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METHOD Open Access

CellMapper: rapid and accurate inference of
gene expression in difficult-to-isolate cell
types
Bradlee D. Nelms1,2*, Levi Waldron3, Luis A. Barrera2,4, Andrew W. Weflen1, Jeremy A. Goettel1, Guoji Guo5,

Robert K. Montgomery1, Marian R. Neutra1,6, David T. Breault6,7, Scott B. Snapper1,6,8, Stuart H. Orkin9,10,

Martha L. Bulyk4, Curtis Huttenhower11 and Wayne I. Lencer1,2,6*

Abstract

We present a sensitive approach to predict genes expressed selectively in specific cell types, by searching publicly

available expression data for genes with a similar expression profile to known cell-specific markers. Our method,

CellMapper, strongly outperforms previous computational algorithms to predict cell type-specific expression,

especially for rare and difficult-to-isolate cell types. Furthermore, CellMapper makes accurate predictions for human

brain cell types that have never been isolated, and can be rapidly applied to diverse cell types from many tissues.

We demonstrate a clinically relevant application to prioritize candidate genes in disease susceptibility loci identified

by GWAS.

Keywords: Cell type, Expression, Microarray, Genome-wide association study, Inflammatory bowel disease

Background

Measuring gene expression in specific cellular subsets is

key to understanding cellular function and differenti-

ation and how these processes are disrupted during dis-

ease pathogenesis. However, there are steep technical

challenges to obtaining pure populations of many cell

types for expression profiling [1]. The human brain pro-

vides a clear example: many brain cell types display ab-

normal gene expression patterns when grown in culture

[2] and must be acutely isolated from intact brain tissue

to insure physiological relevance. Validated cell isolation

protocols in mice often require the use of transgenic

animals to label specific cell types [3–6] and are not

applicable to humans. As a result, expression data are

only available for a small fraction of the ~150 cell types

[7] of the human central nervous system and this prob-

lem is similar for many other tissues.

One promising solution has been the development of

computational methods to infer cell type-specific expres-

sion information directly from heterogeneous samples

[8–19], such as undissociated tissue. These algorithms

take advantage of the fact that the relative proportion of

cell types varies from sample to sample, making it pos-

sible to statistically deconvolve expression changes in

the underlying cell types. For many biological problems,

it is not necessary to predict the total expression level of

every gene in each cell type [8, 12–16], but rather the

relative, or differential expression: specifically, which

genes are strongly expressed in one cell type relative to

others? It is these differentially expressed genes that fre-

quently control cell differentiation, define cell-specific

phenotypes, and provide the core signature of cell iden-

tity. By focusing on identifying differentially expressed

genes, it turns a more complex model-fitting problem

into a classification problem [9], opening the door to al-

gorithms that may be more sensitive, especially for rare

and difficult-to-isolate cell types. Several machine-

learning algorithms have been developed to address this

problem [17–19], each aimed at identifying genes with a

similar expression profile to an established set of cell

type-specific markers, referred to here as “query genes.”

* Correspondence: bnelms.research@gmail.com;

wayne.lencer@childrens.harvard.edu
1Division of Gastroenterology, Children’s Hospital and Harvard Medical

School, Boston, MA 02115, USA

Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Nelms et al. Genome Biology  (2016) 17:201 

DOI 10.1186/s13059-016-1062-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-016-1062-5&domain=pdf
mailto:bnelms.research@gmail.com
mailto:wayne.lencer@childrens.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


However, these algorithms all require very large training

sets of both positive and negative control genes (≥10 of

each) to define any cell type. This requirement poses a

severe limitation for most biological applications, as it is

difficult to curate such a large list of established marker

genes for even well-studied cell types and impossible for

many others.

Here, we present CellMapper, an algorithm optimized

for sensitive identification of cell type-enriched genes

using as little as a single query gene. We show that Cell-

Mapper can make accurate predictions for four human

brain cell types that have never been isolated and cannot

be addressed by any other computational method. We

then apply our algorithm to a large compendium of

19,801 microarrays and identify genes specifically

expressed in 30 diverse cell types of widespread import-

ance in human biology, demonstrating that CellMapper

can be readily used for cell types from many different tis-

sues. Finally, we explore a clinically relevant application to

prioritize candidate genes in loci identified by genome-

wide association studies (GWAS). Our approach can be

applied to any transcriptionally defined cell population

using publicly available microarray data.

Results and discussion
CellMapper takes as input (1) a large set of gene ex-

pression data and (2) a query gene (or genes) specific-

ally expressed in the cell type of interest and then

estimates the probability that every other gene in the

dataset is co-expressed with the query gene (Fig. 1a).

Intuitively, CellMapper returns a gene list ranked ac-

cording to the predicted expression level within the cell

type of interest relative to others. The genes predicted

to be most specifically expressed will be at the top of

the rank list, followed by genes with decreasing levels

of enrichment.

CellMapper is designed to make accurate predictions

using as little as a single query gene, which can be se-

lected from standard cell-specific markers employed by

experimental techniques such as flow cytometry, im-

munohistochemistry, and promoter-driven conditional

mouse knock out models. An important component of

our algorithm is a filter based on singular value decom-

position (SVD), which amplifies biologically informative

signals in the expression data (Additional files 1 and 2).

SVD-based filters have found diverse applications in

biology, such as increasing sensitivity when reverse-

engineering gene regulatory networks [20, 21] and con-

trolling for population structure in GWAS [22], but

have not been explored in the context of predicting cell

type-specific expression before. In a test application to

predict tissue-enriched genes (e.g. liver, heart, brain),

we found that the CellMapper SVD filter both in-

creased sensitivity and made the final algorithm con-

sistently accurate across a range of tissues (Additional

files 3 and 4). The SVD filter is likely beneficial for

multiple reasons (discussed further in Additional file 1),

such as enhancing subtle biological signals, reducing

batch effects, and increasing robustness to bias in

dataset sample composition (Additional file 5).

