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 3 

Abstract 32 

Despite intensive studies during the last 3 years, the pathology and underlying 33 

molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. 34 

Here, we examined postmortem COVID-19 lung tissues by spatial single-cell 35 

transcriptome analysis (SSCTA). We identified 18 major parenchymal and immune cell 36 

types, all of which are infected by SARS-CoV-2. Compared to the non-COVID-19 37 

control, COVID-19 lungs have reduced alveolar cells (ACs), and increased innate and 38 

adaptive immune cells. Additionally, 19 differentially expressed genes in both infected 39 

and uninfected cells across the tissues mirror the altered cellular compositions. Spatial 40 

analysis of local infection rates revealed regions with high infection rates that are 41 

correlated with high cell densities (HIHD). The HIHD regions express high levels of 42 

SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2, and NRP1, and 43 

co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration 44 

that have increased ACs and fibroblasts but decreased vascular endothelial cells and 45 

epithelial cells, echoing the tissue damage and wound healing processes. Sparse non-46 

negative matrix factorization (SNMF) analysis of neighborhood cell type composition 47 

(NCTC) features identified 7 signatures that capture structure and immune niches in 48 

COVID-19 tissues. Trajectory inference based on immune niche signatures defined two 49 

pathological routes. Trajectory A progresses with primarily increased NK cells and 50 

granulocytes, likely reflecting the complication of microbial infections. Trajectory B is 51 

marked by increased HIHD and OP, possibly accounting for the increased immune 52 

infiltration. The OP regions are marked by high numbers of fibroblasts expressing 53 

extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq 54 
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data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) 55 

identified similar cell populations primarily consisting of myofibroblasts. 56 

Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-b-57 

SMAD2/3 pathways in these cells, which likely mediate the upregulation of COL1A1 and 58 

COL1A2, and excessive fibrosis in the lung tissues. Together, this study provides an 59 

SSCTA atlas of cellular and molecular signatures of fatal COVID-19 lungs, revealing the 60 

complex spatial cellular heterogeneity, organization, and interactions that characterized 61 

the COVID-19 lung pathology.  62 

 63 
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 5 

Introduction 68 

Multiple single-cell RNA-seq (scRNA-seq) analyses of coronavirus disease 2019 69 

(COVID-19) patients with different severities have improved our understanding of 70 

cellular diversity associated with infection and provided important molecular insights into 71 

the host immune response [1-5]. Despite intensive studies in the last 3 years, the 72 

pathology and underlying molecular mechanism of COVID-19 remain unclear. Severe 73 

COVID-19 is often accompanied by diffuse alveolar damage (DAD) that presents 74 

complex pathological manifestations and is heterogeneous within infected tissues and 75 

across patients [6]. The dissociation of tissue localization of cells in scRNA-seq has 76 

become a bottleneck to decoding the pathology features at the molecular and cellular 77 

levels and failed to reveal the immune signatures of the microenvironment for severe 78 

COVID-19.    79 

Spatial single-cell transcriptome analysis (SSCTA) promises to reveal the 80 

molecular basis of cellular heterogeneity, organization, and interactions in tissues and 81 

organs [7, 8]. However, analysis of these complex datasets including defining the spatial 82 

cellular organizations, immune microenvironment patterns, cell-cell interactions, and 83 

molecular signatures associated with disease pathophysiology remains a daunting task.  84 

Here, we utilized SSCTA to examine postmortem lung tissues from 5 cases with 85 

severe COVID-19 and one case without COVID-19. From 10,414,863 detected 86 

transcripts of cellular 221 genes from six tissues, we identified 1,719,459 cells that were 87 

mapped to 18 major parenchymal and immune cell types, all of which are infected by 88 

SARS-CoV-2. We further identified the spatial cellular and molecular signatures that 89 

define the patterns of SARS-CoV-2 infection, structural and pathological presentations, 90 
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 6 

and associated immune microenvironments, which project the trajectories of disease 91 

progression. Together, this study provides an atlas of cellular and molecular signatures 92 

of fatal COVID-19 lungs and reveals the complex spatial cellular heterogeneity, 93 

organization, and interactions that characterize COVID-19 lung pathology.  94 

 95 

Results 96 

Spatial single-cell transcriptome analysis, cell segmentation, cell typing, and 97 

spatial mapping of cells. 98 

Postmortem lung tissues from five COVID-19 autopsies and one postmortem 99 

case without COVID-19 were subjected to SSCTA (Fig. 1A). All five COVID-19 cases 100 

contracted SARS-CoV-2 in the first wave of the pandemic and had underlying 101 

conditions [9], including hypertension (cases 1-3), HIV infection and asthma (case 2), 102 

and Parkinson's and chronic kidney diseases (cases 4 and 5). Hematoxylin and eosin 103 

(H&E) stains revealed various degrees of diffuse alveolar diseases (DAD), pulmonary 104 

thromboembolism, and lymphocytic infiltration in all cases (Fig. S1). Tissues 1 and 2 (1-105 

2C and 2-1A) had prominent organizing pneumonia (OP) or organizing diffuse alveolar 106 

damage while edema, hyaline membrane, and fibrin clot or microthrombi were 107 

prominent in tissues 3, 4, and 5 (3-1A, 4-3B and 5-3B). We designed probes for 108 

detecting the SARS-CoV-2 genome and 221 cellular genes covering markers of 109 

common lung parenchymal and immune cells, and immune and inflammatory genes 110 

induced by viral infections (Table S1). Following hybridization and gene decoding by in-111 

situ sequencing, we stained the tissues with 4′,6-diamidino-2-phenylindole (DAPI) (Fig. 112 

S2) to facilitate cell segmentation (Fig. S2). 113 
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 7 

A workflow was developed to analyze the SSCTA data (Fig. 1B). We detected 114 

869,453 to 3,424,675 reads in the six lung tissues for a total of 10,414,863 reads (Table 115 

S2 and Fig. S3A). Using the Baysor algorithm [10], we segmented ~89%-95% of reads 116 

into cells based on DAPI staining and the spatial distribution of reads (Fig. S4). We 117 

identified 186,659 to 470,294 cells for each sample for a total of 1,719,459 cells in these 118 

tissues (Table S2 and Fig. S3B). Over 99% of the cells harbored at least 5-15 reads 119 

(Fig. S5). We further filtered the cells deemed low quality (see Methods) and retained a 120 

total of 779,137 cells for the subsequent analyses.    121 

We summarized the reads for each gene and normalized the gene reads of 122 

segmented cells using scTransform [11]. We assigned cell types to 70-84% of the 123 

segmented cells based on the expressions of cell type-specific markers (Table S1) and 124 

identified a total of 18 cell types including 11 types of parenchymal cells and 7 types of 125 

immune cells in all six tissues (Fig. 1C and S6). We used Uniform Manifold 126 

Approximation and Projection (UMAP) to visualize the relationship of gene expressions 127 

of individual cells associated with different cell types in all tissues (Fig. 1D and S7). 128 

There were negligible batch differences as cells from different samples mixed well in 129 

individual cell clusters (Fig. 1D and S7). We noticed separated clusters for major 130 

parenchymal cells including alveolar cells (ACs) and fibroblasts. By contrast, immune 131 

cells were grouped together and mixed with vascular endothelial cells (VECs) in several 132 

clusters (Fig. 1D). The poor separation of immune cell types was largely due to highly 133 

expressed immunoglobulin kappa light chain (IGKC) and cathepsin L (CTSL) in these 134 

cell types (Fig. S8).   135 
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 8 

We then mapped the individual cells to their spatial locations in the tissues (Fig. 136 

S9) and performed the neighborhood cell type composition (NCTC) analysis by 137 

computing a vector of 18 cell-type percentages in the neighborhood of individual cells. 138 

NCTC reveals spatial variations of the local cell type composition and informs local 139 

interplays among cell types. In agreement with the observed pathology that showed 140 

DAD in all COVID-19 tissues (Fig. S1), NCTC uncovered disorganized distributions of 141 

various cell types, especially the major parenchymal cells such as ACs, VECs, and 142 

fibroblasts (Fig. 1E, S1, and S10-S14). In contrast, organized structures and orderly 143 

distributions of these cell types were observed in the non-COVID-19 tissue (PBC-PR) 144 

(Fig. 1E, S1, and S15). Examination of regions with blood vessels revealed the lining of 145 

VECs along the vessels together with other vessel-associated cells including ACs, 146 

fibroblasts, and smooth muscle cells (SMCs) (Fig. 1E and S16). Furthermore, we 147 

observed abundant infiltrating immune cells including macrophage and monocytes 148 

(MMs), natural killer (NK) cells, and T- and B-cells along regions of blood vessels (Fig. 149 

1E and S10-S14). We also observed the expected cell compositions of other structures 150 

including bronchiole, capillary, and endothelium (Fig. S17). These results validated the 151 

marker-based cell typing approach.  152 

 153 

SARS-CoV-2 infection alters the cell compositions of major parenchymal cells 154 

and induces immune infiltrations.  155 

In agreement with the results of our previous study [9], we found SARS-CoV-2 156 

reads in diverse cell types with infection rates ranging from 0.6% to 5% except that no 157 

infected cell was detected in the small number of erythrocytes (55) identified in tissue 1 158 
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(Fig. 1D, 1F, S7 and Table S3). Most infected cells were identified as ACs, fibroblasts, 159 

VECs, and MMs as they were the major cell types in the COVID-19 tissues (Fig. 1F).  160 

Consistent with the tissue pathology, we observed significant alterations in the 161 

compositions of different cell types in COVID-19 tissues compared to the non-COVID-162 

19 tissue (Fig. 1E and 1F). Among the parenchymal cells, there were reduced numbers 163 

of ACs from 44.08% to 12.81-28.23% and SMCs from 5.22% to 1.72-3.05%, and 164 

increased numbers of epithelial cells (ECs) from 2.08% to 2.40-8.42%, ionocytes from 165 

0.22% to 0.41-1.36% and basal cells from 0.25% to 0.31-1.58%, suggesting their likely 166 

involvements in COVID-19 lung pathology (Fig. 1E, 1F, and Table S3). Furthermore, we 167 

observed increases in cell numbers of most types of the identified immune cells in 168 

COVID-19 tissues (Fig. 1E, 1F, and Table S3). In particular, there were increased 169 

inflammatory cells including MMs from 9.4% to 17.51-21.37% and NK cells from 1.00% 170 

to 2.32-9.19%, and adaptive immune cells including T cells from 2.40% to 4.34-6.81% 171 

and B cells from 1.91% to 2.70-10.51%, which were consistent with the reported 172 

inflammatory and cellular immune response following SARS-CoV-2 infection [12]. 173 

However, these changes were more subtle for some cell types in tissue 1, which had 174 

the least infected cells and mildest pathological manifestations with the best integrity of 175 

parenchymal cells among all COVID-19 tissues (Fig. 1E, 1F, S1, and S10). 176 

 177 

SARS-CoV-2 infection induces global differential gene expressions that marked 178 

pathological damages and inflammation with spatial cellular features.  179 

We examined the differential gene expression between COVID-19 and non-180 

COVID-19 lung tissues, and identified 9 upregulated and 10 downregulated genes, 181 
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respectively (Fig. 2A, first panel). Comparison of SARS-CoV-2-infected cells in COVID-182 

19 tissues with all cells in the non-COVID-19 tissue confirmed the differential 183 

expressions in 16 of these 19 genes (Fig. 2A, second panel). Interestingly, differential 184 

gene expressions were also observed in 18 of these 19 genes between uninfected cells 185 

in COVID-19 tissues and all cells in the non-COVID-19 tissue (Fig. 2A, third panel). In 186 

contrast, there were only 3 differentially expressed genes between SARS-CoV-2-187 

infected and -uninfected cells in the COVID-19 tissues (Fig. 2A, fourth panel). These 188 

results indicated that there were strong indirect effects such as those mediated by 189 

cytokines and complement activation induced by SARS-CoV-2 infection that likely 190 

contributed to the dysregulated gene expressions and pathology in COVID-19 lung 191 

tissues. Thus, we focused on comparing COVID-19 tissues with the non-COVID-19 192 

tissue in subsequent analyses of dysregulated genes.  193 

The expressions of the 19 dysregulated genes in different cell types and their 194 

tissue distributions had significant variations suggesting their complex involvements in 195 

different aspects of SARS-CoV-2 infection and COVID-19 lung pathology (Fig. 2B, 2C, 196 

S8, and S18-S23). We determined the contributions of individual cell types to the 197 

expressions of these genes across all the tissues (Fig. 2D). Of the 19 genes, 10 of them 198 

were cell markers (Table S1). All 6 parenchymal cell markers including SFTPC, 199 

SFTPA1, and advanced glycosylation end product (AGE) receptor (AGER) for ACs, 200 

INMT for fibroblasts, smooth muscle actin alpha 2 (ACTA2) for SMCs, and claudin 5 201 

(CLDN5) for VECs were downregulated, and mainly expressed in their respective cell 202 

types (Fig. 2A, first panel, 2C, 2D, S8 and S18-S23), of which ACs and SMCs had 203 

decreased cell numbers in COVID-19 tissues (Fig. 1E, 1F and S7). Both SFTPC and 204 
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SFTPA1 are implicated in lung homeostasis and functions, and their mutations and 205 

dysregulation are associated with pulmonary fibrosis [13-15]. Additionally, SFTPA1, a 206 

C-type lectin, which binds to specific carbohydrate moieties on lipids and the surface of 207 

microorganisms, is essential in the defense against respiratory pathogens [16-18] while 208 

the pulmonary-associated surfactant protein C encoded by SFTPC is a marker for 209 

COVID-19 patients with high viral loads [19]. AGER, predominantly expressed in ACs 210 

(Fig. 2C), is a multiligand receptor interacting with AGE and other molecules implicated 211 

in lung homeostasis, development and inflammation, and certain diseases such as 212 

diabetes and Alzheimer's disease, and regulates diverse pathways including MyD88-213 

dependent, nuclear receptors, TNF-a, ERK1/2 and p38 MAPK, and p53/TP53 pathways 214 

[20-23]. Following interaction with S100A12, AGER triggers the activation of 215 

mononuclear phagocytes, lymphocytes, and endothelium by generating key pro-216 

inflammatory mediators [24]. Indeed, AGER-related pathways are activated by SARS-217 

CoV-2 infection and are implicated in the COVID-19 lung pathology [25, 26]. ACTA2 218 

encodes a smooth-muscle actin involved in lung functions including cell motility, tissue 219 

structure and integrity, and intercellular signaling [27]. Dysregulation of ACTA2 is linked 220 

to a variety of vascular diseases as well as multisystemic smooth muscle dysfunction 221 

syndrome [28, 29]. CLDN5 is an integral membrane protein and component of tight 222 

junction strands regulating the integrity of epithelial or endothelial cell sheets, and 223 

immune cell transmigration [30-32]. SARS-CoV-2 infection suppressed CLDN5 224 

expression contributing to the disruption of respiratory vascular barriers [33]. Thus, 225 

downregulations of parenchymal cell markers including SFTPC, SFTPA1 and AGER in 226 
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ACs, ACTA2 in SMCs, and CLDN5 in VECs might be involved in SARS-CoV-2 infection 227 

and COVID-19 lung pathology (Fig. 2D). 228 

Several other downregulated genes including caveolin 1 (CAV1) and alpha-2-229 

macroglobulin (A2M) are implicated in numerous lung functions (Fig. 2A).  CAV1, a 230 

component of caveolae involved in multiple pathways such as integrins-mediated and 231 

Ras-ERK signaling, is essential for lung functions and during the host response to 232 

infections [34, 35]. A2M is an inhibitor of broad spectrum of proteases including trypsin, 233 

thrombin, and collagenase [36, 37]. It disrupts inflammatory cascades by inhibiting 234 

inflammatory cytokines, is implicated in Alzheimer's disease, and regulates extracellular 235 

matrix organization and platelet cytosolic Ca2+ [36, 37]. CAV1 and A2M were 236 

downregulated and mainly expressed by ACs, fibroblasts, VECs, and MMs (Fig. 2A, first 237 

panel, 2D, S8, and S18-S23), of which ACs and fibroblasts had decreased while MMs 238 

had increased cell numbers in COVID-19 tissues (Fig. 1F). 239 

Three upregulated immune marker genes including complement component C1q, 240 

A chain (C1QA) and B chain (C1QB), and neural cell adhesion molecule 1 (NCAM1) are 241 

involved in innate immune response and inflammation (Fig. 2A, first panel) [38, 39]. 242 

C1QA and C1QB were predominantly expressed in MMs (Fig. 2D, S8 and S18-S23). 243 

SARS-CoV-2 infection induced robust complement activation, contributing to tissue 244 

damage and COVID-19 lung pathology [40-42]. Both cathepsin L (CTSL) and granzyme 245 

K (GZMK) could be involved in complement activation [43, 44]. CTSL was induced after 246 

SARS-CoV-2 infection and enhanced SARS-CoV-2 infection [45] while GZMK, a serine 247 

protease from the cytoplasmic granules of cytotoxic lymphocytes (CTL) and NK cells 248 

that recognize and lyse specific target cells [46], could limit the spread of SARS-Co-V-2. 249 
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Both CTSL and GZMK were upregulated and mainly expressed by ACs, fibroblasts, 250 

MMs, and VECs while CTSL exhibited a comparable expression level but with 251 

extremely high levels in localized regions in COVID-19 tissues (Fig. 2A, 2B, 2C, 2D, S8 252 

and S18-S23). NCAM1, the marker of NK cells, is a member of the immunoglobulin 253 

superfamily involved in cell-to-cell interactions as well as cell-matrix interactions [47]. 254 

The upregulations of C1QA, C1QB, CTSL, GZMK, and NCAM1 were consistent with the 255 

increased numbers of MMs and NK cells in COVID-19 tissues (Fig. 1F, S8, and S18-256 

S23). Thus, increased infiltrations of MMs and NK cells were likely involved in COVID-257 

19 lung complement activation and inflammation. 258 

Two immune-modulating cytokines were upregulated including colony-stimulating 259 

factor 3 (CSF3), a member of the IL-6 superfamily of cytokines that controls the 260 

production, differentiation, and function of granulocytes involved in the innate immune 261 

response [48, 49], and inducible T cell costimulator ligand (ICOSLG or B7-H2) involved 262 

in positive regulation of interleukin-4 production and CD28 signaling in T-helper cells 263 

[50, 51]. The major cells that expressed CSF3 and its receptor CSF3R, as well as 264 

ICOSLG and its receptor ICOS, were ACs, fibroblasts, VECs, and MMs (Fig. 2D).  265 

Numerous other upregulated genes in COVID-19 tissues are involved in 266 

inflammatory and immune responses (Fig. 2A). Leukocyte-specific transcript 1 (LST1), a 267 

myeloid leukocyte-specific transmembrane adaptor protein recruiting protein tyrosine 268 

phosphatases SHP-1 and SHP-2 to the plasma membrane, inhibits the proliferation of 269 

lymphocytes, and its expression is enhanced by lipopolysaccharide (LPS), interferon-270 

gamma (IFN-g) and bacteria [52, 53]. Immunoglobulin kappa light chain (IGKC) is 271 

essential for antibody production but is also expressed in non-lymphoid cells [54-56]. 272 
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Both LST1 and IGKC were mainly expressed in ACs, fibroblasts, VECs and MMs (Fig. 273 

