reside. It also keeps a routing table so that a ver-
tex can find out which edge partitions contain its neigh-
bors. We share the same index and routing data struc-
tures for all component graphs in a G-Stream since we
co-partition the component graphs.

6 Evaluation
We evaluated CellIQ’s performance using the three rep-
resentative analysis tasks we presented in § 3. Our results
are summarized below:
• Geo-partitioning has a significant impact in

CellIQ’s performance. The improvement due to this
partitioning strategy ranges from 2× in small analy-
sis windows to several orders of magnitude in larger
windows. In addition, geo-partitioning enables anal-
ysis to complete when other partitioning strategies
fail due to the data movement overhead.
• CellIQ’s incremental graph update strategy results

in the reduction of analysis time by 2× to 5×.
• The differential graph update technique significantly

benefits sliding window computations, by improv-
ing performance by up to 4×. Moreover, the tech-
nique enables CellIQ to perform well for various
window sizes, when strawman techniques incur in-
creasing performance penalty when the analysis win-
dow becomes larger.
• Radius based broadcast improves the analysis time

by up to 4× compared to the standard hop-by-hop
propagation approach.

We discuss these results in detail in the rest of this sec-
tion after describing our evaluation set up and the datasets
used in our experiments.
Evaluation Setup: Our evaluation environment consists
of 10 machines forming a cluster. Each machine consists
of 4 CPUs, 32GB of memory and a 200GB magnetic hard
disk. In addition to HDFS, a network storage of 1TB is
accessible from all the machines. CellIQ system was
built on GraphX version 1.0.
Dataset: We obtained LTE control plane data from a ma-
jor cellular network operator. The data is from a live net-
work which serves around 1 million subscribers in a large
metropolitan area. A single file is generated every minute,
and contains around 750,000 records. We receive 10 such
files every minute from 10 collection points, bringing the
total number of records per minute to approximately 7.5
million. Thus, in the following experiments, we process
450 million records for window sizes of 1 hour and 4.5
billion records5 for a day window. We store a week worth
of data in HDFS, which accounts to approximately 2 ter-
abytes of compressed data.

6.1 Tracking Popular Handoff Sequences
With the increase in base station deployment in an effort
to combat the increasing demands in data traffic, hand-
offs become inevitable when users are mobile even to a
small extent. While most handoffs are benign, analyzing
handoff patterns often helps operators uncover end-user
performance issues. For instance, ping-pong handoffs
may indicate an incorrect base station configuration, and
unexpected handoff sequences seen by many users may
indicate interference issues. The results from this ap-
plication can be combined with other metrics, such as
downlink throughput, to uncover problematic sequences.

5The operator collects data only during the 10 most active hours.
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(a) Partitioning and incremental updates.
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(b) Differential updates.
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(c) Radius based message broadcast.

Figure 4: Partitioning and incremental update has a significant impact on the analysis time (a missing value in 4a indicates either an
invalid analysis such as 10 minute incremental window on 1 minute analysis, or a timeout due to memory issues). Sliding window
computations benefit from differential updates. Radius-based broadcast can further improve the performance on large datasets.

We implemented this in CellIQ using a program that
closely matches Pregel. The program takes in a window
W , and outputs the top N sequences in the window. The
program bootstraps by assigning each edge information
on the users that traversed them along with their count.
The vertices (base stations) book-keep the handoff se-
quences, initially an empty set. At every iteration, the
vertices send messages to their neighbors. The message
consists of the users who traversed from the source vertex
to the destination vertex. Clearly, the bootstrap message
sends all users who were present at the source vertex at
window start. Subsequent messages consist of users who
reached the source vertex from other vertices. Thus, after
k th iteration, each vertex learns about a handoff sequence
of length k + 1. The algorithm converges when there are
no more messages to send.