As a first test of CellMapper’s performance, we com-

pared it to in silico nano-dissection [17]—the most re-

cent and sensitive machine-learning algorithm to predict

cell type-enriched genes from heterogeneous microarray

data. In silico nano-dissection was previously shown to

have good prediction accuracy for kidney podocytes

using a large set of human kidney microarray data [17]

and so we applied CellMapper to this same dataset using

a b

Fig. 1 Overview and validation of CellMapper. a Schematic of the approach. CellMapper takes as input a cell type-specific query gene (green) and

a set of gene expression data and finds genes with a similar expression profile to the query gene (e.g. “Gene C” above, yellow profile). b Performance

comparison between CellMapper and the machine learning algorithm, in silico nano-dissection [17]. CellMapper and in silico nano-dissection were

each applied to identify podocyte genes and evaluated based on the recovery of an experimentally defined set of podocyte genes [23]. In

silico nano-dissection was applied using the training set selected by Ju et al. [17] for their analysis (46 query genes and 97 negative control

genes) or a smaller training set of ten query genes and ten negative control genes (the smallest training set permitted by the algorithm, see

“Methods”). CellMapper identified the experimentally defined podocyte genes with similar precision to in silico nano-dissection at all levels of

recall, despite using only one query gene
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the query gene MAFB. We found that CellMapper iden-

tified experimentally-defined podocyte genes [23] with

similar precision to in silico nano-dissection at all levels

of recall (Fig. 1b), despite using a much smaller training

set of query genes (1 query gene for CellMapper versus

47 query genes plus 97 negative control genes for in

silico nano-dissection). This finding was consistent when

CellMapper was run using podocyte marker genes other

than MAFB as the query gene (Additional file 6). We

then repeated in silico nano-dissection with a smaller

training set of ten query genes and ten negative control

genes (the smallest training set permitted by the algo-

rithm). When using this smaller training set, we observed

a decrease in performance for in silico nano-dissection,

such that it performed noticeably worse than CellMapper

(Fig. 1b, light gray line). Thus, CellMapper achieved simi-

lar accuracy to in silico nano-dissection while requiring

substantially fewer query genes.

CellMapper is accurate for cell types that cannot be

approached by other methods

We next applied CellMapper to identify genes expressed in

four cell types of the central nervous system—GABAergic

neurons, noradrenergic neurons, serotonergic neurons, and

NG2 glia—using human microarray data from the Allen

Brain Atlas [24]. These cell types were selected because

they are relevant to human disease [25, 26], but have not

been isolated from adult humans for expression analysis

before. In addition, the relatively limited knowledge of

specific markers for these cell types makes it difficult to

apply algorithms that require a large training set, such as in

silico nano-dissection. The Brain Atlas provides a unique

opportunity to fill this gap in expression data using

CellMapper: it includes microarrays from 900 distinct sub-

regions of the adult human brain, each with varying cellular

composition, and it contains sufficient signal to differentiate

genes expressed in the major brain cell classes (neurons,

astrocytes, oligodendrocytes, and microglia) [24] and likely

other brain cell types. We applied CellMapper to

search the Brain Atlas dataset using query genes

specific to GABAergic neurons (GAD1), noradrenergic

neurons (SLC6A2), serotonergic neurons (SLC6A4), and

NG2 glia (PDGFRA). Each of these genes are standard

markers for their respective cell type, and three have been

previously used to experimentally isolate the cell type for

expression profiling in mice [3, 5, 6]. This analysis

returned between 61 and 211 genes per cell type at a false

discovery rate (FDR) of 0.01 (Additional file 7).

To evaluate the accuracy of our results, we took two

complementary approaches. In the first, we examined

CellMapper predictions for literature-defined markers

(positive controls) of each cell type, including GABAergic

neurons (GAD2, SLC6A1, SLC32A1, DLX1, and DLX2),

noradrenergic neurons (DBH, TH, MAOA, CYB561, and

ADRA2A), serotonergic neurons (FEV, TPH2, HTR1A,

SLC18A2, and GATA2), and NG2 glia (CSPG4, OLIG1,

OLIG2, and SOX10). CellMapper correctly associated all

positive control genes with the expected cell type (Fig. 2a),

while excluding markers of the other cell types. In

addition, CellMapper excluded genes known to be absent

in these cell types, such as markers for astrocytes (S100B,

GFAP, SLC1A3, FGFR3, AQP4, and GLUL), microglia

(CX3CR1, AIF1, CSF1R, FCGR1A, and TREM2), and ma-

ture oligodendrocytes (PLP1, MOBP, MBP, MAG, and

CMTM5). In the second approach, we asked whether

CellMapper predictions for each cell type were enriched

for genes associated with these cell types as measured by

expression profiling in mice [3–6], where these cells have

been experimentally isolated. We found that our predic-

tions for GABAergic neurons, noradrenergic neurons, se-

rotonergic neurons, and NG2 glia were each significantly

enriched for genes expressed by the corresponding cell

type in mice (p = 8 × 10−24, p = 3 × 10−9, p = 7 × 10−32, and

p = 5 × 10−15, respectively; Fisher’s exact test), and these

findings were consistent when CellMapper was re-applied

using truncated versions of the Allen Brain Atlas dataset

(Additional file 8, left) or an alternative brain microarray

expression compendium (Additional file 8, right).

We next attempted to apply a range of existing com-

putational methods to this problem, including in silico

nano-dissection [17], weighted gene co-expression net-

work analysis (WGCNA) [10], and three “computa-

tional deconvolution” algorithms from the CellMix [12]

R package: deconf [15], the digital sorting algorithm

(DSA) [13], and semi-supervised non-negative matrix

factorization (ssNMF) [14]. Of these, only in silico

nano-dissection was designed to predict genes expressed

selectively in difficult-to-isolate cell types (similar to Cell-

Mapper); all other algorithms can be used for this pur-

pose, but were motivated by distinct biological problems

and are not expected to perform optimally in this applica-

tion (Additional file 9). We applied each algorithm to the

Brain Atlas dataset using the same query genes as above,

except for in silico nano-dissection, which required at

least ten genes, and WGCNA, which is unsupervised and

does not accept query genes. Then we assessed how ac-

curately each algorithm identified the experimentally-

defined cell type genes in mice [3–6], as quantified by the

area under the precision-recall curve (AUPR). CellMapper

consistently outperformed all other algorithms (Fig. 2b–e),

with the other algorithms showing particularly poor per-

formance for GABAergic neurons and NG2 glia (Fig. 2b,

e). Supporting this conclusion, the other algorithms were

also unable to identify standard cell type markers for most

of these cell types (Additional file 10). One explanation for

this difficulty is that these four cell types are relatively

uncommon—comprising less than 10 % of total cells in

most regions of the brain—and thus pose a particularly
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challenging problem for computational prediction. For

comparison, all algorithms performed reasonably well for

the major brain cell classes (neurons, astrocytes, oligoden-

drocytes, and microglia), with CellMapper and in silico

nano-dissection consistently outperforming the others

(Additional file 11). Thus, CellMapper can make accurate

predictions for rare cell types that cannot be addressed by

other methods.

Application to diverse cell types

We also tested CellMapper on a large panel of additional

cell types (Additional file 12), this time extending our ana-

lysis to include non-brain cell types, with multiple repre-

sentatives of all major cell classes (neural, epithelial,

connective tissue, muscle, and hematopoietic). In order

to apply CellMapper to cell types outside the brain, we

gathered three additional large microarray datasets.

