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Abstract

Background: Image-based screens can produce hundreds of measured features for each of

hundreds of millions of individual cells in a single experiment.

Results: Here, we describe CellProfiler Analyst, open-source software for the interactive

exploration and analysis of multidimensional data, particularly data from high-throughput, image-

based experiments.

Conclusion: The system enables interactive data exploration for image-based screens and

automated scoring of complex phenotypes that require combinations of multiple measured

features per cell.

Background
Visual analysis of cell samples has played a dominant role
in the history of biology. The scientific community has
only begun to scratch the surface of computationally
extracting the rich information visible in fluorescence
microscopy images of cell samples [1]. This capability is
increasingly important given the ease now to systemati-
cally perturb cells with libraries of chemicals or gene-per-
turbing reagents like RNA interference or gene
overexpression and collect hundreds of thousands of
images of these cell samples [2,3]. We recently developed
open-source image analysis software, CellProfiler, which
measures a rich set of cellular features in images, such as

size, shape, and staining patterns including intensity, tex-
ture, and colocalization [4,5]http://www.cellprofiler.org.
This tool has been useful for extracting image-based meas-
urements to score sophisticated screens [6-8], with many
more in progress.

The volume and richness of individual-cell data from
large image-based screens is unprecedented and existing
software is inadequate for the challenge of data analysis.
For analysis of small or very simple experiments, spread-
sheet programs like Microsoft Excel are sufficient, and use-
ful open-source tools exist for analysis and exploration of
data from high throughput screens in general [9-12].
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Existing software packages targeted for image-based
screening, however, have one or more limitations which
prevent sophisticated visualization and extraction of
information from image-based screens: (a) they are not
designed for the hierarchical data structure inherent in
image-based data (each treatment condition is replicated
in several samples, each sample is usually represented by
several images, each image contains a population of cells,
and each cell has hundreds of associated measures), (b)
they ignore the inherent biological variability of cell pop-
ulations such that assays requiring subpopulation analy-
sis cannot be scored, (c) they cannot handle the volumes
of data typical in image-based experiments (e.g., ~500
measurements for each of ~100 million individual cells),
(d) they provide limited linking to raw or processed image
data or chemical structure data, (e) they allow only lim-
ited statistical analyses of the data, (f) they are proprietary
and new methods cannot be easily added, (g) they are
limited to data from a particular image analysis package,
(h) they require expertise in statistics or programming,
and/or (i) they require intense hands-on data manage-
ment.

Given that no existing tools meet the specific needs of
image-based screens, researchers have needed computa-
tional expertise to directly query databases of image-based
information using command-line tools. Often, the
researchers best able to explore and interpret the data lack
these computational skills. These researchers are therefore
less likely to make serendipitous discoveries (or identify
quality-control issues) in their image-based screens,
which inherently contain enormous amounts of informa-
tion beyond that which is pertinent to the original,
intended biological question. It is critical to provide
exploration tools to screening researchers, tools that
employ their understanding of the experiment in question
and their creativity and ability to recognize and interpret
patterns and relationships within data. These capabilities
flourish when united with a computer's unique ability to
store, retrieve, display, and quantitatively analyze billions
of data points.

We therefore sought to develop a software system that
would make high-dimensional image-based data explora-
tion feasible for researchers who lack computational
skills, and flexible for computer scientists who want to
develop and add advanced new methods for image-based
screening, such as machine learning-based phenotype
scoring. We describe here the result of our work, an open-
source software package called "CellProfiler Analyst".

Results and discussion
Viewing data

Four types of plots are the starting points for exploration
of large, multi-dimensional image-based screens in Cell-

Profiler Analyst (Figure 1). Importantly, these tools are
compatible with the scale of data typically acquired in
image-based screens, which can be hundreds of features
for each of hundreds of millions of cells. Histograms dis-
play the distribution of values for one measured feature by
grouping image or object data into evenly spaced bins, on
a linear or logarithmic scale (Figure 1a). Such plots can be
helpful, for example, to examine the cell cycle status of
samples (by plotting per-cell DNA content) or to examine
outliers for quality control purposes (e.g., by plotting per-
image cell counts). Two measured features per image or
object can be displayed on the same chart via a scatterplot
(Figure 1b), which is also useful for identifying hits and
for quality control purposes. For example, the researcher
can readily exclude out-of-focus images from analysis
based on measurements made by CellProfiler's "Measure
Image Quality" module. Because data points in scatter-
plots can occlude each other, they are typically unsuitable
for individual cell data where hundreds of millions of
data points are examined to identify interesting subpopu-
lations. For these cases, a density plot is more appropriate
(Figure 1c). Every pixel in the plot represents a histogram
"bin" and the color of the pixel represents the number of
data points in the bin. These plots are useful, for example,
for establishing thresholds at which to classify individual
cells as "positive" or "negative" based on two features
(e.g., based on two intensity measures as in flow cytome-
try). To explore more than two measured features of each
image or data point, a parallel coordinate plot is used. Par-
allel coordinate plots [13] allow analysis of multiple
dimensions of data, whereby each measured feature's
scaled (0–1) values are given a separate y-axis and individ-
ual data points are connected across these multiple axes
(Figure 1d).

