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Abstract

Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the dis-

ease process. In some patients, disseminated tumor cells (DTC) proliferate to form active

metastases after a prolonged period of undetectable disease known as tumor dormancy.

Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to

the lack of in vitromodels. Here, we characterized in vitro PCa dormancy-reactivation by

inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor

cell contact with each other and with bone marrow stroma. Proliferating PCa cells demon-

strated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene

expression analyses on proliferating cells cultured on bone marrow stroma revealed a

downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to

their non-proliferating counterparts. Furthermore, constitutive activation of myosin light

chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-prolif-

erating cells promoted cell proliferation. This cell proliferation was associated with an upre-

gulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first

clinically relevant in vitromodel to support cellular adhesion and downregulation of TGFB2

as a potential mechanism by which PCa cells may escape from dormancy. Targeting the

TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa

metastasis.

Introduction

The dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the

PCa disease process [1, 2]. In many cases, these disseminated tumor cells (DTC) proliferate to

form active metastases after a prolonged period of undetectable disease following prostatec-

tomy. This latency period is often referred to as tumor dormancy. To date, dormancy remains
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a significant clinical challenge, as PCa patients presented with bone metastases ultimately stop

responding to second line therapies and eventually succumb to the disease. Thus, it has become

paramount to identify mechanisms of tumor dormancy in an effort to prevent PCa recurrence.

A dormant tumor cell does not actively proliferate, yet has the potential to multiply given

the right external cues. By this definition, multiple scenarios could potentially induce dor-

mancy, including unfavorable tumor microenvironment, nutrient starvation, the inherent

nature of the DTC, or epigenetic changes caused by the microenvironment [2, 3]. However,

not all instances of indolent PCa necessarily constitute dormancy. A patient may simply have

slow-growing tumor cells residing at the metastatic site at the time of initial treatment and

experience recurrence shortly thereafter. Others may never experience recurrence, while a sub-

set of patients experience recurrence only after extended periods. To date, the mechanisms of

dormancy remain largely unknown. However, the urokinase-like plasminogen activator (uPA)

and its associated receptor (uPAR) have been implicated in the regulation of dormancy in vari-

ous cancers. Specifically, high levels of uPA and uPAR induce dormancy escape by upregulat-

ing ERK/p38 ratio within cancer cells [4, 5]. This high uPAR expression was associated with

the activation of αvβ1 integrin, resulting in tumor growth [4–7]. In a separate study, uPA-regu-

lated migration of tumor cells was activated by the myosin light chain kinase (MLCK) [8]

which phosphorylation was induced by ERK [9]. MLCK is a known regulator of contractility,

motility, and adhesion [10, 11], however the role of MLCK in PCa dormancy escape remains

unknown.

Matrix and intercellular adhesions has been implicated in tumor dormancy regulation.

Studies showed that integrin-mediated cellular adhesion to the extracellular matrix activates

MAPKs [12–14] which regulates tumor growth [15–19]. In PCa, upregulation of β1 integrin

promotes the growth and invasion of cells [3, 20], and interactions between tumor and stroma

may be attributable to the escape of dormant cells from radiotherapy [21]. Recent studies

examining human PCa cell lines on mouse bone marrow stroma have identified important fac-

tors in the mouse hematopoietic niche that regulate dormancy [22, 23].

We here characterized the dormancy and growth of three PCa patient-derived xenografts

(PDXs) established from metastases obtained at rapid autopsy or surgery on human bone mar-

row microenvironment in vitro. These PDXs (LuCaP 86.2, 92, and 93) displayed in vitro quies-

cence in typical cell culture conditions which may represent dormancy and we aimed to

identify the role of cell-cell adhesion in the release of PCa from dormancy in a human bone

marrow context. We determined that tumor cell-cell contact on bone marrow stroma is neces-

sary for LuCaP PDX cells to proliferate in vitro and was associated with a universal downregu-

lation of TGFB2. Furthermore, LuCaP PDXs dormancy reactivation could be recapitulated by

constitutively activating MLCK and cyclin-dependent kinase 6 (CDK6).