The first two are meta-analyses of gene expression in

human [27, 28], each of which integrated expression

data from a wide range of sample types—including

whole organs, purified cell populations, and cell lines.

The third is a meta-analysis of gene expression in

mouse [29] and includes microarrays from a similarly

diverse set of samples. Combined, these additional data-

sets comprise 16,090 microarray samples and contain

expression data for 20,411 genes. This large microarray

compendium covers essentially every mammalian tissue

and contains samples of most cell types in purified and/

or mixed form.

We curated one query gene for each cell type and

applied CellMapper to search the microarray datasets

using these query genes (Additional file 12). This ana-

lysis resulted in a mean of 331 cell type-enriched genes

predicted per cell type (FDR ≤ 0.01; Additional file 1).

Again, the quality of our results was evaluated using

literature-curated positive control genes (both the posi-

tive control genes and references used to select them are

described in Additional file 13) as well as a set of nega-

tive control genes, which included cell-specific markers

for non-target cell types (Additional file 13, bold genes)

and a reference set of housekeeping genes [30]. For

every cell type, CellMapper identified over half of the

positive control genes within the top 100 predictions

(Fig. 3), and excluded almost every negative control

gene. In total, 205 out of 236 positive controls were

ranked within the top 100 predictions for the correct cell

type (86.9 %) and all but six were ranked within the top

500 predictions (97.5 %). Thus, CellMapper is accurate

for both single-organ and multi-organ cell types and for

cell types difficult to isolate or culture (e.g. Schwann

cells, Paneth cells). For applications of CellMapper to

additional cell types, both the algorithm and pre-

processed microarray data are available as an R package

in Bioconductor.

Prioritizing candidate genes affecting human disease

GWAS have linked numerous human genetic variants,

such as single nucleotide polymorphisms (SNPs), to

a b c

d e

Fig. 2 Application of CellMapper to brain cell types that are difficult to address by other methods. a CellMapper was applied to the Allen Brain

Atlas dataset using the indicated query genes for four brain cell types. Dot charts display the rank of literature-defined cell-specific markers (positive

controls) within CellMapper’s predictions for each cell type. Dots are colored based on their known primary cell type of expression. Dark gray shading

covers the area (rank list) required to identify all positive control genes for each cell type. A similar analysis using query genes other than GAD1, SLC6A2,

SLC6A4, and PDGFRA for the four cell types is provided in Additional file 16. b–e Performance evaluation of CellMapper and other computational

methods to recover genes expressed in the four brain cell types. Each method was evaluated based on the recovery of an experimentally-defined

[3–6] set of cell type-enriched genes in mouse, as quantified by the area under the precision recall curve (AUPR). WGCNA returns several

modules of gene co-expression, the best performing WGCNA module is plotted for each cell type
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different traits and diseases. Although each associated

variant implicates a genomic region that can include as

many as ten or more genes, only one is typically relevant

to disease pathogenesis [31]. One successful approach to

prioritize GWAS candidate genes has been to look for

genes that are selectively expressed in the tissue(s) or cell

type(s) most relevant to disease pathogenesis [32, 33].

CellMapper offers several advantages for this method of

analysis because it can profile almost any relevant cell

type, as long as one marker gene is known.

As a proof of principal, we applied CellMapper to

prioritize genes from two recent GWAS meta-analyses

of erythrocyte [34] and platelet [35] phenotypes, two

examples where high quality GWAS data are available

and the relevant cell type is unambiguous. CellMapper

predictions for erythrocytes and platelets were more

than tenfold enriched within 10 kb of SNPs associated

with red blood cell and platelet phenotypes, respectively

(p = 1.0 × 10−9, p = 6.9 × 10−5; Fisher’s exact test), pro-

viding initial evidence that CellMapper might be used

to highlight genes from these studies. Among the

GWAS loci for erythrocyte and platelet genes, we found

30 candidates predicted to be selectively expressed in

the relevant cell type (Additional file 14). One gene that

stood out was TRIM58 because it is in a locus associ-

ated with both erythrocyte and platelet cell number

(Fig. 4a) and predicted to be selectively expressed in

both cell types with high confidence (FDR < 10−15). To

test our expression prediction, we measured TRIM58

expression across hematopoietic cells by quantitative

real-time polymerase chain reaction (qRT-PCR), and

found that it was expressed exclusively in eryothrocytes,

platelets, and their common progenitors (Fig. 4b). This

result implicates a role for TRIM58 in the developmen-

tal program for erythrocytes, as just recently described

[36], and for platelets.

We next applied CellMapper to analyze GWAS re-

sults for the chronic inflammatory bowel diseases

(IBD), a complex set of diseases involving many cell

types, including some that lack gene expression pro-

files. We focused on the 163 IBD susceptibility loci

identified by Jostins, et al. [37], 38 of which lack any

candidate gene(s) highlighted by previous prioritization

strategies. Genes predicted by CellMapper to be differen-

tially expressed in T cells, B cells, NK cells, and platelets

were more than fivefold enriched among genes located

within 10 kb of IBD SNPs (p < 0.01 for all cell types),

highlighting the well-known relevance of the three

lymphocyte cell types to IBD [38] and supporting the view

that platelets also play an active role in disease pathogen-

esis [39]. We searched IBD loci for genes predicted to be

differentially expressed in these four cell types and four

others that contribute to IBD [38]—macrophages, simple

epithelial cells, goblet cells, and Paneth cells. This analysis

highlighted 64 novel candidates and provided additional

support for 75 previously implicated genes (Additional file

14). Example candidates highlighted by CellMapper are

C1orf106 and KIF21B (Fig. 4c), two genes in the same

locus predicted to be enriched in simple epithelial cells

and in T and NK cells, respectively. As before, we verified

Fig. 3 CellMapper is accurate across diverse cell types. CellMapper was applied using query genes for 30 cell types (Additional file 12); Tukey

boxplots display the rank of 4–10 literature curated markers (positive controls; Additional file 13) and ≥48 negative control genes (Additional file

13 and housekeeping genes from [30]) for each cell type, demonstrating that CellMapper sensitively identified established cell type markers in

every case. Filled circles represent the rank of all positive control genes; open gray circles represent negative control genes that fall outside 1.5

times the interquartile range of the other negative control genes (“outliers”). In only eight instances (0.5 %) was a negative control gene identified

within the top 100 predictions for a cell type. EECs enteroendocrine cells
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our expression predictions by qRT-PCR, this time using

human immune cell types isolated by FACS, cultured

endothelial and epithelial cell lines, and primary intestinal

epithelial organoids (Fig. 4d). The results confirm epithe-

lial expression of C1orf106, and T and NK cell expression

of KIF21B. This example illustrates another benefit of

CellMapper as a prioritization strategy for GWAS: Cell-

Mapper can be used to not only prioritize candidate

genes, but also to suggest which cell type(s) might be

affected for each candidate. C1orf106, the gene we discov-

ered to be epithelia-specific, is particularly interesting as

an IBD candidate because rare coding variants in this gene

have been associated with an increased risk for IBD [40].