Each data point in a plot can represent an individual cell
or, by contrast, the mean value of the population of cells
within an image. Data can also be grouped by characteris-
tics the samples have in common (e.g., chemical name or
dose). Multiple experiments that investigate the same set
of treatment conditions (e.g., chemical compounds or
RNA interference reagents) can be grouped together,
which eases analysis of replicates. For all types of plots,
the data to be displayed can be filtered, for example to
plot data only from a single image, from a sample of data
points at specified equal intervals, or data that satisfies
certain criteria (specified in SQL "where" clauses like
"CellCount > 100").

Exploring relationships among data

Data points selected and highlighted in one plot are
immediately highlighted in all other open plots (a tech-
nique often called "brushing" [14]) such that a sample or
set of samples can be examined in the context of other sets
of samples (Figure 2). This allows, for example, the com-
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Four types of plots can be createdFigure 1
Four types of plots can be created. Four types of plots created by CellProfiler Analyst are shown. (a) A histogram of per-
image data (the mean area of all cells in the image). (b) Scatterplot of image data (X-axis = mean area of all cells in the image; Y-
axis = mean area of all nuclei in the image). One particular sample and its replicates are highlighted as blue data points, and the 
blue lines indicate +/- two standard deviations from the mean, although because the data is non-Gaussian, the left standard 
deviation line is not visible. (c) Density plot of individual cell data (X-axis = area of the cell; Y-axis = area of the nucleus. (d) Par-
allel coordinate plot where 6 features are plotted, one on each numbered axis as labeled in the table shown below the plot. 
The four selected blue data points in the scatterplot are also highlighted in the parallel coordinate plot as blue lines. From this 
plot, it is apparent that these four data points have high cell and nuclear area (two left-most coordinates) but low cell count 
(right-most coordinate).
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Figure 2 (see legend on next page)
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parison of measurements from samples of interest vs. all
samples in the experiment. Brushing helps the user to
more easily examine relationships in the data, especially
when the data has a large number of attributes or items,
when the data spans multiple experiments (including, for
example, replicates), or when it is natural to examine dif-
ferent parts of the data using different views. The brushing
concept is extended in CellProfiler Analyst for situations
where multiple experiments are being simultaneously
explored: when a point corresponding to a particular
image is highlighted, all points corresponding to that
experimental treatment condition can be highlighted,
even if the data comes from multiple experiments that are
being examined together. In the scatterplot in Figure 1b,
for example, four data points are blue because one was
originally selected and the user requested that replicates
for that sample be highlighted.

Investigating data

Interesting data points or sets of data points can be inves-
tigated by drilling down into the data in several ways (Fig-
ure 3). For plots showing data points representing image
measurements, a data point or set of data points can be
selected and the original images that produced the data
point can be displayed (Figure 3d). This can reveal arti-
facts in sample preparation or imaging, such as fluores-
cent test compounds, aggregates or overabundance of
staining reagents, fibers, or debris (Figure 3g). These arti-
facts not only occlude actual cells in images but can also
disrupt the proper identification and measurement of
remaining cells in the image. For these and other reasons,
images showing identification outlines resulting from
image analysis (if available) can also be shown for
selected data points (Figure 3e), to identify whether the
identification of cells occurred properly. This is an impor-
tant consideration given that no segmentation algorithms
are flawless.

Additionally, a data point or set of data points can be
selected and a plot of the measurements of individual cells
that were present in those images can be displayed as a
separate subplot. This allows, for example, a DNA content

histogram indicating cell cycle distribution of the cell
population to be displayed for a particular image or set of
images of interest (Figure 2c and Figure 3b). To investigate
the identity of interesting samples, a simple list of the
treatment conditions that produced a set of data points
can be displayed to get an overview (Figure 2d). For fur-
ther investigation, web-based information about each
image's treatment condition can be launched in an exter-
nal web browser (Figure 3f), if web addresses associated
with each sample are stored in the database. All available
measurements and other information for a particular
sample can be displayed in a simple table and saved as a
comma-delimited text file for analysis in another software
package (Figure 3c).

