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Abstract

High optical resolution in microscopy usually goes along with costly hardware components,

such as lenses, mechanical setups and cameras. Several studies proved that Single Molec-

ular Localization Microscopy can be made affordable, relying on off-the-shelf optical compo-

nents and industry grade CMOS cameras. Recent technological advantages have yielded

consumer-grade camera devices with surprisingly good performance. The camera sensors

of smartphones have benefited of this development. Combined with computing power

smartphones provide a fantastic opportunity for “imaging on a budget”. Here we show that a

consumer cellphone is capable of optical super-resolution imaging by (direct) Stochastic

Optical Reconstruction Microscopy (dSTORM), achieving optical resolution better than 80

nm. In addition to the use of standard reconstruction algorithms, we used a trained image-

to-image generative adversarial network (GAN) to reconstruct video sequences under con-

ditions where traditional algorithms provide sub-optimal localization performance directly on

the smartphone. We believe that “cellSTORM” paves the way to make super-resolution

microscopy not only affordable but available due to the ubiquity of cellphone cameras.

1 Introduction

Super-resolution by Single Molecule Localization Microscopy (SMLM) techniques like Photo-

Activated Localization Microscopy (PALM) [1, 2] or (direct) Stochastic Optical Reconstruc-

tion Microscopy (dSTORM) [3] is well established in biology and medical research. Together

with other modalities like Stimulated Emission Depletion (STED) [4, 5] and Structured Illumi-

nation Microscopy (SIM) [6, 7], SMLM revolutionized optical far-field microscopy beyond the

Abbe limit [8].

Typically these methods rely on costly hardware for excitation and detection [9, 10]. Scien-

tific-grade sCMOS or emCCD cameras are a major cost factor, as high photon efficiency and

low noise are paramount. However, previous studies [10, 11, 12] have successfully demon-

strated that substituting major elements from a SMLM setup, such as the sCMOS camera by a

low-cost CMOS camera, or microscope stands by off-the-shelf or even 3D-printed parts, stil
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yields super-resolution. The evolution of mobile phones created surprisingly powerful cameras

and sensors backed by respectable computational power worth considering as an alternative.

This, combined with their widespread availability gave rise to the developing field of mobile

microscopy, which so far resulted in hand-held devices capable of quantitative phase-imaging

of biological material by combining the cellphone with customized hardware adapters [13, 14]

or act as portable diagnosis devices to detect e.g. waterborne parasites [14, 15, 16]. In regions,

where proper working conditions for ordinary lab equipment are hard to establish (e.g. due to

high humidity) cellphones might represent a good alternative to expensive and potentially

fragile cameras. Furthermore the densly integrated functions of a cellphone allows acquisition

and processing on the same device, making parallel imaging scenarios very attractive.

Most smartphone camera sensors are equipped with Bayer patterned filters, significantly

lowering the detection efficiency compared to monochromatic imaging. Some recent cameras

modules, such as in the Huawei P9, feature sensitive monochromatic CMOS camera chips.

However, acquiring high-quality RAW data using a cellphone is nevertheless very challenging.

Hardware abstraction layers embedded into the firmware of the camera module prevent

accessing the raw pixel values. Compression and noise artifacts are therefore a potential prob-

lem of imaging with smartphone cameras.

We show that by simple adaption of the mobile phone device to a common widefield

microscope equipped with an excitation laser it is possible to image well below the diffraction

limit. Additionally we present a novel machine-learning-based image processing algorithms

being able to process dSTORM experiments directly on the device. This allows making existing

setups even more portable and affordable.

2 Results

2.1 Cellphone data acquisition

In order to image the blinking fluorophores, we attached the smartphone (P9 EVA-L09, Hua-

wei, China, Table 1) directly to the eyepiece of a standard inverted research microscope (Axio-

Vert 135 TV, Zeiss, Germany) with a 3D-printed interface. For all experiments we used a 12

Bit monochromatic sensor chip (Sony IMX 286, Japan, Table 1, [17]) of the P9’s dual-camera

module. The aim of the camera manufacturer is to ensure optimal image quality in everyday

environments. Tailored algorithms help to hide problems introduced e.g. by the small pixels

and lens dimensions [18, 19].

In contrast to industry-grade CMOS cameras, the acquired images of cellphone cameras

are post-processed by proprietary firmware, called the image signal processor (ISP) [20, 21].

This allows real-time optimization of the image quality. It is not only responsible for demosai-

cing the Bayer-pattern to generate RGB images, but also reduces the effect of lens aberrations

Table 1. Comparison of a scientific-grade with a low-cost cell phone camera.

Andor iXonEM+ 897 Huawei P9 (EVA-L09,
Sony IMX286, Grayscale

Pixel#: 512 × 512 3980 × 2460

Sensortype (back-illuminated) emCCD (back-illuminated) CMOS

Pixelsize (μm): 16 1,25

Bitdepth: 14 Bit 12 Bit

Read Noise (e−): 0,2 RMS 1,23 RMS (see Methods 5.3)

Quantum-Efficiency � 90% � 70 − 80%

Price � 20 k$ � 300 $ (camera module:� 20 $)

https://doi.org/10.1371/journal.pone.0209827.t001
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and removes hot-pixels or thermal noise [18, 22]. Additionally it provides hardware control

(e.g. autofocus, optical image stabilization) and encodes the video-stream into less memory-

consuming formats.

