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Introduction
Tissue imaging and single-cell analysis can reveal previously undetected biological struc-
ture and uncover subtle spatial relationships between cells. Recently, the development 
of antibody-based multiplexed imaging methods has enabled deep single-cell phenotyp-
ing of tissue microenvironments [1–9]. This analysis has been especially useful in cancer 
studies, where these imaging platforms have revealed nuanced tumor architecture and 
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Background: Algorithmic cellular segmentation is an essential step for the quanti-
tative analysis of highly multiplexed tissue images. Current segmentation pipelines 
often require manual dataset annotation and additional training, significant parameter 
tuning, or a sophisticated understanding of programming to adapt the software to the 
researcher’s need. Here, we present CellSeg, an open-source, pre-trained nucleus seg-
mentation and signal quantification software based on the Mask region-convolutional 
neural network (R-CNN) architecture. CellSeg is accessible to users with a wide range of 
programming skills.

Results: CellSeg performs at the level of top segmentation algorithms in the 2018 
Kaggle Data Challenge both qualitatively and quantitatively and generalizes well to a 
diverse set of multiplexed imaged cancer tissues compared to established state-of-the-
art segmentation algorithms. Automated segmentation post-processing steps in the 
CellSeg pipeline improve the resolution of immune cell populations for downstream 
single-cell analysis. Finally, an application of CellSeg to a highly multiplexed colorectal 
cancer dataset acquired on the CO-Detection by indEXing (CODEX) platform demon-
strates that CellSeg can be integrated into a multiplexed tissue imaging pipeline and 
lead to accurate identification of validated cell populations.

Conclusion: CellSeg is a robust cell segmentation software for analyzing highly multi-
plexed tissue images, accessible to biology researchers of any programming skill level.
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interactions between tumor, immune and stromal cells, and healthy host tissue [10–16]. 
In such highly multiplexed tissue imaging studies, the quality and accuracy of down-
stream analyses depend critically on the precise identification and correct phenotypic 
assignment of single cells, which requires accurate demarcation of each cell’s bound-
ary and quantification of its marker expression. This is usually accomplished using an 
automated segmentation and signal quantification algorithm [17]. At a minimum, a seg-
mentation algorithm takes an image as input and produces a set of masks denoting the 
boundary of each identified cell.

Commonly used segmentation algorithms include watershed (WTS) combined with 
thresholding [18, 19] and level-set techniques [20]. For example, WTS segmentation was 
recently used to identify cells in highly multiplexed fluorescence microscopy datasets of 
mouse and human tissues [3, 15, 16, 21]. However, these methods can be sensitive to 
noise within the image including blurred cell–cell contact boundaries and imaging arti-
facts such as antibody aggregates. Additionally, they are often not robust to variations 
in cell size or morphology and require significant parameter tuning for expected cell 
size, shape of nucleus, and cell density [22]. These limitations make their application to 
segmenting images of tumor tissue challenging, since cancers consist of a variety of cell 
shapes, sizes, and densities. Advances in deep learning architectures have transformed 
cell image analysis [23], and these models have been extended to applications in single-
cell segmentation [24–31]. Leading among these algorithms is the Mask R-CNN archi-
tecture, which has previously shown positive performance on other segmentation tasks 
[26, 32]. However, deep learning algorithms usually require pre-labeled training data for 
the specific segmentation task, leading to substantial and time-consuming human input 
to obtain a high-quality segmentation.

While pre-trained deep learning architectures exist, such as StarDist [33] and Cell-
pose [26], an additional issue is the subsequent handling of the segmentation output to 
produce single-cell statistics used for downstream analysis, including pixel quantifica-
tion. This results in either extra coding or exporting of masks to another image process-
ing software where additional commands allow quantification of pixels in the segmented 
image to produce single-cell statistics. Further processing steps, including expanding 
mask boundaries and reducing noise in the statistics must be completed separately. 
Complete segmentation pipelines including CellProfiler [34] or ilastik [35] address these 
concerns but still often require hands-on user input, such as manual annotation or pro-
cessing of segmentation results.

