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Cell image analysis software<p>CellProfiler, the first free, open-source system for flexible and high-throughput cell image analysis is described.</p>

Abstract

Biologists can now prepare and image thousands of samples per day using automation, enabling

chemical screens and functional genomics (for example, using RNA interference). Here we describe

the first free, open-source system designed for flexible, high-throughput cell image analysis,

CellProfiler. CellProfiler can address a variety of biological questions quantitatively, including

standard assays (for example, cell count, size, per-cell protein levels) and complex morphological

assays (for example, cell/organelle shape or subcellular patterns of DNA or protein staining).

Rationale
Examining cells by microscopy has long been a primary

method for studying cellular function. When cells are stained

appropriately, visual analysis can reveal biological mecha-

nisms. Advanced microscopes can now, in a single day, easily

collect thousands of high resolution images of cells from time-

lapse experiments and from large-scale screens using chemi-

cal compounds, RNA interference (RNAi) reagents, or

expression plasmids [1-5]. However, a bottleneck exists at the

image analysis stage. Several pioneering large screens have

been scored through visual inspection by expert biologists

[6,7], whose interpretive ability will not soon be replicated by

a computer. Still, for most applications, image cytometry

(automated cell image analysis) is strongly preferable to anal-

ysis by eye. In fact, in some cases image cytometry is abso-

lutely required to extract the full spectrum of information

present in biological images, for reasons we discuss here.

First, while human observers typically score one or at most a

few cellular features, image cytometry simultaneously yields

many informative measures of cells, including the intensity

and localization of each fluorescently labeled cellular compo-

nent (for example, DNA or protein) within each subcellular

compartment, as well as the number, size, and shape of those

subcellular compartments. Image-based analysis is thus ver-

satile, inherently multiplexed, and high in information con-

tent. Like flow cytometry, image cytometry measures the per-

cell amount of protein and DNA, but can more conveniently

handle hundreds of thousands of distinct samples and is also

compatible with adherent cell types, time-lapse samples, and

intact tissues. In addition, image cytometry can accurately
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measure protein texture and localization as well as cell shape

and size.

Second, human-scored image analysis is qualitative, usually

categorizing samples as 'hits' (where normal physiology is

grossly disturbed) or 'non-hits'. By contrast, automated anal-

ysis rapidly produces consistent, quantitative measures for

every image. In addition to uncovering subtle samples of

interest that would otherwise be missed, systems-level con-

clusions can be drawn directly from the quantitative meas-

ures for every image. Measuring a large number of features,

even features undetectable by eye, has proven useful for

screening as well as cytological/cytometric profiling, which

can group similar genes or reveal a drug's mechanism of

action [3,8-14].

Third, image cytometry individually measures each cell

rather than producing a score for the entire image. Because

individual cells' responses are inhomogeneous [15], multipar-

ametric single cell data from several types of instruments

have proven much more powerful than whole-population

data (for example, western blots or mRNA expression chips)

for clustering genes, deriving causal networks, classifying

protein localization, and diagnosing disease [10,16-18]. In

addition, individual cell measurements can reveal samples

that differ in only a subpopulation of cells, which would oth-

erwise be masked in whole-population measures.

Fourth, quantitative image analysis is able to detect some fea-

tures that are not readily detectable by a human observer. For

example, the two-fold difference in DNA staining intensity

that reveals whether a cell is in G1 or G2 phase of the cell cycle

are measurable by computer but are difficult for the human

eye to observe in cell images. Furthermore, small but biologi-

cally significant differences, for example, a 10% increase in

nucleus size, are not noticeable by eye. Other features, for

example, the texture (smoothness) of protein or DNA stain-

ing, are observable but not quantifiable by eye. Pathologists

have known for years that changes in DNA or protein texture

can correlate to profound and otherwise undetectable

changes in cell physiology, a fact used in diagnosis of disease

[17,19]. Even changes not visible to the human eye can reveal

disease state [20].

Fifth, image cytometry is much less labor-intensive and

higher-throughput. Appropriate software produces reliable

results from a large-scale experiment in hours, versus months

of tedious visual inspection. This improvement is more than

an incremental technical advance, because it relieves the one

remaining bottleneck to routinely conducting such experi-

ments.

