
Terfve et al. BMC Systems Biology 2012, 6:133

http://www.biomedcentral.com/1752-0509/6/133

SOFTWARE Open Access

CellNOptR: a flexible toolkit to train protein
signaling networks to data using multiple logic
formalisms
Camille Terfve1, Thomas Cokelaer1, David Henriques1, Aidan MacNamara1, Emanuel Goncalves1,

Melody K Morris2, Martijn van Iersel1, Douglas A Lauffenburger2 and Julio Saez-Rodriguez1*

Abstract

Background: Cells process signals using complex and dynamic networks. Studying how this is performed in a context

and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-

specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but

formalisms that can take advantage of these features to build models of signaling are still comparatively scarce.

Results: Here we present CellNOptR, an open-source R software package for building predictive logic models of

signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic)

data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common

framework. These different logic model representations accommodate state and time values with increasing levels of

detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape

network-based capabilities.

Conclusions: Models generated with this pipeline have two key features. First, they are constrained by prior

knowledge about the network but trained to data. They are therefore context and cell line specific, which results in

enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending

on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are

processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations

(individual or in combinations), and potentially to engineer therapies that have differential effects/side effects

depending on the cell type or context.

Keywords: Signaling networks, Systems biology, Phosphoproteomics, Logic modeling, Perturbation data

Background
Cells receive and interpret information through complex

signaling networks. The correct processing of signals is

essential and frequently altered in diseases [1-3]. Signaling

networks arise from the highly dynamic and context spe-

cific assembly of a large variety of molecular species [3].

It is increasingly recognised that including these features

is essential to take our understanding of the functional-

ity of signaling pathways to the next level [4]. Knowledge

about signaling networks has accumulated over the years

*Correspondence: saezrodriguez@ebi.ac.uk
1European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome

Campus, Cambridge CB10 1SD, UK

Full list of author information is available at the end of the article

in databases and literature [5-10]. The vast majority of

this information is static and not context-specific, and

provides limited insight into the system’s response to per-

turbations such as ligand stimulation or drug treatments

[4,11-13].

Gathering medium to high-throughput signaling data

is becoming more feasible as proteomic technologies are

getting more mature [14]. Perturbation data (such as

chemical inhibitors, stimuli, knock-downs, etc) can be

used to generate network models using reverse engineer-

ing methods [14-16]. These methods typically consider

all possible topologies. Thus, they require large amounts

of data and scale-up poorly. Furthermore, the resulting

© 2012 Terfve et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Terfve et al. BMC Systems Biology 2012, 6:133 Page 2 of 14

http://www.biomedcentral.com/1752-0509/6/133

networks are limited to interactions between perturbed

and measured nodes. These are typically only a sub-

set of the nodes involved in a pathway. Therefore, such

models are not as biologically interpretable as a net-

works based on prior knowledge from literature and other

sources.

We recently introduced a method that integrates liter-

ature and perturbation data to overcome the shortcom-

ings of both [11]. By training prior knowledge networks

(PKNs) against experimental data, this method produces

models shown to achieve significantly better predictive

power than untrained models. The model building pro-

cess is implemented through the use of a logic formalism.

Logic models have the ability to capture cause-effect rela-

tionships while staying conceptually and computationally

simple, thereby allowing for appreciable scalability [17]. In

its simplest implementation, Boolean logic [18], species

are described as either ON or OFF. Relationships between

species are described using logic gates that specify the

state of each node given the state of its parents [19]. This

captures dependencies between components in a system

without the requirement of detailed mechanistic knowl-

edge [17]. Logic models have been shown to be useful

tools to study signaling and regulatory networks [17,19-

23]. A number of tools exist tomanipulate, create and sim-

ulate such models [24-32], and the approach described in

[11] complements them by automatically generating mod-

els trained to data. This allows researchers to generate

models of signaling that can answer biological questions

in their specific system of interest. However, the method

in [11] was limited to Boolean logic steady state repre-

sentation of the system under investigation, and was only

available in a closed-source package for the MATLAB

environment.

We present here a tool that implements the meth-

ods in [11] in an open source R/Bioconductor package

(CellNOptR). CellNOptR extends the methods presented

in [11] to various published and unpublished logic for-

malisms through a suite of additional R packages that

are integrated with the CellNOptR package. These logic

formalisms include Boolean steady-state, Boolean multi-

ple steady-state, Boolean discrete time, steady-state fuzzy

logic and logic-derived ordinary differential equation

(ODE) representations of the system. This set of pack-

ages forms an integrated, open source, robust and easily

extendable platform for training logic models of signal-

ing networks. CellNOptR can also be used via a graphical

user interface through the Cytoscape plugin CytoCopteR.

We illustrate the application of CellNOptR to a simu-

lated example showing the advantages of having multi-

ple logic formalisms available. We then show how the

package can be used to study early and late response

of a human hepatocellular carcinoma cell line to several

cytokines.

Implementation
The CellNOptR approach

CellNOptR (for Cellular Network OptimizeR) implements

the method introduced in [11] in the R language, as a Bio-

conductor [33] package. This method derives a Boolean

logic model from a ”prior knowledge network” (PKN, i.e.

a network obtained from literature or expert knowledge)

and trains it against perturbation data. A CellNOptR anal-

ysis comprises the following steps (see Figure 1): (i) import

of the network and data, (ii) processing of the network,

(iii) training, and (iv) reporting the results of the analysis.

Import of network and data

CellNOptR takes as input two flat text files. The first one is

a prior knowledge network (PKN) describing signed and

directed interactions between proteins as a graph (cur-

rently Simple Interaction File (SIF) format, which can be

opened in Cytoscape). The second file contains biochem-

ical data relating to the changes in the modification state

(typically phosphorylation) of proteins following stimula-

tion under various conditions. By ”conditions” we refer to

combinations of stimuli and inhibitors targeting nodes in

the network. This data is represented in the simple tab-

ular MIDAS (Minimum Information for Data Analysis in

Systems biology) format introduced in [34] (see Figure 1).

The package then performs normalisation of the data for

logic modeling, a feature described in [11] and previously

implemented in a separate MATLAB package, DataRail

[34]. Briefly, the data is normalised between 0 and 1

by computing a fold change relative to a control. This

fold change is transformed through a Hill function and

multiplied by a penalty for signals close to background.

The penalty is the ratio of each value to the maximum

measurement for the readout considered, transformed

through a saturation function. It is important to note that

the data is not discretized but just normalised between 0

and 1.

