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Research Article

CellMixS: quantifying and visualizing batch effects in

single-cell RNA-seq data

Almut Lütge1,2 , Joanna Zyprych-Walczak3, Urszula Brykczynska Kunzmann4, Helena L Crowell1,2, Daniela Calini5,

Dheeraj Malhotra5 , Charlotte Soneson2,4 , Mark D Robinson1,2

A key challenge in single-cell RNA-sequencing (scRNA-seq) data

analysis is batch effects that can obscure the biological signal of

interest. Although there are various tools and methods to correct for

batch effects, their performance can vary. Therefore, it is important to

understand how batch effects manifest to adjust for them. Here, we

systematically explore batch effects across various scRNA-seq data-

sets according to magnitude, cell type specificity, and complexity. We

developed a cell-specific mixing score (cms) that quantifies mixing of

cells frommultiple batches. By considering distance distributions, the

score is able todetect local batchbias aswell as differentiatebetween

unbalanced batches and systematic differences between cells of the

same cell type. We compare metrics in scRNA-seq data using real and

synthetic datasets and whereas these metrics target the same

question and are used interchangeably, we find differences in scal-

ability, sensitivity, and ability to handle differentially abundant cell

types. We find that cell-specific metrics outperform cell type–specific

and global metrics and recommend them for both method bench-

marks and batch exploration.

DOI 10.26508/lsa.202001004 | Received 5 December 2020 | Revised 7 March
2021 | Accepted 9 March 2021 | Published online 23 March 2021

Introduction

Batch effects and data integration are well-known challenges in

single-cell RNA-sequencing (scRNA-seq) data analysis and a variety

of tools have been developed to overcome them (1, 2, 3, 4 Preprint,

5). Often, the terms data integration and batch effect removal are

used interchangeably, but recently they have been distinguished by

complexity: batch correction refers to the removal of simple biases

(e.g., between datasets from the same laboratory) and data inte-

gration refers to matching data with nested layers of unwanted

variation (e.g., data from multiple laboaratories or protocols) (4

Preprint). Notably, benchmark studies of batch correction and data

integrationmethods showed differences in performance on datasets

depending on the batch effect complexity (4 Preprint, 5, 6 Preprint).

Although this underscores the need to know the nature and source of

a batch effect, there is no systematic understanding of how batch

effects manifest in single cell data and how much they can vary. Key

aspects that characterize batch complexity are the strength of the

batch effect with respect to other sources of variation and the cell

type specificity, for example, storage conditions could cause higher

stress on particular cell types or some cell types could generally

exhibit more variation in their expression profiles.

Synthetic data that provide a ground truth are important for

method evaluation (7). So far, simulations do not appear to reflect

the batch complexities of real data because integration results

based on simulations differed substantially from those based on

real datasets (2, 4 Preprint, 5). In particular, recent studies (4

Preprint, 5) introduced batch effects by multiplying the mean

counts of a certain batch by gene-wise batch factors sampled from

a log-normal distribution. We highlight below that batch effects

generally come with gene- and cell type–specific log fold changes,

and we thus, generated our own synthetic datasets that reflected

cell type specificity and covariance of real data batches.

Data integration aims to ensure consistent clustering across

different batches. Given the frequent use and varying performance

of integration methods (4 Preprint, 5, 6 Preprint), it is also important

to understand the impact of data integration on a per-dataset level.

There are different ways to assess the presence and strength of a

batch effect before and after integration. A useful qualitative way is

by visualization, by representing a dataset’s main axes of variability

in a two-dimensional space (e.g., using tSNE (8) UMAP (9)). However,

in datasets with multiple sources of variation and in comparative

settings, quantitative metrics are necessary to summarize the batch

effect. A variety of metrics have been proposed to quantify batch

effects or more specifically, the mixing of cells from multiples

batches (see Table 1). Some assign a score to each cell based on

neighbourhood mixing (cell specific), whereas other metrics assess

the batch mixing within each cell type (cell type specific) or

summarize a general batch mixing for the entire dataset (global);

indeed, cell-specific scores can be aggregated to the subpopulation
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level and all scores can be reported at a global level. A common

strategy of cell-specific metrics is to estimate the batch effect

within each cell’s k-nearest neighbourhood (knn), for example,

based on entropy. Most cell type–specific metrics use the con-

sistency or distortion of cell type clusters as a measure for the

batch effect, for example, based on the silhouette width. The only

global metric proposed so far is based on correlation of the batch

effect with principal components and their corresponding variance.

Despite the fact that these metrics serve the same purpose of

quantifying the magnitude of the batch effect, they showed distinct

differences in their rankings and results when applied to the same

datasets (4 Preprint, 5). Thus, it is important to understand dif-

ferences between the metrics and whether certain metrics are

advantageous in specific contexts.

Here, we developed the cell-specific mixing score (cms) to detect

bias according to a batch variable within scRNA-seq data. cms

compares batch-specific distance distributions of each cell’s knn. We

characterized nine batch effects with different sources of known bias

to explore the range of batch effects in real scRNA-seq data. Next, we

used these batch characteristics of real datasets to extend and

adjust the muscat simulation framework (10) to integrate cell

type–specific batch effects. We used these synthetic datasets to

benchmark metrics along several dimensions: scaling with the batch

strength, scaling with randomness in the batch variable, sensitivity to

detect batch effects and robustness to unbalanced batches.

Results

Characterization of batch effects

We explored batch effects across various sources and magnitudes

to be able to generate realistic synthetic data. In total, we analysed

seven datasets (some with multiple sources of batch effects) with

batch effects related to differences between patients, media

storage, and use of sequencing protocols (see Fig S1 and Table S1).

Initially, we focused on quantifying batch strength relative to other

sources of variation, such as cell type specificity.

For each gene (in each dataset), we fit a linear mixed model to

partition the variance (11) attributable to batch, cell type and an

interaction of batch and cell type:

Yg = μ + Xpαpg + Xbβbg + Xp:bγ p:bð Þg + εg; (1)

where Yg is the (normalized and log-transformed) expression

of gene g across all cells (for a dataset), μ is the baseline

expression, Xp, Xb, and Xp:b are design matrices for the (random) cell

types, batches and interactions, αpg~Nð0;σ2
pgÞ, βbg~Nð0; σ2

bgÞ, and

γpg~Nð0;σ2
ðp:bÞgÞ represent the corresponding random effects and,

εi~Nð0;σ2
gÞ represents the remaining error.