Here, we present CellSeg (https:// micha ellee1. github. io/ CellS egSite/ index. html), an 
easy-to-use, pre-trained, Mask R-CNN-based cell segmentation and pixel quantification 
software. Users supply a set of tissue images to CellSeg, and the software returns the seg-
mented images and a table of single-cell statistics including each cell’s location, nucleus 
size, and mean pixel values in each imaging channel. CellSeg is open-source and availa-
ble for Windows, Mac, or Linux. It is capable of segmenting JPG, PNG, and TIFF images 
of any image size, subject to hardware requirements reported below. CellSeg is accessible 
to individuals of all programming levels and requires minimal user input. For most uses, 
the pre-trained CellSeg model requires no additional manual annotation of training data, 
no additional training, and limited parameter tuning to produce a high-quality segmen-
tation. The software has been designed to work as a library, so more advanced Python 

https://michaellee1.github.io/CellSegSite/index.html
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users can customize the pipeline to fit their needs. Applications detailed below dem-
onstrate that CellSeg robustly segments highly multiplexed fluorescence images from a 
variety of healthy and cancerous tissues. CellSeg exceeds an established WTS segmen-
tation pipeline both in terms of user friendliness as well as segmentation accuracy and 
performs at the level of two state-of-the-art deep learning segmentation algorithms.

Implementation
Overview of CellSeg pipeline

The CellSeg software is implemented in Python and run using Jupyter Notebook [36]. 
CellSeg first extracts a user-specified nucleus color channel for segmentation (Fig. 1, 
step 1). Through iterative visual inspection, we found increasing the brightness of the 

Fig. 1 CellSeg pipeline. Overview of CellSeg software with following steps. (1) Extract nuclear channel and 
crop images to segment. (2) Segment each image crop with CellSeg. (3) Stitch together segmented crops. 
(4) Expand boundaries of cells using mask expansion. (5) Perform lateral bleed compensation, then compute 
and output single-cell statistics for N markers
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nuclear channel can improve segmentation performance, especially in images with 
weak nuclear stain signal. CellSeg therefore scales each nuclear image’s brightness by 
a fixed constant computed from a reference image specified by the user. After scal-
ing, CellSeg splits the nuclear stain image into several overlapping cropped images to 
accelerate segmentation (Fig. 1, step 1). Each image crop is segmented, and the result-
ing segmented crops are stitched into the full segmented multi-channel image (Fig. 1, 
steps 2–3). To eliminate erroneously segmented imaging artifacts, which often appear 
as high intensity speckles or clusters, CellSeg removes objects smaller than a user-
specified threshold from the set of segmented cells.

After segmentation, two optional post-processing steps follow: mask expansion and 
lateral bleed compensation (Fig. 1, steps 4–5). Mask expansion extends the boundary 
of each segmented nucleus by a user-specified number of pixels to capture cell mem-
brane fluorescent signal (Fig. 1, step 4). Lateral bleed compensation aims to correct 
fluorescent signal spillover between adjacent cells, an issue often seen in immunoflu-
orescence imaging of dense tissues. The details of these steps and their performance 
are discussed below. After post-processing, CellSeg computes the mean pixel value 
for each marker over the set of pixels contained in each identified cell. In fluorescent 
images, these values can be seen as a proxy to the expression level of each imaged 
protein in each cell. CellSeg saves each cell’s (X, Y) coordinate and pixel quantifica-
tions to a table in both comma-separated value (CSV) and flow-cytometry standard 
(FCS) formats (Fig.  1, step 5). This data output format is recognizable by popular 
downstream single-cell analysis software, including flow cytometry gating programs 
such as CellEngine (https:// celle ngine. com), Cytobank (https:// www. cytob ank. org), 
or FlowJo (https:// www. flowjo. com), as well as cell clustering programs like VorteX 
[37]. For visual inspection of segmentation quality, the user can also optionally gen-
erate images of the segmented tissue with overlaid masks and a TIFF stack of mask 
regions of interest (ROIs) which can be viewed in other image analysis programs like 
Fiji/ImageJ [38].