Gating individual cell data to score complex phenotypes

Image-based data is tremendously valuable in that multi-
ple single-cell measurements are available. Responses of
individual cells to a treatment are usually inhomogeneous
because of cell cycle variations or differences in protein
levels due to memory or stochastic noise [15,16]. In many
cases, a single measured feature (e.g., the total intensity of
red stain within the nucleus) can be used to score individ-
ual cells and the only challenge is to identify a suitable
threshold for scoring positive cells. This can be accom-
plished in CellProfiler Analyst using histograms of indi-
vidual cell data. For complex phenotypes, several features
of each cell may be required for effective scoring. In these
cases, a density plot showing individual cells (Figure 4a)
can be useful for identifying interesting cell subpopula-
tions, by delineating a section of the plot (often called
"gating"). Whether the gate contains the cells of interest
can be tested using two features: the "Show Object Mon-
tage" feature to see what individual cells within the gate
look like (Figure 4b), and the "Show Image" feature to see
whether cells within a particular sample are appropriately
marked as inside or outside the gate (Figure 4c). Once the
final, desired subpopulation of cells is gated, the number
of cells that fall within that subpopulation is calculated
for each image, for further statistical analysis (Figure 4d).
As an example, when DNA and phosphorylated Serine 10
of histone H3 are both stained, a simple two-feature gate

Relationships among data can be exploredFigure 2 (see previous page)
Relationships among data can be explored. Data points representing images with high nuclear area (averaged over the 
cells in the image) and high DNA intensity (averaged over the cells in the image) are highlighted in blue by brushing the scatter-
plot shown in (a). Immediately, the corresponding points appear blue in the other open scatterplot (b), allowing the relation-
ship between all of the plotted features to be examined. As well, a DNA content histogram (c) shows individual cell data from 
the selected image data points (blue), relative to all cells in the experiment (red). In this case, the selected blue data points 
indeed have an unusual cell cycle distribution (fewer 2N cells relative to 4N cells) as compared to all cells in the experiment. 
Finally, the sample names (d, "Hairpin" column, for this particular RNA interference experiment) corresponding to the selected 
blue data points can be displayed in a table to see which samples are present in the selected points. The first two columns of 
the table show other information about those data points based on the axes of the scatterplot shown in (a). The "ImageNum-
ber" and "well" columns provide additional information about the samples the researcher is investigating.
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Figure 3 (see legend on next page)
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in CellProfiler Analyst enables scoring mitotic subphases
in human HT29 cells (Figure 4e). Many software systems
perform image analysis on the fly during image acquisi-
tion; in such cases, a threshold value for a feature of inter-
est must be chosen in advance to score the screen. By
contrast, these tools in CellProfiler Analyst allow testing
the efficacy of scoring based on different features and dif-
ferent measurement thresholds.

If more than two features are needed to score a phenotype,
sequential gates can be used upon the cell data. This
approach is applied as follows: (1) display the entire pop-
ulation of cells from an experiment in a density plot, (2)
draw a gate around the data points representing potential
cells of interest, (3) adjust the gate to include nearly all
positive cells and exclude as many negative cells as possi-
ble, (4) plot the resulting gated subpopulation in a new
density plot with two new measurement features as axes,
(5) gate the subpopulation again based on these new fea-
tures, and (6) calculate the percentage of each image's
cells that fall within the final gate.

Case study: mitotic subphase screen

Motivation

We wanted to test CellProfiler Analyst's ability to plot,
explore, and filter individual cell data to identify subpop-
ulations defined by several morphological features. We
chose to identify Drosophila melanogaster Kc167 cells in tel-
ophase and metaphase of the cell cycle, using only a DNA
stain. Identification of samples with perturbed cell cycle
regulation is of clear importance to normal cell biology as
well as cancer studies. Regulators of the cell cycle have
been sought intensively for decades via traditional and
high-throughput screens for changes in overall cell cycle
distribution or for increased phospho-histone H3 stain-
ing, a marker of cells in late G2 and M phase (e.g., [17]
and references therein). We reasoned that additional
genes might exist which, when perturbed, yield increased
numbers of metaphase- or telophase-stage nuclei without
substantially affecting the overall mitotic index (phospho-
histone H3 staining) or cell cycle distribution. While we
were not aware of any positive controls with such a phe-

notype, we suspected such genes might have been previ-
ously overlooked because we noticed that not all
metaphase nuclei stain brightly for phospho-histone H3
(Figure 5a), for unknown reasons. Identifying genes
whose RNAi produces cells appearing to be in particular
subphases of mitosis, regardless of concomitant phospho-
histone H3 staining, would be a first step towards under-
standing these phenomena.