Modern cellphones offer the raw camera sensor pixel values (“snap-mode”), i.e. the sensor

data before further processing or compression by e.g. JPEG/MPEG algorithms [15, 23, 24, 25].

However, dSTORM requires continuous and fast acquisition over several minutes to record

sufficient fluorescence events for image reconstruction, which is incompatible with snap-

mode acquisition. The computational effort to save a time-series of raw-frames makes it

impracticable for these measurements. Hence, we were forced to use the standard time-series

acquisition mode (“video-mode”), where the compression of the raw data was unavoidable.

Acquiring monochromatic video-sequences is not part of the cellphone’s software. We thus

wrote a customized application (APP) based on the open-sourced camera library “FreeDcam”

[26, 27], which enables the full control over the camera parameter like sensitivity (ISO), focus

position, exposure time and frame-rate, as well as the access to the monochromatic chip. The

“FreeDcam”-based APP works on any device, but takes only full advantage of devices equipped

with monochromatic sensors.

Down-converting the video-stream, e.g. using the H264 video-codec, is also implemented

on the ISP. To reduce the amount of memory, it relies on the exact-match integer transform

[28] which uses reference images and calculates residual/difference images to reduce the

amount of redundant information. This lossy compression partly obscures accurate informa-

tion of the pixel, necessary for precise localization of the fluorophores.

2.2 Localization based on machine learning algorithms

In general, machine learning (ML) has the ability to create an implicit model which maps a set

of input variables onto a set of outputs [29, 30, 31, 32]. A large variety of different network

architectures applied to image processing problems have shown that using prior knowledge,

single-image super-sampling [33] or recovering the optical phase from an intensity image [34]

is possible.

Motivated by recent approaches where an adversarial network architectures (GAN) [35]

was trained on a noise model [32] or the variational auto-encoder-based neural network

(VAE) which directly localize STORM events [31], we propose a localization algorithm which

accounts for strongly compressed noisy data (see Methods 5.3). Compared to the VAE, the

GAN architecture of the neural network (NN) has the ability to be used more generically. We

found that, once trained, it serves as a parameter-free localization method for multi-emitter fit-

ting in compressed image-streams as well as image sequences coming from an emCCD camera

chip with different SNR ratios.

Following a modified version of the popular image-to-image GAN (Pix2Pix) [36] network

architecture (see Methods 5.4 and Fig 1a the goal of our network is to detect the origin (e.g.

center position) as a pixel on a supersampled grid of a blinking fluorophore in a degraded

video-frame of cellSTORMmeasurements (“x”). The sum of all these individual reconstructed

frames yields the final reconstruction (“Y”).

Compared to conventional approaches, based on encoder-decoder networks [37], the cost-

function for the training process is not defined a priori but trained alongside the generator.

This learned cost-function often fits the model better and avoids unwanted blurring of the

results as often caused by using the L2-norm during training [36, 38].

Standard localization software like ThunderSTORM [39] applied to H.264-compressed

noisy data showed many false localizations (indicated as blue markers in Fig 1d and 1e)

whereas the trained NN successfully filtered them (indicated as red markers in Fig 1d and 1e).
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The network’s output is a table with the pixel-coordinates of local maxima of all localized

events and a summation of all processed frames to produce a super-resolved image.

To ensure fast convergence of the network, we added prior information to the loss-func-

tion, which emphasize sparsity of the localized events. The adversarial loss was further able to

localize emitters where traditional algorithms showed suboptimal localization performance.

Our training datasets relies on mixed simulated as well as experimental data (further details

in Methods 5.4.4 and 5.4.4). We create a ground truth (GT) stack of randomly blinking events

with known positions y in ThunderSTORM, where noise based on our camera model

(Methods 5.3) and video-compression was added to simulate realistic camera frames x. Experi-

mental data was produced by localizing an image-sequence of cellSTORMmeasurements with

ThunderSTORM and produce image-pairs with the detected origin of the molecules rendered

as single pixel events y and their corresponding measured frame x. Mixing the datasets enables

to learn a generic representation of the data and allowed to outperform ThunderSTORM’s

[39] price-winning localization algorithm [40] in terms of localization-accuracy at low light

conditions (Sec. 2.4).

For all results shown here we used the same trained NN. Note, that the model can easily

adapt to different camera characteristics (e.g. sensor, compression, SNR) and experimental

conditions (e.g. fluorophore, etc.) depending on the generated training samples.

2.2.1 Localization on the cellphone based on machine learning. Finally, since Tensor-

flow [41] allows exporting and executing the trained networks to e.g. cellphones, we wrote a

custom APP [42] based on Tensorflow and OpenCV [43] which directly localizes a recorded

video-stream on the device. This makes additional computational hardware redundant and

promotes the cost-effective realization of super-resolution measurements to a greater extent.