Materials and Methods

Dissociation, isolation, and culture of LuCaP PDX in vitro

Bone marrow stromal cells (BMSC) that were isolated from a patient with PCa bone metastases

(BM2508) were seeded at 50,000 cells/cm2 overnight. The following day, BM2508 cells were

treated with 10 μg/mL mitomycin C (Sigma, St Louis, MO) for 1 hour. LuCaP PDXs that were

routinely passaged in vivo as described previously [21] were excised and dissociated using the

Miltenyi human tumor dissociation kit (Miltenyi Biotec Inc., San Diego, CA; #130-95-929) and

enriched by positive selection using magnetic microbeads against human epithelial antigen

EpCAM/CD326 (Miltenyi Biotec Inc.; #130-061-101) according to the manufacturer’s instruc-

tions. LuCaP PDX cells were then seeded on top of the BM2508 cells at either 50,000 cells/cm2

(G; growing/proliferating) or 50 cells/cm2 (NG; not growing/dormant). At day 8, the LuCaP
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PDX cells were differentially trypsinized and enriched by positive and negative selection with

magnetic beads, fluorescently labeled for EpCAM/CD326 and individually plucked with a

micromanipulator as described previously [24]. Furthermore, to ensure that NG cells were dor-

mant instead of senescent, a β-galactosidase assay (Pierce Biotechnology, Inc., Waltham, MA;

#75707) was performed on all NG LuCaP PDX cells according to manufacturer’s instructions.

All procedures involving human subjects were approved by the Institutional Review Board of

the University of Washington Medical Center and all subjects signed informed consent. The

animal study was specifically approved by the University of Washington Institutional Animal

Care and Use Committee and all animal procedures were performed in compliance with the

NIH guidelines.

Immunofluorescent staining

The LuCaP PDX cells were dissociated, selected and plated as described above on glass cover-

slips conjugated with lysine. At day 8, cells were fixed with ice-cold methanol, blocked with 5%

horse-goat-chicken serum and stained for EpCAM and Ki67 or 1 integrin using a FITC-conju-

gated mouse monoclonal anti-human Ber-EP4 antibody (DAKO, Carpinteria, CA; F086001),

and a rabbit polyclonal anti-human Ki-67 antibody (Santa Cruz Biotechnology, Dallas, TX;

SC-15402) or a rabbit polyclonal anti-human ITGB1 antibody (Santa Cruz Biotechnology; SC-

9970) in conjunction with a goat anti-rabbit Alexa-Fluor 546 conjugated secondary antibody

(Life Technologies, Carlsbad, CA; A-11035). Coverslips were then mounted with ProLong

Gold antifade reagent containing DAPI (Life Technologies; P-36931).

Cell count andWST-1 assays

C4-2B (a gift from Dr. Leland Chung; [25]) and dissociated LuCaP PDX cells (LuCaP 86.2, 92,

93, 96, 141; [26–28]) were plated in RPMI-1640 or MEM (Life Technologies) respectively sup-

plemented with 10% fetal bovine serum (FBS). Cells were seeded either sparsely (50 cells/cm2)

or densely (50,000 cells/cm2) on a confluent monolayer of BMSC (50,000 cells/cm2) that was

pretreated with 10 μg/ml mitomycin C. For C4-2B cells seeded sparsely on BMSC, after 1 and 8

days, cells were stained for EpCAM, Ki67, and DAPI as described above. Only EpCAM+-

epithelial cells (representing C4-2B cells because BMSC are EpCAM-) were counted in the

whole chamber under a fluorescent microscope using 200× magnification. For C4-2B cells

seeding without BMSC, WST-1 assay (Roche Diagnostics Corporation, Indianapolis, IN) was

carried out according to the manufacturer’s instructions. Absorbance was read on a microplate

reader at 450 nm, and the background absorbance (media only) was subtracted from all read-

ings. For LuCaP PDX cells, after 3, 7, and 14 days on BMSC, cells were trypsinized, stained for

EpCAM and Ki67 as described above, and resuspended in 50 μl of ProLong Gold antifade

reagent containing DAPI. Two-aliquots of 10 μl of stained cells were counted and EpCAM

+ epithelial cells (i.e. LuCaP PDX cells) were recorded.