2B-E, S8 and S18-S23), which might mediate dysregulation of immune cells in COVID-274 

19 lung tissues. Finally, fibulin 1 (FBLN1), a secreted glycoprotein incorporated into a 275 

fibrillar extracellular matrix in a calcium-dependent manner and mediates platelet 276 

adhesion via binding fibrinogen [57, 58], was mainly expressed in ACs, fibroblasts, 277 

VECs, and MMs (Fig. 2D). 278 

We examined differential gene expressions in cell types that had significant 279 

changes in cell numbers (Fig. 1F). Compared to non-COVID-19 tissue, ACs from 280 

COVID-19 tissues had 20 differentially expressed genes, of which 14 were identified at 281 

the whole tissue level (Fig. 2A, first panel and 2E). The most upregulated genes were 282 

LST1, CTSL, IGKC, ICOSLG, C1QB, GZMK, and NCAM1 while the most 283 

downregulated genes were SFTPC, A2M, SFTPA1, CLDN5, and CAV1 (Fig. 2E), which 284 

likely contribute to the decreased cell numbers in COVID-19 tissues (Fig. 1F). Several 285 

differentially expressed genes were also identified in fibroblasts, VECs and ECs (Fig. 286 

2E). Among the immune cells, MMs had the most differentially expressed genes 287 

including upregulation of C1QB, NCAM1, and IGKC, and downregulation of A2M, CD68, 288 

TYROBP and PRG4 (Fig. 2E).  289 

 290 

Spatial analysis identifies regions with high SARS-CoV-2 infection rates that 291 

match high cell densities, high levels of viral entry-related factors, and localized 292 

pathology. 293 

Even though we did not observe notable global differences in gene expression 294 

between infected and uninfected cells within each COVID-19 tissue, the spatial nature 295 
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of the SSCTA permitted the identification of the local impact of SARS-CoV-2 infection 296 

on lung pathology. We performed the local infection rate analysis to examine the spatial 297 

distributions of local SARS-CoV-2 infection (Fig. 3A) and identified regions with high 298 

and low infection rates in each tissue (Fig 3B; local Moran’s I, p-value < 0.05). SARS-299 

CoV-2 infects host cells by binding to its entry receptor, angiotensin-converting enzyme 300 

2 (ACE2), and subsequent engagement of host proteases and other entry-related 301 

factors including FURIN, transmembrane protease, serine 2 (TMPRSS2), and neuropilin 302 

1 (NRP1) [59]. We assessed the spatial correlation between high-infection regions and 303 

cells expressing transcripts of these viral entry-related proteins. We found a significant 304 

correlation between high infection rates and high expressions of ACE2, FURIN, 305 

TMPRSS2, and NRP1 (Fig. 3C; bivariate local Moran’s I, p-value < 0.05), supporting the 306 

essential roles of these cellular proteins in SARS-CoV-2 infection in lung tissues. 307 

Previous studies reported increased densities of both parenchymal and immune 308 

cells in COVID-19 lung tissues [6]. Here, we observed a positive spatial correlation 309 

between cell densities and SARS-CoV-2 infection rates especially in tissues 1-4 (Fig. 310 

3D, Table S4), suggesting that increased cell densities might be associated with high 311 

infection rates. We segmented regions with high infection rates and high cell densities 312 

(HIHD) (Fig. 3E; bivariate local Moran’s I, p-value < 0.05). Compared with H&E staining 313 

(Fig. S1), we found a close association between HIHD and OP, which was most 314 

prominent in tissues 1 and 2, as well as lymphocytic and immune infiltration, which was 315 

most severe in tissues 3 and 4 (Fig. 3E). Both are the most common lung pathological 316 

manifestations in COVID-19 lungs [12]. Hence, high infection rates might cause 317 

persistent damages to the lung tissues, resulting in the infiltration of immune cells, and 318 
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increased wound repair and fibrosis [60, 61]. We also observed HIHD areas adjacent to 319 

blood vessels in tissues 1 and 3 (Fig. 3E and S1), which might be due to the homing of 320 

the circulating virus and immune cells in the bloodstream to these sites or that these 321 

cells were more susceptible to SARS-CoV-2 infection [9, 62].  322 

 323 

Regions with high SARS-CoV-2 infection rates have unique cellular and gene 324 

expression features.  325 

We next examined cell type compositions of the high and low SARS-CoV-2 326 

infection regions. Compared to low-infection regions across the tissues, the 327 

compositions in high-infection regions exhibited significant increases in fibroblasts, 328 

echoing the observed OP in HIHD areas, and an increase in ACs, possibly due to the 329 

proliferation of ACs response to injury repair of alveoli and alveoli capillaries (Fig. 3E 330 

and 4A). However, there were decreases in ECs and VECs, which might reflect the 331 

damages caused by the infection (Fig. 3E and 4A). These results suggested that high-332 

infection regions might suffer more damages. However, except for T cells and 333 

granulocytes, the compositions of major immune cell types including MMs between high 334 

and low infection regions remained similar (Fig. 4A), suggesting induction of a broad 335 

immune infiltration by SARS-CoV-2 infection, as well as the observed broad impact on 336 

the tissue-wide gene expression (Fig. 2A).  337 

The patchwork of high infection regions in tissue 1 prompted us to inspect 338 

patterns of local cell-type compositions. Interestingly, NCTC analysis showed three 339 

clusters in high-infection regions, of which two were distinctly enriched with prominent 340 

local compositions of fibroblasts and ACs, respectively (Fig. 4B). Examining their spatial 341 
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distributions confirmed a negative in-situ correlation between local compositions of 342 

fibroblasts and ACs (-0.6, Pearson correlation), with regions showing high (low) 343 

compositions of fibroblasts accompanied with low (high) compositions of ACs (Fig. 4B 344 

and C). Strikingly, the local regions with high fibroblasts but low ACs were mostly 345 

annotated OP regions (Fig. S1).         346 

We next investigated the gene expression patterns in the high- and low-infection 347 

regions. Compared with the normal tissue, the high and low infection regions presented 348 

highly consistent differential expression patterns as they shared 18 of the 20 349 

differentially expressed genes (Fig. 4D), confirming the strong indirect effect of SARS-350 

CoV-2 infection (Fig. 2A). One of the two uniquely differentially expressed genes in high 351 

infection regions was again cytokine CSF3, which was upregulated in all infected 352 

tissues. We, therefore, investigated spatial co-expression of CSF3 and its receptor 353 

CSF3R (Fig. 3F) and found that their co-expression patterns also presented spatial 354 

correlations in high infection regions (Fig. 3G; bivariate local Moran’s I, p-value < 0.05), 355 

suggesting that the CSF3-CSF3R axis might modulate the immune response in high-356 

infection regions. In contrast to the consistent differentially expressed patterns of both 357 

high- and low-infection regions when compared with the normal control, direct 358 

comparison between high- and low-infection regions revealed distinct differentially 359 

expressed patterns. Particularly, we observed, in high- vs. low-infection regions, 360 

upregulation of AC markers SFTPA1 or SFTPA2 in tissues 1, 3, and 5 (Fig. 4E and 2C) 361 

and fibroblast markers COL1A1 or COL1A2 in all COVID-19 tissues (Fig. 4E and 4F), 362 

despite that SFTPA1 and COL1A2 displayed down-regulation in either high- or low-363 

infection regions in COVID-19 tissues when compared to the normal tissue (Fig. 4D). 364 
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The increased expressions of these AC and fibroblast markers were also consistent 365 

with the observed increases in ACs and fibroblasts in high-infection regions in the 366 

corresponding tissues (Fig. 4A). Cell type-specific differential expressions further 367 

confirmed the upregulation of SFTPA1 or SFTPA2 in ACs, and COL1A2 in fibroblasts in 368 

infected tissues (Fig. 4E and S24). However, different cell types exhibited complex 369 

differential expression patterns between high vs. low infection regions in individual 370 

COVID-19 tissues (Fig. S24), likely due to the distinct COVID-19 pathologies or stages 371 

associated with the individual infected tissues. 372 

 373 

Sparse non-negative matrix factorization analysis identifies seven cell 374 

composition signatures that recapitulate different healthy and disease statuses.  375 

Although different DAD phases can inform COVID-19 severity, they are 376 

confounded by many factors including the underlying conditions of the patients as 377 

illustrated by our five COVID-19 cases (Fig. S1). Importantly, the complex tissue 378 

microenvironments of parenchymal and immune cells associated with different stages of 379 

DAD within and across tissues have not been well characterized. Therefore, we 380 

determined the extent to which tissue-independent and tissue-specific spatial patterns in 381 

spatially resolved cell-type compositions are associated with different DAD stages. For 382 

this purpose, we performed the sparse non-negative matrix factorization (SNMF) [63] of 383 

the NCTC vectors of all cells in all tissues. SNMF decomposed these NCTC vectors into 384 

a sparse linear combination of cell-type composition signatures that define spatial cell-385 

type patterns in these tissues. We obtained a factorization of seven NCTC signatures 386 

after assessing the compactness and biological meanings of the factorization results for 387 
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different maximum numbers of factors (Fig. 5). Close examination of cell type 388 

compositions of the signatures (Fig. 5A and Table 5) and their spatial prevalence across 389 

all tissues (Fig. 5B) defined by the factor loading revealed their associations with normal 390 

structures, and broad and tissue-specific infection. Specifically, Signature 1 likely 391 

defined the cell type composition of “normal-like lung alveoli” because it has 56.4% 392 

ACs, 18.5% VECs, 11.9% fibroblasts, and 5.3% SMs, which were comparable to the 393 

percentages of the non-COVID-19 tissue (Fig. 1F and Table S3). Thus, the high-loading 394 

regions of Signature 1 in COVID-19 tissues might mark the less damaged regions. 395 

Naturally, the non-COVID-19 tissue had a high prevalence of Signature 1 (Fig. 5B and 396 

S25). Tissue 1 had the highest prevalence of Signature 1 among all COVID-19 tissues 397 

reflecting its least damaged pathology, followed by tissue 4, 3, 2, and 5 (Fig. 5B, S1, 398 

and S25). Signature 2 described a composition of 61% ECs, 14% ciliated cells, and 399 

10% basal cells. It had sparse but high-intensity loadings in localized regions identified 400 

as bronchial tubes (Fig. 5B and S1). In contrast to Signatures 1 and 2 which 401 

characterized cell-type compositions of normal structures, Signature 3 captured the 402 

“broad immune infiltration” as it contained 28.6% B cells, 22.3% MMs, 17.5% T cells, 403 

9.6% granulocytes, and 8.7% ECs (Fig. 5A and Table S5). As expected, it was the least 404 

common in the non-COVID-19 tissue (Fig. 5B and S25). Its loading distributions in 405 

COVID-19 tissues were consistent with the lowest immune infiltration in tissue 1, 406 

followed by 4, 3, 2, and 5 (Fig. 5B and S25), closely corroborating the order of damage 407 

revealed by Signature 1. Trajectory analysis of the cell type compositions with 408 

Signatures 1 and 3 using Slingshot [64] defined a trajectory of reduced normal alveoli 409 

and increased immune infiltration from the non-COVID-19 tissue to tissue 1, 4, 3, 5, and 410 
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2 (Fig. 5C), which was in agreement with the order of their increased severity of 411 

pathology observed in H&E staining (Fig. S1). Remarkably, Signatures 4 to 7 captured 412 

four distinct types of immune microenvironments or niches in these COVID-19 tissues. 413 

Signature 4 was characterized by high ACs (64.8%) with MMs (27.3%), likely reflecting 414 

the infiltration of alveolar MMs and proliferation of ACs in wound healing, all of which 415 

are features of exudative DAD [65]. The relatively higher prevalence of Signature 4 in 416 

the less severe tissues 1 and 4 suggested its association with early phases of DAD (Fig. 417 

5B and S25). There were also overlaps in regions with higher loadings of Signature 4 418 

with the annotated regions of immune infiltration in the H&E image in tissue 4 (Fig. 5B 419 

and S1). Signatures 5 and 6 depicted inflammations around VECs, where Signature 5 420 

was associated with extensive infiltration of MMs (46.7%) and T cells (8.7%) around 421 

VEC (26.3%), whereas Signature 6 was associated with substantial infiltration of NK 422 

cells (31.8%) and granulocytes (13.6%) around VECs (27.6%) and ECs (12.2%). These 423 

results were consistent with the influx of MMs and NK cells (Fig. 1E and F), which was 424 

likely due to the activation of complement and coagulation systems (Fig. 2A and C), 425 

resulting in damages and therefore reduced numbers of ACs and VECs (Fig. 1E and F). 426 

Signature 5 was more common in the less severe tissues 1, 3 and 4 but Signature 6 427 

appeared predominantly in 3 (Fig. 5B and S25), particularly in low infection region (Fig. 428 

3A). Indeed, lymphocytic infiltrations were also identified in the regions associated with 429 

Signatures 5 and 6 (Fig. S1). Signature 7 denotes extremely high fibroblasts (73.4%) 430 

with infiltration of MMs (15.8%). Advanced disease in COVID-19 patients often has an 431 

excessive accumulation of fibroblasts and may develop pathological fibrosis due to 432 

chronic inflammation from the infiltrated immune cells and dysregulation of the 433 
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extracellular matrix triggered (ECM) remodeling [66]. As expected, there was a high 434 

correlation between the COL1A1 expression level (Fig. 4F) with Signature 7. The 435 

loadings of this signature were high in tissues 1 and 2, which were annotated as OP 436 

regions, and in tissue 5, which were annotated as fibrin and hyaline membrane in 437 

addition to OP regions (Fig. 5B, S1 and S25), suggesting a connection with OP, fibrin 438 

and hyaline membrane.  439 

 440 

Unique cell composition signatures define two separate pathological trajectories.  441 

We then applied Signatures 4 to 7 to delineate the trajectories of DAD 442 

characterized by the immune responses against viral infection. We added Signature 1 443 

“normal-like alveoli” so that the non-COVID-19 tissue could be included as a reference. 444 

We used these 5 signatures to redefine the landscape of spatially resolved cell type 445 

compositions in these tissues. The UMAP visualization (Fig. 6A) recapitulated the tissue 446 

severity inferred by Signatures 1 and 3 (Fig. 5C) but presented more complex patterns, 447 

with each immune signature defining a largely distinct group of cell populations (Fig. 448 

6B). We applied Slingshot to infer pseudo-progressions of cells defined by these 449 

signatures and identified two trajectories (Fig. 6A). Clustering of cells based on pseudo-450 

time values further segmented the trajectories into 6 stages (Fig. 6A). At the onset, the 451 

two trajectories shared a common path including stages T1 and most T2, which 452 

traversed the cells enriched by Signature 1 “normal-like alveoli” and Signature 4 “ACs 453 

with MMs infiltration” in T1 and then those enriched by Signature 4 and Signature 5 454 

“VECs with MMs infiltration” in T2 (Fig. 6A). These stages were consistent with the less 455 

damaged presentations of tissues 1 and 4 (Fig. 6D and S1) and showed a reduction of 456 
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ACs due to likely lung injury and an increase of MMs possibly promoted by innate 457 

immune responses (Fig. 6C). Inspecting associated tissue regions in the H&E images 458 

showed characteristics of early DAD manifested by shedding of ACs, capillary leakage, 459 

lymphocytic/immune infiltration, and yet preserved alveoli structure (Fig. 6D and E, T1 460 

and T2). After the shared section, the trajectories diverged into two paths. The first path 461 

(Trajectory A) included T3a and T4a and progressed through cells mostly from tissues 3 462 

and 4 enriched in Signature 5 “VEC with MMs infiltration” ending in Signature 6 “VEC 463 

with NK cell infiltration”, which was almost exclusively from tissue 3 (Fig. 6A, B and D). 464 

We observed a persistent decrease in ACs but an increase in VECs, NK cells and B 465 

cells (Fig. 6C). The H&E staining of tissue regions for T3a and T4a showed hyaline 466 

membrane, fibrin, lymphocytic infiltration, and collapsed alveoli and capillary structure 467 

(Fig. 6E, T3a and T4a, and S1). These features are consistent with a more advanced 468 

DAD. The close association of this path with tissues 3 and 4 suggested that they 469 

encompassed similar DAD-related tissue patterns and immune niches. Indeed, the 470 

postmortem report showed similar findings for these two patients including bilateral 471 

pulmonary consolidation [9].  472 

The second path (Trajectory B) included two stages, i.e., T3b and T4b, which are 473 

enriched by Signature 6 in T3b and Signature 7 “high fibroblasts with MMs infiltration” in 474 

T4b highlighted by increased fibroblasts and immune infiltration of especially MMs (Fig. 475 

6A, B, and C). Their associated tissue regions were mostly in tissues 1, 2, and 5 (Fig. 476 

6D), suggesting potentially similar DAD tissue patterns and underlying immune niches 477 

in these tissues. The postmortem findings indeed revealed massive pulmonary emboli 478 

that were the main cause of death for cases 1 and 2 [9]. Close examination of these 479 
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regions in the H&E staining showed edema, increased fibrin, and OP (Fig. 6D, E, T3b 480 

and T4b, and S1), which are pathological signatures of DAD. There was a striking 481 

association between regions in tissues 1, 2 and 5 in T4b with the identified OP, fibrin 482 

and hyaline membrane regions and a significant positive correlation between the 483 

progression of Trajectory B and cell density (0.504, Spearman correlation, p-value < 484 

0.05) suggesting a more advanced stage of T4b than T3b with tissue 1 manifested in a 485 

more localized while tissues 2 and 5 in a more systematic manner. These results 486 

demonstrated a high degree of inter and intra-tissue heterogeneity in DAD-associated 487 

patterns. While tissue 1 contained regions affiliated with both trajectories, tissues 2 and 488 

5 were mostly associated with the trajectory featured by high fibroblasts and their 489 

reorganization, and tissues 3 and 4 were with the trajectory featured by increased VEC 490 

and immune infiltration. 491 

Next, we investigated the genes whose expressions in a cell type were correlated 492 

with the trajectories. We found 53 and 67 genes significantly correlated with Trajectory 493 

A and B in at least one cell type, respectively (Spearman correlation, p-value<0.05, 494 

permutation test; Table S6). In both trajectories, we obtained a negative correlation for 495 

ACs marker SFTPC in ACs (Fig. S26A, S26B, Table S6, and Table S7), suggesting a 496 

decrease in its expression, which echoes the reductions in ACs in both trajectories (Fig. 497 

6C). We also found a positive correlation of NCAM1 in NK cells with Trajectory A and 498 

positive correlations of COL1A1 in Fibroblasts and C1QB in MMs with Trajectory B (Fig. 499 

S26A, S26B, Table S6, and Table S7), all of which were consistent with the observed 500 

changes of cell type compositions and DAD pathologies along the trajectories (Fig. 6C).  501 
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To gain further insight into potential ligand-receptor interactions that underlie the 502 

immune patterns associated with the trajectories, we correlated the ligand-receptor co-503 

expressions with the trajectories. We found that CD40LG-CD40, CD80-CD28 and 504 

CXCL10-CXCR3 had the highest positive correlations with Trajectory A in all key cell 505 

types including especially VECs, ACs and Fibroblasts (Fig. S26C) while CD40LG-CD40, 506 