Prior to the work presented here, the only flexible, open-

source biological image analysis package was ImageJ/NIH

Image [21]. This package has been successfully used by many

laboratories. Its design, however, is geared more towards the

analysis of individual images (comparable to Adobe Pho-

toshop) rather than flexible, high-throughput work. Macros

can be written in ImageJ for high-throughput work but

adapting macros to new projects requires that biologists learn

a programming language.

While not creating a general, flexible software tool, many

groups have benefited from automated cell image analysis by

developing their own scripts, macros, and plug-ins to accom-

plish specific image analysis tasks. Custom programs written

in commercial software (for example, MetaMorph, ImagePro

Plus, MATLAB) or Java have been used to identify, measure,

and track cells in images and time lapse movies [10,22,23].

Such studies clearly show the power of automated image

analysis for biological discovery. However, most of these cus-

tom programs are not modular, so combining several steps

and changing settings requires interacting directly with the

code and is simply not practical for routinely processing hun-

dreds of thousands of images or sending jobs to a cluster. The

effort expended by laboratories in creating an analysis solu-

tion with a particular software package is often lost after the

initial experiment is completed; other laboratories rarely use

the methods because they are customized for a particular cell

type, assay or even image set. Furthermore, although devel-

oping a routine for a new cell type or assay usually requires

testing multiple algorithms, it is impractical to implement

and test several published methods for a particular project.

Commercial software has also been developed, mainly for the

pharmaceutical screening market, by companies including

Cellomics, TTP LabTech, Evotec, Molecular Devices, and GE

Healthcare [24]. Development of these packages has been

guided mainly by mammalian cell types and cellular features

of pharmaceutical interest, including protein translocation,

micronucleus formation, neurite outgrowth, and cell count

[25]. The high cost and the bundling of commercial software

with hardware makes it impractical to test several programs

for a new project. The proprietary nature of the code prevents

researchers from knowing the strategy of a given algorithm

and it cannot be modified if desired. As is the case with many

laboratories, we have found commercial packages useful for

some screens in mammalian cells, but in other cases limiting

[1,5,26,27].

Furthermore, key challenges remain in image analysis algo-

rithm development itself [28]. Cell image analysis has been

described as one of the greatest remaining challenges in

screening [5,29], and as a field is "very much in its infancy"

[30] and "lag [s] behind the adoption of high-throughput

imaging technologies" [10]. Accurate cell identification is

required to extract meaningful measures from images, but

even for mammalian cell types, existing software often fails

on crowded cell samples, which has severely limited screens

thus far. Screens in most non-mammalian organisms have

been limited to visual inspection.
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In summary, while existing software enables particular assays

for particular cell types, high throughput image analysis has,

to this point, been impractical unless an image analysis expert

develops a customized solution, or unless commercial pack-

ages are used with their built-in algorithms for a limited set of

cellular features and for a limited set of cell types. There exists

a clear need for a powerful, flexible, open-source platform for

high-throughput cell image analysis.

Here we describe the open-source CellProfiler project, our

effort to develop such a software system for the scientific

community. CellProfiler simultaneously measures the size,

shape, intensity and texture of a variety of cell types in a high

throughput manner. Note that we focus in this paper not on

the technical details of the software (which are described in

the manual), nor computational validation of the mostly pub-

lished algorithms, nor on a mechanistic study of any particu-

lar biological finding. Rather, we describe the system, validate

the software for a variety of real-world biological problems,

demonstrate the breadth of its utility (including on various

cell types and assays), and hope to stimulate ideas within the

biological community for future applications of the software.

Overview of the software system
The following can be freely downloaded from the CellProfiler

website [31]: CellProfiler for Windows, Mac, and Unix (com-

piled, not requiring MATLAB); CellProfiler's MATLAB source

code; a full technical description of CellProfiler's algorithms

and measurements in an extensive PDF formatted manual

(Additional data file 1), identical to the information found in

help buttons within CellProfiler; and pipelines to identify the

various cell types in this paper (see Additional data file 2 for a

list of the modules in each pipeline).