Flow cytometric analysis

C4-2B cells were cultured overnight in RPMI-1640 medium supplemented with 10% FBS and

then treated with DMSO or ML-7 (10μM) for 24h and 48h. The treated cells were trypsinized,

fixed, stained with 10 μg/μL DAPI (4',6-diamidino-2-phenylindole, Life Technologies)/1% NP-

40 /10% DMSO, and lysed using 25G syringe. At least 10,000 stained cells were analyzed using

BD LSR II Flow Cytometer System (BD Biosciences, San Jose, CA) and cell cycle was analyzed

by MultiCycle (De Novo Software, Glendale, CA)
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Viral transduction and drug treatments of LuCaP PDX cells in vitro

LuCaP PDXs were dissociated and selected as described above and plated at 50,000 cells/cm2

without stromal cells. The following day, cells were transduced at an MOI (multiplicity of

infection) of 10 with one of the following: an adenoviral vector that either contained an acti-

vated form of myosin light chain kinase (A-tMK, a gift from Drs. Zuzana Strakova, Jody Mar-

tin, and Primal de Lanerolle, [29]), an empty vector, or a lentiviral vector that contained either

cDNA for CDK6 or GFP (Applied Biological Materials, pLentiIII-EF1α). Cells were transduced

in MEM supplemented with 10% FBS and 8 μg/mL polybrene (Santa Cruz Biotechnology).

Cells were either immunofluorescently stained as described above or trypsinized for RNA

extraction. To determine whether MLCK activity is necessary for PCa proliferation, C4-2B

cells, which readily proliferate in vitro, were plated at 50,000 cells/cm2 in RPMI medium (Life

Technologies) supplemented with 10% FBS. The cells were then either treated with 10 μMML-

7 (Sigma; I2764) or DMSO control for 24 hours.

RNA extraction and amplification

For 10-cell transcriptomic study, 10 individually isolated cells per xenograft line were lysed and

amplified cDNA was generated from the total RNA using the NuGEN Ovation RNA Amplifi-

cation System as described previously [24, 30]. The cDNA was arrayed on Agilent 44K whole

human genome expression oligonucleotide microarrays (Agilent Technologies, Inc.). For other

in vitro experiments, RNA was isolated using the RNEasy mini kit (Qiagen Inc., Valencia, CA).

One microgram of RNA was reverse transcribed using the Qiagen RT2 first strand kit, followed

by PCR array or RT-qPCR analysis.

Labeling and hybridization of amplified material to whole human genome
expression oligonucleotide microarrays

Amplified cDNA from each sample was labeled using the BioPrime Total Genomic Labeling

System (Life Technologies, Grand Island, NY) and microarray was performed according to

previous procedures [24, 30] with slight modifications. Briefly, hybridization probes were pre-

pared by combining 4 μg of Alexa Fluor 3-labeled sample with 400 ng Alexa Fluor 5-labeled

reference. The probes were denatured at 95°C and hybridized at 63°C on Agilent Human

4x44K microarrays (Agilent Technologies, Inc., Santa Clara, CA), washed, and fluorescent

array images were collected using the Agilent DNAmicroarray scanner. The data were loess

normalized within arrays and quantile normalized between arrays in R using the Limma Bio-

conductor package. Data were filtered to remove probes with mean signal intensities below

300. The Statistical Analysis of Microarray (SAM) program (http://www-stat.stanford.edu/~

tibs/SAM/) [31] was used to analyze expression differences between groups using unpaired,

two-sample t-tests and controlled for multiple testing by estimating q-values using the false dis-

covery rate (FDR) method. Microarray data are deposited in the Gene Expression Omnibus

database under the accession number GSE64262.