CSF3-CSF3R and CXCL10-CXCR3 were the top positive correlated pairs with 507 

Trajectory B in ACs, Fibroblasts, VECs and MMs (Fig. S26D). Thus, these ligand-508 

receptor pairs might contribute to the chemoattraction of the immune cells as a result of 509 

SARS-CoV-2 infection. 510 

 511 

IL6-STAT3 and TGF-b-SMAD2/3 pathways mediate COVID-19 lung fibrosis and 512 

organizing pneumonia. 513 

Because Trajectory B progressed into tissue regions that manifested extensive 514 

OP, we investigated the spatial patterns and molecular signatures associated with OP, 515 

which was mostly observed in tissues 1 and 2 and to a less extent in tissue 5, which 516 

also contained fibrin and hyaline membrane (Fig. 7A and S1). Analysis of cell 517 

compositions in regions with OP revealed an overall increase in cell density, and 518 

obvious decreases in cell numbers of ACs and VECs but an increase in cell numbers of 519 

fibroblasts compared to other regions in the same tissues and the non-COVID-19 tissue 520 

(Fig. 7B, C and D). As in the whole tissues, we observed downregulations of AGER, 521 

CAV1, SFTPA1, SFTPC, and A2M, and upregulation of IGKC in OP regions compared 522 

to the normal tissue (Fig. 7E). The changes of AGER, SFTPA1, SFTPC, and A2M were 523 

primarily observed in fibroblasts, MMs and VECs with downregulation of A2M also being 524 
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observed in ACs (Fig. 7F, G and H). The most striking observation is the upregulation of 525 

genes encoding for collagen type I alpha 1 and 2 chains (COL1A1 and COL1A2) in OP 526 

in both tissues compared to the normal tissue or to regions without OP in the same 527 

COVID-19 lung tissues (Figure 7E and G). Furthermore, both COL1A1 and COL1A2 528 

were upregulated in fibroblasts in OP regions compared to fibroblasts from either 529 

normal tissue or non-OP regions from the same tissue (Fig. 7G, H and I). COL1A1 and 530 

COL1A2 form the triple helix of a fibril-forming collagen, which is essential for lung 531 

homeostasis. Dysregulation of COL1A1 and COL1A2 leads to lung inflammation and 532 

fibrosis [67, 68]. Both COL1A1 and COL1A2 were mainly expressed in fibroblasts (Fig. 533 

7G and 7H), whose cell numbers were doubled in OP regions in both tissues compared 534 

to non-OP regions (Fig. 7D). Interestingly, the expression levels of COL1A1 and 535 

COL1A2 were highly heterogeneous in the individual cells in OP regions with extremely 536 

higher levels in 10-20% of the fibroblasts, which were absent in fibroblasts in non-OP 537 

regions or any other types of cells in the same COVID-19 tissues (Fig. 7J). COL1A1 and 538 

COL1A2 were not expressed in high levels in any types of cells in normal lung tissue 539 

(Fig. 7J). These results indicated that COVID-19 OP regions had severe dysregulation 540 

of fibroblasts with upregulation of COL1A1 and COL1A2, and abnormal ACs and VECs 541 

as a result of downregulation of AGER, SFTPA1, and SFTPC.  542 

To further confirm that increased expressions of COL1A1 and COL1A2 were 543 

hallmarks of COVID-19 OP, we examined their expressions in different cell types in 544 

single-cell RNA-seq (scRNA-seq) data from COVID-19 lung tissues [4]. Consistent with 545 

our observation, we found that COL1A1 and COL1A2 expressed mainly in fibroblasts 546 

and also showed varying expression levels (Fig. S27A). Specifically, they showed a 547 
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higher expression level in a subset of fibroblasts enriched with myofibroblasts (p < 548 

0.001, Gene Set Enrichment Analysis (GSEA): Fig. S27A and B). Myofibroblasts are 549 

differentiated fibroblasts, whose dysregulation may lead to idiopathic pulmonary fibrosis 550 

(IPF) including COVID-19 lung fibrosis, a lung disease that exhibits OP [69-71]. To 551 

provide a linkage between the OP regions and IPF, we examined the scRNA-seq data 552 

from lung tissue patients with IPF and nonfibrotic controls [72]. Like in the COVID-19 553 

data, we observed a subpopulation of fibroblasts with high expressions of COL1A1 and 554 

COL1A2 (Fig. S27C) and they were also enriched in myofibroblasts (p-values<0.001, 555 

GSEA; Fig. S27D). We further examined the differentially expressed genes in IPF 556 

fibroblast cells with high COL1A1 and COL1A2 expressions vs. fibroblast cells with low 557 

COL1A1 and COL1A2 expressions or nonfibrotic cells, respectively (Fig. S27E and 558 

S27F). The two lists of significant differentially expressed genes (DEGs) were similar (p-559 

values<0.001, GSEA; Fig. S27G), suggesting that the subpopulation with low COL1A1 560 

and COL1A2 expressions could serve as normal control. As a result, we compared the 561 

fibroblasts with a high vs. low COL1A1 and COL1A2 expressions in the COVID-19 562 

scRNA-seq data and obtained the DEGs (Fig. S27H). These DEGs are enriched by two 563 

DEG lists in IPF fibroblasts with high COL1A1 and COL1A2 expressions (p< 0.001, 564 

GSEA; Fig. S27I and S27J), suggesting that these cells likely had similar molecular 565 

characteristics as those in IPF. Indeed, functional enrichment analysis using the 566 

Ingenuity Pathway Analysis reported “Pulmonary Fibrosis Idiopathic Signaling 567 

Pathways” as the 2nd top-ranked pathway (Fig. S27K). Several other top enriched 568 

pathways related to extracellular matrix remodeling were also identified. Examination of 569 

the networks of these pathways identified IL6-STAT3 and TGF-b-SMAD2/3 pathways 570 
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that could directly regulate the expressions of COL1A1 and COL1A2 (Fig. 7K). Multi-571 

color indirect immunofluorescence antibody assay (IFA) staining indeed revealed that 572 

cells with a high COL1A1 expression level also had high levels of IL6 receptor-573 

a (IL6Ra), phospho-STAT3 (p-STAT3), TGF-bR2 and phospho-SMAD2/3 (p-SMAD2/3), 574 

confirming the activation of these pathways and their potential roles in the upregulation 575 

of COL1A1 (Fig. 7L). Both IL6 and TGF-b are highly induced, and implicated in fibrosis 576 

and lung injury [73, 74] as well as upregulation of COL1A1 and other extracellular matrix 577 

proteins in COVID-19 lung tissues [75, 76]. These results demonstrated the important 578 

roles of IL6 and TGF-b in the induction of severe COVID-19 lung OP and fibrosis.  579 

 580 

Discussion 581 

Using in-situ sequencing and our spatial single-cell analysis pipeline, we have 582 

painted an atlas of cellular and molecular signatures of lung tissues from severe 583 

COVID-19 cases. The atlas describes the cellular heterogeneity, organization, and 584 

interactions associated with inflammation, damage, and immune responses in COVID-585 

19 tissues. It provides molecular and cellular insights into the mechanisms underlying 586 

SARS-CoV-2 infection and the pathological manifestations in COVID-19 lungs. 587 

We detected a total of 10,414,863 transcripts in five COVID-19 and one non-588 

COVID-19 lung tissues. Spatial single-cell transcriptomics analysis at this scale for 589 

COVID-19 and other pathological conditions is still very limited. We have overcome 590 

considerable challenges and developed a pipeline of robust, scalable, interpretable 591 

computational tools and visualization methods for targeted and exploratory analyses 592 

emphasizing on spatial discovery. The first critical component of this pipeline is a 593 
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transcript-based cell segmentation strategy that integrates cell nuclei in the matching 594 

DAPI staining identified by CellPose with spatially localized reads using Baysor and 595 

iteratively segments reads into cells of potentially different sizes [10, 77]. Using this 596 

strategy, we segmented 93% of total transcripts into 1,719,459 cells including 186,659 597 

to 470,294 cells for different tissues. A customized filter was further applied to retain 598 

only a subset of high-quality cells.  599 

Cell typing of these filtered cells based on marker genes showed that SARS-600 

CoV-2 infected all the 18 identified cell types, a result consistent with those of our 601 

previous study [9] and others [4]. However, only a small fraction of these cells (<5%) are 602 

infected. These results agree with those of genome-wide studies that detected small 603 

numbers of viral reads in blood, lung, and nasopharyngeal samples from severe 604 

COVID-19 patients [4, 78-81]. Despite the detected low infection rates, SARS-CoV-2 605 

inflicts similar effects on the infected and uninfected cells across the tissues as shown 606 

by differential expression analysis of genes in infected or uninfected cells in COVID-19 607 

tissues against cells in the non-COVID-19 lung tissue (Fig. 2A). Thus, indirect effects 608 

such as those induced by the immune response, inflammation, cytokines, and 609 

complement activation might play a significant role on lung pathology in COVID-19 610 

patients. In fact, we have observed vast pulmonary microthrombi, thrombosis, and 611 

immune infiltrations in these COVID-19 lung tissues (Fig. S1). The major parenchymal 612 

cells including ACs, fibroblasts, and VECs have the highest numbers of infected cells. 613 

The COVID-19 lung tissues have reduced numbers of ACs and SMCs, but an increased 614 

number of ECs accompanied by vast immune infiltrations of innate immune cells 615 
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including MMs, granulocytes, and NK cells, and adaptive immune cells including T and 616 

B cells.  617 

Despite these global and consistent impacts of SARS-CoV-2 infection on the 618 

lungs, there are extensive spatial heterogeneities in addition to varying cell type 619 

percentages across the tissues. To reveal spatial dynamics of cellular features 620 

presented in considerable spatial discontinuity due to sparse measurements, we 621 

adopted a strategy to compute local feature distributions in the neighboring region of the 622 

cell with a fixed radius or cell number. This approach assesses the spatial gene 623 

expression maps, local infection rates, cell densities, and co-expression maps of ligand-624 

receptor pairs. To further characterize spatial patterns of an individual feature or joint 625 

pattern relationship between two features, we extensively applied the Moran’s I 626 

statistics, a method widely adopted in geoscience but scarcely in spatial transcriptomics 627 

analysis. Using these novel strategies, we identified regions with high infection rates, 628 

which are found in regions with high cell densities expressing higher levels of SARS-629 

CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2, and NRP1. Thus, 630 

SARS-CoV-2 may preferentially infect cells expressing these factors and the infected 631 

cells could also aggregate to these high-density regions following infection. Importantly, 632 

these regions are mapped to OP (tissues 1 and 2) or regions with fibrin, hyaline 633 

membrane, and edema (tissues 3, 4, and 5), and manifest cellular and molecular 634 

patterns resembling tissue damage and wound healing including infiltration of immune 635 

cells and pattern of fibrosis. We have found that OP harbors high densities of fibroblasts 636 

expressing high levels of COL1A1 and COL1A2, a phenomenon common in fibrosis and 637 

wound healing, which are unique to OP regions unseen in other regions of COVID-19 638 
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lung tissues or in the non-COVID-19 tissue. We have identified similar cell populations 639 

enriched by myofibroblasts in 10X scRNA-seq data from COVID-19 lung samples and 640 

IPF samples, suggesting that SARS-CoV-2 might preferentially infect myofibroblasts or 641 

reprogram other cell type(s) into myofibroblasts. Pathway enrichment analysis revealed 642 

the enrichment of multiple pathways related to IPF signaling and extracellular matrix 643 

remodeling including IL6-STAT3 and TGF-b-SMAD2/3 pathways. Indeed, we have 644 

detected high levels of IL6Ra, p-STAT3, TGF-bRII, and p-SMAD2/3 in cells expressing 645 

myofibroblast markers in OP regions. These results suggest that SARS-CoV-2 infection 646 

might induce aggregation of fibroblasts, and IL6 and TGF-b to promote wound healing 647 

in OP regions.  648 

To define spatial patterns associated with COVID-19 lung pathology, we 649 

performed the NCTC analysis, or the niche analysis, commonly used for probing 650 

interactions of cells such as in immune microenvironments. However, the COVID-19 651 

tissues contain complex pathology manifestations resulting in highly heterogenous 652 

cellular organizations and thus disparate NCTC patterns.  To tackle this challenge, we 653 

applied SNMF, owing to its scalability and interpretability, to NCTCs of all cells in six 654 

tissues to reveal potentially latent features underlying these seemingly less organized 655 

NCTCs. We indeed identified 7 latent signatures of spatial cell type compositions that 656 

define normal lung structures and SARS-CoV-2 infection-induced immune niches. While 657 

many existing studies have revealed the global immune landscape of SARS-CoV-2 658 

infection [1, 2, 5], few report spatial signatures of immune niches. We showed that these 659 

niches are mostly tissue-independent, but COVID-19 tissues presented heterogeneous 660 

distributions of these niches: while tissues 1, 2, 4, and 5 contain multiple types of 661 
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niches, tissue 3 has predominately a single type. We further drew the connections 662 

between these niches and different stages of DAD. Such a linkage prompted us to apply 663 

the trajectory analysis to NCTCs of these signatures. While the trajectory analysis is 664 

most commonly applied to gene expressions to predict a pseudo-progression of the 665 

cells, here, this innovative use of trajectory analysis defined the relative severities of 666 

damages among COVID-19 tissues and constructed two different pathological routes of 667 

progression in COVID-19 patients. Both routes start with enriched “ACs with MM 668 

infiltration” and “VECs with MMs infiltration” niches but Route A is marked by increased 669 

numbers of NK cells and granulocytes, likely reflecting complications of microbial 670 

infections, while Route B is characterized by increased HIHD and OP, marked by 671 

increased fibrosis. Both routes are also correlated with multiple cytokine-cytokine 672 

receptor pairs such as CD40LG-CD40 and CXCL10-CXCR3 that are likely to mediate 673 

the chemoattraction of the immune cells (Fig. S26C and S26D). By mapping these 674 

routes to individual cells, we further revealed considerable inter and intra-tissue 675 

heterogeneity in the inferred progression of COVID-19 pathology with tissue 3 and 4 676 

associated with Route A, tissue 2 and 5 with Route B, and tissue 1 with both routes.  677 

In summary, we have presented an atlas of spatial patterns of different cellular 678 

features that characterize SARS-CoV-2 infection, its induced immune infiltrations, 679 

inflammation, and damages in severe COVID-19 lungs, in addition to changes in gene 680 

expression in multiple cell types, including immune cells and lung parenchymal cells. 681 

These results provide insights into the spatial mechanisms at both molecular and 682 

cellular levels, which characterize the development of ARDS in COVID-19 patients. 683 

Overall, this study demonstrates the power of spatial single-cell transcriptomics and 684 
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enables spatial computational analyses in the study of COVID-19 lung pathology. The 685 

developed innovative methods can benefit spatial single-cell analyses for other healthy 686 

and diseased conditions.  687 

 688 

Methods  689 

Lung tissue samples 690 

COVID-19 lung tissues were collected from 5 adults with fatal SARS-CoV-2 691 

infection by the Autopsy Service of the Department of Pathology, Molecular and Cell-692 

Based Medicine at the Icahn School of Medicine at Mount Sinai, and non-COVID-19 693 

lung tissue was obtained from Pitt Biospecimen Core [9].  694 

 695 

Study approval 696 

Specimens obtained at autopsy do not meet the definition of a living individual 697 

per Federal Regulations 45 CFR 46.102, and as such, research using specimens 698 

obtained at autopsy does not meet the requirements for Institutional Review Board 699 

(IRB) review or oversight under the Icahn School of Medicine Program for the Protection 700 

of Human Subjects. The University of Pittsburgh IRB determined that the study is not 701 

research involving human subjects as defined by DHHS and FDA regulations and 702 

waived of ethical oversight (STUDY20050085). 703 

  704 

In-situ sequencing (ISS) 705 

HS Library Preparation kit (P/N 1110-02, CARTANA AB, part of 10x Genomics) 706 

was used to prepare the library according to the manufacturer’s instruction with minor 707 
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modification [82]. Four μm FFPE tissue sections were baked for 1 hour at 60°C and 708 

deparaffinized by incubating in xylene twice for 7 minutes (min) each. The sections were 709 

then rehydrated by incubating in 100% ethanol (EtOH) for 5 min, followed by 70% EtOH 710 

for 5 min, and nuclease-free deionized distilled water (SH30538.02, HyClone) for 2 min. 711 

Sections were then permeabilized by incubating in citrate buffer pH 6.0 (C9999, Sigma 712 

Aldrich) for 3 hours at 95°C. Chimeric padlock probes (from 1 custom panel (Table S1) 713 

and 4 predesigned panels: hImmune I1A, hImmune I3D, hLung L1C, hLung L2E, 714 

CARTANA AB) directly targeting RNA and containing an anchor sequence as well as a 715 

gene-specific barcode were hybridized overnight at 37°C, then ligated overnight at 716 

30°C. Quality control of the library preparation was performed by applying anchor 717 

probes which labeled by Cy5 to simultaneously detect all rolling circle amplification 718 

products from all genes in the panel. All incubations were performed in SecureSeal™ 719 

hybridization chambers (621502, Grace Biolabs). Slow Fade Antifade Mountant 720 

(S36936, ThermoFisher) was used for mounting. All samples passed the quality control 721 

and were sent to CARTANA AB (part of 10x Genomics) for in-situ barcode sequencing, 722 

imaging, and data processing. Briefly, the fluorescent signals for quality control were 723 

stripped. Adapter probe pool 1 and a sequencing pool containing 4 different fluorescent 724 

labels were hybridized to the in-situ libraries to detect gene-specific barcodes. The 725 

scanning was fulfilled by using epifluorescence microscopy, and raw data consisting of 726 

20x magnification images from 5 fluorescent channels (DAPI, Alexa Fluor® 488, Cy3, 727 

Cy5 and Alexa Fluor® 750) and individual z-stacks, were flattened to 2D using 728 

maximum intensity projection with a Nikon Ti2 Microscope (software NIS elements) 729 

utilizing a Zyla 4.2 camera. In total, 6 sequencing cycles were achieved for full decoding 730 
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of all designed genes. After image processing, which includes image stitching, 731 

background filtering, and a sub-pixel object registration algorithm, true signals were 732 

scored based on signal intensities from individual multicolor images. The results were 733 

summarized in a CSV file and gene plots were generated using MATLAB. Each ISS 734 

spot provided a unique fluorescent barcode identifying the targeted RNA of a gene 735 

marker. The experiment generated a map of gene expressions of selected genes 736 

recorded on the natural morphology of the tissue at a single-cell level. The metadata 737 

generated from the images were further analyzed to obtain data containing the reads 738 

and their 2D (X, Y) positions of each gene, and the DAPI images. TissuuMaps [83, 84] 739 

was used to visualize spatial read locations of multiple genes against DAPI or histology 740 

images. 741 

  742 

Hematoxylin-eosin staining (H&E) and whole slide scanning 743 

H&E was carried out with the same slides subjected to in-situ sequencing using 744 