CellProfiler is freely available modular image analysis soft-

ware that is capable of handling hundreds of thousands of

images. The software contains already-developed methods

for many cell types and assays and is also an open-source,

flexible platform for the sharing, testing, and development of

new methods by image analysis experts. CellProfiler meets

the needs discussed in the introduction, in that it contains:

advanced algorithms for image analysis that are able to accu-

rately identify crowded cells and non-mammalian cell types;

a modular, flexible design allowing analysis of new assays and

phenotypes; open-source code so the underlying methodol-

ogy is known and can be modified or improved by others; a

user-friendly interface; the capability to make use of clusters

of computers when available; and a design that eliminates the

tedium of the many steps typically involved in image analysis,

many of which are not easily transferable from one project to

another (for example, image formatting, combining several

image analysis steps, or repeating the analysis with slightly

different parameters). CellProfiler was designed and opti-

mized for the most common high-content screening image

format, that is, two-dimensional images. It has very limited

support for time-lapse and three-dimensional image stack

analysis, although researchers interested in these areas could

build compatible modules.

Most image analysis projects, even for new cell types or

assays, can be accomplished simply by pointing and clicking

using CellProfiler's graphical user interface (Figure 1a). The

software uses the concept of a 'pipeline' of individual modules

(Figure 1b; Additional data file 2). Each module processes the

images in some manner, and the modules are placed in

sequential order to create a pipeline: usually image process-

ing, then object identification, then measurement. Over 50

CellProfiler modules are currently available (Additional data

file 3). Most modules are automatic, but the software also

allows interactive modules (for example, the user clicks to

outline a region of interest in each image). Modules are mixed

and matched for a specific project and each module's settings

are adjusted appropriately. Upon starting the analysis, each

image (or group of images if multiple wavelengths are availa-

ble) travels through the pipeline and is processed by each

module in order.

The pipeline's modules and their settings are saved and can

be used to reproduce the analysis or share with colleagues.

Many example pipelines are provided at the CellProfiler web-

site [31] to provide a starting point for new analyses. To

explain some features of CellProfiler, we describe in the sub-

sequent sections the general steps in a typical pipeline.

Image processing, including illumination 
correction
One of the most critical steps in image analysis is illumination

correction. Illumination often varies more than 1.5-fold

across the field of view, even when using fiber optic light

sources, and occasionally even when images are thought to be

already illumination-corrected by commercial image analysis

software packages (TRJ, AEC, DMS, and PG, unpublished

data). This adds an unacceptable level of noise, obscures real

quantitative differences, and prevents many types of biologi-

cal experiments that rely on accurate fluorescence intensity

measurements (for example, DNA content of a nucleus, which

only varies by two-fold during the cell cycle). CellProfiler con-

tains standard methods plus our new methods [32] to address

illumination variation, allowing various methods to be com-

pared side by side and, ultimately, providing less noisy quan-

titative measures (Figure 1c,d). We use these illumination

correction methods for every high-throughput image set we

process, because using raw images degrades intensity meas-

urements and, less obviously, can preclude accurate cell iden-

tification. This adversely affects all types of measurements,

from intensity based measures (for example, DNA content

histograms [1]) to area and shape measurements (TRJ, AEC,

DMS, and PG, unpublished data). CellProfiler's other image

processing modules perform other needed adjustments prior
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CellProfiler overview and featuresFigure 1

CellProfiler overview and features. (a) Main CellProfiler interface, with an analysis pipeline displayed. (b) Schematic of a typical CellProfiler pipeline. (c) 

Image processing example: uneven illumination from the left to the right within each field of view is noticeable in this three row by five column tiled image 
(left). CellProfiler's illumination correction modules correct these anomalies (right). Images were contrast-enhanced to display this effect. (d) These 
corrections reduce noise in quantitative measurements, demonstrated here in DNA content measures (middle) from images of Drosophila Kc167 cells that 
are improved over the raw images (left). The results are comparable to those produced by white referenced images (right), but they do not require the 
error prone and often omitted step of collecting a white reference image immediately before image acquisition. (e) Outlines show the identification of 
nuclei and identification of cell edges made by CellProfiler in human HT29 (left) and Drosophila Kc167 (right) cells. Cells touching the border are 
intentionally excluded from analysis and images were contrast stretched for display. Scale bars = 15 µm.
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to identifying cells in images, for example, aligning or crop-

ping (Additional data file 3).