Several groups have tested automated methods for scoring
mitotic subphases [18-20]; these studies were accom-
plished by computational tools tailored to the specific
assay and often relied on multiple cellular stains. Machine
learning methods have been explored by our own group
and others [21-26] (and see Conclusions), but we also
wanted to explore allowing the user to manually select a
small number of features of known biological relevance,
followed by sequential gating on those features. This
would give the researcher full control over the features
used in the scoring, and the scoring would be more readily
transferable from one experiment to the next because a
small number of features are selected. We therefore
wanted to score mitotic subphases using a DNA stain
only, using supervised selection of measurements fol-
lowed by sequential gating on those measurements, in the
context of a software package usable by a non-computer
scientist.

Image scoring by sequential gating of individual cell data

We screened genes using Drosophila RNA interference liv-
ing cell microarrays [27-29] to identify gene "knock-
downs" that yield a disproportionate number of cells in
two sub-phases of mitosis: metaphase and anaphase/telo-
phase (referred to as telophase for simplicity). We created
and analyzed 5 replicates of a Drosophila array, with 1120
spots of dsRNA on a single microscope slide (Figure 5b),
including three replicate spots for each of 288 genes
(mostly kinases and phosphatases), plus 256 negative
control spots lacking dsRNA. Some phenotypes produced
in these Drosophila Kc167 cells (e.g. cell death) are visible
at low resolution (5× lens; Figure 5c), but to identify telo-
phase and metaphase nuclei we collected individual high

Data points can be investigatedFigure 3 (see previous page)
Data points can be investigated. The data points highlighted in blue in the scatterplot (a) represent replicates of a particu-
lar treatment condition with high mean cell area and nuclear area. To examine the cell cycle distribution of these samples, a 
DNA content histogram based on individual cells within those four images was plotted (b). For one of the four data points, the 
researcher displayed a table of all measurements in the database (c), the raw image (d), or with outlines overlaid (e). Each stain-
ing/channel (red, green, blue) can be toggled on or off to allow close examination of the relationships between them. Informa-
tion from a public website describing the gene tested in one of the samples has been displayed (f) by clicking the data point. 
Outlier data points for certain measured features (e.g., high mean cell actin intensity, high mean cell area, high segmentation 
threshold, or percent of pixels that are saturated) can indicate images with severe artifacts (g) that should be excluded from 
analysis. These images can be identified by their aberrant measurements and excluded from further analysis by gating (i.e., 
selecting only a subset of data to be plotted and analyzed further).
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Figure 4 (see legend on next page)
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resolution images within each spot on each slide (40×
lens; small portion of one image shown in Figure 5d).

We began with the telophase phenotype. To determine
which measured cellular features would be most effective
for scoring, we handpicked representative telophase
nuclei and normal G2-phase nuclei from random screen-
ing images and created image montages for these two
classes (Figure 6a) using Adobe Photoshop. We used Cell-
Profiler to measure nuclear features in these montage
images, then exported the results to Excel and selected five
features to use for sequential gating, based on a combina-
tion of biological intuition plus the quantitative ability of
each feature to discriminate telophase from normal
nuclei, using simple statistical tests in Excel. The selected
features included DNA content, intensity, shape, and tex-
ture features (additional data file 1).

We then interactively developed sequential gates using
density plots of these features in CellProfiler Analyst (see
"Gating individual cell data to score complex phenotypes"
section). To accomplish this task, CellProfiler was used to
process the full set of screening images and load the result-

ing data into a database (2.8 million cells × 396 features/
cell = 1.1 billion measurements total). This allowed us to
display all individual cells in the experiment in an initial
density plot with two of our selected features as axes, i.e.,
DNA content and size (area) of the nucleus. We drew an
initial gate around the 2N DNA content peak and small
nuclear area, and empirically refined the gate for telo-
phase cells by examining images of the gated nuclei and
adjusting the gate's boundaries accordingly. While auto-
mated approaches could certainly identify a boundary
based on a researcher-provided training set, this manual
approach allows the biologist to specifically assess many
cells near the relevant boundaries. Once the appropriate
gate was selected for the initial density plot, the subpopu-
lation was transferred to a new density plot with two new
features used as axes and the next gate was created, again
finding the optimal parameters to distinguish telophase
nuclei from all other nuclei. This procedure was repeated
for the fifth, and final, selected feature. Once the final gate
was refined, we applied the sequential gates to a new set
of images and confirmed that their scoring was effective
(Table 1 and Figure 6b), successfully differentiating telo-
phase from other nuclei. In creating the gates, we tried to