Hematoxylin & Eosin Stain Kit (H-3502, Vector Laboratories) according to the 745 

manufacturer's instructions. The slides were then scanned with VS200 Slide Scanner 746 

(Olympus). 747 

  748 

Indirect immunofluorescence antibody assay (IFA) 749 

IFA was carried out as previously described [9]. Primary antibodies included 750 

CoraLite® Plus 647-conjugated smooth muscle actin (1:200, Proteintech, CL647-751 

67735), CoraLite® Plus 488-conjugated Collagen Type I (1:100, Proteintech, CL488-752 

67288), IL6Ra (1:500, Proteintech, 23457-1-AP), p-STAT3 (Tyr705) (1 to 20, Invitrogen, 753 
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710093), p-SMAD2/3 (p-SMAD2-S465/467 and p-SMAD3-S423/425, 1:500, ABclonal, 754 

AP0548), and TGF-bRII (1:10, R&D Systems, AF-241-NA). Secondary antibodies 755 

included Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa 756 

Fluor™ Plus 555 (1:400, Invitrogen, A32732), Donkey anti-Mouse IgG (H+L) Highly 757 

Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 568 (1:400, Invitrogen, A10037). 758 

 759 

Cell segmentation  760 

Reads in a tissue sample were segmented into corresponding cells using the 761 

Baysor cell segmentation algorithm [10]. Baysor applies a Markov Random Field model 762 

to identify spatial clustering of reads from the same cell. It can perform cell 763 

segmentation based on read coordinates alone but can also incorporate nuclear 764 

information from DAPI staining. We first utilized the DAPI-stained images of the tissues 765 

and performed the nuclei segmentation using the CellPose anatomical segmentation 766 

algorithm with the default setting of parameters [77]. Segmented nuclei masks with 767 

locations were provided to Baysor to define its scale and standard deviation 768 

parameters. Baysor was able to segment 71%- 91% of reads after the first run for all 769 

samples/tissues. However, we found that among the unsegmented, the so-called noisy 770 

background reads determined by Baysor, there is a considerable portion that could still 771 

be assigned to cells visually. To address this issue, we applied Baysor again to these 772 

noisy reads from the first Baysor run. We optimized the scale and standard deviation 773 

parameter for the second Baysor run to maximize reads assignment to cells. Including 774 

the second run significantly improved the percentages of the segmented reads to 88%-775 
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95% for all samples/tissues (Fig. S3, S4 and Table S2). We implemented only two runs 776 

because the remaining unsegmented reads were mostly noisy background reads.  777 

 778 

Normalization and filtering 779 

Segmented gene reads assigned to cells were then filtered using multiple criteria. 780 

First, we removed cells that did not contain reads from any marker genes. Second, we 781 

removed cells with total read counts <5 or less than 4 genes with reads. Of the 782 

remaining cells, read counts for each gene within a cell were tallied and gene 783 

expressions were normalized using the scTransform algorithm [11] to further remove 784 

biases due to technical variability. The normalized expressions of 220 genes were used 785 

for subsequent analysis.     786 

 787 

Cell typing  788 

We determined the cell type of each cell using an in-house curated list of marker 789 

genes for 18 cell types (Table S1). For each cell, we calculated the average expression 790 

of marker genes for each of the 18 cell types and then assigned the cell type with the 791 

highest average expression to this cell. We further annotated infected cells as those 792 

with at least one SARS-CoV-2 read. We used UMAP to visualize the expression pattern 793 

of cells associated with the identified cell types in a lower dimension by using the 794 

visualization pipeline in the Seurat package [85].  795 

 796 

Image registration 797 
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The DAPI images of tissues that were used as a prior for cell segmentation had 798 

translational and rotational differences with their corresponding H&E stained images. 799 

For single-cell resolution datasets, small spatial geometric changes in the available raw 800 

morphology images could have dramatic differences in downstream analysis for 801 

studying the pathology signatures using annotated regions in the H&E image. To 802 

mitigate these spatial geometric differences, we registered the DAPI and H&E images 803 

by maximizing the phase correlation between both images. Here, we selected the DAPI 804 

image as a fixed reference because we used DAPI images as references for reads 805 

mapping and cell segmentation. To register both images, the H&E stained image is 806 

transformed by changing the scale, rotation, and translation parameters and moved 807 

across the DAPI image to improve the phase correlation of both 2D images. Once a 808 

peak correlation value was found, the optimization algorithm returned the 2D geometric 809 

transformations required to warp the H&E-stained image and registered it to the 810 

corresponding DAPI image. We applied the same image registration algorithm to all six 811 

samples used in this study. Pathology annotations were carried out on the registered 812 

H&E images. 813 

 814 

Cell density analysis 815 

The abundance of cells relative to the tissue context could reveal biology related 816 

to cell proliferation, cell damage, as well as other pathologies related to infection. In our 817 

spatial analysis pipeline (Fig. 1B), we defined cell density based on the number of cells 818 

within a neighborhood of a fixed radius of 200 units (200 x 0.32 μm/unit = 64 um) 819 

centering a cell, covering an area of 0.013 mm2. By calculating the number of cells 820 
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within the fixed neighborhoods of each cell, we summarized the global cell density 821 

patterns across the tissue. We further presented the cell density as a contour plot by 822 

fitting a 2D kernel density estimator (KDE) on the cell density feature (Fig. 3).  823 

 824 

Neighboring cell type composition analysis  825 

Local cell type distributions can reveal tissue structures and different COVID-19 826 

pathology. We assessed the local cell type distribution by computing the neighboring 827 

cell type composition (NCTC) of each cell. NCTC defined a cellular neighborhood of 200 828 

cells and counts the number of different cell types in the neighborhood to create a 829 

neighborhood count vector for each cell. This neighborhood count vector was 830 

normalized to obtain the percentages of cell types. NCTC summarized the distributions 831 

of each cell type in the vicinity of a cell and was further used to analyze the spatial 832 

correlation of different cell types in a region-of-interest (ROI), study spatial gene 833 

expression patterns of local neighborhoods, identify local hotspots of individual cell 834 

types, and more. Furthermore, the neighborhood composition of individual cell types is 835 

spatially mapped by painting the neighborhood count/percentage of the selected cell 836 

type with a continuous “rainbow” color scheme where deeper violet to deeper reds 837 

indicates a range of low-to-high neighborhood cell composition (Fig. S10-S15).  838 

 839 

Spatial gene expression map 840 

SSCT captures gene expression of single cells in the context of intact tissue 841 

structures. In our study, we investigated the spatial organization of cells in tissue and 842 

their gene expression by studying their spatial gene expression maps (SGM). For each 843 
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gene, its SGM is defined as the sum of the expression of that gene in its 200 nearest 844 

neighboring cells. Thus, SGM represents a spatial gradient by summarizing the regions 845 

with high or low gene expression patterns. We then painted the SGM using the 846 

continuous rainbow colormap similar to the NCTC analysis, generating the spatial gene 847 

expression maps illustrated in Fig. 2B, 2C, and 4F. By comparing the SGM with 848 

available pathology annotations, pathology signatures with relevant expression patterns 849 

can be localized to specific spatial regions in the tissue. Additionally, novel pathology 850 

signatures or ROIs can be discovered using the proposed SGM analysis. 851 

 852 

Local infection rate analysis 853 

We used the local infection rate analysis to study the spatial distribution of 854 

SARS-Cov-2 infection. It was similar to the NCTC analysis and computed the 855 

percentage of infected cells in a fixed physical area of 1.286 mm2 or a radius of 2,000 856 

units (640 μm) around each cell across the tissue. These spatial rates can be further 857 

visualized using the same rainbow color scheme as NCTC (Fig. 3A). 858 

 859 

Ligand-receptor coexpression map 860 

Ligand-receptor interactions among cells in a defined location can define spatial 861 

patterns of immune microenvironments due to SARS-CoV-2 infection. To infer the 862 

interactions, we examine the spatial co-expression between a ligand-receptor pair.  863 

Inspired by Moran’s I spatial cross-correlation, we computed the spatial coexpression 864 

between ligand 𝑥 and receptor 𝑦 for cell 𝑖 as 865 

𝐸! = 𝑥! ( 𝑦"
"∈𝒩!

 866 
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where 𝑥! = 1 (𝑦" = 1) if ligand 𝑥 (receptor 𝑦) expressed in cell 𝑖 (𝑗) and 0, otherwise and 867 

𝒩! defines a set of neighboring cells of cell 𝑖, which are cells within a radius of 1,000 868 

units (320 μm) or a fixed physical area of 0.322 mm2 around cell 𝑖. Then, we visualized 869 

the coexpression in a tissue using a fixed monochrome color scheme (Fig 3F).  870 

 871 

Moran’s I analysis of spatial patterns 872 

Spatial global autocorrelation of one variable or more variables can be 873 

summarized using Moran’s I score. However, calculating the global spatial 874 

autocorrelation using Moran’s I across the whole tissue assumes homogeneity of the 875 

studied variable and yields only one statistic that summarizes the complete spatial 876 

pattern across the tissue disregarding their difference over space. Since our SARS-877 

CoV-2 infected tissue samples show spatial heterogeneity, in this study, we used Local 878 

Indicators of Spatial Association (LISA) [86] to evaluate the spatial autocorrelation and 879 

the statistical significance of a study variable in each location using Local Moran’s I.   880 

Consider 𝑥! as, e.g., the neighboring infection rate of a cell at location 𝑖, the 881 

univariate spatial autocorrelation can be found as the degree of linear association 882 

between 𝑥! 	and a weighted average of the neighboring cells 𝑥", based on a spatial 883 

weight 𝑤!" 	between cells at location	𝑖 and 𝑗. Thus, formally, Moran’s I for each location 𝑖 884 

is given by 885 

𝐼! =
𝑥! − �̅�
𝑚%

(𝑤!"2𝑥" − �̅�3
&

"'(

	886 

where 𝑁 defines the number of cells, �̅� defines the mean of all the cells, and 𝑚% is given 887 

by 888 
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𝑚% =
∑ (𝑥! − �̅�)%&
!'(

𝑁  889 

𝐼! ranges from -1 to 1 with -1 indicating highly negative and +1 indicating highly positive 890 

spatial autocorrelation. Such formulation can be used to identify spatial regions with 891 

high or low autocorrelation. For example, in Fig. 3B, we identified regions with high and 892 

low infection rates in each tissue.  893 

 Under the same formulation, bivariate spatial autocorrelation can be used to 894 

assess spatial cross-correlation of a feature 𝑥!, e.g., the neighboring infection rate of a 895 

cell at location 𝑖 and another feature 𝑦", e.g., the cell density of a neighboring cell 𝑗 as 896 

𝐼! =
𝑥! − �̅�
𝑚%

(𝑤!"2𝑦" − 𝑦83
&

"'(

	897 

where 𝐼! defines the degree of linear association between the neighboring infection rate 898 

of a cell at location 𝑖 and a weighted average of the cell density of the neighboring cells. 899 

Bivariate spatial associations can uncover cross-correlations between any such variable 900 

𝑥 at location 𝑖 and another variable 𝑦 at neighboring locations by ignoring correlations 901 

between 𝑥 and 𝑦 for cases where 𝑖 = 𝑗. In our study, the bivariate LISA method is used 902 

to calculate the Local Moran’s I to identify HIHD regions described in Fig. 3E. 903 

 904 

Sparse Non-negative matrix factorization (SNMF) of neighboring cell type 905 

compositions 906 

SNMF was applied to extract interpretable, tissue-specific, and tissue-907 

independent signatures from NCTC vectors from all tissue samples [63]. Let 𝑨 ∈908 

(𝟎, 𝟏)&×* represent the NCTC matrix of 𝑁 cell types and 𝑀 cells and it is factored as  909 

 910 
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𝑨	 ≈ 𝑺𝑫𝑯 911 

 912 

where	𝑺 ∈ (𝟎, 𝟏)&×+ is the matrix of 𝐾 NCTC signatures with each column denoting a 913 

signature,  𝑯 ∈ (𝟎, 𝟏)+×* is the signature loading matrix with 𝑚th column denoting the 914 

contributions of each signature to the NCTC vector of cell 𝑚, and 𝑫 ∈ ℝ+×+ is a scaling 915 

matrix.  916 

R package RcppML was used for the SNMF analysis [63], which implemented    917 

an alternating least squares (ALS) algorithm to minimize the mean squared error (MSE) 918 

between 𝑨 and 𝑺𝑫𝑯. 𝐿( regularization was introduced to promote a compact, sparse 919 

signature loading.     920 

 Determining the best number of signatures 𝐾 is important for uncovering 921 

meaningful signatures. While an underestimated number could miss critical signatures, 922 

an overestimated number would include many noisy signatures. To this end, we 923 

evaluated different maximum numbers of factors from 4 to 12 and examined the 924 

meaning regarding its cell type composition and spatial distributions of loadings of each 925 

signature and chose 𝐾 = 7 for the SNMF analysis. 926 

 927 

Trajectory analysis  928 

The goal of trajectory analysis is to infer a progression or ‘pseudotime’ of 929 

infection severity and associated tissue damages based on NCTC patterns in all 930 

tissues. We applied the trajectory analysis to uncover the pseudotime of 1) infection 931 

severity among tissues and 2) tissue damage defined by immune microenvironments.  932 

For 1), we used loadings of Signature 1 “Normal-like Alveoli” and Signature 3 “Broad 933 
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Immune Infiltration” obtained from SNMF and defined tissue samples as clusters.  For 934 

2), we used the loadings of Signature 1 and four immune microenvironment-related 935 

signatures, i.e., Signature 4-7, and performed Louvain clustering to define the clusters. 936 

The R package Slingshot was used to infer the trajectory [64]. The loadings, clusters, 937 

and the signatures or the 2-D UMAP matrix were fed into Slingshot to obtain so-called 938 

‘pseudotime’ scores for each cell. For both cases, the cluster enriched by cells from the 939 

non-infected tissue (PBC-PR) cells was set as the origin.  940 

The pseudotime scores of the cells in each trajectory can correlate with gene 941 

expression to uncover genes that correlate with tissue damage. Additionally, ligand-942 

receptor coexpressions that correlate with each trajectory could inform potential ligand-943 

receptor interactions that govern immune responses. To this end, we computed the 944 

Spearman correlation of the pseudotime score with the expression of each gene per cell 945 

type in each trajectory. We also computed the correlation of ligand-receptor 946 

coexpressions with the pseudotime score of each trajectory. In both cases, to properly 947 

assess p-values, we performed a permutation test to obtain the empirical null 948 

distribution of the correlation coefficients and chose p-value<0.5 as the significant level. 949 

We then plotted heatmaps to illustrate the cell-type-wise correlations of the genes in 950 

each trajectory (Fig. S26A-D). 951 

 952 

Publicly available scRNA-seq datasets 953 

Two scRNA-seq datasets were obtained and processed as follows.  954 

1. COVID-19 scRNA-seq dataset [4]. The dataset (SCP1052, lung.h5ad.gz) was 955 

downloaded from the Single Cell Portal 956 
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(https://singlecell.broadinstitute.org/single_cell). The processed data file 957 

lung.h5ad was accessed using the Python package Scanpy (Scanpy 1.9.1). 958 

UMAP coordinates for the processed data were accessed from the file 959 

upload.scp.X_umap.coords.txt. No follow-up processing was performed on the 960 

processed anndata object after it was loaded into Scanpy. 961 

2. IPF scRNA-seq dataset [72]. The dataset (GSE135893, 962 

GSE135893_ILD_annotated_fullsize.rds.gz) was downloaded from Gene 963 

Expression Omnibus (GEO).  The Seurat object file was converted into the h5ad 964 

file format using the SeuratData package (Seurat 4.3.0, SeuratData 0.2.2). After 965 

conversion, the data was loaded in Scanpy (Scanpy 1.9.1) and all cells not 966 

originating from an IPF sample or control sample were removed.  967 

 968 

Statistics and reproducibility 969 

Reads-based cell segmentation was performed using Baysor (version 0.5.2). 970 

Nuclei segmentation from DAPI images was performed using CellPose (version 2.1.1). 971 

All other image analyses including imaging registration were performed using MATLAB 972 

(version 2022a). Unless otherwise specified, p-value < 0.05 was considered significant.  973 

The differential expression analysis was performed in R (version 3.6.3) using the 974 

Wilcoxon rank-sum test with Bonferroni’s correction of multiple testing as necessary. 975 

The Moran’s I analyses for spatial patterns were performed using GeoDa (version 1.20). 976 

Pearson correlation coefficients were calculated using function pearsonr in Python 977 

Scipy (version 1.9.3). UMAP dimension reduction and visualization were performed 978 
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using function DimPlot in Seurat (version 4.2.0). Trajectory analyses were performed 979 

using R package Slingshot (version 2.6.0).  980 

981 
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Figure Legend 1242 

Figure 1: Spatial organization of parenchymal and immune cells in COVID-19 lung 1243 

tissues revealed by spatial single-cell transcriptome analysis (SSCTA). A. 1244 

Schematic illustration of the spatial single-cell sequencing pipeline used to generate the 1245 

target dataset comprised of healthy control (non-COVID-19 tissue, n=1) and COVID-19 1246 

tissues (n=5). Samples were hybridized and decoded by sequencing. DAPI and H&E 1247 

staining were carried out. All samples were annotated by an expert pathologist (Fig. 1248 

S1). B. SSCTA workflow illustrating cell segmentation, cell typing, neighborhood cell-1249 

type composition (NCTC) analysis, and tissue pathology analysis. C. Average 1250 

expression of cell type markers of all segmented cells across identified cell types in the 1251 

SSCTA dataset. D. The UMAP projection of the gene expressions of segmented cells 1252 

colored based on cell type, infection, and sample identifier. The UMAP shows negligible 1253 

batch differences between the samples. E. Spatial visualization of identified cell types in 1254 

two COVID-19 tissues and the non-COVID-19 tissue along with individual spatial plots 1255 

illustrating the neighborhood cell type composition of specific cell types. We identified 1256 

DAD in all COVID-19 tissues and orderly distribution of major parenchymal cells in non-1257 

COVID-19 tissue (PBC-PR). Further plots are provided in Fig. S1. F. Bar plots showing 1258 

the percentages of identified cell types and their percentages of SARS-CoV-2 infected 1259 

cells.  1260 

  1261 

Figure 2: SARS-CoV-2 infection induces global differential gene expression that 1262 

mediates pathological damages and inflammation with cell type and spatial 1263 

features. A. Differential gene expressions between the identified cells in the COVID-19 1264 
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non-COVID-19 tissue with various conditions are illustrated. The title indicates the 1265 

conducted differential expression analysis. Within each row, the bubble size indicates 1266 

the -log10 of the corrected p-value and the color indicates the log2 fold change of the 1267 

corresponding gene. Each column indicates the different COVID-19 tissues. The first 1268 

three panels indicate differential expression analysis between COVID-19 tissues and 1269 

non-COVID-19 tissue while the fourth panel indicates the differential expression 1270 

analysis between the infected and uninfected cells in the respective COVID-19 tissues. 1271 

B. Spatial gene expression map of highly expressed CTSL and IGKC. C. Spatial gene 1272 

expression maps of the rest of the differentially expressed genes. D. Pie chart 1273 

illustrating the percentages of cell types in which the genes are expressed in each 1274 

tissue. E. Differential expression analysis of COVID-19 tissues compared to non-1275 