Processing of the network

The network is converted into logic models for training

with two pre-processing steps : (1) compression and (2)

expansion. In the compression step, species that are nei-

ther measured nor perturbed are removed if the logical

consistency of the network is not impaired, resulting in

a simplified network for training. This step is performed

because such nodes are not necessary for the correct

training of the model. However, starting from a PKN facil-

itates: i) identifying and preserving nodes whose presence

is necessary to maintain the logical consistency of the net-

work, ii) mapping the trainedmodel back onto the starting

network (thereby preserving the interpretability) and iii)

restricting the search to a set of interactions that are fea-

sible based on prior knowledge. In the expansion step,

Terfve et al. BMC Systems Biology 2012, 6:133 Page 3 of 14

http://www.biomedcentral.com/1752-0509/6/133

Figure 1 The CellNOptR framework. A. A CellNOptR analysis takes as input 2 text files: (1) a Prior Knowledge Network (PKN) as a SIF file [39], (2) a

dataset in the MIDAS format ([34], see Figure 4). The package then maps the data onto the PKN, processes the network and trains the resulting

model. CellNOptR outputs a series of HTML pages containing the summary of the analysis, hyperlinked to diagnostic graphs, and the trained

networks. Multiple logic formalisms can be used for the training. The CellNOptR package implements most of the workflow and the simplest

Boolean logic steady-state (1 or 2) approach. B. Only steps that are specific to a particular logic formalism are coded in add-on packages. CNORfuzzy

implements a constrained fuzzy logic steady-state approach [35]. CNORdt fits time course data using a Boolean representation of the states of nodes

and a synchronous update simulation scheme. CNORode fits detailed time course data by deriving and training continuous logic-based ordinary

differential equations. C. The choice of a logic formalism depends on the data at hand and the modeling goals: with no time course data, the user

can choose between the two steady-state implementations (CNORfuzzy and CellNOptR) based on the size of the network, richness of data and

suspected impact of partial effects. If very limited time course data is available, users can use the Boolean 2 steady-states implementation in

CellNOptR. With detailed time course data, one can choose between the Boolean discrete time implementation in CNORdt and the continuous ODE

based implementation in CNORode, mainly based on the complexity of the network and the richness of the data. For the networks, the following

color conventions are used: for nodes: green=stimulated, red=inhibited, blue=measured, dashed=compressed; edges (referring to the optimised

model): green=present at time 1, blue=present at time 2, grey=absent, dashed edge=compressed.

interactions are converted into all possible logic gates. For

example, if there is an edge from node B to A and node

C to A, the following gates are created: (i) B AND C →

A, (ii) B OR C → A, (iii) B → A, (iv) C → A. The ratio-

nale behind this step is that, although databases record

a potentially functional interaction between A and B and

A and C, it is rarely recorded whether these interactions

are independent or not (i.e. B and C are both required

to activate A, or only one of them), or even if any of

them are active in the specific context under investiga-

tion. Therefore, CellNOptR generates all these options

in the scaffold model (i.e. the compressed and expanded

Terfve et al. BMC Systems Biology 2012, 6:133 Page 4 of 14

http://www.biomedcentral.com/1752-0509/6/133

model that is used as a basis for optimisation) and uses the

training to data to discriminate among them.

Training

Next, the model is trained to data by searching for mod-

els (i.e. sub-models of the scaffold model, that include a

subset of the edges) that minimize a bipartite optimisation

function. The optimisation function weights the fit to data

(deviation between data and the output of the Boolean

logic model at steady state, in matched conditions) and

model size, according to equation 1.

θ(P) = θf (P) + α.θs(P) (1)

θf (P) =
1

ng

s∑

k=1

m∑

l=1

n∑

t=1

(BM
k,l,t − BE

k,l,t)
2 (2)

θs(P) =
1

vse

r∑

e=1

vePe (3)

In equation 1, P is a vector of length r (where r is the

number of edges in the scaffold) with a 1 when an inter-

action is included and a 0 if it is not. θf (equation 2) is the

mean squared deviation between model prediction (BM)

and data (BE) across the m readouts, n time points and s

experimental conditions (weighted by the total number of

data points ng). θs (equation 3) penalises the model size

by summing across the number of inputs (ve) of each edge

selected in model P and dividing by the total number of

inputs across all edges (vse =
∑r

e=1 ve). α is a tunable

parameter that balances the fit and size terms. The size

penalty ensures that redundant or unnecessary edges are

not included in the final model, such that simpler mod-

els are preferred over more complicated models if they

explain the data equally well. Note that the data does not

need to be discretized to compute the optimization func-

tion. Instead, the data can be normalized between 0 and

1 (see [11]), resulting in a penalty that depends on how

close the normalized data is to the Boolean state predicted

by the model. Thus, measurements that have intermedi-

ate values (and we are therefore less certain if they are ’on’

or ’off’) have a smaller weight on the penalty associated

with a mismatch with the Boolean output of the model.

The search through model space is performed using a

built-in genetic algorithm. It is possible for the user to

choose which edges they want to be included in the search

(e.g. if part of the model structure is known with cer-

tainty, see the package vignette) but by default all edges

are included in the search space.CellNOptR keeps track of

all models explored during the search and reports a fam-

ily of models within a tolerance (given by the user) of a

value of the objective function θ . Indeed, multiple models

with the same or very similar scores are typically found,

which cannot be discriminated given the experimental

evidence [35]. The choice of a tolerance level is non-trivial

and depends largely on the experimental error. Indeed,

as our confidence in the data increases, our tolerance

regarding how closely the model have to reproduce the

data decreases. Given a chosen tolerance level, CellNOptR

reports, for each edge, the frequency of models within the

tolerance limits that include the edge. This allows users

to investigate the effect of the tolerance on the solution

models, given the data at hand.

Report

Finally, the results of the training are mapped to both the

prior knowledge and the scaffold network. The informa-

tion relating to the analysis run is then plotted, written

to file and condensed in a HTML report hyperlinked

to the various diagnostic plots. Networks are output in

Graphviz DOT format as well as SIF files with corre-

sponding attributes representing the status of nodes (com-

pressed, measured, inhibited, etc.) and the frequency with

which edges are selected in the family of solution models.

Simulation variants

This general approach is extended through a series of add-

on R packages that use parts of the CellNOptR method

but differ in their ability to handle time course data with

different levels of sophistication. CellNOptR implements

the simplest logic framework, where a Boolean steady

state approximation is used for simulation. CellNOptR

also contains a Boolean 2 steady-states method, appli-

cable when limited time resolved data is available and

one wishes to capture mechanisms acting on different

time scales. In addition, we offer three packages (see

Figure 1) that plug into the CellNOptR approach and per-

form model training based on: (i) single pseudo-steady

state data and a continuous representation of the state of

nodes using a constrained fuzzy logic approach (CNOR-

fuzzy)[35], (ii) coarse grained time resolved data and a

discrete time simulation using a Boolean synchronous

update scheme (CNORdt), and (iii) time course data and a

continuous state and time simulation using ordinary dif-

ferential equations derived from a logic model (CNORode)

[36]. Functions in the add-on packages implement alter-

natives for core functions or additional steps whenever the

handling of a more elaborate logic formalism requires it

(see Figure 1).

Languages and dependencies

All of our packages are written in R. In order to improve

computational efficiency, the core of CNORode is writ-

ten in C, using the standard R API as an interface. The

simulation engine of CNORode uses the CVODES library.

No compilation or code generation is required beyond

the building of the package. For the model and parame-

ter space search in CNORode, we give the option to use

Terfve et al. BMC Systems Biology 2012, 6:133 Page 5 of 14

http://www.biomedcentral.com/1752-0509/6/133

the R package genalg [37] or an R implementation of Scat-

ter Search [38] (available as part of the package MEIGO,

http://www.iim.csic.es/∼gingproc/meigo.html). We pro-

vide a user-friendly evaluation function that allows users

to easily plug in alternative search methods. We also

provide Python wrappers so that CellNOpR can be

run directly from Python (see www.cellnopt.org). Finally,

we provide a graphical user interface via CytoCopteR,

a Cytoscape [39] plugin. CytoCopteR uses the Cyrface

(http://sourceforge.net/projects/cyrface/) Cytoscape plu-

gin to interface with R and call our methods from

Cytoscape.