To assess whether CellMapper could also be used to

prioritize candidates for other diseases, we comprehen-

sively searched for enrichment of disease candidate genes

among our top predictions for each of the 30 cell types.

We considered both genes linked to human genetic

disorders in Online Mendelian Inheritance in Man [41]

(OMIM) and genes in disease susceptibility loci identified

by GWAS [42]. Both OMIM genes and GWAS candidates

were significantly enriched in the top 200 predictions

across all cell types (p = 1.8 × 10−20 and 4.3 × 10−19, re-

spectively; Fisher’s exact test). Furthermore, we frequently

found that genes linked to individual diseases were

enriched in the top predictions for specific cell types

(Additional file 15) and these disease-cell type associations

primarily highlighted cell types with an established role in

disease pathology. These results demonstrate the potential

of CellMapper to prioritize genes for many other human

diseases.

Conclusions

We developed CellMapper as an approach to obtain the

gene expression profiles unique to individual cell types.

Such data are often required for continued advances in

biology and medicine. Unlike experimental methods to

define cell type-specific gene expression, CellMapper can

be rapidly applied using existing publicly available micro-

array data and knowledge of only a single cell-specific

marker gene. Markers can be used to delineate not only

individual cell lineages (DEF5A+ Paneth cells), but also

larger classes of cells with similar function (KRT8+ simple

epithelia), thus allowing the level of resolution to be tai-

lored to the needs of each specific biological question.

Furthermore, CellMapper is effective for cell types that

have never been isolated before, providing an opportunity

to fill gaps in available expression data.

a

b d

c

Fig. 4 Using CellMapper to prioritize GWAS disease genes. a The genetic locus surrounding sentinel SNP rs381144, associated with erythrocyte

(Ery) and platelet (MkP) cell number. Other relevant SNPs in the region are shown. All genes predicted for expression in erythrocytes and platelets

are displayed in red. b TRIM58 expression in primary mouse hematopoietic cells by qRT-PCR. MPP multi-potent progenitor, PreMegE pre-megakaryocyte-

erythrocyte, Ery erythrocyte, MkP megakaryocyte/platelet, GMP granulocyte-monocyte progenitor, Neu neutrophil, MΦ macrophage, cDC conventional

dendritic cell, B B cell, T T cell, NK natural killer cell. c The genetic locus surrounding sentinel SNP rs7554522, associated with inflammatory bowel disease

(IBD). Genes colored in purple are predicted for simple epithelial cells, genes colored in green are predicted for T and NK cells. d C1orf106 and KIF21B

expression in human primary cells and cell lines. Mono monocyte, HMEC1 endothelial cell line, Caco2 colon epithelial cell line, Organoid primary

epithelial organoid from small intestine biopsy. All bars are mean +/− SD (n = 3–7 independent biological replicates) and letters indicate statistically

significant differences between groups (p ≤0.05, Tukey’s honest significant difference test)
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Our results establish CellMapper as a general and ac-

curate method, and a resource for diverse applications in

biology and medicine. Not only can CellMapper identify

new cell type-specific markers, but the complete set of

genes predicted to be enriched in a cell type can be used

for many applications, such as inferring transcription

factor binding motifs [43] or identifying biological path-

ways particularly active in a given cell type. There is also

value in combining cell type-specific expression with

other sources of high throughput data in order to sug-

gest novel gene candidates for a pathway. We show this

application by integrating cell type expression with

GWAS data, but a similar approach could be applied to

other problems, such as to identify genes of a particular

class or function (e.g. membrane trafficking genes) that

are strongly expressed by a specific cell type (e.g. polarized

epithelial cells).

We found that CellMapper outperformed other compu-

tational methods and provided accurate predictions for

difficult-to-isolate cell types where the other methods

failed. This result highlights the need to develop computa-

tional tools optimized for the specific questions being

asked. For example, the three “computational deconvolu-

tion” algorithms we tested (DSA, deconf, and ssNMF)

were originally created to address problems distinct from

CellMapper: in diseases where the proportion of different

cell types varies according to disease state (e.g. cancer,

Huntington’s disease), these methods can distinguish be-

tween changes in gene expression caused by changes in

cell type frequency from those caused by altered gene ex-

pression within the individual cell types. This question is

biologically important and clinically relevant, but cannot

be addressed by CellMapper. Similarly, many algorithms

have been created to predict genes in a co-regulated

biological pathway based on co-expression analysis.

CellMapper could be applied to identify genes in a similar

biological pathway as a query gene, but we would not

expect it to compete favorably with existing algorithms

[44, 45] designed for this purpose. For the important ques-

tion of identifying which genes are most selectively

expressed in a cell type, however, CellMapper excels.

A built-in limitation of CellMapper, and related ap-

proaches, is that they depend on the availability of cell-

specific marker genes and large, representative expression

datasets. Fortunately, marker genes have been established

for a wide variety of cell types and the requirement of a

single marker gene is no greater than that needed by ex-

perimental approaches such as by FACS and immunohis-

tochemistry. The availability of expression data will be

most limiting for rare cell types that populate a single

organ, but we showed that CellMapper can still separate

genes expressed in closely related cell types such as

neuron subtypes and intestinal epithelial lineages. Another

limitation is that CellMapper has currently only been

validated for use with microarray data. Certain classes of

genes, such as long non-coding RNAs, are not well repre-

sented in most microarray platforms. Many algorithms

that explore gene co-expression relationships have trans-

lated well to RNA sequencing (RNA-Seq) data [46], and

CellMapper in principle could be adapted for RNA-Seq to

allow for more complete coverage of the transcriptome.

Methods

Dataset acquisition and processing

Four large microarray datasets were gathered for this

study, each comprising numerous microarray experiments

performed on a single Affymetrix platforrm. Two of the

datasets were downloaded from ArrayExpress (accession

numbers E-MTAB-62 and E-MTAB-27); these contain

5372 experiments on the Human Genome U133A array

[28] and 1323 on the Mouse Genome U74A array [29].

The third dataset was kindly provided by J. Engreitz, and

contains 9395 experiments on the Human Genome U133

Plus 2.0 array [27] (now available on GEO: GSE64985).