COVID-19 tissue in cell types that had significant changes in cell numbers based on 1276 

Fig. 1F.   1277 

  1278 

Figure 3: Spatial analysis of local SARS-CoV-2 infection rates identifies regions 1279 

with high infection rates that match high cell densities, high levels of viral entry-1280 

related factors, and localized pathology. A. Spatial distribution of the SARS-CoV-2 1281 

infected cells. The spatial visualization of the infection rates revealed infection hotspots 1282 

in the COVID-19 tissues. B.  Moran’s I analysis of spatial patterns revealed spatially 1283 

distinct high and low infection regions in each COVID-19 tissue. C. Spatial visualization 1284 

of the significant local regions identified by Bivariate Moran’s I analysis, in which 1285 

infection rates and the expressions of TMPRSS2, NRP1, FURIN and ACE2 are spatially 1286 

correlated. D. Spatial visualization of the kernel density plot for the cell densities 1287 
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revealed highly dense cellular hotspots in the COVID-19 samples. E. Spatial 1288 

visualization of the significant local regions identified by Bivariate Moran’s I analysis, in 1289 

which cell densities and the infection regions are spatially correlated, identified as high-1290 

density high-infection (HIHD) regions. F. Spatial visualization of the ligand-receptor 1291 

coexpression maps for the CSF3-CSF3R pair, which are highly expressed in the high 1292 

infection regions. G. Spatial visualization of the significant local regions identified by 1293 

Bivariate Moran’s I analysis, in which both high infection and high CSF3-CSF3R 1294 

coexpression regions are spatially correlated.  1295 

  1296 

Figure 4: Spatial analysis reveals cellular and gene expression features in regions 1297 

with high SARS-CoV-2 infection rates. A. A bar plot showing the cell type 1298 

composition of all identified cell types in the high and low infection regions. The increase 1299 

in alveolar cells (ACs) might suggest the proliferation of ACs due to injury repair of 1300 

alveoli and alveoli capillaries and a decrease in epithelial cells (ECs) and vascular 1301 

endothelial cells (VECs) might suggest the damages caused by the infection. B. UMAP 1302 

projection of the NCTC analysis results of high infection regions (refer to figure 3B) 1303 

revealed three distinct clusters out of which two were distinctly enriched in local 1304 

compositions of ACs and fibroblasts, which are illustrated on the right with their spatial 1305 

visualizations. C. Spatial visualization of the compositions in high infection regions 1306 

revealed negative correlation of fibroblasts and ACs (-0.6, Pearson correlation) which 1307 

overlapped with annotated OP regions (high fibroblasts, low ACs). D.  Differential 1308 

expressions of high and low infection regions of the COVID-19 tissues compared to the 1309 

non-COVID-19 tissue, which share 18 of the 20 differentially expressed genes, 1310 
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confirming strong indirect effect of SARS-CoV-2 infection. E. Differential expressions 1311 

between the high and low infection regions of the COVID-19 tissues revealed distinct 1312 

differentially expressed genes showing upregulation of AC markers SFTPA1 and 1313 

SFTPA2 in tissues 1, 3, and 5, and fibroblast markers COL1A1 or COL1A2 in all 1314 

COVID-19 tissues. F. Spatial visualization of the spatial gene expression map of 1315 

COL1A1 and COL1A2 markers.  1316 

  1317 

Figure 5: Sparse non-negative matrix factorization (SNMF) identifies seven cell 1318 

composition signatures that recapitulate different healthy and disease statuses. 1319 

A. SNMF revealed seven NCTC signatures which are illustrated in a logo plot. B. 1320 

Spatial NCTC signatures visualized after factor loading for each tissue revealed their 1321 

associations with normal structures and broad and tissue-specific infection. C. 1322 

Trajectory analysis of the cell type compositions with Signatures 1 and 3 generated a 1323 

trajectory of reduced normal alveoli and increased immune infiltration from the non-1324 

COVID-19 tissue to COVID-19 tissues 1, 4, 3, 5, and 2. The trajectory agrees with the 1325 

order of the severity of pathology in the tissues identified in the H&E stained images 1326 

(Fig. S1).  1327 

  1328 

Figure 6: Unique cell composition signatures define two separate pathological 1329 

trajectories. A. The UMAP projection of the Signatures 1 (for non-COVID-19 tissue 1330 

reference) and Signatures 4-7 recapitulated the severity of pathological progression 1331 

identified in figure 5C. Two trajectories were derived from the pseudo-progressions of 1332 

cells defined by these signatures. The trajectories showed a common shared onset T1 1333 
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and T2 which traverses through Signature 1 “normal-like-alveoli” and Signature 4 “ACs 1334 

with MMs infiltration” in T1 and then those enriched by Signature 4 and Signature 5 1335 

“VECs with MMs infiltration” in T2. The trajectory then diverged into two paths T3a and 1336 

T4a, and T3b and T4b. Path/Trajectory A defined by T3a and T4a progressed through 1337 

cells mostly from tissues 3 and 4 enriched in Signature 5 “VEC with MMs infiltration” 1338 

ending in Signature 6 “VEC with NK cell infiltration”, which was almost exclusively from 1339 

tissue 3. Path/Trajectory B defined by T3b and T4b are enriched by Signature 6 in T3b 1340 

and Signature 7 “high fibroblasts with MMs infiltration” in T4b. B. UMAP projections of 1341 

the five signatures colored based on their individual signature loadings. C.  Line plots 1342 

illustrating the cell type percentages in band T1, T2, T3(a, b), and T4(a, b). D. Spatial 1343 

visualization of the cells by cell type in each band is shown along with an identified 1344 

representative ROI (red box with dotted lines) for each COVID-19 tissue. Column 7 1345 

illustrates the H&E morphology image of the COVID-19 tissues with black dotted lines 1346 

highlighting the high infection regions. E. Zoomed-in images of the ROIs selected are 1347 

shown. A close examination revealed characteristics of early DAD in T1 and T2, hyaline 1348 

membrane, fibrin, lymphocytic infiltration, collapsed alveoli and capillary structure in T3a 1349 

and T4a, and edema, increased fibrin, and organizing pneumonia (OP) in T3b and T4b 1350 

suggesting a more advanced stage of DAD.   1351 

  1352 

Figure 7: IL6-STAT3 and TGF-b-SMAD2/3 pathways mediate COVID-19 lung 1353 

fibrosis and organizing pneumonia. A. Zoomed in OP region (bottom, red color 1354 

border) and other non-OP regions (top, black color border) from the H&E image of 1355 

COVID-19 tissue 1-2C are illustrated. B. Identified cells colored based on the cell types 1356 
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revealed differences in cell composition signatures between OP and other regions. C. 1357 

Bar plot showing an increase in cell density in OP regions compared to other regions. D. 1358 

Bar plot showing the percentage of cells per cell type in COVID-19 and non-COVID-19 1359 

tissues. There is a decrease in ACs and VECs, and an increase in fibroblasts in the OP 1360 

regions of the COVID-19 tissue. An obvious increase in ACs is seen in the non-COVID-1361 

19 sample. E. Differential gene expressions between the identified cells in the OP 1362 

regions of the COVID-19 tissue sample with cells from the non-COVID-19 tissue and 1363 

cells from the other non-OP regions of the same COVID-19 tissue is illustrated. We 1364 

observed an upregulation of genes encoding for collagen type I alpha 1 and 2 chains 1365 

(COL1A1 and COL1A2) in OP in both tissues compared to the normal tissue or to 1366 

regions without OP in the same COVID-19 lung tissues. F. Pie chart illustrating the 1367 

percentages of cell types in which the selected genes are expressed in tissues 1 and 2. 1368 

G. Spatial visualization of differentially expressed genes from figure 7E. The size of the 1369 

dots indicates the expression level, and the color indicates the cell type of the cell where 1370 

the gene is expressed. H. Differential gene expressions between the identified cells in 1371 

the OP regions of the COVID-19 tissue with cells from the non-COVID-19 tissue as well 1372 

as non-OP regions from the same COVID-19 tissue based on their cell types. Both 1373 

COL1A1 and COL1A2 were upregulated in fibroblasts in OP regions compared to 1374 

fibroblasts from either normal tissue or non-OP regions from the same tissue. I. The 1375 

density plot of the COL1A1 and COL1A2 expressions in OP and other non-OP regions 1376 

in COVID-19 tissue samples 1-2C, 2-1A, and non-COVID-19 tissue is illustrated. J. 1377 

Examination of the networks associated with the Pulmonary Fibrosis Idiopathic 1378 

Signaling Pathways reported by the Ingenuity Pathway Analysis is illustrated. Both IL6-1379 
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STAT3 and TGF-b-SMAD2/3 pathways mediate the expression of COL1A1 and 1380 

COL1A2. K. Multi-color IFA staining revealed that cells with a high COL1A1 expression 1381 

level also had high levels of IL6Ra, p-STAT3, TGF-bR2 and SMAD2/3, confirming the 1382 

activation of these pathways and their potential roles in the upregulation of COL1A1.   1383 
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Supplemental Information 1384 

 1385 

Supplemental Tables 1386 

Table S1. Gene annotation, cell type markers, and total cells expressing 1387 

individual genes and total reads of the individual genes in each lung tissue after 1388 

segmentation. 1389 

 1390 

Table S2. Summary of cell segmentation results.  1391 

 1392 

Table S3. Summary of cell typing results and SARS-CoV-2 infection status. 1393 

 1394 

Table S4. Global spatial correlations between local SARS-CoV-2 infection rates 1395 

and cell densities by global Moran’s I. 1396 

 1397 

Table S5. Cell composition signatures identified by sparse non-negative matrix 1398 

factorization (SNMF). 1399 

 1400 

Table S6. Spearman correlations of pseudotime Trajectory A versus gene 1401 

expressions. 1402 

 1403 

Table S7. Spearman correlations of pseudotime Trajectory B versus gene 1404 

expressions. 1405 

  1406 
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Supplementary Figures 1407 

  1408 

Supplementary Figure 1: Hematoxylin and eosin (H&E) stained images of the five 1409 

COVID-19 tissues (1-2C, 2-1A, 3-1A, 4-3B, 5-3B) and the non-COVID-19 tissue (PBC-1410 

PR) along with pathology annotations are illustrated. We observe various degrees of 1411 

diffuse alveolar damage (DAD) in the COVID-19 tissues. Tissues 1 and 2 (1-2C and 2-1412 

1A) had prominent organizing pneumonia (OP) while edema, hyaline membrane, and 1413 

fibrin clot were prominent in tissues 3, 4, and 5 (3-1A, 4-3B, and 5-3B).  1414 

 1415 

Supplementary Figure 2: 4′,6-diamidino-2-phenylindole (DAPI) staining of all tissues 1416 

under study revealed the nuclei location. We used the DAPI-stained images to facilitate 1417 

cell nuclei segmentation using the CellPose algorithm.  1418 

 1419 

Supplementary Figure 3: A. Bar plot showing the total number of reads and the reads 1420 

that are segmented to cells using the Baysor algorithm for all tissues under study. We 1421 

segmented ~89%-95% of the reads into cells. B. Bar plot showing the total number of 1422 

segmented cells and the identified cells with a cell-marker read. A total of 1,719,459 1423 

cells were identified across the tissues.  1424 

 1425 

Supplementary Figure 4: A representative image showing cell boundary polygons of 1426 

the cells segmented using the Baysor algorithm. Baysor used a binary mask of the 1427 

DAPI image as a prior to guide the cell segmentation.   1428 

 1429 
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 Supplementary Figure 5: Bar plots showing the distribution of the number of 1430 

transcripts (reads) that are segmented to each cell. Over 99% of the cells harbored at 1431 

least 5-15 reads.  1432 

 1433 

Supplementary Figure 6: Heatmaps illustrating the average expressions of marker 1434 

genes in each cell type within each tissue. In all tissues, a total of 18 cell types were 1435 

identified including 11 types of parenchymal cells and 7 types of immune cells.  1436 

 1437 

Supplementary Figure 7: Uniform Manifold Approximation and Projection (UMAP) of 1438 

the gene expressions of individual cells revealed separated clusters for major 1439 

parenchymal cells including alveolar cells (ACs) and fibroblasts. By contrast, immune 1440 

cells were grouped together and mixed with vascular endothelial cells (VECs) in several 1441 

clusters. The poor separation of immune cell types was largely due to highly expressed 1442 

Immunoglobulin kappa light chain (IGKC) and Cathepsin L (CTSL) in these cell types, 1443 

which is further illustrated in Fig. S8.  1444 

 1445 

Supplementary Figure 8: The UMAP of the gene expressions of all segmented and 1446 

cell-typed cells across all tissues under study is illustrated in the bottom-right panel. 1447 

Here, the color of the dots indicates the tissue samples. The rest of the UMAPs illustrate 1448 

the expressions of different genes colored based on their expression in each cell. We 1449 

observe that IGKC and CTSL are spread across many clusters, resulting in the poor 1450 

separation of immune cell types which are mixed with VECs.   1451 

 1452 
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Supplementary Figure 9: Spatial visualization of the segmented cells painted based on 1453 

their cell types along with the location of the SARS-CoV-2 reads marked with an ‘X’.   1454 

 1455 

Supplementary Figure 10: The neighborhood cell type composition (NCTC) analysis 1456 

for COVID-19 tissue 1-2C is illustrated based on the cell type.   1457 

  1458 

Supplementary Figure 11: The neighborhood cell type composition (NCTC) analysis 1459 

for COVID-19 tissue 2-1A is illustrated based on the cell type.   1460 

  1461 

Supplementary Figure 12: The neighborhood cell type composition (NCTC) analysis 1462 

for COVID-19 tissue 3-1A is illustrated based on the cell type.   1463 

  1464 

Supplementary Figure 13: The neighborhood cell type composition (NCTC) analysis 1465 

for COVID-19 tissue 4-3B is illustrated based on the cell type.   1466 

  1467 

Supplementary Figure 14: The neighborhood cell type composition (NCTC) analysis 1468 

for COVID-19 tissue 5-3B is illustrated based on the cell type.   1469 

  1470 

Supplementary Figure 15: The neighborhood cell type composition (NCTC) analysis 1471 

for non-COVID-19 tissue PBC-PR is illustrated based on the cell type.   1472 

  1473 

Supplementary Figure 16: Spatial visualization of regions with blood vessels revealed 1474 

the lining of VECs along the vessels together with other vessel-associated cells 1475 
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including ACs, fibroblasts and smooth muscle cells (SMCs). Each dot indicates a cell, 1476 

and the color of each dot indicates the cell type.  1477 

  1478 

Supplementary Figure 17: Spatial visualization of a representative region with 1479 

bronchioles revealed the lining of epithelial cells (ECs), smooth muscle cells (SMCs) 1480 

and VECs along the bronchiole together with other bronchiole-associated cells including 1481 

ACs and fibroblasts. Each dot indicates a cell, and the color of each dot indicates the 1482 

cell type.  1483 

  1484 

Supplementary Figure 18: Spatial visualization of the expressions of the 19 1485 

dysregulated genes in different cell types and their tissue distributions in COVID-19 1486 

tissue 1-2C are illustrated. We observe significant variations in the expression patterns 1487 

suggesting their complex involvements in different aspects of SARS-CoV-2 infection 1488 

and COVID-19 lung pathology. The color of each dot indicates the cell type, and the 1489 

size indicates their expression level.   1490 

  1491 

Supplementary Figure 19: Spatial visualization of the expressions of the 19 1492 

dysregulated genes in different cell types and their tissue distributions in COVID-19 1493 

tissue 2-1A are illustrated. We observe significant variations in the expression patterns 1494 

suggesting their complex involvements in different aspects of SARS-CoV-2 infection 1495 

and COVID-19 lung pathology. The color of each dot indicates the cell type, and the 1496 

size indicates their expression level.  1497 

  1498 
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Supplementary Figure 20: Spatial visualization of the expressions of the 19 1499 

dysregulated genes in different cell types and their tissue distributions in COVID-19 1500 

tissue 3-1A are illustrated. We observe significant variations in the expression patterns 1501 

suggesting their complex involvements in different aspects of SARS-CoV-2 infection 1502 

and COVID-19 lung pathology. The color of each dot indicates the cell type, and the 1503 

size indicates their expression level.  1504 

  1505 

Supplementary Figure 21: Spatial visualization of the expressions of the 19 1506 

dysregulated genes in different cell types and their tissue distributions in COVID-19 1507 

tissue 4-3B are illustrated. We observe significant variations in the expression patterns 1508 

suggesting their complex involvements in different aspects of SARS-CoV-2 infection 1509 

and COVID-19 lung pathology. The color of each dot indicates the cell type, and the 1510 

size indicates their expression level.  1511 

  1512 

Supplementary Figure 22: Spatial visualization of the expressions of the 19 1513 

dysregulated genes in different cell types and their tissue distributions in COVID-19 1514 

tissue 5-3B are illustrated. We observe significant variations in the expression patterns 1515 

suggesting their complex involvements in different aspects of SARS-CoV-2 infection 1516 

and COVID-19 lung pathology. The color of each dot indicates the cell type, and the 1517 

size indicates their expression level.  1518 

  1519 

Supplementary Figure 23: Spatial visualization of the expressions of the 19 1520 

dysregulated genes in different cell types and their tissue distributions in non-COVID-19 1521 
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tissue PBC-PR are illustrated. We observe significant variations in the expression 1522 

patterns suggesting their complex involvements in different aspects of SARS-CoV-2 1523 

infection and COVID-19 lung pathology. The color of each dot indicates the cell type, 1524 

and the size indicates their expression level.  1525 

  1526 

Supplementary Figure 24: Bubble plots of cell-type specific differential expression 1527 

analysis of the high infection versus the low infection regions of the same COVID-19 1528 

tissues is illustrated. The analysis further confirmed the upregulation of SFTPA1 or 1529 

SFTPA2 in ACs and COL1A2 in fibroblasts in infected tissues. Within each row, the 1530 

bubble size indicates the -log10 of the corrected p-value and the color indicates the log2 1531 

fold change of the corresponding gene.  1532 

  1533 

Supplementary Figure 25: Box plots of signature loadings for each identified signature 1534 

generated by the SNMF decomposition of NCTC vectors are illustrated.   1535 

  1536 

Supplementary Figure 26: A. Heatmap illustrating the Spearman correlation of the 1537 

pseudotime scores of Trajectory A and the gene expression. B. Heatmap illustrating the 1538 

Spearman correlation of the pseudotime scores of Trajectory B and the gene 1539 

expression. C. Heatmap illustrating the Spearman correlation of the pseudotime scores 1540 

of Trajectory A and the ligand-receptor co-expression values of each cell. D. Heatmap 1541 

illustrating the Spearman correlation of the pseudotime scores of Trajectory B and the 1542 

ligand-receptor co-expression values of each cell. In all plots, deeper red indicates a 1543 

high positive correlation and deeper blue indicates a high negative correlation. We also 1544 
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apply a p-value threshold (p-values<0.5) to remove the genes with lesser correlations 1545 

and the removed genes are painted white to indicate no correlation.  1546 

  1547 

Supplementary Figure 27:  Analysis of COVID-19 and IPF single-cell RNA-seq 1548 

datasets. A. UMAP projections showing expression of COL1A1 and COL1A2, paired 1549 

with fibroblast and myofibroblast cell subtypes from single-cell RNA-seq COVID-19 1550 

tissue atlas. Violin plots showing expression of COL1A1 and COL1A2 in cells from 1551 