User accessibility

CellSeg is an open-source segmentation software accessible to individuals with a range 
of programming skills. On the CellSeg webpage (https:// micha ellee1. github. io/ CellS 
egSite/ index. html), we created detailed tutorials for software installation, setup, and seg-
mentation configuration. These tutorials assume no prior programming knowledge, and 
they walk the user through all phases of the CellSeg pipeline. The user has the option to 
run CellSeg using either a Jupyter Notebook containing a step-by-step walkthrough of 
the pipeline with comments or a fully automated script for segmenting several images. 
For more advanced users, the components of the pipeline can be used as a library. This 
allows users to incorporate algorithms from CellSeg into their personal segmentation 
pipelines or use CellSeg algorithms individually during exploratory image analysis. 
CellSeg can be run in the background on any computer with sufficient storage for the 
input image files with at least 16 GB RAM. While it does not require a GPU, CellSeg can 
be accelerated for those with access to hardware using the open-source package tensor-
flow-gpu [39], and instructions for GPU acceleration are provided on the webpage.

https://cellengine.com
https://www.cytobank.org
https://www.flowjo.com
https://michaellee1.github.io/CellSegSite/index.html
https://michaellee1.github.io/CellSegSite/index.html
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Training

CellSeg was trained on a dataset of fluorescent and brightfield biological microscopy 
images from the 2018 Kaggle Data Science Bowl containing 29,464 ground truth seg-
mented nuclei (Fig. 2A) [40]. These images were acquired with variations in cell pheno-
type, size, image zoom, and brightness. Of note, CellSeg was not trained on any highly 
multiplexed tissue imaging data. Both the CellSeg architecture and training method 
were optimized for robustness to variations in cell size and morphology. Further details 
of CellSeg’s architecture and training can be found in the “Methods” section.

Results and discussion
CellSeg architecture achieves high performance on Kaggle data challenge test set

After implementing CellSeg, we validated each step of the pipeline: architecture, seg-
mentation, segmentation post-processing, and output. First, we quantitatively evaluated 

Fig. 2 Training and Benchmarking CellSeg performance on the 2018 Kaggle data challenge. A Information 
on Kaggle dataset used to develop, train, and test CellSeg. CellSeg final performance was assessed on 
a test set provided by the Kaggle data challenge using mean average precision (mAP) score. B CellSeg 
segmentation of representative fluorescence image from the Kaggle test set. White arrowheads: cells with 
blurred nuclear boundaries C CellSeg segmentation of representative H&E-stained brightfield image. Red 
arrows: nuclear debris. D CellSeg performance compared to other top performing segmentation algorithms 
in data science bowl. Columns show mean average precision (mean AP) scores reported on Kaggle DSB2018 
stage 2 test set and average F1 scores. For nucleAIzer, reported scores from the original publication [29] 
are displayed. For StarDist, brightfield and fluorescence images were segmented using 2D_versatile_he 
pre-trained model and 2D_versatile_fluo pre-trained model, respectively. For Cellpose, the pre-trained nuclei 
segmentation model was used (see “Methods” section for testing details)
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our trained Mask R-CNN segmentation architecture using the 2018 Kaggle Data Science 
Bowl [40]. This challenge dataset enabled assessment of the performance of our trained 
Mask R-CNN architecture in comparison with top performers in this competition and 
more recently published neural network-based cell segmentation algorithms such as 
nucleAIzer [29], StarDist [33], and Cellpose [26].

CellSeg was tested for segmentation quality on a ground truth segmented valida-
tion set of 3717 nuclei from Kaggle (Fig. 2A). We found that CellSeg qualitatively per-
formed well on fluorescence images where it accurately identified individual nuclei even 
when boundaries between two nuclei were blurred (Fig.  2B). CellSeg accurately iden-
tified many nuclei in the brightfield image stained with hematoxylin & eosin (H&E) 
(Fig.  2C), but overall performed better in fluorescent images, due potentially to the 
higher amounts of nuclear debris and other artifacts in the H&E-stained images. The 
Kaggle challenge used mean average precision (mAP) as the segmentation quality met-
ric (“Methods” section). A higher mAP score corresponds to a more accurate segmenta-
tion on the Kaggle competition’s test set. By the mAP metric, CellSeg performed among 
the top algorithms in the competition and comparably to nucleAIzer, while attaining a 
higher mAP score than both StarDist and Cellpose (Fig. 2D).