Results and discussion
Various simulation schemes allow to capture different

features of a system

Within the scope of logic models, various formalisms

can be used to represent relationships between nodes

and simulate a model. The choice of which logic for-

malism to use depends on the data set and the system

to be modeled (see Figure 1). In the next sections, we

present the different formalisms that are implemented

in the CellNOptR framework. We illustrate their advan-

tages and limitations on a simulated data set obtained

from a realistic toy example from MacNamara et al. [40]

that schematically represents the effect of Tumor Necro-

sis Factor α (TNFα) and Epidermal Growth Factor (EGF)

on the canonical p38, ERK, and NFκB pathways. The

model used to generate the simulated data (see Figure 2)

contains a slow negative feedback from ERK to SOS-1,

leading to a transient activation of ERK. This could for

example represent the expression of a phosphatase that

dephosphorylates SOS-1 and whose expression depends

on the activation of ERK. This model also includes a

negative feedback from NFκB to its inhibitor IκB, lead-

ing to oscillations of NFκB. This captures the observed

oscillations of nuclear NFκB, where the transcription fac-

tor is known to be maintained in the cytoplasm by its

inhibitor whose expression is activated by NFκB itself.

Finally, a partial activation of p38 is observed when

both EGF and TNFα stimulations are applied to the

model.

CellNOptR: Boolean logic at steady-state

The default CellNOptR method as described in [11] is

based on a discrete representation of time and state. For

the observed data, measurements are therefore acquired

at the rest state as well as at a characteristic time after per-

turbation (pseudo-steady state). The states of nodes in the

model are represented as Boolean values (ON/OFF). For

simulation, we use a synchronous updating scheme until

all nodes have reached a steady state. We compute the

state of each node at time t+1 as a function of the state of

its parents at time t (see equation 4), and check whether

this new state is the same as the one at time t.

xi(t + 1) = Bi(xi1(t), xi2(t), . . . , xi1(t)) ǫ{0, 1}, i = 1, 2, . . . ,N

(4)

In equation 4, the state of each species xi at time t + 1

is computed as a Boolean function B of the states at time

t of all nodes xiN upon which xi depends. Equation 4 is

applied simultaneously to all nodes in the model until

all xi(t + 1) = xi(t) or a maximum number of itera-

tions has been reached. Nodes that oscillate (because e.g.

of a negative feedback loop, see below) never reach the

steady state and are therefore penalized as mismatches to

experimental data. As can be seen in Figure 2, this means

that the basic CellNOptRmethod is unable to capture the

NfκB oscillations, as well as the partial activation of p38.

Because it only considers one time point, the model is also

unable to capture the transient activation of ERK. Conse-

quently, although it will detect an activating edge between

SOS-1 and ERK, it will not detect the negative feedback

between ERK and SOS-1. Nonetheless, provided that the

pseudo-steady state time point is appropriately chosen,

this very simple and computationally efficient approach

captures most of the links in this network.

CellNOptR(2t): Boolean logic at 2 steady-states

If, however, we wish to capture the transient activation

of ERK, we can do so using a previously unpublished

modification of the Boolean steady-state method which

is available in CellNOptR. This modified version uses

data collected at two separate time points (see Figure 2),

which are assumed to represent logical pseudo steady

states, resulting from mechanisms that operate at differ-

ent time scales. For example, this method could be used

to model immediate and fast receptor activation by post-

translational modification followed by propagation of the

signal and receptor desensitization depending on de novo

protein expression. Assuming two different time scales

allows us to train the model to the 2 pseudo-steady states

independently, thereby keeping the method computation-

ally efficient.

Using thismethodwe first train themodel using the data

at the first time (τ1) point just as above. In a second train-

ing step, we assume that some edges only become active at

the second time point (τ2), and therefore search through

the space of edges not included in the optimal model at τ1.

We simulate the model using the steady state of τ1 as an

initial state, with the added constraint that nodes receiv-

ing the input of a τ2 edge are locked to the state defined

by that edge. This is to avoid nodes in a negative feedback

loop never reaching a Boolean steady state, e.g. if protein

A activates protein B and B represses A, then when A is

http://www.iim.csic.es/~gingproc/meigo.html
www.cellnopt.org
http://sourceforge.net/projects/cyrface/

Terfve et al. BMC Systems Biology 2012, 6:133 Page 6 of 14

http://www.biomedcentral.com/1752-0509/6/133

Figure 2 Simulation schemes in the CellNOptR and add-ons packages. Adapted from [40]. This network is a simplified version of a realistic toy

example from [40], used to generate simulated data (triangles). We show a subset of the results of training this model to data using each of the logic

formalisms available through our packages (dashed red lines). The model contains canonical pathways downstream of EGF and TNFα. The data

includes: (i) a slow negative feedback from ERK to SOS-1 leading to a transient activation of ERK, (ii) a feedback from NFκB to its inhibitor IκB, leading

to oscillations of NFκB, and (iii) a partial activation of p38 under combined EGF-TNFa stimulations. The CellNOptR simulation scheme (Boolean, steady

state) captures the activation of ERK upon EGF stimulation (black edges EGF - SOS-1 - ERK) but not its transient nature. The Boolean with two steady

states version does capture the transient ERK activation (i.e. both the black path between EGF and ERK and the negative ’AND’ gate when both EGF

and ERK are activated, blue edges) but not the NFkB oscillations and p38 partial activation. With the discrete time updating scheme with Boolean

state from CNORdt, we capture both the transient activation of ERK and the NFκB oscillations(orange edges) but not the partial activation of p38.

CNORfuzzy implements a continuous representation of states but with a single steady state. Thus, it captures the partial activation of p38 (pink edges)

but not the behaviors of ERK and NFκB. CNORode is based on a continuous representation of both time and state, which captures the behaviors of

ERK, p38 and NFκB (green edges). Depending on the available data and the suspected behaviors to capture, different logic formalisms are more

appropriate. Dashed lines=time points used for steady states. Color of model edges: black=captured by all approaches, blue = CellNOptR(2t),

orange = CNORdt, pink=CNORfuzzy, green=CNORode.

active B is turned ON, which turns A OFF and then turns

BOFF and re-establishes the ON state for A, etc.With this

modified simulation procedure, in this example A would

turn B ON at τ1, then the negative feedback between B

and A would become active at τ2 and lock A permanently

to the OFF state (see [41]). As we can see on Figure 2, this

method captures the slow negative feedback between ERK

and SOS-1, with very limited additional computation cost.

CNORdt: Boolean logic for time course data

Steady state and multiple steady states methods are useful

first approximations to capture the dynamic behavior of a

system when limited time resolved data is available. How-

ever, when time courses are available, we can get further

insight by using methods that can fit such data. CNORdt

(for Cellular Network OptimizeR discrete time) fits time

course data using a synchronous updating scheme for

Terfve et al. BMC Systems Biology 2012, 6:133 Page 7 of 14

http://www.biomedcentral.com/1752-0509/6/133

the simulation (see equation 4), together with an addi-

tional model parameter, which defines the time step of the

Boolean synchronous simulation. In a synchronous updat-

ing scheme, all nodes are updated simultaneously at each

iteration of the simulation algorithm, such that the state

of each node at time t depends only on the state of its

parents at time t-1 [17]. The scaling parameter stretches

the time courses obtained by Boolean synchronous update

simulation to match the data as closely as possible. This

approach captures behaviors such as oscillations, tran-

sients and feedbacks, provided that they can be fitted with

a single scaling parameter across all reactions. Looking at

our toy example (Figure 2), we can see that CNORdt accu-

rately reproduces the transient behavior of ERK activation

and the oscillatory behavior of NFκB. Since CNORdt still

trains a Boolean logic model (i.e. only the structure of the

model is optimized), with only one additional parameter,

the training stays relatively simple and computationally

efficient.