RMA-normalized expression values were adjusted to re-

duce the influence of technical bias (i.e. variation in

hybridization conditions or starting material) using the R

package bias 0.0.3 [47]. In addition, a fourth normalized

dataset was downloaded from the Allen Brain Atlas [24]

and analyzed without further processing. To generate an

intestine-specific subset of microarray data (used for the

four intestinal epithelial lineages), all samples from the

Engreitz et al. [27] dataset with the terms COLON* or

INTESTIN* in the title or abstract of the GEO submission

were included, as well as samples from the Lukk et al. [28]

dataset that were annotated by the authors as from

“colon,” “colon mucosa,” or “small intestine.” Kidney

podocytes were analyzed using the same datasets as in Ju

et al. [17] (GEO accessions: GSE32691, GSE35488,

GSE37455, GSE37460, and GSE47185).

Probesets were mapped to Entrez gene identifiers with

the Bioconductor annotation packages hgu133a.db [48]

and mgu74av2.db [49], and values for probesets mapping

to the same gene were averaged to produce a single ex-

pression measurement for each gene. Mouse Entrez gene

identifiers were then mapped to the corresponding human

orthologs using a hierarchy of orthology predictions: first,

mouse genes were mapped to human orthologs using

orthology predictions from the Mouse Genome Institute

(MGI); second, genes not mapped by MGI were then

matched to human genes with an identical HGNC name;

third, the remaining genes were mapped using orthology

predictions from Inparanoid, then Ensembl, and finally

Homologene. This hierarchical mapping strategy ensured

reasonable specificity while maintaining greater sensitivity

by using multiple orthology databases. All orthology pre-

dictions were downloaded from the HGNC Comparison

of Orthology Predictions (HCOP) database [50].
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Performance evaluation of computational algorithms

This section describes all performance evaluation to

compare between computational algorithms in the main

text. Each algorithm was tested against a gold standard

of experimentally defined cell type-enriched genes in

mice. Podocyte gold standards were from Table S1 of

Brunskill et al. [23]. Serotonergic gold standards were

from Table 1 of Dougherty et al. [5]. GABAergic neuron

gold standards were all genes with a mean expression at

least threefold higher in the GAD1+ samples from

Sugino et al. [3] than in other samples. Gold standards

for NG2 glia and the major brain cell class were all

genes with a mean expression at least threefold higher in

the purified cell type than in the other samples from

Zhang et al. [6]. Noradrenergic gold standards were all

genes from Table S2 of Grimm et al. [4] with a “Ratio

LC” greater than ten (more than tenfold higher expres-

sion in Noradrenergic neurons than the whole-brain ref-

erence) and a “Ratio LC” at least fivefold greater than

the ratio for other neuron subtypes. Gold standard genes

from mouse were then mapped to the orthologous hu-

man genes using the procedure described in the “Dataset

Acquisition and Processing” section, above.

To predict cell type-enriched genes with in silico nano-

dissection: in silico nano-dissection was applied using the

nano-dissection web server (nano.princeton.edu) and ei-

ther the “Renal Microdissections” or “Allen Brain Atlas”

datasets. For podocytes, we used the positive and negative

control training sets from the original nano-dissection

paper (47 positive and 97 negative control genes) or a

smaller training set of ten positive and ten negative con-

trol genes, which included the ten podocyte markers listed

in Additional file 13 plus MAFB as positive controls and

markers for the other major kidney cell types as negative

controls (negative controls: CDH5, KDR, and TEK for

endothelia; ACTA2, CD34, and PDGFRB for mesangial

cells; AQP1, SLC12A1, SLC12A3, and UMOD for tubule

cells). Positive controls for the brain cell types were:

GABAergic neurons (GAD1, GAD2, SLC32A1, SLC6A1,

DLX1, DLX2, ABAT, ARX, GABBR2, and NPY), noradren-

ergic neurons (SLC6A2, DBH, MAOA, CYB561, TH,

ADRA2A, SLC18A2, SLC31A1,TFAP2A, and TFAP2B), se-

rotonergic neurons (SLC6A4, SLC18A2, FEV, TPH2,

HTR1A, GATA2, GATA3, TPH1, HTR1B, and DDC), NG2

glia (PDGFRA, CSPG4, SOX10, OLIG1, OLIG2, SOX8,

SOX3, GPR17, C1QL2, and NKX2-2), neurons (L1CAM,

SYT1, NRXN1, SNAP25, SLC12A5, TUBB3, ENO2,

STMN2, SYN2, and SYN1), astrocytes (ALDH1L1, FGFR3,

GFAP, GJB6, F3, SLC1A3, AQP4, SLC1A2, GLUL, and

GJA1), oligodendrocytes (MOG, MOBP, PLP1, GJC2,

MAG, MAL, OLIG2, SOX10, MBP, and CNP), and micro-

glia (PTPRC, CX3CR1, CD68, CSF1R, AIF1, P2RY13,

FCGR1A, FCGR2B, SLC2A5, and TREM2). In the in silico

nano-dissection paper, the major brain cell types were

analyzed using training sets curated by the Human Protein

Reference Database (HPRD); we found that these HPRD

training sets resulted in extremely low AUPRs, which is

why we curated custom markers to apply nano-dissection

to the major brain cell types. As negative controls for the

four major brain cell classes, we used all markers for the

other three brain cell classes. As negative controls for the

four neural subtypes, we included markers for the other

three subtypes as well as a set of genes expressed in non-

target brain glia (ALDH1L1, SLC1A2, SLC1A3, GFAP,

GJB6, FGFR3, AQP4, GJA1, GLUL, F3, PTPRC, CX3CR1,

AIF1, CSF1R, FCGR1A, TREM2, FCGR1B, P2RY13,

SLC2A5, CD68, MOG, PLP1, MOBP, SOX10, MAG, MBP,

GJC2, OLIG2, CNP, and MAL).

To predict cell type-enriched genes with the digital

sorting algorithm (DSA), deconf, or semi-supervised non-

negative matrix factorization (ssNMF): DSA, deconf, and

ssNMF were applied to the Brain Atlas data using the

wrappers provided in the CellMix [12] R package. There

are two distinct options in the CellMix package for

ssNMF: ssKL and ssFrobenius. All reported AUPRs are for

the results obtained with ssFrobenius as this method re-

sulted in a consistently higher AUPR than ssKL.

To predict cell type-enriched genes with WGCNA:

WGCNA has been previously applied to the Allen Brain

Atlas dataset [24], and we gathered the 13 modules identi-

fied by this previous analysis (Table S4 of [24]). AUPR was

calculated for each individual module after ranking all

genes according to their module membership (the correl-

ation between each gene and the module eigengene) and

then the maximum AUPR achieved by any module was

reported.