Fig 1. Architecture and results from the GAN. (a) The image-to-image GAN architecture tries to find a generator-model which maps compressed and noisy input
images to a localized version of the PSF’s origin. Image (d zoomed in e) shows a sample-frame (log-scale) from real dSTORMmeasurements localized with
ThunderSTORM (blue) and the NN (red). The number of falsely detected emitters is significantly lower in data processed by the NN. (b) shows the custommade, 3D-
printed cellphone adapter attached to the Zeiss Axiovert microscope body holding the HUAWEI P9 running the cellSTORM Localizer APP shown in (c).

https://doi.org/10.1371/journal.pone.0209827.g001
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So far we were able to achieve up to 9 fps while localizing a video-stream with 64×64 pixels,

serving as a proof of principle. A further description of the method can be found in Sec. 5.4.6.

2.3 Localization-results of compressed smartphone data using standard
and machine learning algorithms

The reduced signal-to-noise ratio (SNR) and blocking artifacts from video compression are

apparent in the image sequences acquired by a cellphone camera (Fig 1d). Nevertheless, the

robust nature of the reconstruction algorithms in rapidSTORM [44] and ThunderSTORM

[39] successfully localized blinking events even under non-ideal conditions. Both algorithms

yielded comparable results when reconstructing the final image from recorded data. The out-

put was also used to verify our NN’s result to demonstrate the correct functionality.

Fig 2 shows the results obtained with cellSTORM from HeLa cells stained for tubulin using

AlexaFluor 647-labeled primary/secondary antibodies. Applying both methods, NN-based

localization (Fig 2d) and ThunderSTORM (Fig 2e) directly to the approximately six thousand

acquired video frames (at 20 fps), resolve the structure of microtubuli at a resolution of 75 nm

measured by the Fourier ring correlation (FRC) [45]. To compare to conventional dSTORM

data, we recorded another series of a similar cell using the emCCD camera of our setup. Due

to the low photon yield at the cellphone camera, we opted against using a beamsplitter to

simultaneously record the same area with the cellphone and the emCCD camera and instead

imaged separate cells of the same sample.

The images acquired using the professional emCCD camera under identical buffer and illu-

mination conditions (see Methods 5.2) yielded a final resolution of 45 nm. While this number

is smaller than for cellSTORM the relative difference is nonetheless surprisingly small.

A further analysis of the resolution was derived from several box-profiles (6 pixel edge

length), where one is plotted exemplary in Fig 3d. The localization was done with Thunder-

STORM, to have equal parameters for the analysis. It can be seen, that the full with half maxi-

mum (FWHM) in the cellSTORMmeasurements is slightly lower compared to the one

coming from the emCCD which goes along with the FRC measurements.

Fig 2. Comparison of cellSTORM results using NN and ThunderSTORM.Microtubuli in HeLa cells stained using AlexaFluor 647 labeled antibodies and recorded
with the cellphone camera. (a) A widefield-equivalent image obtained by summing over all recorded frames, (b) the reconstructed result based on summing the NN-
processed frames and (c) the output of the localization software ThunderSTORM using optimal parameters (no drift correction). (Scalebar = 3 μm, 3×Zoom in the
yellow-boxed ROI).

https://doi.org/10.1371/journal.pone.0209827.g002

cellSTORM—Cost-effective super-resolution on a cellphone using dSTORM

PLOSONE | https://doi.org/10.1371/journal.pone.0209827 January 9, 2019 5 / 18

https://doi.org/10.1371/journal.pone.0209827.g002
https://doi.org/10.1371/journal.pone.0209827


Additionally we tried to get an impression of how many events per area-unit will be

detected by the emCCD compared to the CMOS camera. To this aim we counted the events

over an FOV of about 100 × 100 μm2 in each frame. The blinking statistics is highly varying

from sample to sample. Therefore we have chosen a FOV, where the measurements of the

emCCD and CMOS produced similar results. In case of the CMOS camera, ThunderSTORM

detects slightly more events. This could be due to the compression artifact which we further

analyze in Sec. 2.4.

Fig 3. Comparison over detected events per area-unit/box-profile. a) Shows the number of detected events per unit-area in each frame in case of the CMOS (blue)
and EMCCD (green) camera. Fig b) and c) show reconstructed results from dSTORMmeasurements, where we plotted the box profile (6 pixels) along the lines in each
image in figure d).

https://doi.org/10.1371/journal.pone.0209827.g003
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2.4 Analysis of the NN-based localization approach

Especially under poor imaging conditions, applying our learned black-box model, described in

section 2.2, turned out to be beneficial. In several attempts to reconstruct the recorded video-

stream using ThunderSTORM, we observed a grid-like pattern in the localized result (Fig 5a)

which is likely due to the 4×4 block exact-match integer-transform of the H.264 codec. It

introduces abrupt changes in the local intensity, causing the localization algorithms to wrongly

identify events. Particularly at low-light conditions, the SNR decreased dramatically, further

emphasizing this effect (Fig 1d/1e, blue markers). In contrast, our NN-based approach reduced

such artifacts significantly by filtering false-positive events Fig 1d/1e, red markers) and the

final result in Fig 5b.