CNORfuzzy: constrained fuzzy logic at steady-state

A main limitation of Boolean logic models is that they are

limited to ON/OFF representations of the activation levels

of species in a model. This means that subtle effects and

partial activations such as the activation of p38 in Figure 2

cannot be captured. Such phenomena require a continu-

ous representation of nodes states, which is possible using

fuzzy logic models as introduced in [35] and implemented

in the MATLAB package CellNOpt-cFL. In CNORfuzzy,

the relationships between nodes are defined as transfer

functions linking continuous values of the inputs of each

gate to continuous values of the outputs of each gate:

xi(t + 1) = B̂i(xi1(t), xi2(t), . . . , xi1(t)) ǫ[0, 1] , i = 1, 2, . . . ,N

(5)

In eq. 5, the Boolean function from eq. 4 is replaced by

a transfer function B̂i that maps the continuous value

(bounded between 0 and 1) of input nodes at time t to

continuous values of an output node xi at time t + 1. In

our implementation, transfer functions are limited to a

defined set of Hill functions, hence the use of the term

”constrained” fuzzy logic. Using normalized Hill func-

tions ensures the consistency between the fuzzy logic

values and the Boolean logic values when species are set

to the extreme values of 0/1, and limits the number of

parameters to be trained for each gate [35]. Training and

simulation of the model in CNORfuzzy is very similar to

the Boolean steady state optimization in CellNOptR. The

difference is that we need to train both the topology of the

model and the parameters of the transfer function asso-

ciated with each gate. Given the added complexity of the

optimization step, it is followed by refinement and reduc-

tion steps that fine-tune the parameters of the transfer

functions and reduce the complexity of the model topol-

ogy (see [35]). As we can see on Figure 2, CNORfuzzy

accurately captures the partial activation of p38, as well as

the activation of ERK and, to some extent, the activation of

NFκB. However, being a steady-state method, it is unable

to capture ERK inactivation and NFκB oscillations.

CNORode: logic-based ordinary differential equations

CNORode (for ordinary differential equations) further

refines the handling of time and state through a continu-

ous representation of both variables. This is achieved by

deriving a set of ordinary differential equations (ODEs) for

each model species:

ẋi =
1

τi
(Bi(xi1, xi2, . . . , xi1) − xi1) ǫ[0, 1] , i = 1, 2, . . . ,N (6)

In equation 6, the Boolean updating function is replaced

by a continuous activation function Bi for the production

of xi and a first order decay term, divided by a time con-

stant τi. For each species in the Boolean logic network, the

ODE derived satisfies the condition that if the input of the

gate to that species are Boolean (i.e. when species states

tend to the limit 0 or 1), then the ODE for the species con-

sidered returns a value that is consistent with the value

returned by the corresponding Boolean logic gate. The

formalism used to derive the logic based ODEs was devel-

oped by [36] and is also implemented in the MATLAB

toolbox Odefy [31]. For the optimization, CNORode gen-

erates a file that takes both discrete inputs that define

the structure (optimized using one of the other above-

mentioned methods) and continuous input values that

correspond to the parameters of the ODEs (thatCNORode

aims to optimize). CNORode then trains the parameters

of the equations to fit the data, using a choice of two

stochastic, global optimization algorithms (a genetic algo-

rithm or Scatter Search [38], as stated above). We can see

in Figure 2 that CNORode accurately captures all of the

dynamic features of the system at hand, i.e. the negative

feedback between ERK and SOS-1, the negative feedback

loop between NFκB and IκB, and the partial activation of

p38 upon EGF and TNFα combined stimulations.

However, compared to the methods previously men-

tioned, this method requires: (i) the optimization of more

parameters, therefore limiting the scalability, and (ii) the

availability of detailed time resolved data.

Case study: application of CellNOptR to a study of signaling

in liver cancer

We illustrate the Boolean 2 steady-states CellNOptR

method by applying it to a real data set. We use phospho-

rylation measurements (subset of the data in [1]) obtained

from a human hepatocellular carcinoma cell line (HepG2)

Terfve et al. BMC Systems Biology 2012, 6:133 Page 8 of 14

http://www.biomedcentral.com/1752-0509/6/133

at 30 and 3 hours after perturbation with combinations

of selected small molecule inhibitors. The experiment was

designed to study the early and late response of tomultiple

inducers of inflammation, innate immunity and prolifer-

ation (see Additional file 1 for a full description of the

readouts and perturbations; note that species are referred

to in capital letters if the Uniprot identifier is used and in

small letters if a colloquial/collective name is used). We

use one of the variants of the Prior Knowledge Networks

(PKN) that was used to analyze the data from [1] at 30

minutes in [11]. We extend the previous analysis [11] to

include the data from [1] at 3 hours (see supplements).

As described, CellNOptR first pre-processed the PKN

according to the data. Once compressed and expanded,

the model contains 109 interactions. After training at τ1,

between 24 and 27 edges are selected (based on 3 separate

optimization runs, see Additional files 2 and 3), leading to

an average training score of 0.031 (vs 0.066 for an empty

model and 0.084 for the starting PKN-derived model).

In this case, the empty model performs better than the

starting PKN-derived model because many data points

are close to 0, implying that many edges from the start-

ing network are probably not functional in the context

under investigation. Therefore, not turning any node ’ON’

actually achieves a better score than including all the edges

(of which the vast majority are activating). After training

at τ2, between 3 and 7 additional edges are selected, lead-

ing to an average optimization score of 0.094 (compared

to an average of 0.124 if random edges are selected). Addi-

tional file 4: Figure S1 contains an example of a trained

model and the corresponding data fit. We observe that

the training does improve the fit of the model to data sig-

nificantly at both time points compared to the starting

PKN (t test p value < 6.10 − 6 for τ1 and 0.03 for τ2).

The improvement at τ2 is not as drastic as the one at τ1,

likely because the PKN was designed for early events and

therefore might not include all necessary prior knowledge

edges to capture events happening at later times.

Nonetheless, the resulting trained models recapitu-

late some important behaviors. For example, it correctly

captures a context-specific decrease in creb at τ2(see

Figure 3). The creb measurements increase at τ1 upon

IL1A stimulation but this stimulated state is sustained

at τ2 only if the signals going through KS6A1 (p90RSK)

and KS6A4/KS6A5 (msk1/msk2, which are indirectly

stimulated by IL1A) are both present (i.e. whereas an

OR gate between these two branches accurately cap-

tures the increase of creb at τ1, an AND gate better

creb Cues

0 30 180

IL
1

A

M
P

2
K

2
/M

P
2

K
1

p
3

8

p
i3

k

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

IL1A

MP2K2/MP2K1 p38

KS6A1 KS6A5/KS6A4

creb

Figure 3 Subset of the results of a CellNOptR analysis on two time-point data from human hepatocellular carcinoma cells. The data

consists of phospho-proteomic measurements of 16 proteins in response to multiple inducers of inflammation, innate immunity and proliferation,

applied in combination with selected small molecule inhibitors [1]. This figure shows a simplified version of a small subset of the trained model

(blue nodes=measured, green=stimulated, red=inhibited; green edges=picked at τ1 , blue edges=picked at τ2), along with the data associated with

the creb node (right, solid black line), overlaid with the simulation results (dashed blue line) for a selected set of conditions. The background color

indicates the goodness of fit of simulation results to data. We can see that the model captures the behavior of creb accurately: creb increases at τ1 if

either MP2K2/MP2K1 or p38 are activated (in this case, because both are downstream of IL1A, they are both activated in the absence of inhibitors

and presence of IL1A). This activation is maintained if both MP2K2/MP2K1 and p38 are activated, and is lost at τ2 (180 minutes) if only one of them is

activated (i.e. in this case if either is inhibited). This behavior is captured in the model by selecting an OR gate from MP2K2/MP2K1 and p38 to creb at

τ1 , and an AND gate at time τ2 .