Gene expression analyses

To determine whether differential transcription observed in NG (not growing/dormant) versus

G (growing/proliferating) groups were enriched for genes within canonical pathways and Gene

Ontology gene sets, the t-test results were subjected to Gene Set Enrichment Analysis (GSEA)

using preranked mode with permutation testing of the gene sets to adjust for multiple hypothe-

sis testing, generating an FDR. Unsupervised, hierarchical clustering of the most differentially

expressed was performed between NG and G groups based on SAM score (SAM score>2 and
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p�0.05, a total of 238 genes) using Cluster 3.0 (bonsai.hgc.jp/~mdehoon/software/cluster/soft-

ware.htm) and Java TreeView (http://jtreeview.sourceforge.net/).

Ingenuity Pathway Analysis

The 238 differentially expressed genes between NG and G groups were imported into Ingenuity

Pathway Analysis (IPA, Ingenuity Systems; https://www.ingenuity.com) to identify molecular

and cellular functions and upstream regulators involved in cell proliferation or dormancy as

previously described [30].

Quantitative real-time PCR

For PCR array, 25ng of cDNA was used for human cell-cycle PCR array (Qiagen Inc., PAHS-

020Z) according to manufacturer’s instructions. For qPCR analysis, 2ng (G and NG 10-cell

study) or 10ng (lentiviral transduction studies) of cDNA was used for the Platinum SYBR

Green qPCR SuperMix-UDG system (Life Technologies, 11733–038) in conjunction with the

following primers: CDK6: (F) 5’AGGCTGCTGTTTTCTCTCCA3’, (R) 5’CCACACTGCTTCT

TGGGTCT3’; E2F4: (F) 5’TGATGTGCCTGTTCTCAACC3’, (R) 5’GAGTCCTGTTCC

CCTGCTCT3’.; RPS15: (F) 5’TCCGGCAAGATGGCAGAAGTAG3’, (R) 5’CCACGCCGCGG

TAGGT3’; CDC42: (F) 5’GTCACAGTTATGATTGGTGGAGA3’, (R) 5’ TCAGCGGTCGTA

ATCTGTCA3’; FN1: (F) 5’AAGAGGCAGGCTCAGCAAAT3’, (R) 5’ GTCATAACAACCG

GGCTTGC3’; TGFB2: (F) 5’TCTTCCCCTCCGAAAATGCC3’, (R) 5’ TCTCCATTGCT

GAGACGTCAA3’.

Results

PDX cells require cell-cell contact to proliferate in vitro

The PCa xenografts we have established from metastases obtained at rapid autopsy or surgery

do not proliferate in vitro after dissociation under standard monoculture conditions [32]. Of

the five LuCaP PCa PDX lines we studied, none of them displayed measurable β-galactosidase

activity (data not shown), suggesting these cells are dormant rather than senescent. As dormant

cells by definition retain the potential to proliferate, we sought to determine whether these

xenografts could be “activated” in vitro. We developed an in vitromodel recapitulating the PCa

cells in contact with BMSC and allowed the LuCaP PDX cells seeded either sparsely without

tumor-tumor cell contact (NG, not growing, 50 cells/cm2) or densely where cells were in direct

contact with each other (G, growing, 50,000 cells/cm2; Fig 1A). We here reported that when

LuCaP 86.2, 96, and 141 were seeded densely on a monolayer of BMSC, they showed an

increase in cell number after 14 days, whereas the cells that were seeded sparsely failed to pro-

liferate (Fig 1B and data not shown). In contrast, C4-2B cells seeded sparsely on BMSC showed

an increase in cell number after 7 days (S1 Fig). To visually detect the association between

tumor cell-cell contact and proliferation, we expanded the study to five LuCaP lines for immu-

nofluorescent detection. After 14 days in culture, no positive Ki67 staining was detected in NG

cells that were sparsely seeded without tumor cell-cell contact (Fig 1C, upper panel). Consistent

with the trypan blue exclusion assay, positive Ki67 staining was observed in G cells that were

densely seeded and displayed cell-cell contact, suggesting that tumor cell-cell contact was asso-

ciated with cell proliferation (Fig 1C, lower panel).