As shown in Fig 1A, batch effects attributed to sequencing

protocols (cellbench, hca, pancreas) showed the highest average

per cent variance explained by the batch effect (PVE Batch),

according to their highly variable genes (HVGs). Batch effects at-

tributed to sequencing protocols also showed the highest number

of genes with a high PVE-Batch. In contrast, in datasets with

batch effects attributed to media storage (csf_media, pbmc_roche,

pbmc2_media) or patients (csf_patients, pbmc2_pat, kang), most

genes showed a high percentage of variance explained by the cell

type effect (PVE-Celltype), whereas the batch effect influenced a

smaller subset of the genes. This is in line with our expectations:

storage conditions and differences between patients affect specific

genes, whereas sequencing protocols have a broader effect. In kang

and pbmc_roche, only a few genes showed a high PVE-Batch. Both

datasets also showed a mild batch effect, based on visual in-

spection of the tSNE (see Fig S2). We also find clear differences in

the per cent variance explained by the interaction effect (PVE-Int) of

Table 1. Batch mixing metrics: short summaries of metrics included in the benchmark.

Metric Level Basis Short description Interpretation

Cell-specific Mixing Score (cms) Cell knn, pca
Test for whether distance distributions from a
neighbourhood are batch specific

P-value: Probability to observe as large
differences in distance distributions assuming
the same underlying distribution

Local Inverse Simpson Index (lisi) Cell knn
Inverse of the sum of batch probabilities
within weighted knn

Effective number of batches in neighbourhood

Entropy Cell knn
Sum of the products of the batch probabilities
and their log within each cell’s knn

Randomness in the data according to the batch
variable

Mixing metric (mm) Cell knn
Median position of the fifth cell from each
batch within its knn

Number of cells within knn until each batch is
represented by five cells

Graph connectivity (graph)
Cell
type

knn-
graph

Fraction of directly connected cells within cell
type graphs

Proportion of non-distorted cell type
relationships

k-nearest neighbour Batch effect
test (kBet)

Cell
type

knn
Test for equal batch proportions within a
random cell's knn

P-value: Probability to observe as large
differences in batch proportions assuming the
same underlying proportions

Average silhouette width (asw)
Cell
type

pca
Average relationship of within and between
batch-cluster distances for each cell type

Indication of how well clusters are separated

Principal component regression
(pcr)

Global pca
Correlation of the batch variable with
principal components weighted by their
variance attributes

Proportion of variance attributed to batch
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Figure 1. Batch characterization.
(A) Gene-wise variance partitioning across datasets. Each dot in each ternary plot represents a gene’s relative amount of variance explained (by batch, cell type or
interaction). (B, C) Batch logFC distribution by cell type and batch effect in the cellbench and hca datasets, respectively. Each column represents a density plot of the
estimated logFCs for a batch/cell type combination. Dotted lines indicate the mean, 25%, 50% and 75% percentiles.
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the cell type and batch effect (int). For some datasets, such as

pbmc2_pat, there are more genes with a high PVE-Int than PVE-

Batch, whereas for other datasets, for example, pbmc2_media, most

batch-associated genes have the largest part of their variance

explained by batch. In the cellbench dataset, only a minority of

HVGs had some PVE-Int, whereas in the hca dataset, almost all HVG

genes showed some percentage of variance attributed to the in-

teraction. This aligns with findings from batch-associated log-fold

change (logFC) distributions. In the cellbench dataset, the logFC

distributions differ mostly between, but not within batches (see Fig

1B), indicating little to no cell type specificity of the batch effect. In

the hca dataset, the logFC distributions also differ between cell

types of the same batch (see Fig 1C), indicating high cell type

specificity.

Cell-specific mixing score (cms)

We developed a cell-specific mixing score to evaluate local batch

mixing, independently of clustering or cell type assignment. For

each cell, batch-wise distance distributions to the cell’s knn are

retrieved. cms scores the null hypothesis that the distances orig-

inate from the same distribution (across batches) using the

Anderson–Darling test (12) (see Fig 2A–D). To avoid the curse of

dimensionality, distances can be derived from Euclidean distances

in principal component analysis (PCA) space or any other low di-

mensional representation with meaningful distances. Because the

Anderson–Darling test is based on distances, and not directly on

the number of cells per batch, it is robust to differentially abundant

batches. The score for each cell can be interpreted as a P-value,

that is, the probability of observing such deviations in the batch-

specific distance distributions by chance (assuming they are all

derived from the same distribution). Thus, enrichment of low

P-values is indicative of poor batch mixing and a dataset with

randomly shuffled batch labels should yield uniformly distributed

P-values (see Fig 2E). A key parameter for the cms calculation is the

neighbourhood size, k, which determines which cells to include in

distance computations. We considered three ways of defining this

neighbourhood: cms_default uses the same k for all cells, with a

larger k oriented towards global structures and smaller k to detect

local effects; cms_kmin uses a dynamic density-based neigh-

bourhood, which takes into account that the optimal size of the

neighbourhood can vary within a dataset; cms_bmin uses a defined

minimum number of cells per batch and includes cells from other

batches until it reaches this minimum for all batches.

Comparison of batch mixing metrics (mms)

A variety of metrics have been proposed to quantify batch effects.

Here, we systematically compare eight metrics, including the cell-

specific mixing score (cms), local inverse Simpson index (lisi) (3),

Shannon’s entropy (entropy) (6 Preprint), mm (13), graph connec-

tivity (graph) (4 Preprint), knn batch effect test (kBet) (2), average

silhouette width (asw) (4 Preprint, 5) and principal component

regression (pcr) (4 Preprint). Short summaries of these metrics are

shown in Table 1 and detailed descriptions can be found in the

Materials and Methods section. In addition we tested different

variants for two of these metrics (cms and lisi). For cms, we tested

three ways of defining the neighbourhood (cms_default, cms_kmin,

and cms_bmin, as discussed above). For the inverse Simpson index,

we tested different ways to weight the neighbourhood: lisi uses

Gaussian kernel-based distributions for distance-based neigh-

bourhood weightening, wisi uses Euclidean distances to weight

neighbourhoods, and isi does not weight neighbourhoods at all.

Altogether, we designed five benchmark tasks to cover the most

relevant use cases of these metrics (see Table 2 for short de-

scriptions). One major application of these metrics is to assess the

severity of a batch effect and thus reflect the level of confounding.

For example, a larger score should result from a stronger batch

effect across datasets (Task 1). Metrics should be able to distinguish

between a batch effect and random mixing of batches (Task 2),

while also having high sensitivity to detect systematic differences

related to the batch variable (Task 3). A further application is to

compare batch removal or data integration methods, before and

after; metrics that are well suited for this task should scale with the

strength of the batch effect within the same dataset (Task 3) and

should be stable towards changes in composition between batches

(Task 4). Computational time and memory footprint can also be

important considerations (Task 5).