Terfve et al. BMC Systems Biology 2012, 6:133 Page 9 of 14

http://www.biomedcentral.com/1752-0509/6/133

captures the behavior at τ2). If there is an inhibition

in either of these branches, creb does get activated at

τ1 but then decreases at τ2. This means that for the

creb signal to be maintained at τ2, the presence of both

KS6A1 and KS6A4/KS6A5 is required. Such a behav-

ior could, for example, be explained by a constitutive

dephosphorylation of creb that can only be counter-

acted by the presence of both signals from KS6A1 and

KS6A4/KS6A5. Sustained versus transient phosphoryla-

tion of creb following stimulation of the same receptor

(NMDA) was observed in neurons and was shown to

depend on the activity of the phosphatase Calcineurin

[42]. This type of behavior is particularly relevant when

studying diseases such as cancer. Indeed, sustained acti-

vation of transcription factors such as creb which are

normally tightly regulated through transient phosphory-

lation has been proposed to play a role in oncogenesis

[43]. This illustrates how our method captures dynam-

ics occurring at different time scales, using relatively large

scale models and only two time points. These features

could not be captured by a one time point steady-state

approach.

Providing a user friendly interface with CytoCopteR

Researchers who generate the kind of biochemical data

that is amenable to logic modeling might not be famil-

iar with R. Hence, we provide an intuitive and easy

to learn graphical user interface (GUI) to our methods

through a Cytoscape plugin, CytoCopteR. This results in

a point and click interface to our methods where users

can run the same steps as they would using an R script

but without having to write any code (see Figure 4).

Given that this is a front-end to the R algorithms, con-

sistency is ensured between the results obtained through

the GUI and those obtained through corresponding

scripts. This arrangement also enables continued devel-

opment of the methods and implementation in a single

platform (R).

Strengths of the CellNOptRmodelling platform

A range of tools exists for manipulating, creating and

simulating logic models (see Figure 5 for a more in

depth description). CellNOptR differs in that it focuses

on providing a method to systematically train models to

data. This is an essential feature because, by leveraging

imperfect and incomplete prior knowledge and dedicated

signaling data, it builds and simulates models that are

fitted to the data (thus cell type and context specific)

and achieves a higher predictive power [11]. This has

proven useful, for example, to obtain cell specific models

that reveal different wiring between cell-types, by train-

ing a network separately to data from different cell types

[44]. Because this is achieved with a simple modeling

framework, one can investigate large networks with rel-

atively sparse data compared to other formalisms for

modeling of signaling networks [12,17,45,46]. The mech-

anistic insight that can be gained is higher than in purely

data driven models, which can only capture relationships

between perturbed and observed variables (models built

using our pipeline also include intermediates).

The method described in [11], i.e. the Boolean sin-

gle steady-state implementation, was previously imple-

mented in a MATLAB toolbox, CellNOpt. CellNOpt was

also extended to constrained fuzzy logic as described

in [35]. However, the Boolean 2 steady-states, discrete

time and logic ODE variants are unique to the R imple-

mentation presented here. This extension is an essential

strength of CellNOptR since the toolkit presented here

uniquely covers a wide variety of different logic model-

ing methods adapted to different experimental scenarios

and modeling goals, all available within the same training

framework.

Future developments

We consider the existing version of CellNOptR as a robust

and flexible starting point for multiple developments. For

example, we are exploring alternative methods for data

normalization. The core of CellNOpt is the training to

data, and we are exploring multiple strategies for this,

including deterministic methods such as integer linear

programming [47,48] and answer set programming [49],

metaheuristics [38], and probabilistic frameworks [25].

While CellNOpt already covers multiple logic for-

malisms, we are exploring other variants, in particular

asynchronous simulation schemes for the CNORdt exten-

sion. This could lead to different results to those obtained

with the synchronous scheme, which could be particu-

larly insightful when handling single cell time course data.

Given the stochastic nature of an asynchronous update

scheme, when using population averaged data (as has

been the case so far) one needs to run the simulation

many times to generate a set of trajectories from which

a consensus can be obtained. This is considerably more

demanding computationally, and is not likely to provide

additional insight in most simple cases. In the case of the

example toy model from Figure 2, asynchronous simula-

tion where activation rules are fired at random did not

provide additional information (see Additional file 5). Dif-

ferent conclusions might be obtained when using larger

networks with more complicated feedback, or when infor-

mation is available regarding the order of firing of dif-

ferent activation rules. We are therefore currently work-

ing on making alternative simulation schemes available,

as well as faster versions of those (mostly based on C

implementations).

Another main area of development is the integration

of data-driven reverse engineering tools to find links

Terfve et al. BMC Systems Biology 2012, 6:133 Page 10 of 14

http://www.biomedcentral.com/1752-0509/6/133

A

B

C

Figure 4 Screenshot of CytoCopteR, the Cytoscape plugin for CellNOptR. Users can load or build a network in Cytoscape and load a matching

data set in the MIDAS format, i.e. a CSV file with a row for each condition/time combination, a ”TR:” column for each stimuli/inhibitor

(0=absent,1=present) and for each readout a ”DA:” column (time) and a ”DV:” column (measurement). CytoCopteR annotates the original network

with an overlaid color code on the edges and nodes (see subfigure A, left) reflecting the experimental (stimulated, inhibited, measured) and

pre-processing (compressed or not) status for the nodes. Users then train the model to data, currently using the Boolean steady-state

implementation in CellNOptR. The parameters for the training can be changed through explicit panels such as the one on subfigure B. Results of the

pipeline are reported as in CellNOptR, via a graph displaying experimental and simulated data overlaid (see panel C), plots of the evolution of fit

during the training process and diverse information of the training process (not shown). Furthermore, the scaffold network (after compression and

expansion of the original network) is represented as a cytoscape network, with the same overlaid color code (see panel subfigure A, right) and

weighting the edges according to their presence in the family of models retrieved.

missing in the starting network [15]. A main strength of

CellNOptR is also one of its weaknesses: the optimiza-

tion is constrained by the PKN. To address this limitation,

the plugin CNOFeeder allows to propose candidate links

based on areas of the data that are poorly captured by

the trained model, using multiple reverse engineering

methods [50].