β1 Integrin activity associates with LuCaP PDX cell proliferation in vitro

When direct cell-cell contact occurs, integrins were reported to be activated resulting in cell

cycle progression and cell proliferation [33]. We therefore examined in LuCaP PDX cells
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whether β1 integrin clustering was activated in response to cell-cell contact. In LuCaP 86.2, 92,

and 93, when seeded densely on a monolayer of BMSC, the proliferating G cells showed clus-

tering of β1 integrin, whereas the non-proliferating NG cells seeded sparsely did not display

clustering of β1 integrin (Fig 2).

Gene expression analysis revealed downregulation of TGFB2 in
proliferating cells

Next, we conducted microarray gene expression analysis to delineate the mechanisms underly-

ing the activation of β1 integrin and cell proliferation. A total of 238 genes (SAM score�2 or

�-2, p<0.05) were differentially expressed between dormant/not growing (NG) and proliferat-

ing/growing (G) cells in LuCaP 86.2, 92, and 93 (Fig 3A). We observed that cellular movement

was the top molecular and cellular function altered (Fig 3B, p<0.05) and a decreased activation

was predicted (Fig 3C, z-score -2.4) in G when compared to NG cells. Interestingly, Ingenuity

Pathway Analysis identified a top regulator effector network for those genes involved in the

decreased activation on cellular movement and demonstrated that endothelin 1 (EDN1) was

the common upstream regulator for the downregulation of CDC42, FN1, and FOSL1, which

Fig 1. LuCaP PCa PDX cells grow on a monolayer of bonemarrow stromal cells (BMSC) when seeded densely. A) A scheme showing the in vitro

culture condition for not growing (NG) and growing (G) LuCaP PDX cells on BMSC. LuCaP cells were seeded sparsely at 50 cells/cm2 or densely at 50,000
cells/cm2 on a confluent layer of BMSC (50,000 cells/cm2) pretreated with 10 μg/mL mitomycin C to inhibit BMSC cell division. B) LuCaP cells seeded
densely on BMSC were quantified by positive EpCAM staining on day 3, 7, and 14 post-seeding. C) LuCaP cells (86.2, 92, 93, 96, and 141) were seeded
sparsely (upper panel; NG) or densely (lower panel; G) on BMSC. After 14 days, cells were fixed with ice-cold methanol and fluorescently stained with Ki67 to
assess proliferation. Green, EpCAM; Red, Ki67; Blue, DAPI. White arrow: sparsely seeded cells showing negative Ki67 staining after 14 days. Magnification:
200x. Scale bar: 50 μm. Experiments were repeated 2–3 times and graphs showing mean ± SEM or representative pictures were shown.

doi:10.1371/journal.pone.0130565.g001
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Fig 2. β1 integrin clusters were observed in LuCaP PDX cells proliferating in vitro. LuCaP 86.2, 92, and 93 were dissociated and cultured on a confluent
monolayer of BMSC. β1 integrin immunofluorescent staining revealed integrin clustering (red clusters and highlighted by the white arrow) in densely seeded
cells that were growing (G). This clustering was not detected in sparsely seeded, nonproliferative cells (not growing, NG). Green, EpCAM; Red, β1 integrin;
Blue, DAPI. Magnification: 200x. Scale bar: 20 μm.

doi:10.1371/journal.pone.0130565.g002
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resulted in decreased cell movement (Fig 3C and 3D). Despite EDN1 being identified as the

top common upstream regulator for decreased cellular movement in G when compared to NG

cells, microarray expression analysis showed that it was not significantly altered in G when

compared to NG cells (1.2 fold upregulation in G cells with a SAM score 0.2, data not shown).

Since FOSL1 has a very low endogenous level, therefore we focused on validating CDC42 and

FN1 using real-time qPCR and found that both genes were downregulated in G cells in two of

the three LuCaP PDX lines tested (Fig 3E). Furthermore, TGFβ2 is a known downstream effec-

tor of β1 integrin and upregulation of TGFB2 expression has been reported to be associated

with migration and cancer dormancy [34, 35], we examined and found that TGFB2 expression

was consistently downregulated in G when compared to NG cells in all three LuCaP PDX lines

by real-time qPCR (Fig 3E). In clinically derived DTC isolated from the bone marrow, we vali-

dated that FN1 (p<0.01, from gene expression dataset GSE48995, [26]) and TGFB2 [35] were

upregulated in patients with no evidence of disease when compared to patients with active PCa

metastasis, whereas no significant gene expression change for CDC42 (p = 0.67) was detected

between the two groups of DTC (data not shown).