Cell identification
Object identification (also called segmentation) is the most

challenging step in image analysis and its accuracy deter-

mines the accuracy of the resulting cell measurements. Cell-

Profiler's object identification modules contain a variety of

published and tested algorithms for identifying cells based on

fluorescence, including work from our own group and others

(Figure 1e). In most biological images, cells touch each other,

causing the simple, fast algorithms used in some commercial

software packages to fail. The first objects identified in an

image (called primary objects) are often nuclei identified

from DNA-stained images, although primary objects can also

be whole cells, beads, speckles, tumors, and so on. Several

simple algorithms are built into CellProfiler for cases where

primary objects are well-dispersed, non-confluent, and bright

relative to the background. More importantly, to effectively

identify clumped objects, CellProfiler contains a modular

three-step strategy based on previously published algorithms

[33-37]. First, clumped objects are recognized and separated;

second, the dividing lines between objects are found; and

third, some of the resulting objects are either removed or

merged together based on their measurements, for example,

their size or shape.

After primary objects (often nuclei) are identified, the edges

of secondary objects that surround each primary object (often

cell edges) can be found more easily. Measuring cell size in

Drosophila was not previously feasible because the com-

monly used watershed method [37] often fails to find the bor-

ders between clumped cells. We have, therefore,

implemented in CellProfiler an improved Propagate algo-

rithm [38], in addition to several standard methods of sec-

ondary object identification. Other subcellular compartments

can also be identified, including the cytoplasm (the part of

each cell excluding the nucleus) and the cell or nuclear mem-

brane (the edge of the cell or nucleus).

The technical description of these algorithms is omitted here

but is available in the online help and manual, in addition to

previously published references cited therein (Additional

data file 1). The identification modules include a 'test mode'

for comparing several algorithms side by side in order to

choose the best approach. We have found that these cell iden-

tification methods are flexible to various cell morphologies.

This flexibility is convenient but, more importantly, often

allows accurate identification of cells with unusual morphol-

ogies within a population of normal cells.

Measurements and data analysis
CellProfiler measures a large number of features for each

identified cell or subcellular compartment, including area,

shape, intensity, and texture (each feature is described in

Additional data file 4). This includes many standard features

[39,40], but also complex measurements like Zernike shape

features [41], and Haralick and Gabor texture features [42-

44], which are described in detail in the online help and man-

ual. There are also modules to measure various features (for

example, intensity, texture, saturation, blur, area occupied by

a stain) of an image in its entirety. A severe limitation of most

commercial software is the inability to adapt to new biological

questions by calculating new features from identified cells

[5]. By contrast, CellProfiler's modular design and open-

source code allows quickly measuring new cellular pheno-

types as needed.

Measurements are accessible in several ways: using CellPro-

filer's built-in viewing and plotting data tools (Additional data

file 5); exporting in a tab-delimited spreadsheet format that

can be opened in programs like Microsoft Excel or OpenOffice

Calc; exporting in a format that can be imported into a data-

base like Oracle or MySQL; or directly in MATLAB.

Usability
Like most new software in the laboratory, the process of set-

ting up a CellProfiler analysis may take several days if the user

is learning the software for the first time. Several resources

help at this stage: the built-in help, the manual (Additional

data file 1), the online discussion forum [31], the 'test mode'

for the Identify modules that show results from various

options side by side, and built-in image and data tools to

interact with processed images and cell measurements (Addi-

tional data file 5). The flexible, modular design and point-

and-click interface make setting up an analysis feasible for

non-programmers. Over time, experienced users typically

require less than a day to set up an entirely new experiment

(for example, a new cell type or unusual measurement

scheme). When performing the same analysis on different

image sets where sample preparation is the only variable, we

test the analysis on a few sample images and sometimes

change one or two settings in the Identify modules. This takes

less than an hour and is essentially a quality control step.

Once a pipeline is satisfactory, analysis can be performed on

the local computer or automatically divided into smaller

batches to be sent to a cluster of computers, described in more

detail in later sections.

CellProfiler's code is open-source under the GNU public

license. Its image handling is flexible: there is no requirement

for images to have a certain naming structure and many

standard image formats plus some movie formats are sup-

ported. Its modular structure allows experts to expand the

software to new file formats or add new algorithms. The

source code was written in MATLAB because it is a powerful,

easy to learn language, commonly used for scientific applica-

tions, including prototyping image analysis routines. Because

the source code is well-documented, it is understandable even
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by non-programmers. Computationally intensive tasks use

either MATLAB's native compiled functions or our own com-

piled C++ implementations to improve the speed. Analysis

times vary widely depending on the image size, the number of

objects found per image, and the number of features meas-

ured, but typical pipelines require from 20 seconds to five

minutes per image on standard desktop computers.