Benefits of geo-partitioning: To understand the ben-
efits of data placement, we ran this program on datasets
of varying sizes, namely 1 minute, 10 minutes, 1 hour
and 1 day, with two partitioning schemes. The default
data placement distributes the edges across machines
so as to balance the load6. In contrast, CellIQ’s geo-
partitioner uses the location of the source vertex as the
key. The results of the comparison of performance of the
two schemes are depicted in figure 4a. The gains of data
placement are clear from the results, which indicate im-
provements ranging from 2× (smaller datasets) to several
orders of magnitude (larger sets) for the geo-partitioned
case7. As expected, we see the benefits increase with the
size of the dataset. The primary reason for this behavior
is the locality achieved by the partitioner. When nodes
that are geographically close by are placed in the same
partition, the number of messages that a node needs to
send to other partitions are reduce drastically. The reduc-
tion closely matches the performance difference.

Benefits of incremental graph updates: Next, to

6We also used the 2D partitioner in GraphX, but results were similar.
7In large datasets, the default partitioner failed to run due to the

number of messages generated.

evaluate the performance of the incremental graph up-
date technique, we reran the analysis program with a few
small changes. Instead of running the program on the en-
tire window W , we break up W into smaller windows w.
Rather than naively running the program every w and then
combining the results, CellIQ uses the graphReduce op-
erations (§ 5) that maintain the result from every window
w. The next window is bootstrapped from this result.
The analysis time for running this program on the same
dataset is shown in figure 4a.

We were surprised to see the benefits of this strategy,
the reduction in analysis time showed a factor of 2× to
5×. Upon closer evaluation, these benefits come from two
sources. First, the incremental update limits the amount
of graph unions performed to one. Second, when the anal-
ysis graph is kept smaller, the number of messages to be
sent in each iteration is reduced. An interesting observa-
tion is that the performance of the incremental strategy is
better with 10 minute window compared to 1 minute win-
dow. Increasing the window size to 15 results in a lower
performance compared to 10 minutes. We tried experi-
menting with different window sizes, and found that very
small windows tend to have poor performance. Due to
the lack of space, we do not present the results. Finding
the optimal window size that minimizes the analysis time
is beyond the scope of this work, and may be obtained
using techniques similar to those detailed in [16].

Benefits of differential graph updates: Finally, to
evaluate the efficacy of differential updates on sliding
windows, we conducted the following experiment. We
streamed one day’s data to CellIQ. The handoff analysis
is done on this data in batches of 1 minute and slide dura-
tions of 1 minute. We varied the window of analysis from
2 minutes to 10 minutes. Thus, a window of 2 minutes
indicate that every minute (slide duration), the system
computes handoff sequences for the last 2 minute data.
The strawman approach keeps a ring buffer where it saves
the graph every batch. Then, at the slide window, it com-
bines all the graphs and computes handoff sequences. In
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Figure 5: CellIQ’s differential update strategy is able to scale
simple and complex graph algorithms well.

contrast, CellIQ uses graphReduceByWindow that main-
tains a cumulative graph of the number of users travers-
ing edges. Thus, at every slide window, it only needs
to subtract the first graph in the window to obtain the
graph on which the analysis needs to be performed. Both
approaches use geo-partitioning. The results from this
experiment are shown in figure 4b. The strawman ap-
proach is able to compute handoffs relatively easily when
the window sizes are small. However, when the analy-
sis window is increased, it needs to join many graphs to
obtain the result. In comparison, CellIQ is able to scale
well due to the fixed number of operations it performs to
compute the results. The performance improvement of
CellIQ ranged from 2× to 3× in this experiment.

6.2 Monitoring Persistent Hotspots
Arguably, the popular handoff tracking task uses a rea-
sonably complex algorithm that depends on iterative mes-
saging. How does CellIQ’s differential update strategy
perform on standard graph algorithms that are not mes-
sage heavy? To answer this question, we implemented
an analysis task that continuously monitors hotspots in a
given region. As mentioned earlier, hotspot computation
can be represented as finding connected components in
a graph. Similar to the task before, we use a strawman
that builds a graph for every batch and saves it in buffer.
At each slide interval, it analyzes all the saved graphs
and runs connected components on the union. In contrast,
CellIQ leverages its graphReduceByWindow operation
and then applies connected components on the result.