The CellMapper algorithm

Below is a description of the CellMapper algorithm; a

more detailed discussion and rationale for the CellMapper

SVD filter is provided in Additional file 1.

Singular value decomposition (SVD) filter

Expression data (m genes × n samples) were scaled such

that each gene had a mean expression of 0 and standard

deviation of 1. The scaled expression matrix, X, was then

factored by SVD:

Xm�n ¼ Um�nEn�n V T
n�n

where U and V contain the right- and left-singular

vectors of X and Σ contains the singular values of X in

decreasing order along the diagonal. These SVDs were

then used to weight results using two components. First,

singular values are scaled by an exponent, α, in order to

reduce the relative importance of the early singular vec-

tors. Alpha can fall between 1 (no scaling) and 0 (all sin-

gular values have equal weight). We investigated choices
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of α (Additional file 4) and selected α = 0.5 for all ana-

lyses described in this paper. Second, the singular values

are multiplied by a weight term that smoothly filters out

singular vectors where the query genes are not well sep-

arated from the rest of the genome:

σk
0 ¼ σk

α � wkj j

wk ¼
X

g∈ querygenesð Þ

tanh u
g
k

� �

where σk represents singular value k, α is the singular

value scaling factor, and uk
g is the loading of gene g in

singular vector k, normalized so that the mean uk is 0

with a standard deviation of 1. The rationale for our

SVD filter, and the selection of the parameter α, are de-

scribed in detail in Additional file 1. After filtering the

singular values, the data were transformed back:

Xm�n ¼ Um�LΣL�L
0V T

n�L

where Σ' is the transformed singular value matrix, and L

is the number of singular vectors to keep during the fil-

ter (L ≤ n). We selected L to trim singular vectors that

account for less variance than an individual sample in

the original dataset (Kaiser’s criterion), thereby removing

singular vectors that mainly account for noise.

Calculate similarity to reference expression profile

After the SVD filter is applied, we calculate the mean of

the Fisher-transformed correlation of each gene, g, with

all query genes:

zg ¼
1

2N

X

Q∈querygenes

ln
1þ ρgQ

1−ρgQ

 !

where ρgQ is the Pearson’s correlation of gene g with query

gene Q and N is the total number of query genes.

Assessing statistical significance

We first standardize the Fisher-transformed correlations

by their median and median absolute deviation (MAD):

Sg ¼
zg−median zð Þ

1:4826�MAD zð Þ

P values are then calculated for Sg using the standard

normal distribution; this produces equivalent results to a

permutation test, as Sg closely approximates a standard

normal distribution when sample labels are scrambled

(R2 = 0.999996 in a normal QQ plot). The SVD filter,

query-driven search, and statistical significance are

calculated separately for each microarray platform, then

p values from all three platforms for each gene are

pooled together using Stouffer’s Z-score method.

Prioritizing GWAS candidates with CellMapper

We prioritized candidate genes located near GWAS

SNPs in two phases. In the initial phase, we determined

which cell types are “priority” cell types for a particular

GWAS disease. We first searched for GWAS positional

candidates enriched in the top 200 cell type-enriched

genes from each CellMap cell type (p ≤ 0.05; Fisher’s

exact test adjusted for multiple hypothesis testing with

Holm’s method). This enrichment analysis provided an

unbiased (data-driven) picture of which cell types might

be linked to the GWAS phenotype. We used a window

of 20 kb centered around each GWAS SNP to define

GWAS positional candidates; this window prioritizes

specificity (i.e. contains the most likely candidate genes)

at the cost of sensitivity (many potential candidates will

be missed). We then examined the literature to find

other cell types frequently associated with the GWAS

disease. Any cell types highlighted by either (1) the

enrichment analysis or (2) the literature were considered

as priority cell types. The majority of “priority” cell

types for a particular GWAS were highlighted by both

approaches.

In the second phase, we searched for genes located

near GWAS SNPs that are associated with one of the

priority cell types by CellMapper. For this phase, sensi-

tivity was emphasized over specificity: we considered

any genes in linkage disequilibrium with a GWAS SNP

up to a maximum distance of 250 kb and selected all

CellMap genes with an FDR ≤ 0.1.

Experimental validation of predicted GWAS candidate gene

expression

Purified cell samples were isolated for qRT-PCR as fol-

lows: for murine immune cells, splenocytes were isolated

from C57BL/6 wild-type mice. Cells were sorted by

fluorescence-activated cell sorting (FACS) based on the

following cell surface stains: B cells, CD3− CD19+; NK

cells, CD3− CD19− NK1.1+; dendritic cells, Lin− (CD3,

CD19) CD11b+ CD11c+ F4/80−; macrophage, Lin− (CD3,

CD19) CD11b+ F4/80+; neutrophils, CD11b+ Ly6G+; T

cells, CD3+ CD19−. For other murine hematopoietic

cells, 10–14-week old C57Bl/6 mouse bone marrow cells

were isolated by crushing iliac crest bones, femurae, and

tibiae in phosphate buffered saline (PBS) containing 5 %

FCS and 2 mM EDTA. After red blood cell lysis, the

remaining cells were stained with monoclonal antibodies

and sorted by FACS as described in Pronk et al. [51].

For human immune cells, peripheral blood mononuclear

cells were isolated from leukapheresis packs using a

ficoll gradient. Cells were sorted by FACS based on the

following cell surface stains: B cells, CD3− CD19+; NK

cells, CD3− CD19− CD56+; monocytes, Lin− (CD3,

CD19) CD14+; T cells, CD3+ CD19−. For solid tissue

cells, HMEC-1 cells were obtained from Sean Colgan
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and grown in MCDB 131 (Gibco) supplemented with 10 %

fetal bovine serum (Gibco), 10 mM L-glutamine (Gibco),

10 ng/mL mouse Epidermal Growth Factor (Peprotech),

and 1 ug/mL Hydrocortisone (Sigma). Caco-2 BBe cells

were obtained from Jerry Turner (University of Chicago)

and grown in DMEM (Gibco) supplemented with 10 %

fetal bovine serum. Two weeks before lysing cells for qRT-

PCR, Caco-2 cells were plated on 0.4 um polycarbonate

Transwell inserts (Corning) and grown with media changes

three times per week. Primary epithelial organoids were

generated from endoscopic biopsy samples of normal hu-

man duodenum and cultured according to Sato et al. [52].