Fig 3. Genes associated with cellular movement were downregulated in proliferating LuCaP cells. A)
Heat map of hierarchically clustered differential gene expression in NG and G LuCaP PDX cells. Green,
downregulated; red, upregulated. B) Ingenuity pathway analysis showing cellular movement was the top
molecular and cellular function altered between NG and G cells. C) List of eight genes that were involved in
the decreased activation of cellular movement in G when compared to NG cells. D) EDN1 was predicted to be
the top regulator that affected the cell movement via downregulation of FN1, CDC42, and FOSL1. E)
Quantitative real-time PCR showed a downregulation of FN1, CDC42 and TGFb2 in growing LuCaP lines.
Data were normalized to the levels of housekeeping gene RPS15. NG: not growing; G: growing.

doi:10.1371/journal.pone.0130565.g003
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Activation of MLCK promoted PCa PDX cells proliferation via CDK6 in
the absence of BMSC

Myosin light chain kinase (MLCK) is a common effector for β1 integrin, CDC42 and TGFβ2

and its activation has been implicated in cell proliferation [36–38]. To determine if activation

of MLCK is involved in LuCaP PDX cell proliferation, we virally transduced a constitutively

active form of MLCK (A-tMK) in LuCaP PDX cells. A-tMK transduction in LuCaP 86.2, 92,

and 93 cells that normally do not proliferate resulted in cell clustering and positive Ki-67

expression, whereas cells transduced with an empty vector did not show cell clustering or

positive Ki67 staining (Fig 4A). Gene expression analysis focusing on cell cycle regulators dem-

onstrated that A-tMK-transduced LuCaP cells expressed an upregulated level of cyclin-depen-

dent kinase 6 (CDK6, 3 to 22 fold) and a concurrent downregulated level of E2F transcription

factor 4 (E2F4, 4 to 6 fold; Fig 4B).

To validate the involvement of MLCK activation in cell proliferation, we inhibited MLCK in

C4-2B cells that readily proliferate in vitro in an attempt to inhibit cell proliferation. Upon

MLCK inhibition by the MLCK inhibitor ML-7, C4-2B cell proliferation was reduced as evi-

denced by the loss of Ki67 staining (Fig 4C), the decrease in WST-1 absorbance (Fig 4D), and

the arrest of cells in the G1 phase (S2 Fig). In addition, the decrease in cell proliferation was

accompanied by a 4.9-fold downregulation in CDK6 mRNA expression in C4-2B cells treated

with ML-7 (p = 0.007). The expression of E2F4, however, did not show a significant upregula-

tion in C4-2B cells (Fig 4E). Collectively, the data suggested that activation of MLCK played a

role in stimulating cell proliferation which is associated with an upregulation of CDK6.

Overexpression of CDK6 facilitates the proliferation of LuCaP xenografts
in vitro

To validate upregulation of CDK6 promoted LuCaP PDX cell proliferation, we infected LuCaP

86.2, 92, and 93 cells with lentivirus containing constitutively active CDK6 vector and exam-

ined the proliferation. LuCaP 86.2, 92, and 93 cells normally did not proliferate in the absence

of BMSC, however ectopic expression of CDK6 promoted cell proliferation as evidenced by the

positive Ki67 staining (Fig 5).

Discussion

PCa cells may remain quiescent/dormant for years and proliferate to form active metastases at

distant sites. Little is known to date about the mechanisms underlying the induction and

release from dormancy in PCa cells that reside in the bone marrow. Major reasons include the

lack of patient specimens and relevant human in vitro and in vivomodels. We previously

reported a potential dormancy signature associated with DTC isolated from PCa patients with

no evidence of disease [30]. Here, instead of using immortalized PCa cell lines that readily pro-

liferate in vitro, we used clinically relevant PDX cells to examine the mechanism underlying

direct cell-cell interaction to restore cell proliferation. We characterized three LuCaP PCa

PDXs residing on the human bone marrow stroma, which displayed quiescent/dormant and

proliferating phenotypes depending on the cell seeding density. Our results showed that tumor

cell-cell contact induced cell proliferation which may represent dormancy escape via activation

of β1 integrin associated with universal downregulation of TGFB2 signaling and upregulation

of MLCK activation/CDK6 in PCa PDXs.