We again used one day worth of data for this experi-
ment. The hotspot analysis is done on this streaming data
in batches of 1 minute and slide durations of 1 minute.
We varied the window from 2 minutes to 10 minutes.
The average values are presented in figure 5. We find
results similar to the popular handoff monitoring task, ex-
cept that the analysis runs faster because of the lower
messaging overhead. Thus, CellIQ’s differential update
technique benefits all sliding window operations.

6.3 Computing Traffic Gradients
Finally, we evaluate the radius based message broadcast
in CellIQ. To do so, we use a task that computes the gradi-

ents of base stations in a given interval. As we discussed
in § 3, such analysis can be very useful for network opera-
tors in the context of optimizing their network. Consider,
for instance, a large crowd moving towards an area (e.g.,
popular events). In these cases, it is desirable to provi-
sion additional capacity in the area of gathering. Today,
operators need to pre-provision capacity using advance
knowledge of the events.

In our program, vertices (base stations) need to send
the gradient of their users to their neighbors. The prop-
agation of a message stops when it reaches a neighbor
at radius r . While this looks similar to our earlier ex-
ample of handoff analysis, there is one key difference:
the message sent in every iteration is the same. Hence,
CellIQ utilizes radius based message broadcast to avoid
the penalty associated with multiple iterations. Compar-
ison of this approach against the standard hop-by-hop
iterative approach is depicted in figure 4c. The approach
performs very well when the input dataset is large, pro-
viding gains of up to 4×. Although the number of mes-
sages remain same in both approaches, the need to do
hop-by-hop propagation impacts the analysis time. Due
to low number of messages, smaller datasets can leverage
transport layer optimizations that reduce the relative gain.
Such optimizations are limited in larger datasets.

7 Discussion
CellIQ leverages domain knowledge to do efficient anal-
ysis. A domain focused approach is likely to raise several
concerns. We discuss some concerns about CellIQ, fo-
cusing on the versatility and generality of its techniques.

How versatile is CellIQ’s API?

The representative analyses we present in this paper are
the result of our discussions with cellular network opera-
tors. Even though our discussion ended with a long list
of analysis requirements, we realized that most of them
distilled down to one or a combination of the techniques
we propose in this work. Thus, we believe that CellIQ is
able to accommodate a large set of analysis requirements,
and is not restricted to the examples presented here. It
is possible that new requirements would need to be ac-
commodated in the future. Since all of our techniques are
built on two fundamental datastructures—GeoGraph and
GStream—operators can develop new analysis tasks us-
ing these as the building blocks without significant effort.

How general are CellIQ’s techniques?

Though CellIQ’s primary motivation is to provide timely
and efficient cellular network analytics, we believe that
the techniques presented in this paper are widely applica-
ble beyond the cellular networks domain. An area of
emerging interest is smart-cities, where transportation
system optimization is a key challenge. Our graph par-
titioning (§ 4) and spatial optimization techniques (§ 5)



can easily be extended to do traffic analysis on a large
scale. Similarly, another domain that has received sig-
nificant attention recently is the Internet-of-Things (IoT),
which also exhibit spatio-temporal characteristics. While
our techniques may not carry over to the IoT domain di-
rectly8, we believe that they could be extended to fit the
requirements. We envision generalizing the techniques
we presented to arbitrary graphs as part of future work.

Can CellIQ be used for real-time feedbacks?

The analysis we discuss in the paper are focused on
providing reports—insights and issues in the network—
useful for the network operator. A better scenario is to
automatically utilize the insights without human interven-
tion. Can CellIQ support such tasks?