Validation of CellProfiler for many phenotypes
We first demonstrated that CellProfiler's methods could accu-

rately measure many different biologically important features

of cells using several cell types, including Drosophila Kc167

cells because these cells are particularly challenging to iden-

tify by automated image analysis [5,27], and they enable rapid

genome-wide screens using living cell microarrays [26].

Using the basic cell-culture methods described previously

[26], we prepared Drosophila Kc167 cells for experiments

shown in Figures 1 and 2 by pretreating the cells with double-

stranded RNA (dsRNA) against the noted genes for two days

prior to plating on plain glass slides and growing for a further

3 days in the presence of dsRNA. Specifically, 50 µg dsRNA

plus 30 µl fugene in 1 ml serum-free medium were transfected

into a 10 cm plate containing 20 million cells in 10 ml

medium. We prepared human HT29 cells (Figures 1, 2, 3) as

previously described [1].

Direct comparison of image analysis software is difficult

because results from image analysis can be heavily skewed by

how the software is tuned and commercial software packages

are numerous and expensive. Furthermore, the algorithms in

commercial software are proprietary and so cannot be

directly compared apart from the entire software package,

including preprocessing methods. The best practical compar-

ison, therefore, is for software developers to release the

results of their software on standard image sets or versus gold

standards (visual inspection, Coulter particle counters, and

so on). In subsequent sections, therefore, we present such

comparisons. Note that once validated, any of these experi-

ments could be expanded to a large-scale genome-wide RNAi

screen or chemical library screen.

Cell count (used to probe cell proliferation/apoptosis/death)

is a straightforward phenotype that has, nonetheless, proved

challenging for many cell types due to the poor ability of exist-

ing software to separate clumped nuclei. For human cells

(Figure 2a, left), CellProfiler's accuracy compared to manual

counting is twice that reported for a commercial software

package [25]. CellProfiler also counted the more difficult-to-

identify Drosophila Kc167 cells (Figure 2a, right). Cell size

was not previously measurable for many cell types, but Cell-

Profiler's measurements were consistent with the gold stand-

ard, a Coulter particle size counter (Figure 2b). While an

automated routine has been developed for this cell type [45],

this is, to our knowledge, the first report on the quantitative

accuracy of any software to count and measure cell size in

Drosophila Kc167 cells and the results indicate that such

screens are now feasible.

Cell count and size can at least be observed by eye even if

quantitative high throughput screening is impractical. In con-

trast, certain phenotypes, like changes in DNA content, are

impossible to discern by eye. Unlike whole population-based

methods, image cytometry measures individual cell fluores-

cence intensities so that the DNA content of DNA-stained

cells can be determined [46,47]. These measurements are

very easily degraded by anomalies in the illumination of the

field of view and poor identification algorithms (the most

common errors are counting two nearby nuclei as one nucleus

with twice the DNA content and incorrectly splitting a

nucleus into two half-nuclei). This is, therefore, a very

demanding phenotype to measure from images.

Image analysis with CellProfiler produced the expected DNA

content distributions for both human and Drosophila cell

populations (Figure 2c). As another test, we confirmed that

the green fluorescent protein (GFP)-histone content per cell

decreases by roughly half when a cell divides into two daugh-

ter cells during mitosis (Figure 2d). Classification of cells

based on 2N, 4N, and 8N DNA content is, therefore, possible

based on an image of DNA-stained nuclei (Additional data file

6). This is useful not only in studies of cell cycle per se: cell

cycle stage is a known cause of variability in biological sam-

ples, so analyzing a phenotype of interest with respect to the

cell cycle eliminates a confounding variable (for example, the

phenotype of interest could be assessed only in G1 phase cells,

which have 2N DNA content).

Further, image cytometry adds an additional level of informa-

tion about cell cycle distribution. Whereas flow cytometry

based on a DNA stain alone cannot distinguish cells in G2 and

M phase (both having the same 4N DNA content), image

cytometry reveals that these two populations differ in that

mitotic cells have smaller nuclei on average (Figure 2e, right).

The total amount of a protein or phospho-protein per cell can

be measured by analysis of fluorescent antibody staining

(Figure 2e, left), amounting to single-cell western blots. Fur-

thermore, image cytometry can determine the localization of

staining relative to other labeled cellular compartments. The

change in localization of the nuclear factor (NF)κB transcrip-

tion factor in response to tumor necrosis factor (TNF)α in

MCF7 cells can be monitored (Figure 2f). We have previously

used the software to confirm the localization of a protein pre-

dominantly at the membrane [48]. The software can also

identify, count, and measure the shape, size, and intensity of

subcellular structures such as nuclear speckles (Figure 2g).