Cell subpopulations can be identified, examined, and scoredFigure 4 (see previous page)
Cell subpopulations can be identified, examined, and scored. (a) On a density plot of individual cell data (log scale: X-
axis = integrated intensity of nuclear DNA; Y-axis = nuclear area), two populations were gated (white boxes) and a random 
selection of cells within each subpopulation is shown in the montages on the right (b); all gated cells present in a particular sam-
ple can also be marked (c). Samples can be scored (d) for the number of gated cells and total cells in each sample, the enrich-
ment of that percentage relative to the overall percentage of positive cells in the entire experiment (“Enrichment”; for 
example, the first image listed in the table has 19.311-fold more cells in the subpopulation than typical in the experiment over-
all), and the left- and right-tail log10 p-values (a measure of the statistical significance of the enrichment, based on the number of 
cells in the sample). (e) Gates for anaphase/telophase and late prophase/metaphase (data is plotted for all human HT29 cells in 
the experiment [7]. X-axis = integrated nuclear intensity of DNA, log scale; Y-axis = mean nuclear intensity of phospho-histone 
H3). Random cells falling within the gates are shown in the center of each 34 x 34 mm subimage.

Drosophila cell microarraysFigure 5
Drosophila cell microarrays. (a) Phospho-histone H3 staining is often dim for metaphase nuclei (left and middle vs. right). 
Scale bar = 5 μm. (b) One cell array, DNA-stained and contrast-enhanced (5× lens). Scale bar = 5 mm. (c) Small section of (a), 
with circles denoting 4 spots on the array. Scale bar = 100 μm. (d) High-resolution image (40× lens) from within a spot of the 
array, stained with Hoechst (blue, DNA) and phalloidin (green, actin). Scale bar = 5 μm.
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Screen revealed RNA interference samples enriched in telophase- and metaphase-stage nucleiFigure 6
Screen revealed RNA interference samples enriched in telophase- and metaphase-stage nuclei. (a) Composite 
images of handpicked Drosophila Kc167 nuclei that were measured to guide feature selection and provide the starting point for 
developing the gates. Other nuclei at the edges of each sub-panel of the composite image were excluded from analysis. (b) A 
random sample of automatically scored nuclei from the cell microarrays. The scored cell is in the center of each panel unless 
the cell was near the edge of the image. Scale bars = 5 μm. (c) Genes whose dsRNAs significantly increase the proportion of 
cells in telophase (first four rows) or metaphase (last row). We excluded one gene (CG3245) that originally scored as a telo-
phase hit because visual examination revealed that one image contained debris that disrupted proper analysis. Note that 
CG8878 should not be considered telophase-specific (see text). The fourth column shows the fold-change in the percentage of 
cells with each DNA content (2N, 4N, or 8N) and the fold-change in the total cell count overall, with significant differences 
from all genes tested on the array marked with a star. See Materials and Methods section for details on this image-based analy-
sis of the cell cycle distribution. The fifth column indicates the fold-enrichment for the percentage of cells that were phospho-
histone H3-positive, using the mean intensity of staining in the nucleus, based on the average of two replicates. References 
cited in the last column: A [17], B [42], C [43], D [44], E [45], F [20], G [36].
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minimize the false positive rate while accepting a higher
false negative rate (Table 1). We reasoned that true hits
would have enough positives to overcome this intention-
ally stringent selection procedure. At this point, we
applied the final sequential gates to all the cells in order
to score the entire screen for the telophase phenotype. We
found that the gates must typically be adjusted slightly
between different replicate slides due to inter-experiment
variability (e.g., staining intensity), although experiment-
to-experiment normalization methods could be explored
to reduce this effect.

We separately performed the same procedure for the met-
aphase phenotype (using four features to distinguish met-
aphase nuclei from all other nuclei); a complete list of the
288 genes tested and their scores for telophase and met-
aphase is shown in additional data file 2.