To afford a quantitative comparison of how well the NN and ThunderSTORM recover data

suffering from noise and compression artifacts, we measured the mean euclidean distance

between all detected events and their corresponding ground truth events for every frame. An

artificial STORM dataset of the Leibniz-IPHT institute’s logo and other test structures was

generated in ThunderSTORM (Fig 4a). The stack (2000 frames, emitter density of 6/μm2, Fig

4b)) was processed by our camera model (Methods 5.3) with varying compression quality

(70%, 80%, 90%, 100%) to simulate different compressions that may occur in other smart-

phones. The number of photons per emitter (50, 100, 500, 1000) is also varied to demonstrate

the functionality even below the normal achievable range of common fluorophores in

Alexa647 (� 500 detected photons/fluorphore [46]). We processed all frames in Thunder-

STORM using the same set of parameters (i.e. optimal result also for low SNR) to mimic the

parameter-free localization procedure compared to the NN.

From the results in Fig 5 it is clearly visible that the NN outperformed ThunderSTORM in

terms of number of correctly detected events (only considering GT-neighbors closer than 200

nm) in all measurements. It also yielded better accuracy in situations with more photons per

emitter.

Nevertheless the accuracy degrades in low-light situations (� 500
photons

emitter
) where Thunder-

STORM achieves better localization accuracies at a price of less localized events. Here the NN

exhibited around 20% more correctly detected events (blue bars in Fig 4) at the expense of

slightly reduced accuracy. This effect worsened at higher compression ratios.

Although the NN was not explicitly trained on a specific SNR-/compression-ratio, the

improved results in the reconstruction above 500 photons

emitter
can be due to the composition of the

training data. Besides simulated data it also contains experimental measurements from sam-

ples stained with Alexa647, typically emitting� 500
photons

emitter
. This potentially indicates better

results in this area and suggests that the NN can behave even better with tailored training-data-

sets in terms of expected photon statistics. However this goes along with reduced generality.

3 Discussion

We have demonstrated the suitability of using a modern smartphone camera for imaging

beyond the diffraction limit. So far, unavoidable limitations imposed by current smartphone

hard- and software, i.e. low-light performance and artifacts caused by compression and image

“enhancement” algorithms, prevented the use for high-quality imaging. Nevertheless we have

been able to resolve sub-diffraction detail in cytoskeletal structures on a level similar to con-

ventional dSTORM setups.

The nearest neighbor analysis of the ground truth data of a simulated STORM data-stack

localized with ThunderSTORM and the NN demonstrates the strength of our NN approach.

Out-of-focus or artifactual localization events were successfully suppressed. Especially for low-
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Fig 4. Qualitative analysis of cellSTORM. STORM-datasets created with ThunderSTORM. a) Ground truth of created test-target which is the basis for the generated
STORM datasets with different H.264-compression rates and number of photons. b) Individual frame of the generated STORM-datastack with compression artefacts
(1000 photons/fluorophores; compression ratio: 70%; resized, nearest-neighbors: 6×; log-scale), Reconstructed image with our NN c) and ThunderSTORM d) (Scale
bar: 1 μm).

https://doi.org/10.1371/journal.pone.0209827.g004
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photon statistics as in the cellSTORM experiments, the NN approach clearly outperformed

ThunderSTORM in terms of detected localizations and average localization accuracies (calcu-

lated as the mean deviation from the ground truth). This means our NN has the potential to

perform even better in explicitly trained (real world) conditions and to easily customize the

localization for each experiment individually.

The trained NN proved to be a robust and generic way to reconstruct dSTORM data

acquired by a smartphone sensor at poor imaging conditions, with sometimes a small loss of

localization uncertainty. Additionally it serves as a blue-print for rapid software prototyping

on mobile devices as the steps of computational expensive (pre-)processing as well as exhaus-

tive debugging are carried out on desktop machines. The result can then easily be imple-

mented on e.g. modern cellphones enabling e.g. diagnostics or telemedicine in the field.

4 Conclusions

We showed that widely available cellphone cameras can be used for SMLM, yielding image

quality approaching the performance of much more expensive professional cameras. This is an

important contribution to the development of an overall cost-effective and potential portable

SMLM system. In the future our work can be combined with with on-chip localization

Fig 5. Quantitative and qualitative analysis of cellSTORM. Results after summing all frames processed by the NN a) and directly coming from the camera b). When
processing the video-sequence in ThunderSTORM, it introduces a checkerboard-like pattern shown in the two-fold zoomed version of the yellow box in e), which can
be reduced by adjusting the peak intensity threshold (e.g. 3 � std(frame)) illustrated in d). c) shows the NN’s result successfully compensating for the pattern effect, due
to high noise and compression of the video stream. Scalebar = 5 μm. The graphs on the right hand side visualize a comparison of the achieved localization accuracies of
our NN and ThunderSTORM applied to simulated data. We varied the number of photons per emitter (1000, 500, 100, 50) as well as the compression ratio of the
H.264 codec (70-100%), before the video-stream was localized by the NN and ThunderSTORM.We estimated the accuracy by measuring the Euclidean distance
between a nearest neighbor in a GT and reconstructed frame and calculate the mean over all distances, visualized as green (NN) and blue (ThunderSTORM) plots. The
green (NN) and blue (ThunderSTORM) bars indicate the number of correctly detected emitters within the allowed range of 200 nm compared to the 65.489 GT events

(orange). It can be seen, that the NN always detects more good quality emitters, but with a loss of accuracy at lower intensities (i.e.� 500
photons

emitter
) compared to

ThunderSTORM.

https://doi.org/10.1371/journal.pone.0209827.g005
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techniques like [47] and other parts like lasers and objective lenses can be substituted with

inexpensive components.