For qRT-PCR, RNA was extracted from the purified cell

populations using the RNeasy micro kit (Qiagen), then con-

verted to first strand complementary DNA using Super-

script III reverse transcriptase (Invitrogen). Quantitative

PCR was performed on a BioRad C1000 Thermal Cycler

with a CFX96 Real Time PCR Detection System using

SYBR Green Master Mix (Invitrogen). Fold expression

change was calculated using a variant of the 2−ΔΔCT method

for multiple reference genes [53]. We selected OAZ1 and

SUMO2 as reference genes for mouse and SUMO2 and

TBP as reference genes for human. Calibrator samples were

arbitrarily chosen as erythrocyte (Fig. 4b), organoid (Fig. 4d,

left), and T cells (Fig. 4d, right). Primer sequences were

designed using primer blast [54] and synthesized by Inte-

grated DNATechnologies (Coralville, IA, USA).

To identify differential gene expression between cell

types, we first tested which of three linear models best fit

our data. The simplest model was that there is no differ-

ence in gene expression between cell types (the Null

model). The next model was that there are gene expres-

sion differences between cell types, but not between nega-

tive control cell types (the Cell Class model). The final,

and most complex, model was that there are gene expres-

sion differences between cell types regardless of class (the

Independent Cell Type model). Negative control cell types

were defined prior to analysis and were: GMP, Neu, M,

cDC, B, T, and NK for TRIM58; T, NK, B, Mono, and

HMEC-1 for C1orf106; and B, Mono, HMEC-1, Caco2,

and Organoid for KIF21B. The simplest model was pre-

ferred unless a more complex model was a significantly

better fit to the data (p ≤ 0.05, nested ANOVA F-test). The

Cell Class model was the best fit for TRIM58 and

C1orf106 and the Independent Cell Type model was the

best fit for KIF21B. Once the model was chosen, we tested

for differences between sample groups (either Independ-

ent Cell Types or Cell Classes) using Tukey’s honest

significant difference test.

Multiple-hypothesis testing

All p values were corrected for multiple hypothesis testing.

FDR was used when our goal was to identify candidate cell

type-enriched genes, as our conclusions would not change

if a small subset of these predictions were false positives

(Benjamini–Hochberg correction). Family-wise error rate

p values were used when the results of a statistical test

were interpreted directly and any false discoveries would

alter the conclusions (Holm’s method).

Additional files

Additional file 1: Description of CellMapper algorithm development

and rationale for the SVD filter. (PDF 92 kb)

Additional file 2: Schematic of the CellMapper SVD filter and algorithm.

CellMapper first performs an SVD of the microarray expression matrix to

extract major components of variation (singular vectors). Then it re-weights

the components of variation based on their estimated relevance to the

query gene, with larger weights given to components that are tightly

correlated with the query gene (e.g. “Component 3” is highly correlated

with the query gene expression pattern and receives a large weight).

Then the microarray data are reconstructed from the components using

the estimated weights. The result of this SVD filter is to emphasize the

components of variation that most distinguish the query gene and

dampen components that are less relevant to the given query. After

the SVD filtering process, genes are ranked based on the Pearson’s

correlation of their transformed expression pattern to that of the query

gene. (PDF 22 kb)

Additional file 3: Algorithm development, part 1: Performance evaluation

of five prospective algorithms using TiGER tissue genes as a gold standard

[55], compared to the final algorithm CellMapper. Tukey boxplots show the

change in area under the precision recall curve (AUPR) for each tissue,

relative to the AUPR achieved by the best-performing prospective algorithm

for that tissue. While all five prospective algorithms performed poorly

relative to the others in several tissues, CellMapper achieved the highest

AUPR in 25 out of 30 tissues and was always within 20 % AUPR of the best

method. This analysis was for algorithm development (see Additional file 1):

the prospective algorithms were not originally developed to identify

cell type-enriched or tissue-enriched genes, but we tested them in this

application because they have been effective using 1–2 query genes in

other contexts, such as finding genes in co-regulated biological pathways

(e.g. similar GO terms). MEM multi experiment matrix [44], SPELL Serial

Patterns of Expression Levels Locator [45], GR Gene Recommender [56], MI

mutual information. (PDF 11 kb)

Additional file 4: Algorithm development, part 2: Parameter

optimization for the CellMapper SVD filter, using test searches to find

tissue-enriched genes as defined in the TiGER database [55]. a Evaluation

of the free parameter, alpha. The SVD filter incorporates a free parameter,

alpha, which allows the strength of the filter to be tuned, ranging in

value from 1 (weak filter) to 0 (strong filter). Alpha values between 1 and

0.3 led to an increase in AUPR for 25 out of 30 tissues. An intermediate

value of 0.5 was chosen for the final algorithm and this parameter was

fixed prior to all analyses presented in the main text. b Evaluation of the

query-driven weight term (QDW). The SVD filter also includes a term,

abbreviated QDW, that decreases the weight of components in which

the query genes are not well separated from the rest of the genome.

The QDW term leads to an increase in performance beyond what is

seen using the alpha scaling factor alone. ***, p < 10−4; Wilcoxon singed

rank test. In both subfigures, AUPR was plotted relative to alpha = 1 and

no query-driven weight term, which is approximately equivalent to

Pearson’s correlation (it is equal to Pearson’s correlation with the low

variance principle components filtered, see “Methods”). (PDF 20 kb)

Additional file 5: Robustness of CellMapper to bias in dataset

composition. Samples were drawn from the Lukk et al. [28] dataset in

order to intentionally increase or decrease bias in sample composition

and the effect on algorithm performance was quantified. a Sensitivity to

adding redundant samples. CellMapper was applied, with and without

the SVD filter, to search for tissue-specific genes using 500 randomly

selected samples from the total microarray dataset, plus varying numbers
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of added “redundant samples.” For this analysis, “redundant samples”

were selected from a subset of the data annotated as “blood,” “bone

marrow,” and “mammary gland” because these three sample annotations

are the most over-represented in the Lukk dataset, accounting for over

half of all samples. While performance degraded when redundant samples

were added without the SVD filter, CellMapper actually performed better

and was able to benefit from the increase in sample size. b Sensitivity to

removing relevant samples. Samples annotated as belonging to a specific

tissue were removed from the Lukk dataset and CellMapper was applied

to search this truncated dataset for genes expressed in the tissue with

samples removed. This analysis was run separately for each of seven tissues

(“bone,” “colon,” “kidney,” “liver,” “ovary,” “prostate,” and “skin”), and the

mean change in AUPR across all tissues is reported. These tissues were

analyzed because they represent an intermediate number of samples in

the Lukk dataset (50–150 samples for each tissue or 1–3 % of the total).