Timely processing of data is of prime importance to
providing real-time feedbacks. That is, once the data
arrives, it is desirable to process it as fast as possible.
We designed CellIQ with fast and efficient analysis as
key requirements. Such quick analysis enables CellIQ to
be useful for providing real-time feedbacks that can be
incorporated into the network. Analyzing the efficacy of
feedbacks is not within the scope of our work because
of the lack of support for configuration change and/or
feedback integration in current generation LTE networks.
However, with the increasing interest in Self-Organizing
Networks (SON), we see this as a venue for future work.

8 Related Work
Cellular network analytics systems Several deployed
cellular network analytics system [3, 15] are based on
streaming databases. Like other streaming databases such
as Aurora, Borealis, STREAM, and Telegraph [6, 8, 10,
12], it is very hard and inefficient to perform iterative
graph parallel computations. CellIQ is designed to sup-
port real time domain specific streaming graph computa-
tions. In addition, these streaming databases use replica-
tion or upstream backup for recovery. These mechanisms
require complex protocols. In contrast, CellIQ inherits
the efficient parallel recovery mechanism from Spark.

Recently cellular network analytics systems have
adopted the Hadoop based framework [5, 35]. However,
they do not support efficient streaming graph computa-
tions. Since CellIQ’s G-Stream abstraction unifies batch
processing, graph processing and stream processing, it
can support a range of processing models. For example,
it can combine batch and stream processing by incorpo-
rating historical data in the analysis.

Temporal graph analytics systems Most large-scale
graph processing systems have focused on static graphs.
Some of these systems [19, 25, 32] can operate on multi-
ple graphs independently. They do not expose an API or

8CellIQ assumes that the data is human generated in some of its
optimizations which may not be always valid in the IoT domain.

optimize for operations spanning multiple graphs. There
are a couple of notable exceptions [9, 11, 21]. comb-
BLAS [9] represent graphs and data as matrices and sup-
port generalized binary operators. Kineograph constructs
incremental snapshots of the graph. Chronos optimizes
the in-memory layout of temporal graphs and the schedul-
ing of iterative computation on those graphs. Unlike
CellIQ, they do not present a general API that supports in-
cremental sliding window computation and graph reduce
operations. More importantly, they are not optimized
for cellular network analytics. Cellular network graphs
present both spatial (i.e. graph structural) and temporal
locality. CellIQ is designed specifically to leverage these
characteristics to support efficient analysis.

Large-scale streaming Several recent systems [2, 14,
30, 31] support streaming computation with high-level
APIs similar to D-Streams. However, they do not support
streaming graph processing. One notable exception is the
recent announcement of Naiad [30]’s GraphLINQ [28].
GraphLINQ intends to provide rich graph functionality
within a general-purpose dataflow framework. Similar to
CellIQ, it can operate on streams of vertices and edges.
However, it is not optimized for cellular network ana-
lytics. As we have shown, optimizations that leverage
the characteristics of cellular network can significantly
improve performance. The techniques we presented can
be incorporated in other frameworks. For instance, our
spatial optimizations can benefit GraphLINQ.

9 Conclusion and Future Work
Current cellular networks lack a flexible analytics engine.
Existing cellular data analytic systems are either elemen-
tary or lack support for real-time analytics. In this paper,
we present CellIQ, an efficient cellular analytic system
that can support rich analysis tasks. It represents cellu-
lar network data as a stream of property graphs. Lever-
aging domain specific knowledge, CellIQ incorporates a
number of optimizations such as geo-partitioning of input
data and co-partitioning of vertices and edges to reduce
data movements, radius-based message broadcast for ef-
ficient spatial operations, incremental graph updates to
avoid the cost of frequent joins in time window opera-
tions and differential graph updates for efficient sliding
window operations. Our evaluations show that these tech-
niques enable CellIQ to perform 2× to 5× faster com-
pared to implementations that do not consider domain
specific optimizations.

We see several arenas for future work. We are work-
ing on using CellIQ to perform root cause analysis on
operational LTE networks. We would also like to explore
the possibility of applying CellIQ’s techniques on do-
mains other than cellular networks. In this respect, we
are working on streaming graph analysis techniques that
are applicable to any arbitrary graphs.
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