It should also be noted, that the aspect of transferring camera characteristics (e.g. train on

emCCD data and deploy it on cellphone cameras) should be further investigated, as we see

potential to further improve the localization accuracy.

New cellphones with dedicated NPUs give hope to further accelerate the convolutional pro-

cessing of the data, which makes on-device reconstruction more attractive. This not only

advances the system’s simplicity and usability, but dramatically lowers the costs.

This makes cutting-edge scientific instruments not only affordable but also available to

involve an even larger community. Educational environments, where ordinary cellphones are

readily available, directly benefit from our approach. This removes barriers for future research

of all levels of society and could bring new contributions to the field of biological and medical

research.

5 Methods

5.1 Optical setup

The basic dSTORM-system is realized with a standard inverted microscope stand (AxioVert

135 TV, Zeiss, Germany) equipped with a nosepiece-stage (IX2-NPS, Olympus, Japan) to

keep drift low. A 637 nm diode laser (P = 150 mW, OBIS, Coherent, USA) is focused to the

back-focal plane of the microscope objective lens (ZEISS 100×, NA = 1.46) to realize a

homogenous illumination in the sample plane. Using an adjustable mirror, it is also possible

to change the laser position in the back-focal plane. This enables background reduced total

internal reflection (TIRF) illumination. The microscope can potentially be replaced by a

low-price customized optical setup also relying on cheap lasers [12], making it available for

about� 10k$.

An emCCD camera (iXon3 DU-897, Andor, UK, Table 1) can be used to image the sample

in widefield and STORM-mode during normal operation (dSTORM reconstruction result Fig

6). For imaging via the cellphone, the beam-path is switched from the camera port to the eye-

piece, where a common 10×monocular eyepiece is equipped with a custom-made 3D-printed

cellphone adapter [48]. The cellphone (P9 EVA-L09, Huawei, China, Table 1) is placed with its

camera lens in the Ramsden disk of the eyepiece (see Fig 1b), since an eyepiece images the

intermediate image produced by the tube lens of the Axiovert body to infinity.

5.2 dSTORM imaging samples and results from an emCCD camera

HeLa cell samples have been prepared using the PFA-fixation protocol outlined in [49].

Microtubuli have been stained using monoclonal mouse anti-β -tubulin (Sigma Aldrich) and

goat anti-mouse IgG secondary antibody (ThermoFisher Scientific), labeled with Alexa Fluor

647 at 1:150 and 1:300 dilution, respectively. All imaging experiments have been conducted

in imaging buffer prepared freshly from 150-200mMMEA (β-Mercapto-ethylamine hydro-

chloride) in PBS and pH adjusted to 7.4 using NaOH. The oxygen scavenging effect from

MEA has been proven efficient enough to refrain from additional enzyme-based oxygen

scavenger systems.

5.3 Camera characterisitics

A characteristic mean-variance plot is generated for the Huawei P9 camera, from a set of 10

unprocessed raw images (snap-mode) acquired in 12Bit (DNG) of an intentionally defocussed

but stationary object (see Fig 7) by using the Dip-Image [50] “cal_readnoise” routine.
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It can be seen that the variance does not increase linearly with the mean intensity as it

should for a shot-noise-limited sensor [51]. The slope of the curve is the gain, which is constant

up to an intensity of around 220 ADU. The noise parameters extracted from the linear low-

intensity range of the curve are: offset = 4,1 ADU; gain = 0,69 e/ADU; readnoise(Bg) =

Fig 6. Result from the emCCD camera. A widefield equivalent image obtained by summing over all recorded images frommicrotubuli in HeLa cells stained using
AlexaFluor 647 labeled antibodies recorded with the Andor emCCD camera (a) and the image after reconstruction with rapidSTORM (b). No drift correction was
applied to the time-series. (Scalebar = 6 μm, 3×Zoom in the yellow-boxed ROI).

https://doi.org/10.1371/journal.pone.0209827.g006

Fig 7. Mean-variance plot HUAWEI P9.Mean-variance plot generated using a series (ISO = 3200) of unprocessed raw images (”snap-mode”) acquired by a Huawei
P9 camera (blue points). The camera gain is constant up to an critical intensity of 220 ADU, which should not be exceeded in the experiment.

https://doi.org/10.1371/journal.pone.0209827.g007
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2,5e−RMS; at an ISO3200, which was also used during our measurements. In order to have a

linear gain, the camera should not be exposed to much, so that the pixel values do not exceed

the critical intensity value of 220 ADU.