Recent studies in other solid tumors, such as in the head, neck, and breast, have implicated

elements of the cytoskeletal migration and adhesion machinery in the activation of indolent

tumor cells [4–7, 38–41]. β1 Integrin is critical for the initiation of tumorigenesis and the
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maintenance of the proliferative capacity of tumors [33, 41]. In PCa, we found that cell-cell

contact, both between tumor cells and with an underlying stroma, was associated with the acti-

vation of β1 integrin and was essential to facilitate the growth of quiescent PCa xenograft cells

in vitro. While cell-cell contact has to our knowledge not been directly reported as a require-

ment for dormancy release, several mechanisms associated with the migration and adhesion of

Fig 4. Constitutive activation of MLCK promotes proliferation of LuCaP PDX cells via upregulation of CDK6. A) LuCaP cells were infected with
lentivirus containing A-tMK (constitutively activate MLCK) showed positive Ki67 staining, whereas cells transduced with an empty vector did not. B) In LuCaP
86.2, 92, and 93, ectopic expression of A-tMK induced an upregulation of CDK6 and a concurrent downregulation of E2F4 when compared to that of the
empty vector-transduced cells. Inhibition of MLCK with the MLCK inhibitor ML-7 suppressed proliferation by C) abolishing Ki67 expression, D) decreasing
cell viability assessed byWST-1 assay and E) downregulating CDK6 expression. E2F4 expression was not altered by the ML-7. Green, EpCAM; Red, Ki67;
Blue, DAPI. Magnification: 200x. Scale bar: 20 μm. **p< 0.01 as compared to the DMSO control. CDK6: cyclin-dependent kinase 6; E2F4: E2F transcription
factor 4.

doi:10.1371/journal.pone.0130565.g004
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Fig 5. CDK6 overexpression induced proliferation of LuCaP PDX cells in vitro. LuCaP 86.2, 92 and 93 cells were lentivirally transduced to overexpress
CDK6 and cultured in vitro to assess proliferation. Positive Ki67 indicated that CDK6 overexpression facilitated proliferation in these cells. Green, EpCAM;
Red, Ki67; Blue, DAPI. Magnification: 200x. Scale bar: 20 μm.

doi:10.1371/journal.pone.0130565.g005
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tumor cells have been implicated in this process. Specifically, activation of α5β1 integrin has

been shown to release human squamous carcinoma and breast cancer cells from dormancy [6,

7, 39, 41], and activation of α5 β1 integrin induce cell adhesion and migration [42, 43] as well as

proliferation on extracellular matrix [44]. Thus, it is not surprising that given an opportunity

to come into contact within the bone marrow microenvironment, these normally quiescent

LuCaP PDX cells begin to proliferate in vitro.

Activation of β1 integrin has been shown to induce the downregulation of TGF β2 and

Cdc42 [45, 46]. Global gene expression analysis on the reactivated cells versus dormant cells

highlighted a decrease in TGF β2 signaling in proliferating PCa PDX cells which was consistent

with the observation that TGF β2 induced dormancy of malignant DTC in head and neck squa-

mous cell carcinoma [47]. This is in concordance with the data from clinically derived DTC

that TGFB2 expression is higher in PCa patients with no evidence of disease when compared to

patients with advanced disease [35]. Furthermore, Cdc42 was implicated in activation of p38

and growth arrest in cancers [7] and was downregulated in proliferating PCa PDX cells in the

current study. Of note, MLCK is a well-known downstream effector of adhesion- and motility-

mediated mechanisms including β1 integrin [9, 10, 38, 40], and its activation has been linked to

cell survival [40]. In our study, the downregulation of CDC42 and TGFB2 pointed to a possible

activation of MLCK leading to cell proliferation. Indeed, introduction of constitutively active

MLCK alone was adequate to induce proliferation in LuCaP PDX cells that normally retain

dormant in vitro. Conversely, C4-2B cells, which readily proliferate in vitro, were growth sup-

pressed upon treatment with the MLCK inhibition ML-7. These data correlated well with a pre-

vious study by Barkan and colleagues that demonstrated quiescence in vitro and inhibition of

metastatic outgrowth of various breast cancer cell lines upon inhibition of MLCK [38].