Telophase analysis

Rank-ordering samples by the percentage of telophase
nuclei revealed 4 gene knockdowns with a significant
increase in telophase nuclei (Figure 6c, first 4 rows). Vali-
dating the approach, two of the genes are PP2A complex
subunits that have been previously associated with mito-
sis: the PP2A-C catalytic subunit mts (CG7109/microtu-
bule star) and a PP2A-A family regulatory subunit
(CG17291/CG33297/CG13383, Note: dicistronic with
CSN8). RNAi against both genes increased the percentage
of cells that were phospho-histone H3-positive (Figure 6c,
fifth column). A third hit, Ck1α (Casein kinase 1α/
CG2028), has also previously been linked to mitosis (Fig-
ure 6c, last column). We noticed that its knockdown by
RNAi produced nuclei whose chromatin appeared to be
slightly less condensed than typical telophase nuclei (Fig-
ure 7), while still more condensed than interphase nuclei.
The percentage of cells that were phospho-histone H3-
positive was normal (Figure 6c, fifth column). Together,
these observations suggest that this defect occurs in late-
stage telophase/anaphase. The fourth hit was a predicted
kinase with no functional annotation (CG8878). Visual
inspection revealed that nearly all nuclei in these samples
appeared brighter and more compact than controls, a sub-

tle but reproducible effect (Figure 7). This understandably
resulted in more of the 2N nuclei being counted as having
telophase-like morphology. We found that these cells
were not enriched for phospho-histone H3-positivity
(Figure 6c, fifth column); without further experimenta-
tion, it is unclear whether this is a true late-stage mitotic
phenotype or rather a condensed nuclei phenotype.

Metaphase analysis

Interestingly, the only metaphase hit in this screen (Figure
6c, last row) is the B'/B56 subfamily regulatory subunit of
PP2A (CG5643/widerborst), which at the time of our
screen had not been linked to cell cycle regulation. The
percentage of cells that were phospho-histone H3-positive
was not much higher than normal (Figure 6c, fifth col-
umn). We confirmed by eye the metaphase-inducing phe-
notype of widerborst knockdown in the original images
and in separate experiments with two other dsRNAs,
including one that was non-overlapping with the original
(Figure 8a). Widerborst is an essential gene involved in
planar cell polarization [30] and apoptosis [31,32]. Nota-
bly, in other contexts (circadian clock protein cycling [33]
and sensory organ development [34]) widerborst is indi-
rectly linked to the B/PR55 subfamily member twins/aar,
which is itself known to be required for metaphase to ana-
phase transition [35]. Our work therefore confirms, with
non-overlapping dsRNAs, a recently reported cell cycle
regulation role for widerborst [36] and together indicates
that it is unlikely this phenotype is due to off-target effects
[37,38].

The closest human homolog of widerborst is PPP2R5E,
the epsilon isoform of a subfamily of PP2R5 (a.k.a. B'/
PR61/B56) regulatory subunits of the PP2A complex. As
yet, no particular function has been associated with
PPP2R5E. We wondered whether PPP2R5E might be a B'
regulatory subunit that modulates the known role for
PP2A in mitosis, given our finding of its homolog wider-
borst's role in Drosophila. PPP2R5E knockdown did not
increase the mitotic index significantly in recent RNA
interference screens for increased phospho-histone H3
[7,39,40]. However, when we scored these same

Table 1: Accuracy of scoring the metaphase and telophase phenotype

Metaphase Telophase

# positive cells (Observer 1) 35 25

# positive cells (Observer 2) 40 38

Mean # positive cells (Observers 1&2) 37.5 31.5

# positive cells (CellProfiler) 16 20

# cells called positive by CellProfiler but not by Observers 0 1

# cells called positive by Observers but not by CellProfiler 21.5 (37.5-16) 11.5 (31.5-20)

false positive rate 0% (0/16) 5% (1/20)

false negative rate 57% (21.5/37.5) 37% (11.5/31.5)

Ten randomly selected images from the screen (~5000 cells total) were scored by CellProfiler Analyst and by two observers.
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Unusual phenotypes were found for telophase hits CG2028 and CG8878Figure 7
Unusual phenotypes were found for telophase hits CG2028 and CG8878. Top: CG2028 knockdown produces many 
telophase-like nuclei that appear less condensed than typical telophase nuclei but more condensed than interphase nuclei. Bot-
tom: Nearly all nuclei from the CG8878 sample are more condensed than controls. See text for discussion of both genes. Scale 
bar = 20 μm.