(PDF 19 kb)

Additional file 6: Robustness of CellMapper to query gene choice;

companion figure to Fig. 1b. To test the sensitivity of CellMapper to the

choice of query gene, we repeated our analysis for kidney podocytes

using ten distinct query genes (MAFB and the nine positive control genes

in Additional file 13) and then assessed how well each analysis recovered

an independent, experimentally-defined set of podocyte genes in mouse

[23]. This plot shows the area under the precision-recall curve (AUPR)

achieved when using each of the ten query choices. For comparison, we

included a dotted line for the AUPR achieved by in silico nano-dissection

when given all ten query genes at once (light blue dotted line; the area

under the light gray line in Fig. 1b), or when given the original training

set of 47 positive control and 97 negative control genes (dark blue dotted

line; the area under the dark gray line in Fig. 1b). All ten single query gene

searches for CellMapper resulted in a higher AUPR than in silico nano-

dissection achieved when given all ten of these genes at once. MAFB was

selected as the primary query gene for podocytes in this study (i.e. the red

line in Fig. 1b) because it was used by the Genitourinary Developmental

Molecular Anatomy Project [57] (GUDMAP) for all podocyte labeling and

isolation in their large evaluation across kidney cell types. (PDF 20 kb)

Additional file 7: CellMapper predictions for each of the 30 cell types.

(XLSX 2677 kb)

Additional file 8: Robustness of CellMapper to dataset size and

composition. CellMapper was applied to predict genes expressed in

each of the eight brain cell types, using random subsets of (left) the

Allen Brain Atlas dataset or (right) an independent expression

compendium of 1237 human brain samples drawn from the Lukk et al.

[28] and Engreitz et al. [27] datasets (the “Affymetrix Brain Samples”

compendium). The accuracy with which each search identified the

experimentally-defined cell type genes in mice [3–6] was then quantified

by the area under the precision-recall curve (AUPR). AUPR was calculated for

50 randomly sampled datasets of the indicated sample sizes and then mean

AUPR was calculated. Results are reported as a heatmap, with all AUPRs

scaled relative to the performance achieved when using the complete Allen

Brain Atlas dataset for each cell type. The sensitivity to dataset abundance

varied, with maximum AUPR being reached between 100 and 2000

microarray samples depending on the cell type. Overall, we conclude

that a high quality, large, and uniformly collected dataset such as the

Allen Brain Atlas is likely to allow for accurate predictions for a wider

range of cell types. Black squares indicate that the AUPR was not significantly

different from chance (Bonferroni corrected p value > 0.05; permutation

test). (PDF 81 kb)

Additional file 9: Brief overview of computational algorithms tested in

Fig. 2. (PDF 100 kb)

Additional file 10: Previous algorithms fail to identify established marker

genes for four neural cell types; companion figure to Fig. 2b. This figure

replicates Fig. 2a using in silico nano-dissection, DSA, and Pearson’s correla-

tion—the best performing previous algorithms. Dot charts display the rank

of classic cell-specific markers (positive controls) for the four neural cell

types, as predicted by (a) in silico nano-dissection, (b) DSA, or (c) Pearson’s

correlation. Dots are colored based on their known primary cell type of

expression. Dark gray shading covers the area (rank list) required to identify

all positive control genes for each cell type. Only CellMapper accurately

identified classic marker genes for these cell types. (PDF 55 kb)

Additional file 11: Performance evaluation of CellMapper and other

computational methods to recover genes expressed in four major brain

cell classes: neurons, astrocytes, oligodendrocytes, and microglia. Unlike

the neural cell types examined in Fig. 2 and Additional file 16, these four

cell classes are fairly common in the brain and have been successfully

analyzed by previous computational algorithms. Each method was

evaluated based on the recovery of an experimentally defined [6] set of

cell type-enriched genes in mouse, as quantified by the area under the

precision recall curve (AUPR). All methods show some resolution to

resolve genes expressed in these cell types, but the best performance

was consistently from CellMapper and in silico nano-dissection. (PDF 24 kb)

Additional file 12: Table of query genes and expression datasets used

for each cell type in this study. (PDF 97 kb)

Additional file 13: Table of positive control cell type markers selected

for Figs. 2 and 3. Five markers were chosen for each of the neuron

subtypes and intestinal epithelial subtypes, four for NG2 Glia, and ten for

every other cell type. Genes in bold were used as negative control

markers for non-target cell types in Fig. 3. (PDF 152 kb)

Additional file 14: Table of genes within GWAS loci predicted for

expression in relevant cell types, focusing on loci associated with red

blood cell phenotypes, platelet phenotypes, or inflammatory bowel

disease (IBD). (XLSX 24 kb)

Additional file 15: Human disease genes are enriched in the top

CellMapper predictions; companion figure to Fig. 4. Enrichment of genes

linked to human genetic disorders (OMIM) or human GWAS phenotypes

(NHGRI) in the top CellMapper predictions. (a, c) Overall enrichment of

human disease genes within the top CellMapper predictions across all

30 cell types, as a function of the gene rank cutoff. (b, d) Enrichment of

genes linked to an individual OMIM disorder or GWAS phenotype within

the top 200 genes predicted for a given cell type. All cell type-disease

enrichments that reached statistical significance are shown. In panel (d),

a more permissive FDR cutoff of 0.2 was selected to favor sensitivity in

identifying potentially informative disease-cell type associations. Note that

at this cutoff, one in five associations are expected to occur by chance

and any conclusions should be interpreted appropriately. Syn. syndrome,

EKVP erythrokeratodermia variabilis et progressiva, ARVD arrhythmogenic

right ventricular dysplasia, SED spondyloepiphyseal dysplasia, SCID severe

combined immunodeficiency, FCAS familial cold autoinflammatory

syndrome, CMT Charcot-Marie-Tooth disease, MADD multiple Acyl-CoA

dehydrogenase deficiency. (PDF 176 kb)

Additional file 16: Robustness of CellMapper to query gene choice;

companion figure to Fig. 2a. To test the sensitivity of CellMapper to the

choice of query gene, we repeated our analysis for the three neuron

subtypes and NG2 glia using each of the classic cell markers (positive

controls) as query genes. Dot charts display the rank of the non-query

gene classic markers within CellMapper’s predictions for each cell type.

Dots are colored based on their known primary cell type of expression.

Dark gray shading covers the area (rank list) required to identify all positive

control genes for each cell type. Genes with promoters that have been used

to drive cell-specific expression in mice (i.e. cell-specific reporter mouse

strains available from cre.jax.org) are highlighted in bold with an asterisk

under the “Query Gene” column. These genes have well-established

expression patterns in the selected cell type and generally performed

well as query genes. Many of the other classic cell markers have alternative

sites of expression and were less effective as query genes. For instance,

SLC18A2 is expressed strongly in both serotonergic and noradrenergic

neurons and returned markers expressed in both cell types. Factors to

consider when choosing query genes for other cell types are described

in the CellMapper R Package vignette (http://bioconductor.org/packages/

CellMapper/). (PDF 69 kb)
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