CellSeg outperforms an established WTS segmentation algorithm on a multi‑tissue 

microarray

Next, we evaluated CellSeg’s performance on a set of tissues representing a variety of 
cell and nuclear sizes, densities, and morphologies. Using a tissue microarray (TMA) 
comprised of human tumor and healthy tissues and imaged with the fluorescent nuclear 
marker DRAQ5 [15], we qualitatively assessed the performance of CellSeg against an 
established WTS algorithm that was tuned using hyperparameters selected by an expert 
pathologist for optimal segmentation quality [3]. We found that CellSeg was less sensi-
tive to variations in nucleus size and morphology, outperforming the WTS algorithm 
on most tissues (Fig. 3). Both CellSeg and WTS correctly segmented immune cells and 
cells with spindly nuclei (Fig. 3A, B). While WTS tended to incorrectly segment large 
nuclei into several smaller masks in glioblastoma multiforme (GBM), hepatocellular car-
cinoma (HCC), and seminoma tissues, CellSeg correctly identified both large and small 
nuclei in the same images (Fig. 3C–E). CellSeg robustly identified nuclei with significant 
variations in brightness, as observed in the GBM and HCC tissues. CellSeg and WTS 
with expert annotation did not perform well on an image of T-cell acute lymphoblastic 
leukemia (T-ALL), a highly dense tumor composed of small lymphocytes with obscured 
nuclear boundaries (Fig. 3F). Manually segmenting such tissues is challenging even for 
expert pathologists. These findings underscore the importance of both tissue quality and 
clear separation between individual cells as key parameters for optimal segmentation. 

Fig. 3 CellSeg performance on diverse human FFPE tissues. CellSeg performance on representative tissue 
images from a multi-tumor tissue microarray imaged with CODEX, all stains are DRAQ5 nuclear stain. A. 
Healthy spleen shows small cells. B. Dermatofibrosarcoma protuberans (DFSP) shows spindly nuclei. C. 
Glioblastoma multiforme (GBM) shows large, misshapen cells. D. Hepatocellular carcinoma (HCC) shows large, 
round cells. E. Seminoma shows a blend of large tumor cell nuclei and small nuclei from tumor-infiltrating 
lymphocytes. F. T-cell acute lymphoblastic leukemia (T-ALL) shows densely packed cells. Scale bar, 20 μm. 
Fluorescence intensity increased in original images for visualization purposes

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Overall, CellSeg performed at least as well as the established WTS algorithm on all tis-
sues, while clearly outperforming it on three tissues (GBM, HCC, and seminoma).

CellSeg performs at the level of state‑of‑the‑art neural network‑based segmentation 

algorithms

Next, we qualitatively compared CellSeg’s performance to two recently published neural 
network-based segmentation algorithms, StarDist [33] and Cellpose [26]. The six tissues 
from our TMA shown in Fig. 3 were segmented using pre-trained models of StarDist 
(2D versatile fluo) and Cellpose, and the segmentation masks were compared to masks 
generated by CellSeg. All three algorithms performed comparably well on spleen and 
HCC (Fig.  4A, D). Compared to CellSeg, StarDist segmented more objects with low 
fluorescence intensity in GBM and seminoma (Fig. 4C, E). However, StarDist also over-
segmented many nuclei in DFSP, while CellSeg identified them accurately, suggesting 
that CellSeg is more robust to variations in nuclear morphology (Fig. 4B). Both StarDist 
and CellSeg identified more nuclei than Cellpose in DFSP, GBM, and seminoma (Fig. 4B, 
C, E). All three algorithms performed poorly on T-ALL (Fig. 4F). In summary, CellSeg 
performs at the level of state-of-the-art neural network-based segmentation algorithms 
when applied to a real-world dataset.