Finally, image analysis can probe other phenotypes that are

not otherwise easily measured, such as shape and texture/

smoothness. Cell morphology has not often been quantita-

tively measured, despite its importance in normal cellular
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physiology and in disease diagnosis [6,17,19,49]. Many of the

shape and texture measurements for wild-type cells show

non-Gaussian distributions (Additional data file 7). There-

fore, independently measuring every cell by image analysis is

particularly valuable because the population cannot be accu-

rately described by reduction to a few parameters like mean

and standard deviation. We found that changes in cell shape

and actin texture induced by gene-specific RNAi were meas-

urable (Figure 3), opening up the possibility for high-

throughput screens for these and other morphologies.

Cytological profiling to reveal pathways targeted 
by drugs
Having demonstrated CellProfiler's ability to measure a large

number of relevant phenotypes, we applied it to a publicly

available dose-response image set of a Forkhead-EGFP cyto-

plasm to nucleus translocation assay in human cells grown in

multi-well plates (Figure 4a). First, we ran a CellProfiler pipe-

line (Additional data file 2, part E) to calculate an illumina-

tion correction function for each of the five slides and each of

the two channels (<10 minutes processing time per slide on a

Validation of CellProfiler for many cellular phenotypesFigure 2

Validation of CellProfiler for many cellular phenotypes. (a) Cell count: for a set of 6 images of wild-type human HT29 cells (left), two researchers' counts 
varied by 11%, and CellProfiler's counts were within 6% of their average. For images of Drosophila Kc167 cells with various genes knocked down by RNAi 
(right), the two researchers' counts varied by 16% and CellProfiler's counts were within 17% of their average. Example images and CellProfiler outlines for 
these cell types are shown in Figure 1e. (b) Cell size: CellProfiler's cell area measurements are comparable to those of a Coulter particle counter for 
Drosophila Kc167 cells, for wild-type (no dsRNA) and RNA-interference induced samples. The SEM is too small to show error bars. (c) DNA content in 
cell populations: measurements are shown for human HT29 cell populations (1 image for each RNAi condition, left) and for Drosophila Kc167 cell 
populations (1,750 images for each RNAi condition were combined, right). The cell cycle distributions are as expected, with the 2N peak being 
predominant in the wild-type human sample, whereas most wild-type Drosophila nuclei are known to have 4N DNA content [62]. RNAi-targeted samples 
were also as expected for Aurora kinase B (polyploid), Mad2 (fairly normal cell cycle distribution), String (4N-enriched), and Anillin and Cyclin A (both 
polyploid). (d) Chromatin content in time lapse movies: GFP-histone H4 (S. cerevisiae) or GFP-histone H2B (HeLa and C. elegans) content is shown near 
each nucleus in arbitrary intensity units. The histone content is decreased by roughly half in each daughter nucleus after division. For C. elegans, only the 
boxed region of interest was analyzed. Scale bars: C. elegans, unknown; human HeLa = 20 µm; S. cerevisiae = 10 µm. (e) Phospho-protein content: human 
HT29 cells treated with RNAi reagent against Polo kinase have an increased percentage of nuclei with high phospho-H3 staining compared to wild-type 
cells, consistent with a mitosis-stalled phenotype (left). Wild-type human HT29 nuclei that stain positively for phospho-histone H3 tend to be smaller than 
phospho-H3-negative cells (right). (f) Protein localization: the mean intensity of NFκB staining in the cytoplasm and the nucleus is shown in response to 
TNFα in human MCF7 cells (top). Totals do not equal 100% due to slight overlap between compartments. (g) Speckles: fluorescent foci of phospho-
Histone2AX induced by 2 Gy of irradiation in human U2OS cells disappear at timepoints as the cells recover. Scale bar = 10 µm. The SEM is too small to 
show error bars.
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single computer). We then used another CellProfiler pipeline

(Additional data file 2, part A) to load each image, correct its

illumination using the pre-calculated functions, identify

nuclei, identify cell edges, and use the nucleus and cell out-

lines to define the cytoplasmic region of each cell, thereby

defining three compartments for each cell: nucleus, cell, and

cytoplasm. For each slide, we tested the pipeline on several

random test images and fine-tuned settings in the identifica-

tion modules as needed. Modules in the pipeline were

included to measure: multiple features describing the area

and shape of each compartment for each cell; multiple fea-

tures describing the intensity and texture of each channel

within each compartment, including several scales of texture;

and the overall intensity, the percent saturation and the

amount of blur for the entire image, for quality control pur-

poses. The analysis was run on a desktop computer at a rate

of >1 image/minute.