Finally, we are working to make communication and

exchange of data and models to and from CellNOptR both

easy and consistent. A requirement towards this goal is

compliance to standards. We are currently working on

using the Systems Biology Graphical Notation (SBGN,

http://www.sbgn.org/) for visualization of models using a

standard set of symbols. Towards this end, we have devel-

oped the Cytoscape plugin CySBGN (http://sourceforge.

net/projects/cysbgn/), that we plan to integrate with

CytoCopter. Furthermore, we are developing, as part of

the CoLoMoTo initiative (www.colomoto.org) a qualita-

tive extension for SBML (http://sbml.org/Community/

Wiki/SBML Level 3 Proposals/Qualitative Models),

SBML-Qual. This extension will allow not only a smooth

exchange of our models with other logic modeling tools

with complementary features, but also automatic access

to resources for prior knowledge information that are

compliant with it, such as path2models (http://www.ebi.

ac.uk/biomodels-main/path2models). The CellNOptR

http://sourceforge.net/projects/cysbgn/
http://sourceforge.net/projects/cysbgn/
http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Qualitative_Models
http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Qualitative_Models
http://www.ebi.ac.uk/biomodels-main/path2models
http://www.ebi.ac.uk/biomodels-main/path2models

Terfve et al. BMC Systems Biology 2012, 6:133 Page 11 of 14

http://www.biomedcentral.com/1752-0509/6/133

Figure 5 Comparison with other softwares for logic modeling. Adapted from [19]. These methods can be distinguished by their treatment of

state and time. CellNetAnalyzer uses steady state analysis of logic models to better understand signaling and regulatory networks [24]. MetaReg [25]

defines the prior knowledge of a system as a multi-state probabilistic model that can be simulated and visualized. BooleanNet [26] allows for

synchronous and asynchronous simulations (as well as mixed approaches) and can also facilitate piecewise linear differential equations for a more

detailed time resolution. BoolNet [27] also allows for synchronous and asynchronous simulations, and includes functionalities to deal with

probabilistic Boolean networks where multiple transition functions can be chosen for each node. ChemChains is a software suite that allows for

synchronous and asynchronous updating [28]. GINsim offers a suite of simulations methods that incorporates a graph editor as well as various tools

to explore state transitions [29]. SQUAD [30] and Odefy [31] create continuous systems from logic models. Genetic Network Analyzer is a platform

for modeling genetic regulatory networks, using piecewise linear models to model continuous processes [32]. CellNOptR and its extensions

(CNORfuzzy, CNORdt and CNORode) cover steady state discrete and continuous modeling in both state and time. Note that because multi-state is a

generalization of binary, in principle all methods that handle multi-states also handle binary.

project is in continuous development and users can find

updates on the project website (www.cellnopt.org).

Conclusions
Understanding signal processing in cells is an essential

goal of biological research, not only for fundamental

reasons but also for its implications and potential appli-

cations in disease contexts. Modeling approaches are

particularly suited to this task because (i) signaling net-

works are complex systems assembled from the dynamic

and context-dependent interactions of many compo-

nents, and (ii) obtaining predictive as well as mechanistic

insights is extremely valuable in this context. CellNOptR

makes use of the complementarity between rich con-

text specific biochemical data and imperfect/incomplete

accumulated knowledge to build and train logic

models.

CellNOptR models are constrained by previous knowl-

edge but trained to data, making them both context

and cell line specific, thereby providing enhanced pre-

dictive and mechanistic insights. A key strength of the

toolkit formed by CellNOptR, CNORdt, CNORode and

CNORfuzzy is that it covers multiple logic modeling for-

malisms (Boolean steady-state, Boolean multiple steady-

state, Boolean time courses through synchronous update,

steady-state constrained fuzzy logic and continuous logic-

based ODEs). This allows users to choose between those

formalisms to best match the richness of their data

and their modeling goals. We believe that this choice

is greatly simplified by the availability of these meth-

ods in a common framework. One can also combine

formalisms: for example, train a large network to data

using the efficient multiple pseudo steady state method,

and then convert the resulting sparser model into an

ODE model and train it to time course data using

CNORode.

Our toolkit is implemented in the free and open source

R language and Cytoscape platform which benefit from a

large user community and already come with a wide range

of packages for biological data processing and analysis.

Users should therefore be able to use CellNOptR as part

of their own data processing pipeline, taking advantage

www.cellnopt.org

Terfve et al. BMC Systems Biology 2012, 6:133 Page 12 of 14

http://www.biomedcentral.com/1752-0509/6/133

of existing R/Bioconductor packages (e.g. for data nor-

malization, visualization etc.) and developing their own

custom-made functions as required. Finally, in order to

make our methods more accessible to non-programmers,

we provide a Cytoscape interface to the R implementation

as a plugin, CytoCopteR.

Availability and requirements
The main CellNOptR package is available on Bioconduc-

tor (http://www.bioconductor.org/packages/release/bioc/

html/CellNOptR.html) as well as the CNORdt, CNORode

and CNORfuzzy add-on packages. The CytoCopteR

Cytoscape plugin is available on www.cellnopt.org and

from the Cytoscape plugin manager. The simplest

CellNOptR method (Boolean steady state) and the

fuzzy logic methods are available in a MATLAB ver-

sion of the toolbox, also available at www.cellnopt.

org.

More details:

- Software name: CellNOptR (CellNetOptimizeR),

with plug in packages CNORdt (CellNetOptimizeR

discrete time), CNORode (ordinary differential

equations) and CNORfuzzy (fuzzy logic), and

Cytoscape plug in interface CytoCopteR.
- Project home page: www.cellnopt.org

- Operating system(s): platform independent

- Programming languages: R

- Other requirements: R (tested on 2.13 and above),

Cytoscape 2.x

- License: GNU-GPL, version 3 except CNORfuzzy

which is GNU-GPL version 2.

Additional files

Additional file 1: Experimental setting for the HepG2 analysis. HepG2

cells were stimulated with the above stimuli in combination with the

above-mentioned inhibitors in different combinations. The 16 species

mentioned here were then measured using a luminex assay at 30 minutes

and 3 hours post stimulation, leading to a total of 136 samples. All species

are mentioned with their Uniprot identifiers (capital letters) or common

name where applicable (small caps letters).

Additional file 2: Summary of results from 3 independent trainings

for the HepG2 example. Frequency of selection of each edge in the

scaffold model, across all models with a score within 10% of the best

scoring model, summarized across 3 independent training runs. The top

panel shows the summary for the edges at time 1and the bottom panel

shows the equivalent for time 2. For time 1, 13 edges are consistently

selected across most (> 80%) of the best performing model, and 24 edges

are picked in over 60% of the trained models. A partial redundancy in the

effect of some edges explains that a different combination of edges can be

picked across different models with limited impact on their scores. At time

2 (lower panel), 5 edges are consistently selected across over 50% of the

best scoring models. These lower numbers reflect the fact that the training

at time 2 relies on a single trained model as a starting point for both the

simulation and the edge search space. Therefore, the family of trained

models obtained for each of the training runs explore different search

spaces and have different initial conditions.

Additional file 3: Technical aspects of the HepG2 analysis. This file

provides additional information regarding this analysis, such as the

parameters used etc.

Additional file 4: Example of results for the HepG2 real data

application. A. Previous knowledge network used for this analysis. B.