Task 1: reflection of batch characteristics

In this task, we tested a metric’s ability to discriminate between a

strong and a mild batch effect across datasets. This is an important

feature of these metrics as the impact of a batch effect is context-

specific and depends on how strongly interesting data charac-

teristics are confounded. To test this, we used the batch charac-

teristics and datasets explored above. In particular, we used the

average PVE-Batch across all genes and the proportion of DE genes

between batches as a surrogate for the strength of the batch effect

across datasets (see Fig 3). We then calculated the Spearman

correlation between these batch strength measures and the ag-

gregated metric scores. Scores were aggregated using the mean

score across all cells, thus to aggregate cell type–specific metrics,

we used the mean (weighted by the number of cells). Cell-specific

metrics, with the exception of isi, showed high correlation with at

least one of the surrogates. Most cell-specific metrics showed a

plateau in their score towards higher batch strength, suggesting a

maximal score has been reached and thus they cannot further

discern the strength of a batch effect. In Fig S2, we show 2D tSNE

projections of all datasets ordered by their percentage of DE genes

between batches. All datasets except the kang and pbmc_roche

dataset exhibit clear batch effects that can easily be identified by

visualization, where most neighbourhoods consist of cells from the

same batch. Although cell-specific metrics that only consider each

cell’s neighbourhood get saturated at their nominal minimum in

these cases (from the csf_patient dataset onwards in Fig S2), their

summarized score still reflects the overall order of datasets based

on batch strength measures. asw and pcr show lower overall

correlation with batch magnitude, but are nonetheless able to

distinguish mild batch effects (almost no DE genes between

batches; low average PVE-Batch) from strong batch effects. In a

relative sense, kBet and graph did not correlate well with batch

strength, that is, their absolute score does not appear to reflect

batch strength across datasets as defined here.
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Task 2: scaling with batch label permutation

All metrics have been proposed to detect transcriptional signatures

associated with the batch variable in scRNA-seq data. Therefore,

they should decrease/increase (depending on the directionality of

the metric) as batch labels are randomized, and achieve a

minimum/maximum when all labels are assigned at random; that

is, random labels serve as a negative control. We used two real

datasets, one with two clearly separated batches and one with a

moderate batch effect, and permuted a percentage of the batch

labels (from 0 to 100% in steps of 10%, see Fig 4A). For each metric,

we calculated the Spearman correlation of the mean score with the

percentage of permuted labels. All metrics, except asw and graph,

showed a high correlation in both datasets (see Figs 4B and S3). As

expected, scores for the fully randomized labels reveal a flat

P-value distribution for the cms scores, the effective number of

batches as average lisi scores, an average entropy close to 1 and a

pcr score of 0 (see Fig S4A–F). The asw score shows high correlation

with random label percentage in the dataset with a strong batch

effect (see Fig 4B), but low correlation (R = 0.16) in the dataset with a

moderate batch effect (see Fig S3). For this dataset, the asw score is

almost unchanged with increased randomness; we presume it fails

Figure 2. Cell-specific mixing score cms.
(A) A two-dimensional (2D) tSNE projection of synthetic single-cell RNA-sequencing data with two batches and a cell type–specific batch effect. Cell X is surrounded by
an equally mixed neighbourhood with no batch effect. (B) Batch-specific Euclidean distance distributions for all cells within k nearest neighbours (knn) of cell X in
principal component analysis space (PC1-PC10). cms (Anderson–Darling P-value) = 0.88. (C) A 2D tSNE projection of synthetic single-cell RNA-sequencing data with two
batches and a cell type–specific batch effect. Cell Y is surrounded by a biased neighbourhood with a batch effect. Distances towards cells from the “red” batch are larger
than those towards cells from the “blue” batch. (D) Batch-specific Euclidean distance distributions for all cells within knn of cell Y in principal component analysis space
(PC1-PC10). cms = 0.03. (E) Score distribution of cms in a dataset with four batches with 0%, 50% and 100% of batch labels permuted (see benchmark Task 2).
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more because of its limited sensitivity than its inability to scale with

randomness. In contrast, graph fails in both scenarios (see Figs 4B

and S3) because it is a metric to test the connectivity of cell type

clusters and the cluster membership is unchanged by permuting

batch labels; in fact, graph is the only metric that is fully inde-

pendent of the batch label.

Task 3: scaling with batch strength and detection limits in

synthetic data

To test overall sensitivity to detect batch effects, we used a sim-

ulation series with increasing batch effects. Within each series, we

sampled gene counts Ygcb from a negative binomial distribution

with mean, μgcb, and dispersion, ϕg:

Ygcb~NB
�

μgcb;ϕg

�

; (2)

for gene g in cell c from batch b. Similar to Equation (1), the means

are adjusted for each combination of batch and cell type (cluster),

giving an intercept parameter, βt
0g , which represents the baseline

relative expression level for cell type t. For each series, a reference

dataset is used to estimate ϕg, β
t
0g , the (effective) library size λc and

logFC parameters βtb
g for each batch. To modulate the batch

strength, these logFCs are multiplied by a factor θb, such that:

μgcb = exp
�

βt
0g

�

pλcp2
βtb
g ⋅θb

: (3)

Here, we multiplied batch-associated logFCs by a series of 13

factors θb 2 [0, 4] resulting in no batch effect, and both an at-

tenuated and increased batch effect relative to that estimated from

the reference dataset (see Fig 5A).

In total, we generated simulation series across seven reference

datasets (13 different multiplicative logFC factors for each dataset).

We computed Spearman correlation coefficients of the metrics

against the multiplicative batch factor θb. In general, cell-specific

and global metrics showed high concordance with the true relative

batch strength of the simulations, revealing correlation coefficients ≥0.9

(see Figs 5B and S5). Cell type–specificmetrics (kBet, asw, graph) showed

a dataset-dependent performance with correlations ≤0.7 for several

datasets. On average, kBet showed the lowest correlation with the true

(relative) strength of the batch effect. In some simulation series, scores

of neighbourhood-based metrics (cms, lisi, and kBet) were saturated

near their maximum before the highest batch logFC was reached.

Whereas cms and lisi flattened out and still showed high overall cor-

relation in these cases, kBet was already saturated at low batch logFCs,

which was reflected in a lower correlation coefficient (see Fig S5). To

compare a metric’s ability to detect subtle batch effects (detection

sensitivity), we evaluated at which relative batch strength (multiplicative

factor) the scores started to differ recognizably from their value in the

batch-free control dataset. We defined this batch detection limit as the

lowestmultiplicative factor that led to ametric scorewithmore than 10%

of the score’s overall range from the batch-free score. Because batch

logFCs in these simulation series were relative towards the logFCs of the

reference datasets, these limits cannot be interpreted as absolute limits,

but only in a comparative way acrossmetrics. cms, kBet, lisi, and entropy

showed the lowest batch detection limits and therefore highest sen-

sitivity, whereas pcr, graph, and asw showed the lowest sensitivity (see

Figs 5C and S5). In general, all cell-specific metrics except mm showed

strong sensitivity and also scaled with batch strength. For pcr and kBet,

there is a clear trade-off between sensitivity and scaling (see Fig 5D).