CG8878      no dsRNA 

CG2028: Casein kinase I (alpha)          no dsRNA 
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PPP2R5E-knockdown images for metaphase morphology,
rather than phospho-histone H3 levels, we discovered a
metaphase-arrest phenotype for PPP2R5E knockdown,
confirmed by two different shRNAs (Figure 8b), consist-
ent with the phenotype seen for widerborst in Drosophila.
Whether widerborst/PPP2R5E are themselves required for
metaphase-to-anaphase transition or whether their deple-
tion causes the phenotype by specifically disrupting the
stoichiometry of the relevant PP2A complex remains to be
determined. Recent findings that PPP2R5E localizes to
centromeres and that the B' subfamily of regulatory subu-
nits are required for proper meiotic sister chromatid sepa-
ration in fission and budding yeast [41] support the idea
that this family of subunits is indeed important for proper
chromatin dynamics during cell division.

Conclusion
We have described here a software system for exploration
and analysis of large, hierarchical, multi-dimensional data
sets. While it is compatible with any type of data (e.g.,
players on teams, trees within forests), it is particularly
capable of high-end exploration and analysis of measured
features from high-throughput image-based screens for
both quality control and identifying hits in a screen.
Researchers are welcome to download the Java source

code and add new types of plots and analysis tools (e.g.,
for normalizing screen data [9,10]) to the system.

We have demonstrated the utility of this software for
interactive data exploration and analysis – especially for
intentionally selecting cells with particular measurement
values in order to score complex visual phenotypes. Of
course, often the features that successfully specify a partic-
ular phenotype are either unknown or so numerous as to
make the sequential plotting shown here impractical, and
choosing decision boundaries empirically may not be
optimal to score the phenotype. For these reasons, we
recently added machine-learning methodology to Cell-
Profiler Analyst (TRJ, AEC, DMS, PG, unpublished data).
Nonetheless, the complete control over features and
thresholds offered by sequential gating is quite useful in
some cases. Often a researcher needs to ignore certain fea-
tures of positive control cells (for example, when a posi-
tive control treatment has pleiotropic effects on cells) and
emphasize other, better-understood cellular features.
Interactive observation of the original cellular images
while making gating decisions to define a phenotype also
leverages the biologist's intuition about a phenotype.
Within the same open-source software infrastructure,
both approaches (sequential gating and machine learn-
ing) can now be applied to large-scale imaging screens.

The widerborst RNA interference metaphase arrest phenotype is confirmed in Drosophila and human cellsFigure 8
The widerborst RNA interference metaphase arrest phenotype is confirmed in Drosophila and human cells. (a) 
A sampling of metaphase nuclei produced by widerborst knockdown in Drosophila Kc167 cells (top). Scale bar = 5 μm. Quanti-
tative confirmation of the increased percentage of metaphase nuclei, as scored by two blinded observers (bottom). Bars are 
starred if p < 0.05. Error bars = SEM. Controls are nearby spots lacking dsRNA. (b) A sampling of metaphase nuclei produced 
by PPP2R5E knockdown in human HT29 cells (top). Scale bar = 10 μm. Quantitative confirmation (bottom). Bars are starred if 
p < 0.001. Error bars = SEM. The infection rate is the ratio of the number of cells with/without puromycin, the selection agent. 
The control shRNA is FLJ25006 (NMid = NM_144610).
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Availability and requirements
* Project name: CellProfiler Analyst

* Project home page: http://www.cellprofiler.org

* Operating systems: Platform independent (Mac, Win-
dows, and Unix)

* Programming language: Java

* Other requirements: Java 1.4.2 or greater. For full func-
tionality, CellProfiler Analyst requires Java 1.5.0_6 or
greater, Python version 2.5 or greater http://
www.python.org/ and the NumPy Python package http://
scipy.org.

* License: GNU GENERAL PUBLIC LICENSE, Version 2

* No additional restrictions to use by non-academics

Methods
Software

CellProfiler Analyst can be downloaded for Mac, Win-
dows, and Unix operating systems from the CellProfiler
Project website http://www.cellprofiler.org, where it is
distributed under an open-source license (GNU General
Public License, version 2). An archived version is also
available as additional data file 3, submitted with this arti-
cle. The Examples page of the website provides demon-
stration movies showing the software in use, an example
database and images, and links to an online forum where
questions about the software are answered.