Especially noteworthy is the low readnoise. However, it cannot be guaranteed that the hard-

ware-based preprocessing especially in the video-mode does not alter this value.

A series of� 8000 images of dark background acquired in the video-mode with the Huawei

P9, automatically compressed with a H264 encoder, shows a problematic property. The mean

of each dark frame over time (subset of 60s) is shown in Fig 8. It can be seen that the overall

background drifts over time. This might be a thermal problem, although the signal is expected

to rise rather than drop. This effect, however, might also be caused by the compression of the

incoming signal. Unfortunately the Huawei P9 has neither a temperature sensor on the chip

nor a reproducible data compression, so the cause remains unclear. In addition, the signal

drops periodically (every 1.07 s at 20 fps) which seems to be a compression artifact. A homoge-

neous although slightly noisy line would have been expected. The video acquisition exposes

the drawback and limitations of the compression.

Looking at Fig 8 it can be seen that both the P9’s sensor and the video codec influence the

saved image in a periodical but unpredictable manner. Settings like framerate and bitrate of

the video-codec alter this effect. In addition, we observed that the dips depend on the number

of photons. Thus, it is difficult to correct the compression-related artifacts of an unknown

image.

Fig 8. Mean of a dark image over time.Mean of a dark image acquired with a Huawei P9 camera and compressed with a H.264 encoder as a function over time. The
overall decay of the signal and the periodic drop of the signal demonstrates the disadvantages of a compressed video signal. Equidistant gray lines (vertical) with 1.07 s
(i.e. each 31st frame) at 29 fps spacing show the periodicity of the drop in the intensity signal. Certain pixel values less than a threshold are clipped to zero.

https://doi.org/10.1371/journal.pone.0209827.g008
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Imaging techniques that require extensive image processing will have problems using such

data. However, wide-field microscopy of bright specimens will be less affected. The localization

accuracy of SMLM will be impaired the more noise each raw image contains.

Yet noise allone will not create artifacts. The occurring drop of the overall intensity is no

problem either, because each image is processed individually and offset variations are automat-

ically accounted for by rapidSTORM, ThunderSTORM as well as our cellSTORM.

5.4 Neuronal network architecture and training

In the beginning we used NNs to enhance the recorded image sequences which where then fed

into common localization software like rapidSTORM [44] and ThunderSTORM [39]. This has

the advantage to benefit from the already existing and robust localization algorithms. Unfortu-

nately this led to only minor improvements and in many cases actually to a deterioration of

the reconstructed results, therefore we followed the approach from Nehme et al. [31] to

directly generate localization maps from the blinking fluorophores.

5.4.1 Architecture. The network receives decoded and upsampled (e.g. 5×) video-frames

x and their corresponding ground truth localization maps y.

The data-pairs (see Section 5.4.4) were fed into our modified version of the image-to-image

GAN network [36], implemented in the open-source ML library Tensorflow [41]. The code is

based on the open-sourced version described in [52] and is publicly available [53].

To circumvent a checkerboard-like artifact resulting from the generator in the reconstruc-

tion process, we replaced the transposed-convolution operation in the decoding step of the

U-NET [30] by a resize-convolution layer as suggested in [54]. This in combination with lon-

ger training procedure eliminates high-frequency patterns due to the low coverage of the con-

volutions in the deconvolution process of the U-NET.

The floating-point localization table is generated by converting pixel-values greater than

0.3 �max(Iframe) into effective pixel-dimensions.

5.4.2 Training. The neural network (NN) was trained on a Nvidia Titan X GPU over fif-

teen thousand samples (input-size 256×256) with equal acquisition parameters corresponding

to the dSTORM experiment based on methods presented in Methods 5.4.4 and 5.4.4. Data was

mixed in equal parts (i.e. 50%/50%) to not only learn the model of ThunderSTORM. We use

minibatch stochastic gradient descent (SGD) and relied on the ADAM optimization scheme

[55] with learning rate of 1 � 10−4 and momentum of beta = 0.25.

Our experiment showed, that the training converged to equilibrium after 10 epochs at a

batch-size of 4 frames, which took about 3h time-effort on an ordinary desktop machine with

64Gb RAM, Intel Xeon octacore and a Nvidia TitanX graphics card with 12GB memory. It is

worth noting, that a precise alignment of the data is crucial, otherwise the recovered events

will be shifted by an unknown amount and the localization fails due to smeared-out blinking

events.