Task 4: unbalanced batches with differential cell type abundance

Another important aspect of quantifying batch effects is to ensure

that metrics are not sensitive to differential abundance of cell

types, since these can often be present even in the absence of

batch effects. To test this, we randomly removed an increasing

number of cells from one batch in one cell type in three simulated

datasets: the first dataset is effectively “batch-free,” the second has

moderate batch effect with cells still clustering by cell type and the

third one has clearly separated batches. A performant metric

should not change by removal of cells because the batch effect

itself remains unchanged. Fig 6A shows how metric scores changed

in the dataset with a moderate batch effect starting with ap-

proximately equal batch proportions (0% unbalanced) and fin-

ishing with one cell type uniquely present in one batch (100%

Table 2. Summary benchmark tasks: In total, five tasks were designed to evaluate scaling, sensitivity, stability, correspondence to real data batch
characteristics, and computational time and memory.

Name Measure Aim

Task 1: Batch characteristics
Spearman correlation of metrics with surrogates
of batch strength (e.g., PVE-Batch and proportion
of DE genes between batches) across datasets

Test whether metrics reflect batch strength/
confounding across datasets

Task 2: Scaling with batch label permutation
Spearman correlation of metrics with the
percentage of randomly permuted batch label

Serves as a negative control and determines
whether metrics scale with randomness

Task 3: Scaling with batch strength and detection
limits

Spearman correlation of metrics with the batch
logFC in simulation series on the same dataset;
minimal batch logFC that is recognized from the
metrics as batch effect

Test whether metrics scale with (synthetic) batch
strength; Estimate lower limit of batch detection

Task 4: Unbalanced batches
Reaction of metrics to imbalance cell type
abundance within the same dataset

Test sensitivity towards imbalance of cell type
abundance

Task 5: Computational time and memory
CPU time and memory usage according to number
of cells and number of genes

Assess computational cost of metrics

For each task, different datasets (synthetic, semi-synthetic, or real) were used.

CellMixS–batch effects in single cell data Lütge et al. https://doi.org/10.26508/lsa.202001004 vol 4 | no 6 | e202001004 6 of 17

https://doi.org/10.26508/lsa.202001004


unbalanced). We defined the proportion of removed cells that

caused a divergence in the metric score by more than 5% of its

score in a balanced setting (equal number of cells per batch in all

cell types) as the imbalance limit. An imbalance limit of 1 corre-

sponds to a metric that showed a stable score until all cells from

one batch within one cell type were removed. Fig 6B shows the

imbalance limits of all metrics across datasets. pcr remained un-

changed for all three batch scenarios. cms scores only exhibited

minor changes if one batch is completely removed and remained

otherwise stable. asw and mm only showed minor divergence from

their original score. lisi scores and entropy showed a clear dif-

ference already at 30–50% (cells from one batch removed) for the

moderate batch and also diverged with 70% removed in the batch-

free dataset. kBet was stable in the batch-free setting, but showed

low imbalance limits when the batch effect was moderate or strong.

graph remained unchanged for all datasets, except in the dataset

with separated batches.

Task 5: computational time and memory consumption

We evaluated CPU time (User time + system time) and memory

usage (maximum resident set size: RSS) in two synthetic datasets

with different numbers of cells (68,472 and 80,768) and genes (8,331

and 23,381). We downsampled datasets in steps of 20% to explore

Figure 3. Task 1—Reflection of batch characteristics.
Metric scores versus (surrogate) batch strength across the real datasets. Summarized metric scores (y-axis) are compared with the proportion of DE genes (top x-axis,
solid line) and the mean PVE-Batch (bottom x-axis, dashed line) per dataset. Datasets with a stronger batch effect (high percentage of DE genes/mean PVE-Batch) are
expected to show a higher overall metric score than datasets with mild batch effects (low percentage of DE genes/mean PVE-Batch). Spearman correlation coefficients of
metrics against the two batch strength measures are shown (R_PVE-Batch, R_DE) in the text boxes for each metric and evaluated in Task 1. Metric scores were
standardized by subtraction of their minimum and division of their range (maximum–minimum) across datasets. Directions were adjusted when necessary, such that all
scores increase with batch strength.
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run times and memory usage according to the number of cells (see

Fig 7). kBet took by far the longest CPU time (~38 h 30 min for 80,768

cells and 23,381 genes) and required the most memory, followed by

cms_bmin (~6 h). graph, entropy, and lisi were the fastest and most

memory efficient metrics (~10.8 min, ~11.4 min). cms_default and

cms_kmin were the only metrics with CPU times independent of the

number of genes. Althiough asw was among the fastest metrics, it

failed due to memory limitations for the largest dataset.

Figure 4. Task 2—Scaling with batch label permutation.
(A) A 2D tSNE projection of one semi-synthetic dataset. Batch labels were randomly permuted in 0–100% of the cells (batch 0 to batch 100) using steps of 10%. Expression
profiles and cell type assignments remained unchanged. (B)Metric scores by increasingly randomized batch label in the dataset. Scores were standardized by subtraction
of their mean and division of their SD across permutations. Directions were adjusted when necessary, such that all scores increase with batch strength. Grey lines indicate
the scores of the other metrics. Corresponding absolute values of the Spearman correlation coefficients (R) are shown in the text box of each subpanel.
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Figure 5. Task 3—Scaling and batch limits.
(A) A 2D tSNE projection of simulation series with increasing batch logFC factors (θb from Equation (3); for example, a factor of 0 represents a batch-free dataset). (B)
Boxplots of Spearman correlation coefficients of the metric scores and the relative batch strength for all seven simulation series. (C) Boxplots of batch limits, defined as
the smallest batch logFC factors such that metrics differ more than 10% from the batch-free score. A small batch limit indicates high sensitivity to detect variation related
to the batch variable. (D) Trade-off between batch detection sensitivity (batch limits) and scaling with batch strength. Shapes refer to metric types.
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Figure 6. Task 4—Imbalance limits.
(A) Changes in metric scores (within the same dataset) according to amount of imbalance. Imbalance refers to the increased removal of cells (0–100%) of one batch in
one cell type. Scores were centred by the score with equal number of cells from both batches (no removed cells) and scaled by the score’s range. Because gene-wise
batch logFCs remain unchanged, metrics that are able to robustly quantify the batch effect, despite differential abundance, should show a stable score around 0. Grey lines
indicate the other metrics’ scores. (B) Lollipop plots of imbalance limits across different batch scenarios. Imbalance limits are defined as the proportion of removed
cells from one batch and cell type that results in a metric score that differs more than 5% from the score of the balanced batch (no cell removed).
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Discussion/Summary

In this study, we explored batch effects andevaluatedmetrics to detect

and quantify batch mixing in scRNA-seq data. We analysed batch

characteristics in a variety of real datasets and observed different

magnitudes of batch effects, different numbers of affected genes, and

different levels of cell type specificity. Targeted towards these char-

acteristics, we developed a metric, cms, to quantify batch mixing in

scRNA-seq data, and consolidated the wide range of metrics to

quantify batch effectswithin the CellMixS R/Bioconductor package (14).