Example of a trained model obtained in one of the optimization round,

with a subset of the simulation results obtained with this network (C). For

the networks the color codes are as follows: nodes: green=stimulated,

red=inhibited, blue=measured, blue with red stroke=measured and

inhibited, dashed stroke=compressed; edges (in the trained model in

panel B): green=selected at time 1, blue=selected at time 2, grey=not

selected in the trained model. In panel C, black continuous lines=data,

dashed blue lines=simulation results obtained with the model in B. The

background color reflects the goodness of fit of the model to data: green=

the chosen Boolean value is closer to the data than the opposite Boolean

value (the darker, the closer), red= the chosen Boolean value is further from

the data than the opposite Boolean value (the darker, the further).

Additional file 5: Exploration of an asynchronous updating scheme

for the CNORdt extension. This figure shows the results obtained by

training the toy model to data as in Figure 2 but using an asynchronous

updating scheme with random firing order of the activation rules, in

development for the CNORdt extension. We can see that asynchronous

updating adds no new information that is applicable to training the model

to data, in this case. For the same conditions as Figure 2, the asynchronous

plots show the fraction of simulations (out of 100) where each specified

node is switched on (y-axis) after each update of the network (x-axis). The

error bars show ± 1 standard deviation of the 100 simulations at each

iteration (only 1 in every 10 displayed). In the case of the above model,

negative feedback causes oscillations and oscillating nodes average ∼ 0.5.

All other nodes stabilize at 0/1. The synchronous plots use the same

simulator described in the main text under CNORdt, where all nodes are

updated at the same time t according to the state of their input nodes at t-1.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CT and TC wrote the CellNOptR package, AM wrote the CNORdt package, MKM

and TC wrote the CNORfuzzy package, DH wrote the CNORode package, EG

and MvI wrote the CytoCopteR plugin, JSR designed the project, and together

with DAL provided guidance for the implementation. CT and JSR wrote most

of the manuscript, with contributions from the other authors. All authors read

and approved the final manuscript.

Acknowledgements

The authors thank J. Banga, J. Egea, E. Balsa for help with optimisation routines,

B. Penalver, I. Pertsovskaya and F. Eduati for testing and feedback, R.F. Schwarz

for reading and commenting the manuscript, and funding of the Institute for

Collaborative Biotechnologies (contract no. W911NF-09-D-0001 from the U.S.

Army Research Office), EU-7FP-BioPreDyn and the EMBL EIPOD program.

Author details
1European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome

Campus, Cambridge CB10 1SD, UK. 2Biological Engineering Department,

Massachusetts Institute of Technology, Cambridge, MA, USA.

Received: 29 May 2012 Accepted: 19 September 2012

Published: 18 October 2012

References

1. Alexopoulos LG, Saez-Rodriguez J, Cosgrove BD, Lauffenburger DA,

Sorger PK: Networks inferred from biochemical data reveal profound

differences in toll-like receptor and inflammatory signaling

between normal and transformed hepatocytes.Molecular & Cellular

Proteomics: MCP 2010, 9:1849–1865.

http://www.bioconductor.org/packages/release/bioc/html/CellNOptR.html
http://www.bioconductor.org/packages/release/bioc/html/CellNOptR.html
www.cellnopt.org
www.cellnopt.org
www.cellnopt.org
http://www.biomedcentral.com/content/supplementary/1752-0509-6-133-S1.zip
http://www.biomedcentral.com/content/supplementary/1752-0509-6-133-S2.zip
http://www.biomedcentral.com/content/supplementary/1752-0509-6-133-S3.zip
http://www.biomedcentral.com/content/supplementary/1752-0509-6-133-S4.zip
http://www.biomedcentral.com/content/supplementary/1752-0509-6-133-S5.zip

Terfve et al. BMC Systems Biology 2012, 6:133 Page 13 of 14

http://www.biomedcentral.com/1752-0509/6/133

2. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK,

Furnari FB, White FM: Quantitative analysis of EGFRvIII cellular

signaling networks reveals a combinatorial therapeutic strategy for

glioblastoma. Proc Nat Acad Sci USA 2007, 104:12867–12872.

3. Jorgensen C, Linding R: Simplistic pathways or complex networks?

Curr Opin Genet Dev 2010, 20:15–22.

4. Khatri P, Sirota M, Butte A: Ten years of pathway analysis : current

approaches and outstanding challenges. Plos Comp Bio 2012, 8:15–22.

5. Bauer-Mehren A, Furlong L, Sanz F: Pathway databases and tools for

their exploitation: benefits, current limitations and challenges.Mol

Syst Biol 2009, 5:290.

6. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B,

Jassal B, Gopinath G, Wu G, Matthews L, Lewis S, Birney E, Stein L:

Reactome: a knowledgebase of biological pathways. Nucl Acids Res

2005, 1:428–32.

7. Korcsmaros T, Farkas IJ, Szalay MS, Rovo P, Fazekas D, Spiro Z, Bode C,

Lenti K, Vellai T, Csermely P: Uniformly curated signaling pathways

reveal tissue-specific cross-talks and support drug target discovery.

Bioinformatics 2010, 26:2042–2050.

8. Thomas P, Kejariwal A, Campbell M, Mi H, Diemer K, Guo N, Ladunga I,

Ulitsky-Lazareva B, Muruganujan A, Rabkin S, Vandergriff J, Doremieux O:

PANTHER: a browsable database of gene products organized by

biological function, using curated protein family and subfamily

classification. Nucl Acids Res 2003, 31:334–341.

9. Cerami E, Gross B, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N,

Bader G, Sander C: Pathway Commons, a web resource for biological

pathway data. Nucl Acids Res 2010, 39:685–690.

10. Schaefer C, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow K: PID:

The Pathway Interaction Database. Nucl Acids Res 2009, 37:674–679.

11. Saez-Rodriguez J, Alexopoulos L, Epperlein J, Samaga R, Lauffenburger D,

Klamt S, Sorger P: Discrete logic modelling as a means to link protein

signalling networks with functional analysis of mammalian signal

transduction.Mol Syst Biol 2009, 5:331.

12. Aldridge B, Burke J, Lauffenburger D, Sorger P: Physicochemical

modelling of cell signalling pathways. Nat Cell Biol 2006, 8:1195–1203.

13. Kirouac D, Saez-Rodriguez J, Swantek J, Burke J, Lauffenburger D, Sorger P:

Creating and analyzing pathway and protein interaction compendia

for modelling signal transduction networks. BMC Syst Biol 2012, 6:29.

14. Terfve C, Saez-Rodriguez J:Modeling signaling networks using

high-throughput phospho-proteomics. Adv ExpMed Biol 2012,

736:19–57 .

15. Prill R, Saez-Rodriguez J, Alexopoulos L, Sorger P, Stolovitzky G:

Crowdsourcing network inference: the DREAM predictive signaling

network challenge science signaling 2011. Sci Signal 2011, 30:189.

16. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How to

infer gene networks from expression profiles.Mol Syst Biol 2007, 3:78.

17. Watterson S, Marshall S, Ghazal P: Logic models of pathway biology.

Drug discovery today 2008, 13:447–456.

18. Kauffman J:Metabolic stability and epigenesis in randomly

constructed genetic nets. J Theor Biol 1969, 22:437–467.

19. Morris M, Saez-Rodriguez J, Sorger P, Lauffenburger D: Logic-based

models for the analysis of cell signaling networks.

Biochemistry 2010, 49:3216–3224.

20. Calzone L, Gelay A, Zinovyev A, Radvanyi F, Barillot E: A comprehensive

modular map of molecular interactions in RB/E2F pathway.

Mol Syst Biol 2008, 4:173.