5.4.3 Cost-function. Following the original Pix2Pix-approach in [36], the conditional

GAN-loss can be expressed as

LcGANðG;DÞ ¼ Ex;y½logðDðx; yÞÞ� þ Ex½1� logð1� Dðx;GðxÞÞ� ð1Þ

where x gives the degraded video-frame and y the input ground truth images. G corresponds

to the U-NET generator which tries to map the input image x together with random noise z to

the recovered output-frame x; G: {x}! y. The discriminator D has to distinguish between real

or fake (e.g. produced by the generator) samples. Additionally the L
1
-norm is given as

L
1
ðGÞ ¼ Ex;y½k y� GðxÞk

1
�: ð2Þ
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For stable training with faster convergence, we convolved the fluorophore location maps (indi-

cated as intensity peaks) in input y, as well as the generated predictions ŷ with a Gaussian PSF

of experimentally individually determined radius and intensity. Thus

L
1
ðGÞ ¼ lL1Ex;y½ky� PSF � GðxÞ � PSFk

1
�: ð3Þ

To promote the sparsity in each frame produced by the generator, we add an additional L1

loss

L
1sðxÞ ¼ lL1SkGðxÞkL1: ð4Þ

Thus the final loss-function is given by

G ¼ arg min
G

max
D

lcGAN � LcGANðG;DÞ þ lL1 � L1
ðGÞ þ lL1s � L1sðxÞ: ð5Þ

Additional hyper-parameters λcGAN, λL1 and λL1s are controlling the influence for each error

term. The values for λcGAN = 3, λL1 = 100, λL1s = 100 were chosen empirically, where we kept

λcGAN = 0 for the first 1000 and then every third iterations to reduce any exploding gradients

while training.

Compared to the Deep-STORM by Nehme et al. [31], the here presented GAN architecture

is more flexible in terms of the cost-function. This is because it holds a data-specific regularizer

which learns the properties of the unpredictable camera compression while training the

generator.

Instead the discriminator tries to distinguish whether the results are coming from the gen-

erator or from the GT dataset. Hence the GAN should come up with a learned forward model

which successfully includes all unknown effects, especially the compression artifact, to find the

center of each fluorophore. This facilitates a parameter free optimization technique, well suited

for the unknown black-box by the cellphone camera. Once trained, the localization is obtained

by ŷ ¼ GðxÞ.

5.4.4 Generation of the training dataset. We used two different methods for a 50:50 mix

of which generated the training dataset x to y to feed the modified version of the Pix2Pix GAN

available at [53].

Dataset from camera’s model simulationWe first created a data-stack of simulated

STORM frames using the software ThunderSTORM. Parameters for data-generation were

selected in accordance to experimental conditions. Emitters of varying densities (4-6 Particles

mm2 )

were randomly distributed over the FOV. In a later step we estimated a camera model, based

on the properties determined in Methods 5.3, to introduce noise into the data, before they

were compressed by the H.264 video-codec in MATLAB [56]. The compression ratio was

tuned, so that the compression artifacts looked similar to the one from the original acquisition

(“Video-Quality”: 80 − 90%). The location of the H.264 integer blocks was not preserved when

generating the dataset to avoid overfitting of the data due to the same grid-structure in each

frame.

The compressed frames were decompressed and upsampled (in our studies we used a factor

of 5×). The ThunderSTORM location positions were converted to the upsampled grid,

rounded and a single pixel was set to the predicted brightness. This constituted the location

maps.

Following this procedure gives only an estimated forward model of the unknown camera

“black-box” and therefore cannot be expected to account for all properties of the data acquired

by the cell-phone camera.

Dataset from localized dSTORM dataOur second way to generate a dataset was by taking

captured cellSTORM time-series using the video-mode from real biological cells (labeled
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microtubules) under optimal conditions. After localizing the blinking events using Thunder-

STORM in each decoded frame, we extract the detected emitters and generate a location map

from this data.

To not only learn the forward model from the ThunderSTORM PSF-fitting algorithm, we

also incorporated 50% data from the method described above. This makes our methods more

robust to variations in the data. It also successfully accounted for variations in sample’s back-

ground as well as in the camera parameters.

5.4.5 Testing. The GPU-based implementation of the localization image-generation algo-

rithm allows fast multi-emitter processing and processes a video (e.g. 15 k frames, 128×128

pixels) at an upscaling-factor of 5 (to ensure sub-pixel super resolution) in about 5 Minutes

(� 50 fps). On the other side the cellphone-based implementation can do 2-3 fps at 64×64 pix-

els input-frames, which can dramatically be increased by optimizing the code. Due to the con-

volutional-architecture of the PatchGAN-discriminator [57] it is possible to process data with

frame-sizes different than the training dataset.

Our approach does not rely on any specific class of imaged objects, nor does it need any

parameters other than a dataset which mimics the experimental data in the sense of acquisition

parameters.

5.4.6 Evaluation on the cellphone. During our study we tested three different implemen-

tations of Tensorflow’s mobile environment. The Tensorflow Mobile Library serves as a Java

Native Interface and processes the network directly on the cellphones hardware using C-code.

It is possible to improve execution speed by taking advantage of the device’s memory and load

a batch-size of i.e. 10 images at once. Additionally we reduced the number of layers, the depth

respectively, in the generator, so that there were only 4 encoder/decoder layers (256! 128!

64! 32! 32! 64! 128! 256) left. This is possible, because the low-level features (e.g.

detect a blinking event) occur only locally and do not interact globally in the FOV. This

reduced the number of processable parameters and kept expensive memory transfer low to

achieve frame-rates of up to 9 fps (frame-size of cropped region: 64×64 pixels up-sampled by a

factor four).