The translocation was easily quantified by many features

(Figure 4b; Additional data file 8), the best of which achieved

the highest published scores for assay quality yet (Figure 4c),

indicating this software's improved ability to identify samples

of interest in screens versus algorithms in commercial soft-

ware [50,51].

Existing commercial software for this assay typically meas-

ures translocation only, but we wondered whether the broad

spectrum of measurements recorded by CellProfiler (the cyto-

logical profiles) could reveal further insights. We noticed that

certain features of nuclear shape change in response to

increasing doses of wortmannin but, interestingly, not the

other positive control drug in this assay, LY294002 (Figure

4d). These subtle changes were seen at all doses at and above

the EC50 of wortmannin but at none of the doses of

LY294002, even those that clearly are sufficient for transloca-

tion of Forkhead, the main readout of this screen. Because

wortmannin and LY294002 target an overlapping set of pro-

teins, this result indicates that using this software in a pri-

mary screening assay would allow classification of any

positively scoring samples as being wortmannin-specific or

not, immediately narrowing down the potential pathways

involved. While billions of samples have been scored using

translocation assays, this is, to our knowledge, the first report

Identifying mutant shapes and texturesFigure 3

Identifying mutant shapes and textures. In each case, four images of each sample were quantitatively analyzed and images were adjusted using Adobe 
Photoshop auto levels for display only. Scale bars = 15 µm. (a) The unusual cell shape induced by an RNAi reagent against Myo3A in human HT29 cells is 
quantitatively distinguishable from wild-type control cells. (b) The unusual cell shape induced by an RNAi reagent against PTPN21 in human HT29 cells is 
quantitatively distinguishable from wild-type control cells. (c) The unusual actin texture induced by an RNAi reagent against DUSP19 in human HT29 cells 
is quantitatively distinguishable from wild-type control cells. The images are pseudocolored to show the actin staining texture. The biological basis of these 
morphological changes and the specificity of the RNAi reagents remain to be determined.
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of the ability to sub-classify samples based on morphological

changes using primary screening data.

Cluster computing
We routinely run CellProfiler on large image sets (more than

45,000 four-color images) using a cluster of computers. To do

this, we add modules to the end of a pipeline to enable

processing batches of images on the cluster and exporting

data into a database. We then process the first image on a

desktop computer, after which CellProfiler automatically

divides the remainder of the large image set into groups and

creates the files needed to submit each group to a computing

cluster. We then use simple commands, outside of CellPro-

filer, to submit the jobs to our cluster of computers and export

the resulting measurements to a database. Each of these steps

is described in the CellProfiler help for batch processing, and

researchers without a computing cluster can now rent one

remotely and inexpensively. Given that a typical image analy-

sis takes approximately two minutes, a single CPU can proc-

ess 30 images/hour and a 100 CPU cluster processes 3,000

images/hour. This is a much faster rate than existing image

acquisition instruments, such that image analysis is not a bot-

tleneck.

Broad applicability
Here we have shown that CellProfiler is useful for measuring

a number of cell features, including cell count, cell size, cell

cycle distribution, organelle number and size, cell shape, tex-

ture, and the levels and localization of proteins and phospho-

proteins. Unlike previously existing software, CellProfiler is

effective in a number of cell types and organisms, such that

new avenues of research in both standard and high-through-

put biology laboratories can now be pursued.

CellProfiler is already being used by laboratories worldwide

studying a variety of biological processes in other cell types

and organisms, including Drosophila (S2R+ cells, epithelial

tissue), human (TOV21G, biopsied prostate gland tissue,

adult mesenchymal stem cells, H1299 lung carcinoma),

mouse (NIH/3T3, neural precursor cells derived from

embryos, lung tissue sections, isolated germ cells), and rat

(H9c2 cells) [1,26,48,52-54] (KA Hartwell, personal commu-

nication). We have also modified CellProfiler to measure

yeast colonies, yeast growth patches, wounds in scratch

assays, and tumors [55].