CellSeg post‑processing steps improve downstream resolution of immune populations

In the development of CellSeg, we addressed two post-segmentation issues. First, 
because CellSeg is a nucleus segmentation algorithm, the boundary identifying a cell’s 
nucleus often fails to capture the fluorescent signal of its plasma membrane where many 
of the protein markers used for cellular identification are located (e.g., CD45 denoting 
an immune cell, and EpCAM denoting an epithelial cell). Second, fluorescent imaging 
often results in spatial fluorescent spillover between adjacent cells, creating noise in 
quantification of protein expression [3]. To resolve these issues, two optional steps fol-
low segmentation with CellSeg: (1) mask expansion (Fig. 5A, step 1) and (2) lateral bleed 
compensation (Fig. 5A, steps 2–3). Mask expansion extends the boundary surrounding 
each segmented nucleus by a user-defined number of pixels. This allows for quantifica-
tion of the plasma membrane fluorescent signal. Next, lateral bleed compensation cor-
rects for fluorescence spillover between adjacent cells. As described in Goltsev et al. [3], 
this algorithm computes the surface contact ratios between physically adjacent cells and 
uses this value to simultaneously boost signal from a cell and reduce spatial spillover 
noise from neighboring cells.

We tested the efficacy of the lateral bleed compensation algorithm with CellSeg on 
an immunofluorescence dataset imaged on the CO-Detection by indEXing (CODEX) 
platform. CODEX iteratively visualizes protein-antibody binding events, allowing for 
the quantification of more than 50 protein targets in formalin-fixed, paraffin-embed-
ded (FFPE) or fresh-frozen tissue sections [3, 15]. Using CODEX, we recently imaged 
two TMAs containing 140 samples from 35 patients with colorectal cancer (CRC). In 
this study, WTS was used to segment the images [15]. This particular WTS segmenta-
tion used the same bleed compensation algorithm that we implemented for CellSeg. 
Single-cell marker quantifications from the WTS segmentation were extensively 
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validated in this study, providing us with a baseline for the expected expression pro-
files of cell types against which we could validate our bleed compensation algorithm.

Using CellSeg, we segmented the 140 CRC images either with or without bleed 
compensation and gated the segmented data in CellEngine. In this dataset, the 
expression of certain pairs of imaged protein markers are expected to be mutu-
ally exclusive based on their known biology, including CD20/CD3, CD8/CD4, and 
cytokeratin/CD45. However, the presence of several densely populated immune cell 
regions, as observed in the CRC dataset, can lead to the erroneous identification of 
cells that are positive for both markers due to spatial fluorescent spillover. Applying 
an approach previously used to assess compensation [3], we measured the efficacy of 

Fig. 4 CellSeg performs comparably to established deep learning-based segmentation algorithms on 
diverse human FFPE tissues. Representative images from tissues described in Fig. 3 are shown. A. StarDist, 
Cellpose, and CellSeg show comparable performance on spleen. B. StarDist oversegments several spindly 
nuclei in DFSP (arrows), while CellSeg and Cellpose segment nuclei accurately. C. StarDist and CellSeg 
segment more low intensity objects in GBM (arrows). D. all three algorithms perform similarly well on HCC. 
E. StarDist and CellSeg segment more low intensity objects in seminoma (arrows). F. All three algorithms 
perform relatively poorly on T-ALL. Scale bar, 20 μm
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bleed compensation by the observed reduction in the frequency of cells double posi-
tive for any of these pairs of markers (Fig. 5B). Lateral bleed compensation reduced 
the frequency of double positive cells in both the CD8/CD4 and CD20/CD3 pairs, 
with a lesser reduction of double positive cells in the cytokeratin/CD45 pair. There-
fore, the lateral bleed compensation implemented in CellSeg improves the resolu-
tion of immune cell expression profiles in a dataset with densely packed immune cell 
regions.

Phenotyping using CellSeg output recapitulates validated cell populations in the CRC 

CODEX Dataset

In previously published work using the CODEX pipeline, WTS segmentation pro-
vided single-cell fluorescent intensity statistics that were used to assign cell pheno-
types in the CRC dataset [15]. To assess whether CellSeg could replace WTS in the 