CellProfiler Analyst is designed to explore and analyze
any MySQL database of image-based screening data that
follows a simple format: at least one image table with
rows corresponding to images and columns of image data
(examples of columns are: the name of the treatment con-
dition, total intensity of the entire image, mean cell area
averaged over all cells in the image, path to the original
image), and at least one object table with rows corre-
sponding to objects (e.g., cells) and columns of object
data (examples of columns are: area of the cell, intensity
of DNA stain in the nucleus, location of the cell in the
original image – the latter being important for viewing
individual cells during exploration). This data format is
automatically produced if images are analyzed with Cell-
Profiler open-source cell image analysis software [4]http:/
/www.cellprofiler.org, using its ExportToDatabase mod-
ule. The data should be normalized for plate-to-plate or
spatial-layout variations prior to exploration in CellPro-
filer Analyst. While the software is designed to access
remote databases because typical data sets are far too large
to be stored in physical memory, the "Make Local Object

Table" option allows particularly relevant measurements
to be stored locally in memory to speed analysis while still
allowing access to the full dataset in the remote database.

Cell culture

We prepared Drosophila Kc167 cells as previously
described [29]. In brief, cells were grown on living cell
microarrays with spots of double stranded RNA for 3 days.
For confirmation of phenotypes in Drosophila, we grew
cells on plain slides for 3 days, after being pre-treated with
dsRNA for 2 days. We used images of human HT29 cells
as previously described [7].

Statistical analysis

For the screen of the metaphase and telophase pheno-
types, each gene was tested in three replicate spots on five
independently prepared cell array slides, and the results
for all genes are shown in Additional file 2. Because the
three replicate spots were near each other, cell counts for
the groups of three were accumulated and not treated as
independent samples. A p-value for each gene on each of
the five slides was calculated based on the number of met-
aphase nuclei found and the number of cells total, relative
to the average percentage of metaphase nuclei on the
entire slide (i.e., as a Bernoulli random variable). To add
stringency, we report results for second- and third-strong-
est scoring replicates only (shown on two separate sheets
of Additional file 2). We required that two or three of the
five scores were above a threshold that results in a com-
bined p-value below 0.01. For Bonferroni-adjusted p-val-
ues from single experiments, these thresholds are 0.6 for
two experiments (out of 5), and 5.2 for three (out of 5).
De-enriched samples are listed with a p-value of 1 and
samples with a p-value of 1 are ordered by enrichment.
"Enrichment" is the fold-enrichment of the sample rela-
tive to all the samples.

In the bar charts in the fourth column of Figure 6c, we sta-
tistically analyzed the cell cycle distribution and cell count
for the screens' hits. To do this, we first gathered DNA con-
tent data (i.e., integrated nuclear DNA intensity) from the
database for all cells on the slides where the hits occurred.
Then, to normalize for illumination and staining varia-
tion between slides and between images, the DNA content
measurements were log2-transformed and shifted so that
the mode of the DNA content for each image (calculated
by binning the log2-transformed DNA into 50 bins) was
equal to 1. Based on this normalized log2(DNA inten-
sity), cells were then counted as 2N, 4N, and 8N as fol-
lows:

[-0.5, 0.5) was categorized as "2N"

[0.5, 1.5) was categorized as " 4N"

http://www.cellprofiler.org
http://www.python.org/
http://www.python.org/
http://scipy.org
http://scipy.org
http://www.cellprofiler.org
http://www.cellprofiler.org
http://www.cellprofiler.org
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[1.5, 2.5) was categorized as " 8N", although this includes
~6N to ~11N

Using the resulting cell counts for each subpopulation
(2N, 4N, 8N), we calculated p-values as follows: first, sub-
population counts were converted to fractions for each
image by dividing the subpopulation counts by the total
number of cells in the image (taken as the sum of the 2N,
4N, and 8N subpopulations). Each fraction was then nor-
malized by the median fraction for that subpopulation on
that slide, to account for any per-slide biases in cell-cycle
distribution. These normalized fractions were averaged
across replicate samples for each gene. Lastly, these aver-
aged normalized fractions were used to calculate p-values
for each subpopulation in a 10,000-trial permutation test
(where labels were permuted within slides, but not
between slides, to ensure that the same number of images
was taken from the slide as in the experiment). Cell-count
p-values were calculated similarly: the total number of
cells in each image was normalized by the median per-
image cell count on that slide, to prevent biases for more
densely populated slides, and a permutation test was per-
formed on the average normalized cell-count. For cell
cycle and cell count, p-values were Bonferroni-corrected
for 20 experiments (5 genes examined for 4 populations:
2N, 4N, 8N, and count).
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