Importantly, the only successfully completed Drosophila

screen using automated image analysis, to date, has been a

cell-count/object-count screen in the S2 line whose appear-

ance is comparable to human cell lines [56]. We are currently

using CellProfiler to analyze screens using the clumpy Dro-

sophila Kc167 cell type (AEC, TRJ, MRL, DB Wheeler, PG,

DMS, unpublished data). Given the power of RNA interfer-

ence and genetic tools in Drosophila and the demand for

screening in its community [57], this is an area that can now

move past tedious visual analysis of thousands of images,

accelerating the rate of discovery.

Future development
We hope that computer vision researchers will contribute

new algorithms to the project so that their theoretical work

can be applied to practical biological problems. For example,

while CellProfiler can currently analyze each slice of a time-

CellProfiler analysis of a Forkhead (FOXO1A) cytoplasm-nucleus translocation assayFigure 4

CellProfiler analysis of a Forkhead (FOXO1A) cytoplasm-nucleus 
translocation assay. (a) Example images from the high throughput image 
set in human U2OS osteosarcoma cells, showing no treatment (left) and 
150 nM Wortmannin (right) after 1 hour treatment, scale unknown. (b) 

Translocation scored as the fraction of cells whose ratio of GFP in the 
cytoplasm versus the nucleus was above a threshold. Error bars = SEM. 
(c) Statistical analysis using Z' and non-logistic-fit V factors, which are 
standard measures of assay quality (>0.4 is considered screenable and 1 is 
an ideal assay) [63-65]. (d) Nuclei change shape in response to 
wortmannin but not LY294002, as judged by three shape features. Error 
bars = SEM; *p < 0.05.
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lapse movie or three-dimensional image set independently,

implementation of algorithms specifically designed to take

advantage of the extra context information present in this

type of data would be necessary for most experiments using

these image types. Furthermore, CellProfiler is currently

being integrated with the open-source Open Microscopy

Environment project (OME) [58], which would provide a

complete open-source infrastructure for organizing and ana-

lyzing images from high-throughput experiments.

With the successful application of sophisticated image analy-

sis methods, the bottleneck of image-based genome-wide

screens is now moving downstream to data visualization,

exploration, and statistical analysis in order to accommodate

the number and richness of measurements that result from

image-based genome-wide assays [32]. Fully exploiting these

rich data sets will reveal cellular signaling networks and lead

to the unprecedented rich annotation of hundreds of genes in

parallel.

Additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 is the CellProfiler

manual. Additional data file 2 shows the CellProfiler pipelines

for experiments shown in this paper, listing the modules in

the order used. Additional data file 3 is a table listing CellPro-

filer modules by category, with their descriptions. Additional

data file 4 is a table listing the measurements made by Cell-

Profiler modules. Additional data file 5 lists the data and

image tools in CellProfiler, with their descriptions. Additional

data file 6 is a figure showing an example from CellProfiler

analysis of DNA content (cell cycle) in Drosophila Kc167 cells.

Additional data file 7 is a figure showing histograms of shape

and texture features for wild-type cells. Additional data file 8

is a table listing measures for the cytoplasm-nucleus translo-

cation assay (Figure 4) for which the Z' factor is above 0.5.

Additional data file 1CellProfiler manualCellProfiler manualClick here for file

Additional data file 2CellProfiler pipelines for experiments shown in this paper, listing the modules in the order usedCellProfiler pipelines for experiments shown in this paper, listing the modules in the order usedClick here for fileAdditional data file 3CellProfiler modules by category, with their descriptionsCellProfiler modules by category, with their descriptionsClick here for fileAdditional data file 4Measurements made by CellProfiler modulesMeasurements made by CellProfiler modulesClick here for fileAdditional data file 5Data and image tools in CellProfiler, with their descriptionsData and image tools in CellProfiler, with their descriptionsClick here for fileAdditional data file 6Example from CellProfiler analysis of DNA content (cell cycle) in Drosophila Kc167 cellsExample from CellProfiler analysis of DNA content (cell cycle) in Drosophila Kc167 cellsClick here for fileAdditional data file 7Histograms of shape and texture features for wild-type cellsHistograms of shape and texture features for wild-type cellsClick here for fileAdditional data file 8Measures for the cytoplasm-nucleus translocation assay (Figure 4) for which the Z' factor is above 0.5Measures for the cytoplasm-nucleus translocation assay (Figure 4) for which the Z' factor is above 0.5Click here for file
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