In the current study, activation of MLCK resulted in an upregulation of CDK6 in all three

LuCaP PDX lines. CDK 6 associates with cyclin D1 to transition cells through the G1 phase of

the cell cycle [48] and is regulated by the androgen receptor (AR) [49]. Instead of acting as a

primary regulator, AR may act as an enhancer for CDK6 expression because CDK6 upregula-

tion upon MLCK activation was 5–7 fold higher in the AR-positive LuCaP 92 and LuCaP 86.2

cells compared to the upregulation in AR-negative neuroendocrine LuCaP 93 cells [26, 27]. On

the other hand, E2F4 is known to act in conjunction with Smad3 as a cofactor for TGF tran-

scription [50], which has been shown to induce apoptosis in PCa [51, 52]. Furthermore, E2F4

has been demonstrated to enforce G2 arrest in C4-2B cells in response to genotoxic stress [53].

We observed a downregulation of the E2F4 in proliferating LuCaP PDXs expressing activated

MLCK, suggesting that the downregulation in E2F4 may be allowing LuCaP PDX cells to prog-

ress through the cell cycle and escape quiescence/dormancy (Fig 6).

Collectively, we presented the first in vitromodel demonstrating non-proliferating PCa

PDX cells resumed proliferation on human bone marrow stromal microenvironment. These

models provide evidence to support that direct cell-cell interaction promotes cell proliferation

partly via β1 integrin activation. A clinically interesting but not yet addressed question is

whether or not a patient showing an increased number of DTC (i.e. increased chance of DTC

contact with each other) will result in an increased rate of tumor cell proliferation and hence

metastatic outgrowth. Maintaining disseminated PCa cells in a dormant, indolent state is an

attractive clinical prospect as is inducing active PCa cells to become dormant. However, such

treatments require an intimate understanding of PCa dormancy mechanisms. While confirma-

tory in vivo studies are required to conclusively determine a dormancy release mechanism in

PCa, these findings represent an important and encouraging first step in the identification of

such a mechanism for this heterogeneous disease.
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Supporting Information

S1 Fig. C4-2B cells grow on a monolayer of bone marrow stromal cells (BMSC) when

seeded sparsely. A) C4-2B cells were seeded sparsely (50 cells/cm2) on BMSC, cells were fixed

with ice-cold methanol and fluorescently stained for Ki67 to assess proliferation. Green,

EpCAM; Red, Ki67, Blue, DAPI. Magnification: 200x. Scale bar: 50 μm. B) EpCAM-positive

cells were counted on day 1 and day 7. Data are presented as mean±S.D of two independent

experiments. ��p<0.01 when compared to day 1.

(PDF)

S2 Fig. Cell cycle analysis of ML-7 treatment on C4-2B cells. A) A representative histogram

of DAPI-stained C4-2B cells treated with either DMSO or ML-7 (10μM) for 24h or 48h. Cell

cycle was analyzed by flow cytometry. B) Percentage of cells in G1, S, and G2/M phase of C4-

2B cells treated with DMSO or ML-7. Data are presented as mean±S.D of two independent

experiments. �p<0.05 when compared to the DMSO control.

(PDF)

Fig 6. Potential mechanism for PCa release from quiescence/dormancy. Decreased fibronectin
activation on β1 integrin downregulates TGF β2 and Cdc42 resulting in activation of MLCK. This activity leads
to the deactivation of growth suppressor like E2F4 and activation of cell cycle regulator CDK6, promoting cell
proliferation.

doi:10.1371/journal.pone.0130565.g006
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