We compared the performance of cms against existing metrics in

a broad benchmark; in particular, we designed several tasks to

assess: (i) whether a metric scales with batch strength in an inter-

and intra-dataset comparison; (ii) whether a metric scales with

increasingly randombatch labels; (iii) a metric’s sensitivity to detect

batch effects; (iv) whether a metric is stable towards differential

abundance of cell types; (v) computational cost. To evaluate per-

formance, we generated synthetic data by adjusting the muscat

simulation framework (10) to reflect batch characteristics of real

data, using cell type–specific batch logFCs for each gene. An overall

summary of performance is shown in Fig 8, using thresholds to

categorize metrics into good, intermediate, or poor performance.

Overall, we find considerable differences between metrics that can

explain previously observed discrepancies (4 Preprint, 5). Since Task

1 was based on real data, there is no ground truth. Here, we es-

timated PVE-Batch and the proportion of DE genes as surrogates to

evaluate metric performance (and applied less stringent thresh-

olds for categorization). We used more stringent thresholds for

tasks based on ground truth within synthetic data (Task 3 and Task

4). Except for graph, all methods pass the negative control test (i.e.,

scale with increasing batch label permutation). Because graph is a

measure for the connectivity of cells from the same cell type, it

indirectly infers the strength of the batch effect as a relative dis-

tortion within cell type graph connections. Thus, graph is inde-

pendent of the batch labels themselves and cannot be evaluated in

Task 2. In summary, all cell-specific methods (cms, lisi, entropy, and

mm) perform well in most tasks. pcr, the only global method tested,

shows a stable performance in most tasks, but low sensitivity to

detect mild batch effects in synthetic data (Task 3). In contrast, cell

type–specific methods (asw, kBet, and graph) show a low perfor-

mance across several tasks, for example, they fail to scale with an

increased batch effect.

Cell- and cell type–specific metrics cannot differentiate between

strong and very strong batch effects, as they become saturated at

their maximal score in the simulation series of increasing batch

effects (Task 3). They are designed to find local patterns and only

consider neighbours for batch mixing; thus, they cannot detect

global shifts of these neighbourhoods. One could partly address

this by increasing the neighbourhood size, but this somewhat

defeats the purpose of using cell-wise scores. Last, large differ-

ences in computation and memory demands were observed. lisi,

pcr, and entropy should be considered when computational re-

sources are limiting; for datasets with more than 50,000 cells, kBet,

and cms_bmin cannot be recommended.

We tested different parameters that weight the neighbourhoods for

cms and lisi. In the across-dataset comparison, no neighbourhood

weighting (isi) and neighbourhoods determined by a minimal number

of cells per batch (cms_bmin) showed the lowest correlationwith batch

strength characteristics. Altogether, we find that weighted metrics (lisi

and wisi) outperform unweighted metrics (isi) and neighbourhoods

with a fixed number of nearest neighbours (cms_default) or dynamic

neighbourhoods (cms_kmin) outperform neighbourhoods determined

by a minimal number of cells per batch (cms_bmin), whereas reducing

the computational costs.

Figure 7. Task 5—Computational time and memory.
Metric’s CPU time (logarithmic scale) versus
maximum resident set size (RSS). Datasets were
down-sampled in steps of 20% starting with 68,000
cells (Dataset 1) and 80,000 cells (Dataset 2). The
two datasets also differ by the number of genes:
Dataset 1 contains 8,331 genes and Dataset 2 contains
23,381 genes.
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Althoughmost of themetrics have a clear interpretation, some (e.g.,

mm and graph) are less intuitive. Because mm’s range changes with

the number of batches, it is not suitable for across-dataset com-

parisons; instead, mm is most useful in a comparative setting (e.g.,

before and after integration) within the same dataset. Similarly, cell

type composition and cell state changes affect graph connectivity;

therefore, interpretations of the absolute value of graph are cell type–

and dataset-specific. In general, cell-specific scores provide additional

information about locality and can still be aggregated at the cell type

or global level. This additional information can be useful to detect and

understand local differences of a batch effect and guide strategies to

account for it in downstream analysis. While cell type–specific metrics

also provide local information, they depend on clustering and cell type

assignment, which themselves can be affected by the batch effect;

thus, it is desirable to have batch effect assessments that are inde-

pendent of cell type assignment. If cell type information exists, cell-

specific metrics can be run independently for each pre-determined

cell type to assess interference of batch and cell type effects.

Taking all our results together, cms and lisi are the top per-

forming methods for quantifying batch effects. They both show a

consistently high performance across all tasks, except that lisi

exhibits less stability toward cell type composition imbalance and

cms has higher CPU and memory requirements.

The various cell-specificmetrics are implemented in the CellMixS

R/Bioconductor package and all code for analyses here are

available at https://github.com/almutlue/batch_snakemake and

https://github.com/almutlue/mixing_benchmark (DOI:10.5281/zenodo.

4312672). Although CellMixS was developed with a focus on scRNA-seq

data, the implemented metrics are suited to a variety of genomic data

types, such as multiomics or high-dimensional cytometry data. Fur-

thermore, CellMixS uses established Bioconductor infrastructure and

can, therefore, be easily applied within other workflows.

Materials and Methods

Batch characterization

We used the fitVarPartModel function of the variancePartition R

package (11) to, for each gene, fit a linear mixed model to partition

the variance attributable to batch, cell type, and the interaction of

batch and cell type, as described in Equation (1). As a second

measure, we used the number of significant DE genes between

batches. DE genes were derived for each cell type using the edgeR R

package (15). As described in reference 16, we treated single cells as

pseudo-replicates using glmQLFTest to determine DE genes with an

adjusted P-value ≤ 0.05. The derived cell type–specific batch logFCs

(for each gene) were used to evaluate cell type specificity and

generate synthetic datasets (see the Simulation section).