21. Gonzalez A, Chaouiya C, Thieffry D: Logical modelling of the role of the

Hh pathway in the patterning of the Drosophila wing disc.

Bioinformatics 2008, 24:234–240.

22. Schlatter R, Schmich K, Avalos VI, Scheurich P, Sauter T, Borner C,

Ederer M, Merfort I, Sawodny O: ON/OFF and beyond–a booleanmodel

of apoptosis. PLoS Comput Biol, 2009, 5:e1000595.

23. Sahin O, Frohlich H, Lobke C, Korf U, Burmester S, Majety M, Mattern J,

Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt

D:Modeling ERBB receptor-regulated G1/S transition to find novel

targets for de novo trastuzumab resistance. BMC Syst Biol 2009, 3:1.

24. Klamt S, Saez-Rodriguez J, Gilles E: Structural and functional analysis of

cellular networks with CellNetAnalyzer. BMC Syst Biol 2007, 8:1.

25. Ulitsky I, Gat-Viks I, Shamir R:MetaReg: a platform for modeling,

analysis and visualization of biological systems using large-scale

experimental data. Genome Biol 2008, 9:1.

26. Albert I, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations

for life scientists. Source Code Biol Medl 2008, 14:16.

27. Mussel C, Hopfensitz M, Kestler H: BoolNet–an R package for

generation, reconstruction and analysis of Boolean networks.

Bioinformatics 2010, 26:1378–1380.

28. Helikar T, Rogers J: ChemChains: a platform for simulation and

analysis of biochemical networks aimed to laboratory scientists.

BMC Syst Biol 2009, 6:58.

29. Gonzalez A, Naldi A, Sanchez L, Thieffry D, Chaouiya C: GINsim: a

software suite for the qualitative modelling, simulation and analysis

of regulatory networks. Biosystems 2006, 84:91–100.

30. Di Cara A, Garg A, De Micheli G, Xenarios I, Mendoza L: Dynamic

simulation of regulatory networks using SQUAD.

BMC Bioinformatics 2007, 8:462.

31. Krumsiek J, Polsterl S, Wittmann D, Theis F: Odefy - From discrete to

continuous models. BMC Bioinformatics 2010, 11:233.

32. de Jong H, Geiselmann J, Hernandez C, Page M: Genetic Network

Analyzer: qualitative simulation of genetic regulatory networks.

Bioinformatics 2003, 19:336–344.

33. The Bioconductor project. [http://www.bioconductor.org].

34. Saez-Rodriguez J, Goldsipe A, Muhlich J, Alexopoulos L, Millard B,

Lauffenburger D, Sorger P: Flexible informatics for linking

experimental data to mathematical models via DataRail.

Bioinformatics 2008, 24:840–847.

35. Morris M, Saez-Rodriguez J, Clarke D, Sorger P, Lauffenburger D: Training

signaling pathwaymaps to biochemical data with constrained fuzzy

logic: quantitative analysis of liver cell responses to inflammatory

stimuli. PLoS Comput Biol 2011, 7:e1001099.

36. Wittmann D, Krumsiek J, Saez-Rodriguez J, Lauffenburger D, Klamt S,

Theis F: Transforming Boolean models to continuous models:

methodology and application to T-cell receptor signaling.

BMC Syst Biol 2009, 28:98.

37. genalg: R Based Genetic Algorithm, E Willighagen.

http://cran.r-project.org/web/packages/genalg/.

38. Egea J, Marti R, Banga J: An evolutionary method for

complex-process optimization. Computers & Operations Research

2010, 37:315–324.

39. Smoot M, Ono K, Ruscheinski J, Wang P, Ideker T: Cytoscape 2.8: new

features for data integration and network visualization.

Bioinformatics 2011, 27:431–432.

40. MacNamara A, Terfve C, Henriques D, Penalver-Bernave B,

Saez-Rodriguez J: State-time spectrum of signal transduction logic

model. Physical Biology 2012, 9:045003.

41. Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles E: A

methodology for the structural and functional analysis

of signaling and regulatory networks. BMC Bioinf 2006, 7:56.

42. Lee B, Butcher G, Hoyt K, Impey S, Obrietan K: Activity-dependent

neuroprotection and cAMP response element-binding protein

(CREB): kinase coupling, stimulus intensity, and temporal regulation

of CREB phosphorylation at serine 133. J Neurosci 2005, 25:1137–1148.

43. Sakamoto K, Frank D: CREB in the pathophysiology of cancer:

implications for targeting transcription factors for cancer therapy.

Clin Cancer Res 2009, 15:2583–2587.

44. Saez-Rodriguez J, Alexopoulos LG, Zhang M, Morris MK, Lauffenburger

DA, SP K: Comparing signaling networks between normal and

transformed hepatocytes using discrete logical models. Cancer Res

2011, 71:1–12.

45. Joughin B, Cheung E, Krishna R, Murthy Karuturi, Saez-Rodriguez J,

Lauffenburger D, Liu E: Cellular Regulatory Networks. In Systems

Biomedicine: Concepts and Perspectives. Edited by Lauffenburger DA, Liu

ET. San Diego: Academic Press; 2009:57–108.

46. Markowetz F, Spang R: Inferring cellular networks - a review. BMC

Bioinf 2007, 8:S5.

47. Mitsos A, Melas IN, Siminelakis P, Chairakaki A, Saez-Rodriguez J,

Alexopoulos LG: Identifying drug effects via pathway alterations

using an Integer Linear Programming Optimization Formulation on

Phosphoproteomic Datas. PLoS Comp Biol 2009,

5(12):e1000591.

48. Sharan R, Karp RM: Reconstructing Boolean Models of Signaling. In

Lecture Notes in Computer Science. Edited by Chor B. Berlin, Heidelberg:

Springer; 2012 :261-271.

http://www.bioconductor.org
http://cran.r-project.org/web/packages/genalg/

Terfve et al. BMC Systems Biology 2012, 6:133 Page 14 of 14

http://www.biomedcentral.com/1752-0509/6/133

49. Videla S, Guziolowski C, Eduati F, Thiele S, Grabe N, Saez-Rodriguez J,

Siegel A: Revisiting the training of logic models of protein signaling

networks with a formal approach based on answer set

programming. Lecture Notes in Computer Science, Springer. in press.

50. Eduati F, De Las Rivas J, Di Camillo B, Toffolo G, Saez-Rodriguez J:

Integrating literature-constrained and data-driven inference of

signalling networks. Bioinformatics 2012, 28(18):2311–2317.

doi:10.1186/1752-0509-6-133
Cite this article as: Terfve et al.: CellNOptR: a flexible toolkit to train protein
signaling networks to data using multiple logic formalisms. BMC Systems
Biology 2012 6:133.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	The CellNOptR approach
	Import of network and data
	Processing of the network
	Training
	Report
	Simulation variants
	Languages and dependencies

	Results and discussion
	Various simulation schemes allow to capture different features of a system
	CellNOptR: Boolean logic at steady-state
	CellNOptR(2t): Boolean logic at 2 steady-states
	CNORdt: Boolean logic for time course data
	CNORfuzzy: constrained fuzzy logic at steady-state
	CNORode: logic-based ordinary differential equations
	Case study: application of CellNOptR to a study of signaling in liver cancer
	Providing a user friendly interface with CytoCopteR
	Strengths of the CellNOptR modelling platform
	Future developments

	Conclusions
	Availability and requirements
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