COVID-19 patients. B. GSEA enrichment of myofibroblasts in cells ranked by 1552 

expressions of COL1A1 and COL1A2 from the single-cell COVID-19 tissue atlas with a 1553 

resulting p-value < 0.001. The significant enrichment and the large number of highly 1554 

ranked hits indicate that most myofibroblasts from the single-cell COVID-19 tissue atlas 1555 

have high expressions of COL1A1 and COL1A2. C. UMAP projections showing 1556 

expressions of COL1A1 and COL1A2 next to UMAP of fibroblast cell subtypes from 1557 

single-cell RNA-seq pulmonary fibrosis dataset. Violin plots showing expressions of 1558 

COL1A1 and COL1A2 in IPF and control patients. The UMAPs and violin plots only 1559 

represent cells from IPF patients or control. D. GSEA enrichment of myofibroblast in 1560 

cells from IPF and control donors ranked by expressions of COL1A1 and COL1A2 with 1561 

a resulting p-value < 0.001. The significant enrichment and high correlation between the 1562 

myofibroblast cell type and high expressions of COL1A1 and COL1A2 indicate that 1563 

most myofibroblasts from the single-cell pulmonary fibrosis dataset have high 1564 

expressions of COL1A1 and COL1A2. E. A heatmap showing expressions of 1565 

significantly differentially expressed genes from the ‘IPF High’ run in cells with high and 1566 

low expressions of COL1A1 and COL1A2. F. A heatmap showing expressions of 1567 
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significantly differentially expressed genes from the ‘IPF Diagnosis’ cells with high and 1568 

low expressions of COL1A1 and COL1A2. G. GSEA enrichment of significantly 1569 

differentially expressed genes from the ‘IPF Diagnosis’ run against significantly 1570 

differentially expressed genes ordered by fold change from the ‘IPF High’ run with a 1571 

resulting p-value < 0.001. The high enrichment of upregulated genes and 1572 

downregulated genes from the ‘IPF Diagnosis’ run in the ‘IPF High’ run indicates that 1573 

the two differential expression analyses are capturing similar expression patterns. H. A 1574 

heatmap showing expression of differentially expressed genes in cells with high and low 1575 

COL1A1 and COL1A2 expressions from the single-cell COVID-19 dataset. I. GSEA 1576 

enrichment of significantly differentially expressed genes from the ‘IPF High’ run in 1577 

significantly differentially expressed genes from the COVID-19 dataset with a resulting 1578 

p-value < 0.001. The high ranking of the ‘IPF High’ genes indicates that similar genes 1579 

co-express with COL1A1 and COL1A2 in both COIVID-19 and IPF when considering 1580 

IPF and control samples. J. GSEA enrichment of differentially expressed genes from 1581 

‘IPF Diagnosis’ against differentially expressed genes from the ’COVID High’ run 1582 

ordered by fold change with a resulting p-value < 0.001. The high ranking of the ‘IPF 1583 

Diagnosis’ genes indicates that the genes that co-express with COL1A1 and COL1A2 in 1584 

COVID-19 have similar co-expression patterns in IPF. K. Top 10 enriched pathways 1585 

from IPA pathway analysis for the differentially expressed genes from the COVID-19 1586 

single-cell RNA-seq dataset.    1587 
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Table S1. Gene annotation, cell type markers, and total cells expressing individual genes and total reads of the individual genes in each lung tissue after segmentat

Gene HGNC ID Name Annotation of Cell Type Total CelTotal ReaTotal CelTotal ReaTotal CelTotal ReaTotal CelTotal ReaTotal CelTotal ReaTotal CelTotal Rea

A2M HGNC:7 alpha-2-macroglobulin 42643 80341 28959 37365 9830 11626 24699 33682 74687 1E+05 50795 83748

ACE2 HGNC:13557angiotensin I converting enzyme 2 213 221 2281 2344 1274 1310 667 694 3353 3471 176 178

ACKR1HGNC:4035 atypical chemokine receptor 1 (Duffy blood groVascular endothelial cell 1283 1366 5750 5926 3307 3428 2622 2729 9958 10555 2301 2614

ACTA2HGNC:130 actin alpha 2, smooth muscle Smooth muscle cells 5164 6156 9006 9442 4110 4296 6756 7571 20041 23428 14003 16904

AGER HGNC:320 advanced glycosylation end-product specific reAlveolar cells 16263 27549 10958 11939 4034 4371 16636 25020 10146 11282 17701 22204

AGRP HGNC:330 agouti related neuropeptide 406 427 2963 3067 1601 1655 1154 1208 5717 5966 499 523

AIRE HGNC:360 autoimmune regulator 196 200 1116 1130 660 671 549 566 1506 1539 321 333

AP1S2HGNC:560 adaptor related protein complex 1 subunit sigma 2 926 962 1135 1166 806 832 591 609 2509 2570 1954 2042

APOE HGNC:613 apolipoprotein E 12592 17576 21172 27036 6671 7410 22642 32501 7374 7863 5771 6545

ARG1 HGNC:663 arginase 1 Macrophages and mono 385 399 5884 6076 1952 2018 1534 1594 5139 5357 322 332

ASCL1HGNC:738 achaete-scute family bHLH transcription factor 1Epithelial cells 404 418 3640 3738 1531 1583 1713 1793 3938 4080 301 308

ASCL3HGNC:740 achaete-scute family bHLH transcription factor 3Ionocytes 320 333 1475 1544 1194 1254 588 604 1717 1768 203 217

BATF3HGNC:28915basic leucine zipper ATF-like transcription factor 3 541 553 2619 2671 1098 1118 983 1013 2611 2673 437 446

BPIFB1HGNC:16108BPI fold containing family B member 1 Epithelial cells 94 98 333 352 337 348 196 216 1188 1296 81 83

C1QA HGNC:1241 complement C1q A chain Macrophages and mono20720 27989 37792 45071 17616 20129 20676 24133 36007 40708 6548 7757

C1QB HGNC:1242 complement C1q B chain Macrophages and mono12297 14766 51493 58737 17542 19111 18151 20123 47053 53019 5310 5947

C2 HGNC:1248 complement C2 738 783 896 927 497 515 548 576 1156 1211 291 305

C3 HGNC:1318 complement C3 5183 6047 3892 4086 1834 2012 2738 2956 4882 5191 2884 3135

C4BPAHGNC:1325 complement component 4 binding protein alpha 382 402 1406 1452 650 668 475 487 1589 1642 704 735

CAV1 HGNC:1527 caveolin 1 3742 3999 1940 2007 1098 1129 1671 1737 5318 5526 11368 12788

CCL17HGNC:10615C-C motif chemokine ligand 17 249 261 1159 1246 1024 1083 424 447 1566 1683 300 311

CCL2 HGNC:10618C-C motif chemokine ligand 2 1131 1237 4239 4377 1970 2072 589 615 11301 12757 1651 1759

CCL5 HGNC:10632C-C motif chemokine ligand 5 758 795 938 961 995 1024 537 554 1338 1396 493 510

CCL8 HGNC:10635C-C motif chemokine ligand 8 254 270 1143 1161 578 595 403 417 2857 3001 146 149

CCR2 HGNC:1603 C-C motif chemokine receptor 2 2594 2753 19388 20595 8426 8872 7505 7945 29142 31621 3473 3643

CCR4 HGNC:1605 C-C motif chemokine receptor 4 408 425 4728 4880 2670 2808 1730 1809 6289 6509 491 507

CCR5 HGNC:1606 C-C motif chemokine receptor 5 1710 1785 12777 13338 4988 5223 4221 4416 15676 16525 1685 1767

CCR6 HGNC:1607 C-C motif chemokine receptor 6 136 142 1197 1219 661 682 428 442 1195 1223 206 212

CCR7 HGNC:1608 C-C motif chemokine receptor 7 577 597 2161 2210 1791 1853 630 654 3593 3686 565 579

CD14 HGNC:1628 CD14 molecule Macrophages and mono 1773 1852 1668 1700 1539 1575 759 782 2163 2197 498 514

CD163HGNC:1631 CD163 molecule Macrophages and mono 2316 2483 6400 6949 3026 3275 3698 4010 9813 10817 1383 1488

CD19 HGNC:1633 CD19 molecule B cells 761 785 10762 11125 3179 3273 3477 3608 8204 8483 576 590

CD1C HGNC:1636 CD1c molecule Dendritic cells 3239 3373 4063 4182 3639 3760 3177 3294 3550 3629 1215 1249

CD209HGNC:1641 CD209 molecule 384 401 1780 1826 1131 1172 717 736 2537 2620 399 410

GYPA HGNC:4702 glycophorin A (MNS blood group) Erythrocyte 161 169 2335 2409 1410 1447 462 477 3642 3775 101 102

CD274HGNC:17635CD274 molecule 237 241 1010 1023 498 505 413 429 1149 1175 192 198

CD28 HGNC:1653 CD28 molecule 257 266 2219 2310 1178 1238 792 821 2634 2731 287 297

CD300HGNC:28874CD300e molecule 266 269 942 969 639 654 713 733 1574 1612 191 200

CD34 HGNC:1662 CD34 molecule Vascular endothelial cell 3195 3371 4713 4856 2423 2511 2047 2132 5684 5884 5157 5513

CD3D HGNC:1673 CD3d molecule T cells 1154 1216 5081 5261 3234 3360 2383 2496 8192 8618 1223 1282

CD3E HGNC:1674 CD3e molecule T cells 451 464 1159 1177 860 879 383 388 1567 1599 603 618

CD3G HGNC:1675 CD3g molecule T cells 44 44 109 109 16 16 17 17 54 54 61 61

CD4 HGNC:1678 CD4 molecule T cells 9244 9854 32619 34880 15017 15908 15346 16465 45532 50512 6899 7329

CD40 HGNC:11919CD40 molecule 1284 1323 6802 7021 2935 3042 2489 2584 9651 10041 1100 1128

CD40LGHGNC:11935CD40 ligand 785 827 12160 12659 6193 6460 3159 3307 25458 27608 633 663

CD44 HGNC:1681 CD44 molecule (Indian blood group) 3032 3218 4303 4473 2278 2369 2170 2271 12624 13517 5280 5692

CD68 HGNC:1693 CD68 molecule Macrophages and mono 6117 6731 15311 16792 12141 13295 8779 9502 27401 30488 6359 7170

CD7 HGNC:1695 CD7 molecule 645 676 4375 4464 1954 2005 1387 1432 3516 3618 455 470

CD79AHGNC:1698 CD79a molecule B cells 1664 1762 21479 22599 6222 6448 4727 4911 15235 15962 800 842

CD79BHGNC:1699 CD79b molecule B cells 1428 1506 4402 4647 3115 3286 2752 2877 6391 6771 1968 2061

CD80 HGNC:1700 CD80 molecule 653 676 3873 3981 3291 3383 1595 1652 5186 5335 514 534

CD83 HGNC:1703 CD83 molecule 562 588 3093 3184 1163 1202 1034 1077 3142 3256 666 692

CD86 HGNC:1705 CD86 molecule 1 1 6 6 5 5 6 6 7 7 4 4

CD8A HGNC:1706 CD8a molecule T cells 690 717 3340 3433 2467 2550 943 971 3632 3738 515 534

CD8B HGNC:1707 CD8b molecule T cells 177 182 638 653 684 710 236 247 762 788 173 182

CEACAMHGNC:1820 CEA cell adhesion molecule 8 Granulocytes 592 623 12368 12895 5524 5723 2825 2937 15840 16754 477 493

CFP HGNC:8864 complement factor properdin 249 259 866 886 522 537 253 259 836 857 168 172

CFTR HGNC:1884 CF transmembrane conductance regulator Ionocytes 76 78 664 685 362 372 315 318 935 948 88 92

CLDN5HGNC:2047 claudin 5 Vascular endothelial cell46145 58039 81977 95546 76968 95416 49549 59676 86131 1E+05 38423 49829

CLEC10HGNC:16916C-type lectin domain containing 10A 1432 1507 13952 14589 8036 8443 4628 4847 18709 19859 1189 1257

CLEC5AHGNC:2054 C-type lectin domain containing 5A 155 164 606 618 561 567 330 338 1186 1225 249 255

CLEC9AHGNC:26705C-type lectin domain containing 9A Dendritic cells 87 89 1244 1337 761 796 326 337 1788 1901 132 139

COL1AHGNC:2197 collagen type I alpha 1 chain Fibroblasts 7620 10687 21508 31708 4084 4627 2387 2792 25152 32237 4447 4884

COL1AHGNC:2198 collagen type I alpha 2 chain Fibroblasts 17445 26898 37213 55927 7678 8625 9522 11572 48486 64941 20266 24613

COL6AHGNC:2211 collagen type VI alpha 1 chain 4358 4725 6794 7095 4101 4285 4035 4278 15730 16919 4344 4608

CPA3 HGNC:2298 carboxypeptidase A3 Granulocytes 172 184 784 830 528 540 334 352 1152 1190 536 568

CR1 HGNC:2334 complement C3b/C4b receptor 1 (Knops blood group) 149 156 535 551 552 567 266 273 924 960 177 183

CSF3RHGNC:2439 colony stimulating factor 3 receptor 1207 1255 4135 4515 2462 2652 2288 2417 5857 6299 978 1027

CTSB HGNC:2527 cathepsin B 7288 8303 13176 14716 6499 7033 9760 11249 19731 22099 6933 7722

CTSL HGNC:2537 Cathepsin L 88357 2E+05 2E+05 4E+05 2E+05 4E+05 1E+05 3E+05 3E+05 6E+05 59979 95863

CX3CRHGNC:2558 C-X3-C motif chemokine receptor 1 2180 2289 4816 4977 5229 5456 3811 3979 6462 6702 2088 2175

CXCL10HGNC:10637C-X-C motif chemokine ligand 10 503 515 2813 2887 2280 2352 1265 1305 5770 6047 581 615

CXCL16HGNC:16642C-X-C motif chemokine ligand 16 925 960 2117 2184 1503 1560 1365 1405 3750 3860 1436 1507

CXCL17HGNC:19232C-X-C motif chemokine ligand 17 244 253 1440 1465 781 803 443 453 2546 2644 416 429

CXCL2HGNC:4603 C-X-C motif chemokine ligand 2 433 459 406 415 498 514 474 484 1440 1501 2463 2681

5-3B PBC-PRSample name 1-2C 2-1A 3-1A 4-3B
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CXCL5HGNC:10642C-X-C motif chemokine ligand 5 115 124 802 821 690 707 380 390 1272 1307 300 318

CXCL8HGNC:6025 C-X-C motif chemokine ligand 8 584 613 6944 7172 2635 2737 2163 2224 7876 8142 593 612

CXCL9HGNC:7098 C-X-C motif chemokine ligand 9 910 989 1887 1962 962 994 366 379 2635 2831 1031 1327

CXCR2HGNC:6027 C-X-C motif chemokine receptor 2 384 400 1190 1233 1065 1097 660 680 1723 1785 351 361

CXCR3HGNC:4540 C-X-C motif chemokine receptor 3 1580 1652 13483 14118 7375 7700 3969 4144 15472 16266 1170 1219

CXCR4HGNC:2561 C-X-C motif chemokine receptor 4 409 426 447 453 430 435 363 368 907 927 677 705

CXCR5HGNC:1060 C-X-C motif chemokine receptor 5 1262 1299 22082 23246 6761 6969 4409 4551 26834 28867 608 619

CXCR6HGNC:16647C-X-C motif chemokine receptor 6 1706 1803 18547 19774 7365 7789 7532 8136 14835 15713 886 911

CYP2F1HGNC:2632 cytochrome P450 family 2 subfamily F member 1 126 131 580 585 359 365 233 238 742 755 148 148

DDX58HGNC:19102DExD/H-box helicase 58 348 351 970 975 704 723 468 478 2246 2293 398 408

DES HGNC:2770 desmin Smooth muscle cells 2105 2251 6468 6681 4351 4512 2619 2745 11073 12074 3562 4077

EDN1 HGNC:3176 endothelin 1 968 1019 1213 1232 810 824 654 682 3617 3760 2183 2341

EOMESHGNC:3372 eomesodermin 872 913 12299 12803 6617 6955 3231 3372 21051 22484 619 644

EPCAMHGNC:11529epithelial cell adhesion molecule Epithelial cells 473 498 1318 1362 756 781 686 718 1665 1730 566 584

EREG HGNC:3443 epiregulin 151 152 900 952 696 726 412 435 1556 1636 222 234

F13A1HGNC:3531 coagulation factor XIII A chain 647 686 2258 2430 1186 1244 773 816 2851 3037 467 484

FABP4HGNC:3559 fatty acid binding protein 4 44 46 565 576 347 356 226 232 724 742 241 254

FBLN1HGNC:3600 fibulin 1 13160 18118 12658 14019 3117 3539 7320 8448 19702 22383 11966 14313

FCGR1AHGNC:3613 Fc fragment of IgG receptor Ia 136 136 452 455 186 188 82 82 317 320 60 62

FCGR2AHGNC:3616 Fc fragment of IgG receptor IIa 920 953 4115 4245 2500 2572 1171 1201 6552 6751 986 1026

FCGR2BHGNC:3618 Fc fragment of IgG receptor IIb 499 524 1164 1200 842 858 487 507 1804 1852 442 456

FCGR3BHGNC:3620 Fc fragment of IgG receptor IIIb 2732 2890 5795 5991 2908 3009 1843 1929 9812 10392 1547 1656

FKBP11HGNC:18624FKBP prolyl isomerase 11 1764 1864 10293 10777 10756 11504 4846 5096 20117 21717 1634 1706

FOLR2HGNC:3793 folate receptor beta 1084 1129 1803 1837 1177 1206 792 814 2267 2311 661 679

FOXI1HGNC:3815 forkhead box I1 Ionocytes 409 428 3688 3804 1886 1963 1337 1384 4358 4513 343 354

FOXJ1HGNC:3816 forkhead box J1 Ciliated cells 3 3 3 3 3 3 2 2 18 18

FOXN4HGNC:21399forkhead box N4 123 128 489 503 432 437 228 238 624 645 138 141

FOXP3HGNC:6106 forkhead box P3 T cells 2743 2853 24051 25729 6922 7186 4868 5058 13528 14139 2291 2367

FURINHGNC:8568 furin, paired basic amino acid cleaving enzyme 2131 2233 10658 11076 4796 4976 5064 5313 14298 14921 2722 2845

FUT4 HGNC:4015 fucosyltransferase 4 969 1012 15533 16926 7541 8103 2887 3034 19700 21747 886 917

GATA2HGNC:4171 GATA binding protein 2 Granulocytes 749 779 3271 3331 1402 1431 832 848 3459 3506 790 812

GATA3HGNC:4172 GATA binding protein 3 339 350 2641 2707 1199 1231 701 713 3269 3374 329 338