Fig. 5 Testing lateral bleed compensation on a CODEX dataset of colorectal cancer samples. A. Schematic 
demonstrating post-processing of CellSeg segmentation with following steps. (1) Grow cell boundaries by 
user defined number of pixels (growth of two pixels shown). (2) Compute inverse adjacency matrix from cell–
cell. (3) Multiply inverted adjacency matrix by marker pixel intensity vector to obtain compensated single-cell 
pixel quantifications table. B. Effects of lateral bleed compensation on double-positive cell populations in the 
CRC dataset for three pairs of mutually exclusive markers (CD8 vs. CD4, Cytokeratin vs. CD45, CD20 vs. CD3). 
Data shown are from one of the two CRC TMAs (TMA A), with comparable bleed compensation performance 
for the other TMA (TMA B, data not shown)
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CODEX pipeline, we performed a head-to-head comparison by gating segmented 
cells in all 140 samples with key phenotyping markers of major cell types as vali-
dated by an expert pathologist.

To confirm that the gated cell types derived from WTS and CellSeg occupied simi-
lar regions within the CRC tumors, we directly visualized these cell types on the CRC 
images. This analysis showed that CellSeg and WTS generated the same cell phenotypes 
with comparable spatial organization within the CRC tumors (Fig. 6A). Further valida-
tion was performed by examining the original fluorescent image displaying key pheno-
typing markers (Fig. 6B). Both CellSeg and WTS cell types, identified by gating, had the 
expected cell morphology and fluorescence marker profile when inspecting the corre-
sponding regions of the fluorescent image.

For a more global quality assessment of our analysis, we correlated the cell types quan-
tified by CellSeg with those identified by WTS. For each sample, we correlated the abso-
lute number of cells in each gated population using the outputs of CellSeg and WTS 
(Fig. 6C). As examples, we depict gated T cells, macrophages, B cells, and tumor cells, 
all of which showed very strong positive correlations between the WTS and CellSeg seg-
mented cell counts. The cell types generated from the CellSeg segmentation matched 
previously validated cell types generated from WTS in the CRC dataset. However, 
while cell counts from CellSeg and WTS were correlated, WTS segmentation generally 
resulted in higher numbers of tumor cells (Fig. 6C). This is likely due to over-segmenta-
tion of large tumor cell nuclei, as observed in GBM, HCC, and seminoma (Fig. 3C–E), 
suggesting that CellSeg is superior to WTS for tumor cell identification. These findings 
demonstrate that tissue analysis using CellSeg can recapitulate previously published 
findings in a multiplexed fluorescence imaging study.

Conclusions
In summary, we present CellSeg, a robust single-cell segmentation and quantification 
software for tissue images. Our software has been designed to be accessible to research-
ers of all programming skill levels. For novice programmers, we have created detailed 
tutorials on how to implement and use CellSeg (https:// micha ellee1. github. io/ CellS 
egSite/ index. html). For more advanced Python users, the components of the CellSeg 
pipeline function as a library to complete customized image analysis or segmentation 
tasks. As more sophisticated segmentation algorithms emerge, future researchers can 
use the CellSeg pipeline and combine it with their algorithm of choice. Importantly, our 
pre-trained segmentation algorithm works “out-of-the-box” for many single-cell seg-
mentation tasks, without requiring any additional manual training by the user.

We validated each step of the CellSeg pipeline: architecture, segmentation, post-pro-
cessing, and output. In a post-competition evaluation, the pre-trained CellSeg archi-
tecture scored among the top performers from the 2018 Kaggle data challenge. CellSeg 
also qualitatively outperformed an established segmentation algorithm on a multi-tissue 
TMA. Both qualitative and quantitative comparisons demonstrated that CellSeg per-
forms comparably to state-of-the-art deep learning-based segmentation algorithms. 
Finally, using a CODEX CRC dataset, we showed that the post-processing steps in our 
CellSeg pipeline improved resolution of mutually exclusive cell populations while reca-
pitulating previously published cell populations in the dataset. CellSeg is therefore a 

https://michaellee1.github.io/CellSegSite/index.html
https://michaellee1.github.io/CellSegSite/index.html
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powerful tool that has shown robust performance on a wide variety of tissue segmenta-
tion tasks and should help researchers with their needs in cell segmentation and marker 
quantification in biological imaging data.