The second library relied on the TF Lite framework which lacks necessary operands to fully

work on the cellphone. A modified network, based on only available operands, did not show

any improvement in computational time. It is worth mentioning, that the APP [42] runs on

any Android cellphone, but computing time may vary significantly.

New cellphone hardware equipped with so-called Neuron Processing Units (NPUs) could

potentially boost execution time significantly because a single convolution with an n × n filter-

kernel can be carried out in one iteration, whereas standard CPUs need n � n CPU cycles. The

Huawei HiAi framework (v. D150) allows to deploy pretrained NN graphs onto their NPU

equipped devices (i.e. Huawei P20). Due to the lack of available operands (e.g. Absolute,

Resize) it was not possible to prove the hypothesis of a speed improvement.

We would like to mention, that the overhead of loading the video-frames through the Java

Interface can be dramatically reduced by proper hardware accelerated programming. There-

fore the on-device processing of the acquired video-frames still serves as a proof of principle

and is far away from being real-time compatible.

5.5 Cell culture

HeLa cells (ATCC CCL-2) cells were routinely cultured in ATCC-formulated Eagle’s Mini-

mum Essential Medium (No. 30-2003) supplemented with 10.0% fetal bovine serum (No 30-

2020) and 1% Penicillin-Streptomycin at 37.0˚C in a humidified atmosphere with 5.0% CO2.

Fetal bovine serum to a final concentration of 10.
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29. Çiçek Ö, Abdulkadir A, LienkampSS, Brox T, Ronneberger O. 3DU-net: Learning dense volumetric seg-
mentation from sparse annotation. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). vol. 9901 LNCS; 2016. p. 424–432.

30. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
Miccai. 2015; p. 234–241.

31. Nehme E, Weiss LE, Michaeli T, Shechtman Y. Deep-STORM: Super Resolution Single Molecule
Microscopy by Deep Learning. 2018;. Optica Vol. 5, Issue 4, pp. 458–464 (2018) https://doi.org/10.
1364/OPTICA.5.000458

32. Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative Adversarial
Networks: An Overview;.

cellSTORM—Cost-effective super-resolution on a cellphone using dSTORM

PLOSONE | https://doi.org/10.1371/journal.pone.0209827 January 9, 2019 17 / 18

https://doi.org/10.1038/s41598-017-14762-6
http://www.ncbi.nlm.nih.gov/pubmed/29089524
https://doi.org/10.1038/s41598-017-01606-6
http://www.ncbi.nlm.nih.gov/pubmed/28484239
https://doi.org/10.1002/cphc.201300739
https://doi.org/10.1002/cphc.201300739
http://www.ncbi.nlm.nih.gov/pubmed/24227751
https://opencommons.uconn.edu/gs_theses/687
https://opencommons.uconn.edu/gs_theses/687
https://doi.org/10.1371/journal.pone.0124938
http://www.ncbi.nlm.nih.gov/pubmed/25969980
https://doi.org/10.1371/journal.pone.0192937
https://doi.org/10.1371/journal.pone.0192937
https://doi.org/10.1038/s41598-018-21543-2
https://doi.org/10.1038/s41598-018-21543-2
http://www.ncbi.nlm.nih.gov/pubmed/29459650
https://consumer.huawei.com/en/press/news/2016/hw-474971/
https://consumer.huawei.com/en/press/news/2016/hw-474971/
https://www.anandtech.com/show/6777/understanding-camera-optics-smartphone-camera-trends
https://www.anandtech.com/show/6777/understanding-camera-optics-smartphone-camera-trends
https://doi.org/10.1371/journal.pone.0096906
http://www.ncbi.nlm.nih.gov/pubmed/24824072
https://doi.org/10.1364/BOE.8.005075
http://www.ncbi.nlm.nih.gov/pubmed/29188104
https://github.com/KillerInk/FreeDcam
https://github.com/bionanoimaging/cellSTORM-ANDROID
https://github.com/bionanoimaging/cellSTORM-ANDROID
https://doi.org/10.1109/TCSVT.2003.815165
https://doi.org/10.1109/TCSVT.2003.815165
https://doi.org/10.1364/OPTICA.5.000458
https://doi.org/10.1364/OPTICA.5.000458
https://doi.org/10.1371/journal.pone.0209827


33. Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision; 2009. p. 349–356.

34. Sinha A, Lee J, Li S, Barbastathis G. Lensless computational imaging through deep learning. Optica.
2017; 4(9):1117. https://doi.org/10.1364/OPTICA.4.001117

35. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative Adversarial
Nets. Advances in Neural Information Processing Systems 27. 2014; p. 2672–2680.

36. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-Image Translation with Conditional Adversarial Networks.
“2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
2017, pp. 5967–5976.

37. Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics). vol. 9906 LNCS; 2016. p. 694–711.

38. Wang C, Zheng H, Yu Z, Zheng Z, Gu Z, Zheng B. Discriminative Region Proposal Adversarial Net-
works for High-Quality Image-to-Image Translation. arXiv preprint arXiv:1711.09554 (2017).
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