CSF3 HGNC:2438 colony stimulating factor 3 6513 7005 56710 64391 16965 18195 14800 15962 39064 43311 4914 5203

GJA5 HGNC:4279 gap junction protein alpha 5 4072 4323 14580 15272 6626 6995 5248 5544 26618 28678 3351 3669

GNLY HGNC:4414 granulysin 1299 1436 5564 5748 2419 2498 1598 1676 7443 7725 622 671

GPR18HGNC:3128 G protein-coupled receptor 183 157 159 444 455 547 560 266 276 663 680 238 248

GSTA1HGNC:4626 glutathione S-transferase alpha 1 Ciliated cells 305 315 1094 1120 949 972 679 702 2015 2069 418 431

GZMK HGNC:4711 granzyme K 2384 2493 33257 35891 18686 20077 7559 7977 66279 78630 1577 1632

HLA-DQHGNC:4944 major histocompatibility complex, class II, DQ beta 1 1320 1390 1267 1335 790 823 970 1015 1431 1507 1331 1423

HLA-DRHGNC:4954 major histocompatibility complex, class II, DR beta 6 (pseudogene) 769 799 3451 3546 2105 2175 1457 1492 4225 4382 597 621

HPGDSHGNC:17890hematopoietic prostaglandin D synthase 91 92 470 486 495 514 208 214 673 697 169 172

ICAM1HGNC:5344 intercellular adhesion molecule 1 2515 2710 7157 7385 2243 2313 2848 2976 6938 7172 2268 2381

ICOS HGNC:5351 inducible T cell costimulator 201 202 1277 1310 586 601 384 401 1182 1213 210 215

ICOSLGHGNC:17087inducible T cell costimulator ligand 2901 3035 32600 35066 12841 13580 12265 13179 27279 29152 2238 2328

IDO1 HGNC:6059 indoleamine 2,3-dioxygenase 1 640 683 965 986 777 802 637 668 5481 5824 337 361

IFIH1 HGNC:18873interferon induced with helicase C domain 1 421 434 728 743 433 446 373 380 1621 1670 424 435

IFITM2HGNC:5413 interferon induced transmembrane protein 2 8012 8583 16017 16883 7018 7363 9795 10406 28790 31093 8062 8677

IFITM3HGNC:5414 interferon induced transmembrane protein 3 16452 18575 17428 18617 8998 9577 19021 21300 64561 77842 12481 13753

IFNA2HGNC:5423 interferon alpha 2 33 33 314 326 281 293 133 135 450 458 58 60

IFNB1HGNC:5434 interferon beta 1 139 143 1292 1319 641 656 431 453 1382 1421 134 136

IFNE HGNC:18163interferon epsilon 54 57 258 264 185 188 98 102 210 219 57 57

IFNG HGNC:5438 interferon gamma 525 555 4161 4328 3203 3374 1638 1713 5996 6342 357 372

IFNGR1HGNC:5439 interferon gamma receptor 1 1795 1876 1465 1496 724 744 1654 1711 3837 3974 3034 3194

IFNGR2HGNC:5440 interferon gamma receptor 2 713 748 1920 1983 932 959 879 916 3236 3362 1227 1273

IGKC HGNC:5716 immunoglobulin kappa constant 74828 2E+05 74799 1E+05 55923 1E+05 28740 50571 1E+05 3E+05 10118 15596

IGLL5 HGNC:38476immunoglobulin lambda like polypeptide 5 2009 2643 7002 7721 4199 4514 3505 3873 11634 13561 1240 1439

IL10 HGNC:5962 interleukin 10 79 81 385 388 209 211 193 199 395 401 72 75

IL10RBHGNC:5965 interleukin 10 receptor subunit beta 833 871 5833 6008 3274 3368 2142 2241 9732 10091 979 1033

IL17A HGNC:5981 interleukin 17A 378 391 4253 4397 1900 1966 956 979 4913 5080 290 297

IL1A HGNC:5991 interleukin 1 alpha 488 501 6524 6789 2731 2864 1406 1468 7135 7411 392 403

IL1B HGNC:5992 interleukin 1 beta 711 735 3369 3432 1390 1419 1180 1226 3375 3448 448 458

IL2 HGNC:6001 interleukin 2 127 131 2079 2133 1121 1190 735 767 2614 2702 159 163

IL22 HGNC:14900interleukin 22 275 278 3039 3120 1750 1813 1074 1115 3001 3090 232 239

IL27 HGNC:19157interleukin 27 239 249 2350 2411 924 950 798 819 2139 2190 185 191

IL2RA HGNC:6008 interleukin 2 receptor subunit alpha 2346 2431 10989 11338 3998 4103 4454 4625 12931 13390 1482 1532

IL33 HGNC:16028interleukin 33 197 199 394 399 218 221 176 180 620 635 369 384

IL3RA HGNC:3563 interleukin 3 receptor subunit alpha 946 982 5462 5666 2165 2228 1478 1530 6942 7183 1201 1246

IL4 HGNC:6014 interleukin 4 473 491 3969 4146 1787 1862 1503 1577 3354 3519 319 325

IL5 HGNC:6016 interleukin 5 343 355 1668 1720 964 987 578 592 1304 1355 289 299

IL6 HGNC:6018 interleukin 6 319 333 1430 1471 1062 1094 527 546 4160 4399 1266 1381

IL6R HGNC:6019 interleukin 6 receptor 554 573 3306 3366 1139 1155 1114 1146 2536 2600 685 717

IL6ST HGNC:6021 interleukin 6 signal transducer 688 715 1378 1415 632 649 685 709 3566 3700 2331 2450

IL7 HGNC:6023 interleukin 7 287 297 1906 1950 1214 1250 802 827 2714 2797 338 350

IL7R HGNC:6024 interleukin 7 receptor 3600 3920 4640 4800 1612 1653 2247 2367 3929 4051 2181 2327

INMT HGNC:6069 indolethylamine N-methyltransferase Fibroblasts 1312 1396 1323 1387 924 959 1260 1323 3237 3408 5878 6438

IRF4 HGNC:6119 interferon regulatory factor 4 902 921 4295 4375 1593 1623 1110 1134 3447 3509 454 464

ISG15 HGNC:4053 ISG15 ubiquitin like modifier 1784 1866 7142 7480 4105 4337 4103 4309 15226 16219 1369 1443

ITGAX HGNC:6152 integrin subunit alpha X Dendritic cells 915 949 1519 1546 1110 1130 1644 1706 2850 2930 730 765

ITLN1 HGNC:18259intelectin 1 250 259 2774 2848 1509 1544 741 766 3299 3378 248 251
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JCHAINHGNC:5713 joining chain of multimeric IgA and IgM 9916 21499 10626 14866 6728 7953 2628 3794 19176 35488 1454 3375

KIT HGNC:6342 KIT proto-oncogene, receptor tyrosine kinase 482 499 978 996 730 757 464 480 2147 2212 2120 2278

KLRB1HGNC:6373 killer cell lectin like receptor B1 311 329 1521 1556 888 906 608 625 1945 1995 304 317

KLRC2HGNC:6375 killer cell lectin like receptor C2 NK cells 131 137 484 499 494 502 323 339 675 695 129 133

KLRD1HGNC:6378 killer cell lectin like receptor D1 NK cells 536 562 4258 4482 1868 1931 986 1020 5417 5665 443 456

KRT13HGNC:6415 keratin 13 184 202 880 902 534 549 396 411 1116 1158 112 113

KRT14HGNC:6416 keratin 14 Basal cells 265 270 2960 3028 1472 1513 746 768 3546 3641 278 288

KRT15HGNC:6421 keratin 15 840 901 5259 5485 2733 2867 1606 1684 6785 7147 537 553

KRT19HGNC:6436 keratin 19 4295 5157 7262 7681 4066 4336 2867 3044 17270 20219 3220 3432

KRT5 HGNC:6442 keratin 5 Basal cells 186 213 589 602 588 705 275 288 3127 4635 112 113

LEF1 HGNC:6551 lymphoid enhancer binding factor 1 214 220 1782 1824 1187 1238 522 544 3048 3185 603 630

LGR6 HGNC:19719leucine rich repeat containing G protein-coupled receptor 6 499 516 3062 3191 1629 1696 1002 1054 3142 3296 431 448

LILRA4HGNC:15503leukocyte immunoglobulin like receptor A4 206 210 1596 1636 827 850 568 577 1548 1576 173 176

LST1 HGNC:14189leukocyte specific transcript 1 5422 5762 68058 78104 25499 27823 13921 14974 72496 84944 4255 4509

LTF HGNC:6720 lactotransferrin 147 161 1482 1530 767 795 322 332 2419 2485 136 137

LYVE1 HGNC:14687lymphatic vessel endothelial hyaluronan receptLymphatic endothelial c 336 352 608 625 308 317 214 221 376 385 740 786

CSF1 HGNC:2432 colony stimulating factor 1 514 528 1226 1251 474 479 314 320 1096 1113 344 348

MGP HGNC:7060 matrix Gla protein 9428 10545 34860 38829 10408 10997 6878 7373 22754 24270 10835 11935

MKI67HGNC:7107 marker of proliferation Ki-67 61 62 180 183 191 194 70 71 348 359 59 61

MRC1HGNC:7228 mannose receptor C-type 1 1143 1197 5250 5446 2179 2227 1635 1693 6191 6375 1428 1522

MS4A1HGNC:7315 membrane spanning 4-domains A1 B cells 132 133 1053 1067 709 725 400 406 1693 1727 110 114

MS4A2HGNC:7316 membrane spanning 4-domains A2 Granulocytes 299 305 3172 3266 1674 1714 833 857 4015 4129 401 414

MSLN HGNC:7371 mesothelin Mesothelial cells 1191 1294 3928 4078 1435 1474 913 964 3332 3449 1717 1799

MUC1HGNC:7508 mucin 1, cell surface associated 955 1021 662 686 638 663 579 609 2614 2738 1132 1189

MUC5AHGNC:7515 mucin 5AC, oligomeric mucus/gel-forming Epithelial cells 145 158 799 827 453 462 502 528 987 1014 154 157

MUC5BHGNC:7516 mucin 5B, oligomeric mucus/gel-forming Epithelial cells 1310 1456 14210 14781 7453 7735 4319 4526 24767 26669 853 878

MX1 HGNC:7532 MX dynamin like GTPase 1 1579 1638 7232 7514 2792 2877 3514 3655 11341 11882 1414 1471

NCAM1HGNC:7656 neural cell adhesion molecule 1 NK cells 6110 6557 40906 44692 27697 30467 17120 18732 58792 66620 3296 3515

NKG7 HGNC:7830 natural killer cell granule protein 7 1352 1492 1162 1192 1060 1110 837 875 2043 2111 758 818

NRP1 HGNC:8004 neuropilin 1 4267 4523 4071 4200 2177 2264 2922 3045 11280 11857 4047 4282

PAX5 HGNC:8619 paired box 5 270 277 2099 2158 1711 1760 566 581 3210 3333 253 264

PCSK1NHGNC:17301proprotein convertase subtilisin/kexin type 1 inhibitor 4234 4500 18102 19090 9788 10407 9194 9843 17936 18870 3926 4233

PDCD1HGNC:8760 programmed cell death 1 5017 5317 14253 14860 11119 11612 6214 6484 10882 11277 2413 2483

PECAMHGNC:8823 platelet and endothelial cell adhesion moleculVascular endothelial cell 538 551 452 458 308 313 527 533 1013 1028 1484 1525

PF4 HGNC:8861 platelet factor 4 271 309 733 751 584 605 393 424 706 729 94 95

PLAC8HGNC:19254placenta associated 8 1599 1703 9248 9601 4682 4869 2901 3038 12029 12703 1279 1329

PLIN2HGNC:248 perilipin 2 741 766 5024 5171 2095 2158 1803 1869 7434 7721 939 976

PPARGHGNC:9236 peroxisome proliferator activated receptor gamma 582 602 4635 4783 2662 2744 1738 1814 7013 7320 1229 1305

PRF1 HGNC:9360 perforin 1 672 690 2647 2784 1522 1595 1416 1495 3888 4107 538 551

PRG4 HGNC:9364 proteoglycan 4 Macrophages and mono 1346 1483 2925 3053 1535 1595 1947 2081 4697 4919 3845 4252

PTN HGNC:9630 pleiotrophin 2909 3202 7876 8310 4531 4858 4619 5019 8072 8546 2408 2577

PTPRCHGNC:9666 protein tyrosine phosphatase receptor type C 1938 2015 4054 4167 3043 3133 1542 1591 6289 6473 1931 2026

RETN HGNC:20389resistin 779 811 7065 7348 3445 3607 2932 3125 9538 10016 715 746

S100A8HGNC:10498S100 calcium binding protein A8 3361 4237 4766 5142 3103 3395 1839 2036 8888 10537 500 553

SCGB1AHGNC:12523secretoglobin family 1A member 1 Epithelial cells 1865 4537 5388 6536 2592 3999 2288 2948 9280 16352 1106 3020

SCGB3AHGNC:18391secretoglobin family 3A member 2 Epithelial cells 534 645 1572 1622 1012 1054 904 988 2634 2825 1687 2580

SEMA3HGNC:10723semaphorin 3A 72 73 733 749 364 372 245 253 886 914 139 142

SFTA2 HGNC:18386surfactant associated 2 Alveolar cells 1690 1805 3864 3996 1901 1990 2040 2160 5024 5260 1957 2057

SFTPA1HGNC:10798surfactant protein A1 Alveolar cells 6106 8052 10922 14182 7860 9860 6527 8187 24407 44290 18841 29304

SFTPA2HGNC:10799surfactant protein A2 Alveolar cells 4370 5125 10027 11632 4643 5192 4322 4783 14103 17992 7456 8821

SFTPC HGNC:10802surfactant protein C Alveolar cells 25948 69259 16766 21268 8284 10209 16532 26081 16118 19624 35495 74526

SLC18AHGNC:10935solute carrier family 18 member A2 Granulocytes 217 223 2954 3056 1801 1871 795 834 4400 4559 291 299

TAGLNHGNC:11553transgelin Smooth muscle cells 345 356 1388 1411 915 931 764 792 1926 1979 1234 1285

TBX21HGNC:11599T-box transcription factor 21 1202 1252 5703 5876 3600 3711 2502 2590 7273 7523 971 1004

TGFB1HGNC:11766transforming growth factor beta 1 1562 1650 2225 2276 1735 1770 1231 1280 3875 3965 2271 2374

TMPRSHGNC:11876transmembrane serine protease 2 9404 10363 22628 24172 23341 25544 10743 11645 19259 20485 6563 7089

TNF HGNC:11892tumor necrosis factor 151 153 622 634 529 544 186 188 972 987 197 203

TP63 HGNC:15979tumor protein p63 Basal cells 82 88 413 449 376 401 140 150 549 583 60 61

TPPP3HGNC:24162tubulin polymerization promoting protein famCiliated cells 1484 1763 4075 4233 1630 1767 2161 2474 7056 7902 1962 2064

TPSAB1HGNC:12019tryptase alpha/beta 1 Granulocytes 4307 5425 3784 3908 2953 3162 4152 4676 6304 6736 3633 4261

TREM2HGNC:17761triggering receptor expressed on myeloid cells 2 1367 1428 2553 2640 1472 1517 1370 1424 2609 2673 481 500

TRPM5HGNC:14323transient receptor potential cation channel subBrush cells 298 307 2062 2103 1322 1362 644 665 2399 2467 394 409

TUBB4BHGNC:20771tubulin beta 4B class IVb Ciliated cells 912 956 599 617 512 524 391 397 1620 1668 982 1009

TYROBPHGNC:12449transmembrane immune signaling adaptor TYROBP 6913 7616 14347 15209 5989 6243 6699 7191 15054 15909 7053 8452

VIM HGNC:12692vimentin 930 975 3069 3156 3152 3282 1261 1305 2791 2868 847 873

WT1 HGNC:12796WT1 transcription factor 62 65 245 246 307 316 138 141 455 460 70 73

IL1R1 HGNC:IL1R1 1780 1867 2331 2400 862 885 1504 1571 11104 11957 2721 2856

CoV wiHGNC: 2054 2222 6879 7865 3393 3577 3356 3720 13596 20379
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Table S2. Summary of cell segmentation results

Sample name 1-2C 2-1A 3-1A 4-3B 5-3B PBC-PR Total

Total Reads 1,137,704 2,380,636 1,441,118 1,161,277 3,424,675 869,453 10,414,863

Number of Genes 222 222 222 222 222 221

Total Segmented Reads 1,074,491 2,224,394 1,339,792 1,112,148 3,231,976 773,102 9,755,903

Percentages of Segmented Reads (%) 94.44381 93.43696 92.96893 95.7694 94.37322 88.9182 93

Total Cells 186,659 406,963 276,676 227,585 470,294 151,282 1,719,459

Total Cells with Cell Type Marker Gene 137,260 317,259 193,293 163,431 369,042 126,531 1,306,816

Percentages of Cells with Cell Type Marker Gene (%) 73.53516 77.9577 69.86258 71.81097 78.47049 83.63916

Total Cells after Filtering 67,701 196,221 87,701 74,843 287,832 62,674 776,972

Average Transcripts per Cell 5.756469 5.465852 4.842476 4.886758 6.87226 5.110371
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Table S3. Summary of cell typing results and SARS-CoV-2 infection status

Sample Name Alveolar cMacrophaFibroblastVascular T cells GranulocyB cells Dendritic EpithelialSmooth mNK cellsCiliated cIonocytesBasal celMesotheliBrush celLymphaticErythrocyTotal

1-2C Number of Cells 19111 14470 10097 8621 2936 2165 1831 1695 1622 1612 1574 969 275 209 199 142 118 55 67701

Cell Type Percentage(%) 28.229 21.373 14.914 12.734 4.3367 3.1979 2.7045 2.5037 2.3958 2.3811 2.3249 1.4313 0.4062 0.3087 0.2939 0.2097 0.1743 0.0812 100

Number of infected Cells 336 179 152 115 51 32 20 19 30 29 26 23 6 4 2 1 1 0 690

Infected Cell Percentage (%) 1.7581 1.237 1.5054 1.334 1.7371 1.4781 1.0923 1.1209 1.8496 1.799 1.6518 2.3736 2.1818 1.9139 1.005 0.7042 0.8475 0 0.0102

2-1A Number of Cells 28,779 40357 25625 16635 13360 9856 20629 3120 12470 3392 11793 2792 2113 2018 957 1038 222 1065 167442

Cell Type Percentage (%) 14.667 20.567 13.059 8.4777 6.8086 5.0229 10.513 1.59 6.3551 1.7287 6.0101 1.4229 1.0768 1.0284 0.4877 0.529 0.1131 0.5428 100

Number of infected Cells 501 660 350 301 309 210 653 49 228 66 258 56 30 50 14 17 4 15 3771

Infected Cell Percentage (%) 1.7409 1.6354 1.3659 1.8094 2.3129 2.1307 3.1654 1.5705 1.8284 1.9458 2.1877 2.0057 1.4198 2.4777 1.4629 1.6378 1.8018 1.4085 0.0225

3-1A Number of Cells 11,240 16820 4498 15384 5699 4882 6073 2212 5766 1882 8064 1285 1189 1126 332 584 118 547 87,701

Cell Type Percentage (%) 12.816 19.179 5.1288 17.541 6.4982 5.5666 6.9247 2.5222 6.5746 2.1459 9.1949 1.4652 1.3557 1.2839 0.3786 0.6659 0.1345 0.6237 100

Number of infected Cells 363 224 91 276 97 66 131 31 83 43 112 24 17 14 2 8 2 7 1591

Infected Cell Percentage (%) 3.2295 1.3317 2.0231 1.7941 1.7021 1.3519 2.1571 1.4014 1.4395 2.2848 1.3889 1.8677 1.4298 1.2433 0.6024 1.3699 1.6949 1.2797 0.0181

4-3B Number of Cells 17,337 15485 4825 10434 4132 3179 4698 1931 3683 1974 4080 1278 689 459 183 259 60 157 74,843

Cell Type Percentage (%) 23.164 20.69 6.4468 13.941 5.5209 4.2476 6.2771 2.5801 4.921 2.6375 5.4514 1.7076 0.9206 0.6133 0.2445 0.3461 0.0802 0.2098 100

Number of infected Cells 402 267 96 209 94 67 144 32 80 50 90 26 21 9 6 5 3 1 1602

Infected Cell Percentage (%) 2.3187 1.7242 1.9896 2.0031 2.2749 2.1076 3.0651 1.6572 2.1721 2.5329 2.2059 2.0344 3.0479 1.9608 3.2787 1.9305 5 0.6369 0.0214

5-3B Number of Cells 42,922 50411 40691 24428 17326 15181 20224 4651 24242 8788 21432 5747 2828 4558 929 1435 147 1892 ######

Cell Type Percentage (%) 14.912 17.514 14.137 8.4869 6.0195 5.2743 7.0263 1.6159 8.4223 3.0532 7.446 1.9967 0.9825 1.5836 0.3228 0.4986 0.0511 0.6573 100

Number of infected Cells 978 1319 893 768 501 443 524 135 705 258 840 130 89 108 46 33 3 66 7839

Infected Cell Percentage (%) 2.2786 2.6165 2.1946 3.1439 2.8916 2.9181 2.591 2.9026 2.9082 2.9358 3.9194 2.262 3.1471 2.3695 4.9516 2.2997 2.0408 3.4884 0.0272

PBC-PRNumber of Cells 27378 5719 9465 7717 1491 1638 1173 736 1262 3290 629 922 139 159 185 145 199 29 62276

Cell Type Percentage (%) 43.962 9.1833 15.198 12.392 2.3942 2.6302 1.8836 1.1818 2.0265 5.2829 1.01 1.4805 0.2232 0.2553 0.2971 0.2328 0.3195 0.0466 100
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Table S4. Global spatial correlations between local SARS-CoV-2 infection rates 

and cell densities by global Moran’s I.   