Fig. 6 Recapitulating previously identified cell populations using CellSeg. A. Visualization of identified 
populations in a representative CRC tissue. Points on scatter plots show positions of cells on the displayed 
tissue image in Fig. 5B. Population identity obtained through gating. B. Fluorescent image of a representative 
CRC tissue. Expression of six phenotyping markers used in Fig. 5A shown. C. Population correlation 
analysis between CellSeg and WTS. Each point corresponds to a TMA spot, where the X value is the gated 
population count from WTS and the Y value is the count computed from CellSeg. Least-squares regression 
line displayed along with  r2 value. T cells are defined as  CD45+CD3+CD20−Cytokeratin−; macrophages as 
 CD45+CD20−CD3− and  CD68+,  CD163+, or  CD68+CD163+; B cells as  CD45+CD20+CD3−Cytokeratin−; and 
tumor as  Cytokeratin+CD45−
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Methods
Architecture

CellSeg is based on the Matterport implementation of Mask R-CNN [32, 41]. CellSeg 
uses a slightly modified loss function during training. The original Mask R-CNN 
paper uses L =  Lcls +  Lbox +  Lmask, where the loss is the additive sum of class loss, 
bounding box loss, and mask loss as defined in the paper. A new hyperparameter was 
added to arrive at L = αLcls +  Lbox +  Lmask. Through experimental analysis, it was found 
that reducing the contribution of class loss in our single-class model improved con-
vergence during training. For the results in this paper, α = 0.5.

Training

To prevent overfitting and to extend the training data, multiple image augmentation 
techniques were used, which contributed significantly to CellSeg’s quantitative per-
formance. The first was simple random field sampling. At train time, 512 × 512 pixel 
crops of the image were used, selected randomly from the image. Using the imgaug 
library version 0.2.9, contrast normalization, brightness, Gaussian blur, zooms scaling 
the X and Y axes independently, vertical and horizontal flips, and rotations were also 
modulated throughout training [43]. No augmentations were conducted at test time. 
The model was trained in minibatch sizes of 16 using stochastic gradient descent with 
momentum. Transfer learning was utilized for the dataset, with weights used from a 
Mask R-CNN model that trained on COCO, a segmentation challenge with 91 object 
types and 2.5 million labeled instances [44]. Auxiliary functions for training were 
adapted from the DeepRetina DSB2018 training scripts, although our model did not 
use their trained weights [42]. The network was trained for 150 epochs with decaying 
learning rate with the base model frozen, to let only the top layers train. Then, the full 
network was trained for 25 epochs at a very low learning rate. All training was done 
on an Nvidia GTX 1080 Ti GPU and a Dual Intel® Xeon® Silver 4114 10-core CPU, 
taking about 41 h to train.

Mean average precision metric

For each segmented image, mean average precision was computed using intersection 
over union (IoU) between segmented masks and ground truth masks as follows. IoU 
compares the overlap between the CellSeg segmentation of a cell and a ground truth 
manual segmentation. First, for each segmented mask, the pixel IoU, defined as the 
ratio of the overlap between ground truth mask A and CellSeg mask B to the total area 
that A and B cover was computed as IoU(A, B) = (A ∩ B)/(A ∪ B). IoU values range 
from 0 to 1, with 1 denoting a perfectly segmented cell, i.e., the ground truth. The 
number of cells with IoU values exceeding threshold t were computed, where t ranges 
from 0.5 to 0.95 in increments of 0.05. At each t, a precision value Q(t) was calcu-
lated as: Q(t) = TP(t)/(TP(t) + FP(t) + FN(t)) where TP, FP, and FN were the number 
of true positives, false positives, and false negatives identified in an image, respec-
tively. A TP is defined as an object with a pixel IoU above the threshold t. The Aver-
age Precision (AP) of an image was then computed as the mean over the thresholds: 
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AP = (1/|thresholds|)∑tQ(t). Finally, the mean AP (mAP) was computed as the mean 
over the AP of each image in the test dataset.