Simulation

We adjusted the muscat (10) simulation framework for scRNA-seq

data to include batch effects with characteristics of real data. As in

the original framework, we estimated parameters from a reference

Figure 8. Benchmark summary.
Metric performance and ranking by benchmark task.
Methods are ranked by their overall performance from
top to bottom (numerical encoding good = 2,
intermediate = 1, poor/NA = 0). Following thresholds
for good and intermediate were used: batch
characteristics and random: Spearman correlation
coefficients ≥0.75, ≥0.5; scaling: Spearman correlation
coefficient ≥0.9, ≥0.8; detection limits of ≤0.6, ≤0.7;
imbalance limits ≥0.9, ≥0.75; CPU time ≤1, ≤2 h; RSS ≤50
GB, ≤70 GB.
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dataset and final counts were sampled from a (non-zero–inflated)

negative binomial distribution, as described in Equation (2). Batch

and cell-specific means, μgcb, were derived as described in

Equation (3). A batch tuning factor, θb, was included tomodulate the

batch strength by multiplying the cell type–specific logFCs. Thus,

gene and cell type correlations of the batch effect vector were

propagated from the reference dataset to the synthetic data. We

compared features between reference and simulated data using

the countsimQC (17) R package and compared batch characteristics

as PVE-Batch, PVE-Celltype, PVE-Int (see Fig S6A and B), and cell

type–specific logFC distributions between reference and simulated

datasets (see Fig S7A–F). Detailed analysis of each reference and

corresponding simulations are provided at https://almutlue.github.io/

batch_snakemake/index.html.

Benchmark

We compared metrics used to quantify batch effects in scRNA-seq

data in five benchmark tasks (see Table 2). For each task, we set a

threshold to determine good, intermediate, or poor performance of

each metric (see Fig 8). Task 1 and Task 2 received a threshold of

Spearman correlation coefficients ≥0.75 for good and ≥0.5 for in-

termediate. We used more stringent thresholds for tasks based on

synthetic data: Spearman correlation coefficient ≥0.9 and ≥0.8 for

Task 3 scaling, average detection limits ≤0.6 and ≤0.7 for Task 3

detection limits and imbalance limits ≥0.9 and ≥0.75 for Task 4. For

Task 5, we used the largest reference dataset (80,768 cells and

23,381 genes). We used a CPU time ≤1 and ≤2 h on this dataset as

thresholds for time and a RSS ≤50 and ≤70 GB as thresholds for

memory usage. To compare metrics, scores from cell-specific and

cell type–specific metrics were aggregated to the global level. We

used the mean score across all cells as aggregated score, thus to

aggregate cell type–specific metrics, we used the mean (weighted

by the number of cells).

Metrics

Cell-specific mixing score

The cell-specific mixing score compares batch-wise distance dis-

tributions according to each cell’s knn. Euclidean distances within

principal component space (top 10 components) are used. The

k-sample test uses the Anderson–Darling criterion to test the hy-

pothesis that k independent samples with sample sizes n1,…,nk
arose from a (potentially unspecified) common continuous dis-

tribution F. It is a rank test, and here the asymptotic P-value ap-

proximation from the kSamples (18) R package is used. cms is

implemented in the CellMixS (14) R package and here we used k =

200 nearest neighbours and three different ways of neighbourhood

specification. In default mode (cms_default), all k neighbours are

included into the distance distributions. To determine cms_kmin,

only cells before the first local minimum in the overall distance

distribution of neighbouring cells were included. This assumes that

the local minimum in the overall distance distribution defines a

less dense region of neighbouring cells, corresponding to a (bio-

logically) meaningful cell separation, for example, another cell type

cluster. We used kmin = 80 as a minimal number of cells to include.

cms_bmin was computed by including at least bmin = 80 cells per

batch.

Lisi

The inverse Simpson’s index was proposed to calculate the di-

versity within each cell’s neighbourhood in scRNA-seq data (19). It

represents the probability that different entities (here batches) are

taken at random within a specified neighbourhood and its inverse

represent the effective number of these entities. For each cell, the

probability of a certain batch, p(b), is determined from the batch

abundances within its knn. The inverse of the sum of probabilities

from all batches B is defined as inverse Simpson index:

isi =
1

�
 B

b = 1pðbÞ

: (4)

The local inverse Simpson index uses Gaussian kernel–based

distributions of neighbourhoods for distance-based neighbour-

hood weighting to be sensitive towards local batch diversification

within the knns. We used the lisi (19) R package with default pa-

rameters to determine the lisi score; CellMixS (14) to determine the

isi andwisi score with k = 200. The wisi score uses a simplifiedway of

distance-based neighbour weighting by 1
d2 , with d representing the

Euclidean distance in principal component space.

Mixing metric

The mm uses the median position of the k-th cell (kpos) from each

batch within its knns as a score to quantify batch mixing (13). In

general, the lower the score, the bettermixed the neighbourhood is,

but its absolute range depends on the number of batches and kpos,

for example, even with constant kpos (default = 5) and constant size

of knn (default = 300), the metric’s minimum is 10 for a dataset with

three batches and 15 for a dataset with five batches. By default,

CellMixS uses k = 300 and kpos = 5 to compute the mm.

Shannon’s entropy

Shannon’s entropy can be interpreted as the level of information in

a random variable and thus also used as a measure for the level of

information of the batch variable in a scRNA-seq dataset (5, 6

Preprint). We calculated the Shannon’s entropy of the batch var-

iable within each cell’s knn using the relative abundance of batch i

as probability, p(xi), for batch i across all batches n:

entropy = −

1

jnj
�
n

i = 1

pðxiÞ p logðpðxiÞÞ: (5)

The entropy is divided by the number of batches |n| to get a

range between 0 and 1 with 0 corresponding to a low level of

randomness in the data. Here, we use k = 200 to calculate the

entropy for each cell.

k-nearest-neighbour batch effect test (kBet)

The knn batch effect test was specifically developed to detect batch

effects in scRNA-seq data (2). It compares the batch label com-

position of random cell neighbourhoods (local) with the overall

(global) batch label composition using a χ2-test. This is repeated for

a random subset of cells and summarized in a rejection rate of the
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hypothesis (i.e., local and global batch compositions are the same).

We computed kBet separately for each cell type to account for

differences in the batch compositions between cell types.