Sample name 1-2C 2-1A 3-1A 4-3B 5-3B 

Coefficient (r) 0.325 0.636 0.287 0.248 0.078 
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Table S5. Cell composition signatures identified by sparse non-negative matrix factorization (SNMF) 

Normal-like 

Alveoli
Bronchile

Broad 

immune 

infiltration

ACs w/ MM 

infiltration

VECs w/ MM 

infiltration

VECs w/ NK 

infiltration

High 

fibroblasts 

w/ MM 
n-Alveolar 0.5643179 0.0121138 0 0.6477053 0.0404455 0 0.0336691

n-B 0.0177815 0 0.2864881 0.0001489 0.0357681 0.0298888 0.0017179

n-Basal 0 0.1029554 0.0025063 0 0 0.0135613 0

n-Brush 0 0 0.0019199 0 0 0.0032618 0

n-Ciliated 0.0105512 0.1403089 0.002555 0.002187 0.0131246 0 0.0055952

n-Dendritic 0.0076009 0.006494 0.0079063 0.0128054 0.0373424 0.0272293 0

n-Epithelial 0 0.6141461 0.0867002 0.0092846 0 0.1219462 0

n-Erythrocyte 0 0.0014696 0.0023376 0 0 0.0068894 0

n-Fibroblasts 0.1193691 0 0 0 0.031177 0 0.7342991

n-Granulocytes 0.0125711 0.0494878 0.0963014 0.0253557 0.0136434 0.1360229 0.0080645

n-Ionocytes 0 0 0.0145924 0 0.0018038 0.0202377 0

n-Lymphatic 0 0 0 0 0 0 0

n-Macrophages 0 0.0162048 0.2233146 0.2728252 0.4667314 0 0.1577208

n-Mesothelial 0 0 0 0 0 0 0

n-NK 0 0.0066883 0.0999384 0.0296879 0 0.3184191 0.0179067

n-Smooth 0.0529362 0.0501313 0 0 0.0099377 0.0428492 0.0410268

n-T 0.0294544 0 0.17544 0 0.0869477 0.0040867 0

n-Vascular 0.1854178 0 0 0 0.2630784 0.2756075 0
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Gene ACs VECs
Fibroblast

s
MMs NK cells T cells B cells Granulocytes

A2M -0.2765578 -0.285168 -0.238348 -0.182516 -0.229521 -0.249141 -0.223907 -0.2508999

ACE2 0.043395 0.061204

ACTA2 -0.1070443 -0.084294 -0.149374 -0.054684 -0.07261664

AGER -0.0464048 -0.124302 -0.069421

AGRP -0.06517783

AIRE 0.044831

AP1S2 -0.085735

APOE -0.057446 -0.164077 -0.089098 -0.054176 -0.12528 -0.08344893

ARG1 0.046766 0.063714 0.044833

ASCL1 -0.0473939

BATF3 0.044194834

C1QA -0.078339

C1QB 0.0867708 0.059652 0.061753909

C2 -0.045239 -0.042925

C3 -0.045129 -0.076592 -0.048363 -0.043823

CAV1 -0.1734009 -0.188403 -0.157273 -0.090972 -0.120304 -0.05613 -0.11769 -0.12119816

CCL17 0.0635

CCL2 -0.052658

CCL5 0.04699

CCR2 0.051705

CCR5 0.054213

CCR6 0.045881367

CD163 -0.046732 -0.04655853

CD19 0.0438856

CD274 -0.04879447

CD28 0.059283 0.046970801

CD34 -0.0782965 -0.120828 -0.099378 -0.071386

CD3E 0.0501

CD4 0.046742 -0.046078 -0.086732

CD40 0.056504 -0.052999

CD40LG 0.0655237 0.058233 0.046805 0.069183 0.06671726

CD44 -0.0692463 -0.062723 -0.0675 -0.048534 -0.07242388

CD68 0.053609 0.061876787

CD7 0.053738

CD79A 0.061052

CD79B -0.075542

CD80 0.058972 0.05314 0.074283622

CD8A 0.049234 0.054959 0.070571 0.063172204

CD8B 0.052538

CEACAM8 0.0634125 0.063658 0.211105625

CFP 0.043873213

CLDN5 -0.080936 -0.055542 -0.065148 -0.0632258

CLEC10A 0.080319 0.050673 0.050981 0.06959 0.070331

Table S6. Spearman Correlations of Pseudotime Trajectory A versus Gene Expressions
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CLEC5A -0.04331821

COL1A1 -0.0434716 0.095684 -0.044134

COL1A2 -0.1288032 -0.077353 -0.071241 -0.04643754

COL6A1 -0.051441

CPA3 -0.04277 -0.05276376

CSF3 0.0825488 0.055434 0.057477

CTSB -0.123315 -0.066372 -0.06243 -0.049898

CTSL 0.1555903 0.134861 0.082006 0.109746 0.064454 0.060173 0.142779746

CX3CR1 -0.04356

CXCL16 -0.050227

CXCL2 -0.0819782 -0.070601 -0.074434 -0.052996 -0.047334 -0.056277

CXCL5 0.043694

CXCL9 -0.047127

CXCR2 0.045496 0.057255351

CXCR3 0.0534724 0.073938 0.07601 0.04483 0.082672 0.091774059

CXCR5 0.0936446 0.055021 0.10011 0.055826 0.073588 0.056048048

CXCR6 0.0586824 0.093284 0.043907 0.051339988

DES -0.052901

EDN1 -0.0567181 -0.047026 -0.05669 -0.053867 -0.0593376

EOMES 0.0643587 0.055331 0.069938 0.046845356

FBLN1 -0.0936202 -0.097959 -0.109604 -0.048301 -0.086736 -0.063898 -0.09633971

FCGR1A -0.04277

FCGR3B -0.04382 -0.047063 0.050848563

FKBP11 0.0833244 0.078857 0.078018 0.069366 0.075718 0.049317294

FOXI1 0.0456297 0.049750788

FUT4 0.0546642 0.07476 0.050612 0.04718 0.054029

GATA2 -0.044676

GJA5 -0.058265

GYPA 0.055007

GZMK 0.1124151 0.11247 0.113746 0.090556 0.067483 0.12196 0.077234 0.116377053

ICOS 0.043273

ICOSLG 0.0890651 0.080021 0.100679 0.066888

IDO1 -0.04533

IFIH1 -0.042804

IFITM2 -0.0499703 -0.066448 -0.066731 -0.057621 -0.09603561

IFITM3 -0.111749 -0.052976 -0.138866 -0.102936 -0.07538 -0.12173662

IFNG 0.0564185 0.048542 0.066231 0.058263

IFNGR1 -0.068489 -0.075191 -0.072411 -0.046442 -0.063603 -0.043599 -0.07228366

IFNGR2 -0.053552

IGKC 0.1358517 0.110124 0.130462

IL10RB 0.043795 0.050399

IL17A 0.0427097

IL1A 0.0579209 0.045525 0.048089 0.052517

IL1B -0.042758 -0.046179

IL1R1 -0.045698 -0.066127 -0.04663377
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IL2 0.043067

IL22 0.046282

IL27 0.045304

IL2RA 0.047885 -0.048032

IL33 -0.04506483

IL3RA -0.042991

IL4 0.046986 0.052446

IL6 -0.0546 -0.05910199

IL6R -0.042505

IL6ST -0.0570582 -0.070271 -0.098127 -0.066205

INMT -0.1212277 -0.066216 -0.147888 -0.053286

ISG15 0.0567547 0.053995743

ITLN1 0.056264167

JCHAIN 0.0478496 0.045442 0.054362 -0.04797501

KIT -0.0677552 -0.08017 -0.05075 -0.04424782

KLRC2 0.045877299

KLRD1 -0.04341

KRT13 -0.048733 0.045118996

KRT15 -0.04434

KRT19 -0.043261

LEF1 0.042944

LGR6 0.044754

LST1 0.11908 0.137493 0.077651 0.07928 0.073122 0.047908 0.08865345

LTF 0.047044

MGP -0.0431061 -0.054076 -0.07369367

MKI67 0.052051356

MRC1 -0.048254

MS4A2 0.092534008

MSLN -0.04623 -0.04534354

MUC1 -0.057608 0.045367682

MUC5B 0.0802862 0.056127

NCAM1 0.1151786 0.04776 0.103537 0.097938 0.077103 0.090689078

NKG7 -0.068881

NRP1 -0.0589314 -0.070173 -0.050651 -0.061653 -0.08547 -0.050626

PCSK1N 0.043314 0.04325 -0.06915208

PDCD1 0.043172 0.045251

PECAM1 -0.0425713 -0.084631 -0.04948

PF4 -0.049737

PLAC8 0.045747

PPARG 0.073269

PRG4 -0.0611091 -0.080717 -0.065106 -0.06883645

PTN -0.046331

PTPRC -0.09296068

RETN 0.067828 0.056703

S100A8 0.059619 -0.046239
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SCGB3A2 -0.043726

SFTA2 0.0711606

SFTPA1 -0.0912305 -0.063382 -0.05158

SFTPA2 -0.050218 -0.044033 -0.047493

SFTPC -0.1716209 -0.117223 -0.088311 -0.104805 -0.057423 -0.082973 -0.097653 -0.11385289

SLC18A2 0.074543 -0.04352

TAGLN -0.04517

TBX21 0.07757

TGFB1 -0.048865 -0.050631 -0.043419 -0.056812

TMPRSS2 0.0450597 0.063989 0.058446 0.105499 0.055832

TPPP3 -0.04383628

TPSAB1 -0.28480969

TUBB4B -0.04293

TYROBP -0.132481 -0.074625 -0.06259818

VIM 0.047509

WT1 0.047543
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Gene ACs VECs
Fibroblast

s
MMs NK cells T cells B cells Granulocytes

A2M -0.23417 -0.18242 -0.18695 -0.11699 -0.07008 -0.13915 -0.11668 -0.199064005

ACE2 0.047165

ACKR1 0.048854 -0.04833

ACTA2 -0.09122 -0.10498 -0.09113 -0.04457

AGER -0.0654 -0.12614 -0.04869

AGRP 0.049945

AP1S2 -0.04246 -0.07303 -0.04535

APOE -0.07856 -0.03913

ARG1 0.047952 0.046863

ASCL1 -0.037819398

BATF3 0.037658

C1QA 0.058691 0.09027356

C1QB 0.117966 0.054073 0.089102 0.096327 0.058879 0.125662283

C3 -0.063321455

CAV1 -0.15927 -0.18698 -0.14654 -0.07419 -0.07115 -0.05335 -0.04429 -0.103846221

CCL2 0.056462 0.041291612

CCR2 0.06541 0.063104 0.046706 0.038923 0.045579992

CCR4 0.05497 0.03879

CCR5 0.06756 0.037975 0.051752

CCR6 0.045262

CD163 0.037295985

CD19 0.060925 0.040203 0.041826 0.044888

CD34 -0.0689 -0.09669 -0.06878 -0.0509

CD4 0.049011

CD40 0.039212 0.058188

CD40LG 0.107726 0.077691 0.045761 0.08453 0.068746563

CD44 -0.05332 0.052098 -0.050139472

CD68 -0.07668

CD7 0.052587

CD79A 0.08843 0.042754 0.092262

CD79B -0.12707

CD83 0.047211302

CD8A 0.038345

CEACAM8 0.067966 0.055024 0.214210161

CFTR 0.054296

CLDN5 -0.0661 -0.08001 -0.08032 -0.1043 -0.05523 -0.079253269

CLEC10A 0.068948 0.065709 0.055969 0.057083 0.074607

COL1A1 0.238038 0.050449 0.063025

COL1A2 -0.08054 0.074501 0.060741 -0.043885551

CPA3 -0.0388 -0.058816528

CSF3 0.113034 0.10195 0.072741 0.102288 0.071468 0.088778 0.098683964

CTSB -0.04035 0.055171045

CTSL 0.104649 0.07678 -0.04173 -0.06617

Table S7. Spearman Correlations of Pseudotime Trajectory B versus Gene Expressions
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CX3CR1 0.043399 -0.04299

CXCL2 -0.07253 -0.0844 -0.05969 -0.05841 -0.06559 -0.05153 -0.04755

CXCL5 0.03806835

CXCL9 -0.03978

CXCR3 0.069483 0.048237 0.037495 0.085780591

CXCR5 0.125108 0.091302 0.039747 0.064412 0.053469 0.056036

CXCR6 0.056839 0.055155 0.063929 0.057363906

DES 0.055714 0.041941

EDN1 -0.04828 -0.04554

EOMES 0.084288 0.076171 0.045833 0.050475746

FABP4 -0.03939

FBLN1 -0.07795 -0.06019 -0.0729 -0.04823 -0.06675 -0.099788911

FCGR2A 0.044455

FCGR3B 0.040975 0.037913 0.072317848

FKBP11 0.063241 0.040355 0.056659

FOLR2 -0.04681

FOXI1 0.045565

FOXN4 0.043416 0.043758

FOXP3 0.039537 0.050424 0.048612 0.060758 0.056544832

FURIN 0.045908

FUT4 0.08674 0.072236 0.040281 0.06246 0.044159

GATA2 -0.04118

GJA5 0.042105 0.043181

GNLY 0.049135 0.039547

GPR183 -0.05082

GYPA 0.044047

GZMK 0.162548 0.117448 0.066982 0.07485 0.102471 0.053519 0.121910499

HPGDS -0.058750952

ICAM1 0.051938

ICOSLG 0.094865 0.108561 0.059662 0.058779 0.06085 0.041286 0.046443 0.048873673

IDO1 0.039485 0.037285

IFITM3 -0.0401819

IFNB1 0.064311

IFNG 0.047643 -0.03724 0.04148565

IFNGR1 -0.06606 -0.06479 -0.04459 -0.06533 -0.0605 -0.043583766

IFNGR2 -0.04789 0.041613098

IGKC 0.200164 0.207234 0.10137 0.08933 0.115094 0.106026 0.061718 0.065923338

IGLL5 0.045037

IL10RB 0.04243 0.042023 0.043005

IL17A 0.051116 0.052451 0.049536

IL1A 0.061588 0.050096

IL1B 0.038184 0.038756

IL22 0.041126 0.037526937

IL27 0.040339

IL2RA 0.073001 0.053015 0.054686
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IL33 -0.03945 -0.03722

IL3RA 0.043497

IL4 0.03914

IL5 0.065467 0.045197

IL6 -0.053733035

IL6R 0.044341

IL6ST -0.05528

IL7R -0.04831 -0.05257

INMT -0.12332 -0.06816 -0.19792 -0.06262

ISG15 0.066814 0.038402 0.040259

ITLN1 0.044288 0.049348458

JCHAIN 0.082298 0.052541 0.063171 0.058752

KIT -0.05272 -0.08017 -0.053323915

KLRC2 -0.04922 0.050395

KLRD1 0.044409

KRT13 0.041034312

KRT14 0.040772

KRT15 0.046743

LST1 0.176173 0.140293 0.075228 0.097155 0.048409 0.150042 0.066195 0.117086543

LTF 0.058064

MGP 0.060665 -0.047453011

MRC1 0.039171

MSLN -0.04002 -0.053807806

MUC5AC -0.04623

MUC5B 0.100919 0.037387 0.038258 0.037932

MX1 0.037898

NCAM1 0.129607 0.038924 0.070591 0.060254 0.040041 0.054425241

NRP1 -0.0381 -0.04668 -0.05298

PAX5 0.053371989

PCSK1N -0.076337283

PDCD1 0.037544

PECAM1 -0.04893 -0.09513 -0.05137 -0.04777 -0.06127

PLAC8 0.039513

PLIN2 0.049445

PPARG 0.037847

PRF1 -0.04373

PRG4 -0.06815 -0.04201 -0.07122 -0.06506

PTN -0.03789 -0.06056

PTPRC -0.05500837

RETN 0.066851 0.040041

S100A8 0.048937

SEMA3A 0.059976

SFTA2 0.090868

SFTPA1 -0.07088 -0.05154

SFTPA2 -0.04342
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SFTPC -0.18456 -0.09881 -0.07617 -0.07591 -0.05003 -0.06539 -0.06338 -0.11238912

SLC18A2 0.059352 0.053280437

TGFB1 -0.0503 0.042625481

TMPRSS2 -0.04518 -0.07145939

TPPP3 -0.038857276

TPSAB1 -0.04459 -0.04399 0.038693 -0.04669 -0.291267486

TYROBP -0.04596
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