Quantitative segmentation evaluation

Mask predictions were made on Kaggle DSB 2018 stage 2 test set images for CellSeg and 
uploaded to the DSB 2018 page on the Kaggle website (after the competition closed) to 
obtain mAP score. For StarDist (version 0.7.1), fluorescence and brightfield images were 
segmented using 2D_versatile fluo and 2D_versatile_HE pre-trained models, respec-
tively. For Cellpose (version 0.6.5), fluorescence images were segmented using chan-
nels = [0,0] with all other parameters set to default. Brightfield images were segmented 
using parameters channels = [1,0], invert = True, and flow_threshold = 0.8 with all other 
parameters set to default. Predicted masks for each segmentation algorithm were saved 
and uploaded to Kaggle to obtain the mAP score.

TMA qualitative segmentation evaluation

CellSeg and an optimized WTS segmentation algorithm [3] were both used to segment 
six tissue images from a multi-tissue TMA. Representative images from the results of 
each segmentation were selected for Fig. 3. We used the best-focus image returned by 
the 3D WTS algorithm to compare segmentation results. Size parametrization for WTS 
was hand-verified by a board-certified surgical pathologist (C.M.S.). For qualitative com-
parison between CellSeg, StarDist, and CellPose in Fig. 4, 300 × 400 pixel patches were 
sampled randomly from each tissue image to visualize. StarDist (version 0.7.1) 2D_ver-
satile_fluo pre-trained model was used for segmentation with default parameters. For 
Cellpose, the pre-trained model (version 0.6.5) with no modifications was used. Segmen-
tation results were visualized with mask ROI overlays in ImageJ.

Mask expansion algorithms and lateral bleed compensation

We implemented two mask expansion algorithms. The first algorithm expands the 
boundary of each mask by a user-defined number of pixels. If this expansion leads to 
two overlapping masks, the algorithm assigns each pixel in the overlapping region to the 
mask whose center is closest to the pixel. The first mask expansion algorithm is com-
putationally efficient and works well for tissue images with cells of similar size. How-
ever, the algorithm biases pixel assignment towards smaller masks, since the center of 
these masks are generally closer to the overlap region than the centers of larger masks. 
To correct for this, the second expansion algorithm iterates over the masks, expanding 
each mask by 1 pixel until it collides with another pre-existing mask boundary, at which 
point growth in that direction stops. The algorithm proceeds until each mask has been 
expanded by the user-defined number of pixels. This algorithm mitigates the need for 
assigning pixels based on distance to cell center at the cost of more computation time. 
Through iterative visual inspection of masks with and without mask expansion, we 
found that growth by 1 or 2 pixels is usually sufficient to capture most membrane pro-
tein signal. The lateral bleed compensation algorithm implemented in the CellSeg pipe-
line is the same as in previously published work from our group, readers are directed to 
the original paper for the details of the algorithm [3].



Page 15 of 17Lee et al. BMC Bioinformatics           (2022) 23:46  

Benchmarking CellSeg

Segmentation of the CRC dataset and multi-tissue TMA was performed on a Dual 
Intel® Xeon® Silver 4114 10-core CPU. Resulting segmented data was gated in CellEn-
gine (https:// celle ngine. com). When evaluating fluorescent bleed compensation on the 
CRC dataset, samples were aggregated by TMA, resulting in two gates for each cell 
population, one corresponding to each TMA. When performing population correlation 
analysis, cell types were gated by sample, resulting in tailored gates for the 140 samples. 
Gating was performed independently for the WTS dataset and the CellSeg dataset in a 
blinded fashion (J.S.B.). Resulting identified populations were validated by an expert in 
flow cytometry (C.M.S.). Population correlation analysis was performed in R Studio. The 
script is available upon request. Plots in Fig. 6a and c were generated using the R pack-
age ggplot2 [45]. The tissue image for Fig. 6b was obtained in Fiji/ImageJ [38].

Availability and requirements
Project Name: CellSeg. Project home page: https:// micha ellee1. github. io/ CellS egSite/ 
index. html. Operating system(s): Windows, MacOS, or Linux. Programming language: 
Python. Other requirements: Web browser, internet connection, Conda, Jupyter, mini-
mum 16  GB RAM, other Python package dependencies listed on project home page. 
License: MIT. Restrictions for Non-academics: None.
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Glioblastoma multiforme; GPU: Graphics processing unit; HCC: Hepatocellular carcinoma; IoU: Intersection over union; 
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