Graph connectivity

Graph connectivity has been proposed as a metric to evaluate

batch integration methods based on within-cell type connections

(4 Preprint). It determines the relative connectivity of cells from the

same cell type in the knn graph G. graph relies on the assumption

that in a batch-free dataset, all cells from the same cell type t are

directly connected within the subset graph G(Nt, Et) (with nodes Nt

and edges Et). The score represents the average proportion of the

directly connected part (longest connected component: LCC) of the

cell type graph relative to the overall number of cells per cell typeNt

across all cell types T:

graph =
1

jTj
�
t2T

jLCCðGðNt; EtÞÞj

Nt
: (6)

The graph ranges from 0 to 1, with 1 corresponding to completely

connected subset graphs and thus a batch-free dataset. We used

the buildKNNGraph function of the scran R package (20) with k = 5 to

generate the knn graph for each dataset and determined the

number and length of connected components using the compo-

nents function of the igraph (21) R package.

ASW

The asw is an established measure for cluster stability as it de-

scribes the relation of within-cluster distances/similarities and

between-cluster distances/similarities. To apply asw on batch

quantification, it is used to assess the stability of batch clusters (2, 4

Preprint, 5). Thus, asw is calculated to compare within-batch dis-

tances to between-batch distances. The asw of cell i in batch j is

based on the average distances ai of cell i to all other cells from

batch j and the average distances d(i, B) to all other batches B. The

difference between ai and the minimum bi = min(d(i, B)) of these

average distances describes the within-batch relation of cells

compared with the closest other batch. The silhouette width of cell i

is defined as follows:

si =
ai −bi

maxðai; biÞ
: (7)

We used the average of all silhouette widths from the same cell

type as asw score. The silhouette width was computed using the

silhouette function of the R package cluster (22) with Euclidean

distances within the top 10 principal components of PCA space.

Here we report aswbatch = 1 − abs(asw) as asw score with a range

between 0 and 1, with 0 corresponding to completely separated

batches and 1 to mixed batches.

PCR

PCR (2, 4 Preprint) is based on PCA of the log normalized count

matrix C. For each principal component PC = {pc1,…,pcN}, the co-

efficient of determination R2 from a linear regression of the batch

variable B is calculated to get R2(PC|B). These coefficients are

weighted by the variance related to the principal components

Var(C|PC). The pcr score represents the overall contribution of the

batch variable to the variance of a dataset and is determined by the

sum of all weighted coefficients of determination:

pcr = �
N

i = 1

VarðCjPCiÞpR
2ðPCijBÞ: (8)

Weused the pca function of the PCAtools R package (23) on logcounts

of the 1,000 most variable genes to get principle components and their

corresponding variance. We then used the base R cor function to get the

Pearson’s correlation coefficient of each PC and the batch variable. Its

square is equivalent to the coefficient of determination from a linear

regression of the variables. We calculated pcr as described above and

scaled it by the overall variance represented of the top 100 PCs.

Datasets

In total, seven datasets (some with multiple sources of batch effect)

(see Table S1) were used. We used these datasets, simulations with

these data as reference and semi-synthetic data (e.g., with per-

muted batch labels) to benchmark the metrics. All datasets were

processed in a consistent way. For datasets where raw read counts

were used as the starting point (pbmc2_pat/pbmc2_media,

csf_pat/csf_media, pbmc_roche), we used the scDblFinder (24) R

package to filter for doublet cells. Quality control, filtering and

normalization was performed using the scater (25) and scran (20) R

packages. Genes that were detected in less than 20 cells and cells

with feature counts, number of expressed features, and percentage

of mitochondrial genes beyond 2.5 Median Absolute Deviations in

either direction from the median were excluded from further

analysis. All datasets were normalized by first scaling counts cell-

wise using pool-based size factors from library sizes (26) and then

using log transformation with a pseudocount of one. In datasets

without existing cell type assignments (pbmc2_pat/pbmc2_media,

csf_pat/csf_media, pbmc_roche), Seurat (13) R package v.3.0 was

used for integration based on canonical correlation analysis and

integration anchors frommutual nearest neighbours (1). Integrated

cells were clustered with a resolution of 0.2, including the 500 most

HVGs as identified by Seurat’s FindVariableFeatures. All data pro-

cessing scripts are publicly available at https://almutlue.github.io/

batch_dataset/.

Dataset 1: CellBench

The single cell mixology benchmark dataset (27) is provided in the

CellBench R/Bioconductor (28) package. The dataset consists of cells

from three human lung adenocarcinoma cell lines (HCC827, H1975,

and H2228). Equally mixed samples of these cell lines have been

processed and sequenced using three different protocols: CEL-seq2,

Drop-seq (with Dolomite equipment) and 10X Chromium. This dataset

has been generated for benchmarking purposes and provides a

resource of 1,401 cells from three known batches attributed to dif-

ferent sequencing protocols with identical cell line compositions.

Here, we treat the cell lines as analogues for cell types.

Dataset 2: Human Cell Atlas—Mereu (hca)

This dataset has been generated to compare different sequencing

protocols for scRNA-seq by Mereu et al (29), as part of the human
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cell atlas project. The dataset consists of 20,237 cells, which are

PBMCs and the human kidney cell line HEK293T. Equal proportions

of these cells have been sequenced by 13 different sequencing

protocols: C1HT-medium,C1HT-small, CEL-Seq2, Chromium, Chro-

mium(sn), ddSEQ, Drop-Seq, ICELL8, inDrop, MARS-Seq, mcSCRB-

Seq, Quartz-Seq2, and Smart-Seq2. We use cell type annotations as

provided in the original analysis using the R package matchSCore2

(29).

Dataset 3: PBMC media and patient (pbmc2_pat/pbmc2_media)

Fresh PBMCs were harvested using Ficoll–Paque density gradient

centrifugation from 15 ml whole blood specimens of two unrelated

donors obtained from Blutspendezentrum SRK beider, Basel. Cells

were washed with 1× PBS, resuspended in 20ml 1× PBS, and counted

using trypan blue staining on Countess II (Life Technology). For each

donor’s PBMCs, three separate aliquots were prepared at 300 cells/

μl and suspended in 300 μl of RPMI-1640 plus 10% FBS. Aliquot 1

(fresh sample): cells were centrifuged (10 min, 300g) and the pellet

was resuspended in 80 μl PBS-0.04% BSA. Aliquot 2 (MetOH fixation

and cryopreservation): prechilled MetOH (four volumes) was added

dropwise before cells were incubated (30 min, −20°C) and stored at

−80°C for 7 d. After cryopreservation, cells were thawed, equili-

brated, and centrifuged (10 min, 300g) at 4°C. The cell pellet was

resuspended in 50 μl SSC cocktail (0.04% BSA, 1% RNAse inhibitor,

and 40mM DTT in SSC 1×). Aliquot 3 (cryopreservation in 15% DMSO):

cells were centrifuged (10 min, 300g), resuspended in 500 μl RPMI-

1640 plus 40% FBS, and diluted using 500 μl prechilled freezing

medium (RPMI-1640 plus 40% FBS and 30% DMSO). The sample was

placed inside a freezing container and stored at −80°C overnight

before moving it to a liquid nitrogen tank for 7 d storage. After

cryopreservation, the cells were thawed in a water bath (37°C),

diluted 1:4 by RPMI-1640 plus 10% FBS, and centrifuged (10 min,

300g). The cell pellet was resuspended using 50 μl RPMI-1640 plus

10% FBS.

For all six samples (2 patients × 3 aliquots), the cells were

counted using trypan blue staining on Countess II (Life technology),

and a total of 12,000 cells/sample were loaded on the 10× Single

Cell B Chip. cDNA libraries were prepared using the Chromium

Single Cell 39 Library and Gel Bead kit v3 (10× Genomics) according

to the manufacturer’s instructions. Libraries were sequenced using

Illumina Hiseq 4000 using the HiSeq 3000/4000 SBS kit (Illumina)

and HiSeq 3000/4000 PE cluster kit with a target sequencing depth

of 30,000 reads/cell.

Dataset 4: cerebrospinal fluid (csf_pat/csf_media)

3 ml of cerebrospinal fluid (CSF) per patient was collected from the

diagnostic lumbar puncture of three patients at the University

Hospital Basel. All patients consented to CSF draw and the pro-

cedure was performed according to University Hospital IRB

guidelines. Each CSF sample was centrifuged (10 min, 400g) and

resuspended in 60 μl RPMI-1640 plus 40% FBS. Cells were counted

using trypan blue staining on Countess II (Life Technology) and

processed as following: Sample 1 (fresh CSF): freshly isolated cells

were counted, assessed for cell viability, and loaded on the 10×

Single Cell B Chip. Samples 2 and 3 (cryopreserved CSF): cells were

suspended in 450 μl of RPMI-1640 plus 40% FBS and diluted using

500 μl prechilled freezing medium (RPMI-1640 plus 40% FBS and

30% DMSO). Before moving samples to a liquid nitrogen tank, they

were placed inside a freezing container and stored at −80°C

overnight. After 7 d, the samples were thawed in a water bath (37C),

diluted 1:4 using RPMI-1640 plus 10% FBS, and centrifuged (10 min,

300g). The cell pellet was resuspended with 50 μl RPMI-1640 plus

10% FBS, cells were counted using trypan blue staining on Countess

II (Life Technology), and samples with at least 200 cells/μl and a cell

viability above 60% were loaded on a 10× Single Cell B Chip. cDNA

libraries preparation and sequencing was performed as described

for Dataset 3.

Dataset 5: PBMC Roche

Fresh PBMCs were isolated from whole blood specimens of four

donors following the protocol described for Dataset 3. For each

donor PBMCs, four separate aliquots were prepared at 500 cells/μl

and suspended in 200 μl of RPMI-1640 plus 10% FBS. Aliquot 1 (fresh

sample) and Aliquot 2 (cryopreservation in 15%DMSO): Cells were

prepared as described in Dataset 3. Aliquot 3 (cryopreservation in

CS10 media) and Aliquot 4 (cryopreservation in PSC media): Cells

were centrifuged (10 min, 300g) and resuspended by drop-wise

addition of 1 ml prechilled CryoStor CS10 medium (StemCell

Technologies) for Aliquot 3 and 1 ml prechilled PSC (Thermo Fisher

Scientific) for Aliquot 4. Cells were placed inside a freezing con-

tainer and stored at −80°C overnight beforemoving them to a liquid

nitrogen tank for 7 d storage. After cryopreservation samples were

thawed in a water bath (37°C), diluted 1:4 using RPMI-1640 plus 10%

FBS (Aliquot 4: plus 0.01% RevitaCell [Thermo Fisher Scientific]), and

centrifuged (10 min, 300g). The cell pellet was resuspended in 50 μl

RPMI-1640 plus 10% FBS. For all samples, the cells were counted

using trypan blue staining on Countess II (Life Technology), and a

total of 12,000 estimated cells from each sample were loaded on a

10× Single Cell B Chip. cDNA library preparation and sequencing

were performed as described for Dataset 3 (except v2 of the Gel

Bead kit was used).

Dataset 6: Kang

The Kang dataset consist of 10× droplet-based scRNA-seq PBMC

data from eight Lupus patients before and after 6 h of treatment

with INF-β (30). Here, we limit our analysis to the untreated control

data resulting in 14,619 cells from eight different patients. Data and

cell type annotations were accessed via the muscData (31) R/

Bioconductor ExperimentHub (32) package.

Dataset 7: pancreas

The pancreas dataset is a collection of human pancreatic islet cell

datasets produced across three technologies: CelSeq, CelSeq2, and

SMART-Seq2. In total, there are 5,683 cells. Data and annotations

were accessed via the SeuratData (33) R package.

Software specifications and code availability

If not stated otherwise, analyses were run in R v3.6 (34) using

Bioconductor v3.10 (35). R packages ggplot2 (36) and Complex-

Heatmap (37) were used to visualize results. Package versions of all

used software are summarized in Supplemental Data 1. Code and a

browseable workflow (38) for data pre-processing can be found at

https://almutlue.github.io/batch_dataset/ (DOI:10.5281/zenodo.4312591).
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Batch characterization and simulation was run as a snakemake

(39) pipeline. Code and deployment of results are available at

https://github.com/almutlue/batch_snakemake (DOI:10.5281/zenodo.

4312603) and https://almutlue.github.io/batch_snakemake/index.

html. The deployment also includes reports with count matrix com-

parisons between real and synthetic data generated by countsimQC

(17). Cell-specific metrics are made available in the open-source

CellMixS R/Bioconductor package (14). CellMixS includes a different

way of neighbourhood weighting for the lisi score implemented as wisi

and isi scores. Lisi itself was run using the lisi R package (19). kBet was

run as implemented in the kBet R package (2). Code used to run the

remaining metrics, namely pcr, graph and asw is available at https://

github.com/almutlue/mixing_benchmark (DOI:10.5281/zenodo.4312672).

This also includes the code to run the metrics benchmark. Results and

further descriptions are shownat https://almutlue.github.io/mixing_

benchmark/index.html.

Data Availability

Data accession numbers for all data are provided in Table S1. Data

objects including datasets in SingleCellExperiment format are

available from DOI:10.6084/m9.figshare.13341200. Supplemental

Data 1 is available from DOI:10.6084/m9.figshare.13341200.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202001004.
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